1
|
Docampo MJ, Batruch M, Oldrati P, Berenjeno-Correa E, Hilty M, Leventhal G, Lutterotti A, Martin R, Sospedra M. Clinical and Immunologic Effects of Paraprobiotics in Long-COVID Patients: A Pilot Study. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200296. [PMID: 39106427 PMCID: PMC11318528 DOI: 10.1212/nxi.0000000000200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND AND OBJECTIVES After the enormous health burden during the acute stages of the COVID-19 pandemic, we are now facing another important challenge, that is, long-COVID, a clinical condition with often disabling signs and symptoms of the neuropsychiatric, gastrointestinal, respiratory, cardiovascular, and immune systems. While the pathogenesis of this syndrome is still poorly understood, alterations of immune function and the gut microbiota seem to play important roles. Because affected individuals are frequently unable to work for prolonged periods and suffer numerous health compromises, effective treatments represent a major unmet medical need. Multiple potential therapies have been tried, but none is approved yet. Approaches that are able to influence the immune system and gut microbiota such as probiotics and paraprobiotics, i.e., nonviable probiotics, seem promising candidates. We, therefore, evaluated the clinical and immunologic effects of paraprobiotics in a small pilot study. METHODS A total of 6 patients with long-COVID were followed systematically for more than 12 months after disease onset using standardized validated questionnaires, a smartphone app, and wearable sensors to assess neurocognitive function, fatigue, depressiveness, autonomic nervous system alterations, and quality of life. We then offered patients defined paraprobiotics for 4 weeks and evaluated them at the end of the treatment period using the same questionnaires, smartphone app, and wearable sensors. In addition, a comprehensive immunophenotyping and gut microbiota analysis was performed before and after treatment. RESULTS Improvements in several of the neurologic symptoms such as dysautonomia, fatigue, and depression were documented using both patient-reported outcomes and data from the smartphone app and wearable sensors. Of interest, the expression of activation markers on some immune cell populations such as B cells and nonclassical monocytes and the expression of toll-like receptor 2 (TLR2) on T cells were reduced after paraprobiotics treatment. DISCUSSION Our results suggest that paraprobiotics might exert positive effects in patients with long-COVID most likely by modulating immune cell activation and expression of TLR2 on T cells. Further studies with paraprobiotics should confirm the promising observations of this small pilot study and hopefully not only improve the outcome of long-COVID but also unravel the pathomechanisms of this condition. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that paraprobiotics increase the probability of favorable changes of clinical and immunologic markers in patients with long-COVID.
Collapse
Affiliation(s)
- María José Docampo
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mattei Batruch
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pietro Oldrati
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ernesto Berenjeno-Correa
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marc Hilty
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel Leventhal
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lutterotti
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roland Martin
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mireia Sospedra
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Pandey S, Anang V, Schumacher MM. Tumor microenvironment induced switch to mitochondrial metabolism promotes suppressive functions in immune cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:67-103. [PMID: 39396850 DOI: 10.1016/bs.ircmb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Understanding the intricacies of the metabolic phenotype in immune cells and its plasticity within the tumor microenvironment is pivotal in understanding the pathology and prognosis of cancer. Unfavorable conditions and cellular stress in the tumor microenvironment (TME) exert a profound impact on cellular functions in immune cells, thereby influencing both tumor progression and immune responses. Elevated AMP:ATP ratio, a consequence of limited glucose levels, activate AMP-activated protein kinase (AMPK) while concurrently repressing the activity of mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor 1-alpha (HIF-1α). The intricate balance between AMPK, mTOR, and HIF-1α activities defines the metabolic phenotype of immune cells in the TME. These Changes in metabolic phenotype are strongly associated with immune cell functions and play a crucial role in creating a milieu conducive to tumor progression. Insufficiency of nutrient and oxygen supply leads to a metabolic shift in immune cells characterized by a decrease in glycolysis and an increase in oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) rates. In most cases, this shift in metabolism is accompanied by a compromise in the effector functions of these immune cells. This metabolic adaptation prompts immune cells to turn down their effector functions, entering a quiescent or immunosuppressive state that may support tumor growth. This article discusses how tumor microenvironment alters the metabolism in immune cells leading to their tolerance and tumor progression, with emphasis on mitochondrial metabolism (OXPHOS and FAO).
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
3
|
Mikolič V, Pantović-Žalig J, Malenšek Š, Sever M, Lainšček D, Jerala R. Toll-like receptor 4 signaling activation domains promote CAR T cell function against solid tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200815. [PMID: 38840781 PMCID: PMC11152746 DOI: 10.1016/j.omton.2024.200815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a powerful therapeutic approach against a range of hematologic malignancies. While the incorporation of CD28 or 4-1BB costimulatory signaling domains into CARs revolutionized immune responses, there is an exciting prospect of further enhancing CAR functionality. Here, we investigated the design of CD19 CARs enriched with distinct Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), or Toll/IL-1 domain-containing adaptor-inducing interferon (IFN)-β (TRIF) costimulatory domains. Screening of various designs identified several candidates with no tonic activity but with increased CD19 target cell-dependent interleukin (IL)-2 production. Human T cells transduced with the selected CAR construct exhibited augmented hIL-2 and hIFN-γ induction and cytotoxicity when cocultured with CD19-positive lymphoma and solid-tumor cell lines. RNA sequencing (RNA-seq) analysis demonstrated the upregulation of some genes involved in the innate immune response and T cell activation and proliferation. In experiments on a xenogeneic solid-tumor mice model, MyD88 and TLR4 CAR T cells exhibited prolonged remission. This study demonstrates that the integration of a truncated TLR4 signaling costimulatory domain could provide immunotherapeutic potential against both hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Veronika Mikolič
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Jelica Pantović-Žalig
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Špela Malenšek
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Matjaž Sever
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Kandel A, Li L, Wang Y, Tuo W, Xiao Z. Differentiation and Regulation of Bovine Th2 Cells In Vitro. Cells 2024; 13:738. [PMID: 38727273 PMCID: PMC11083891 DOI: 10.3390/cells13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.
Collapse
Affiliation(s)
- Anmol Kandel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| |
Collapse
|
5
|
Carroll SL, Pasare C, Barton GM. Control of adaptive immunity by pattern recognition receptors. Immunity 2024; 57:632-648. [PMID: 38599163 PMCID: PMC11037560 DOI: 10.1016/j.immuni.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.
Collapse
Affiliation(s)
- Shaina L Carroll
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Gregory M Barton
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720 USA.
| |
Collapse
|
6
|
Yang H, Iwanaga N, Katz AR, Ridley AR, Miller HD, Allen MJ, Pociask D, Kolls JK. Embigin Is Highly Expressed on CD4+ and CD8+ T Cells but Is Dispensable for Several T Cell Effector Responses. Immunohorizons 2024; 8:242-253. [PMID: 38446446 PMCID: PMC10985056 DOI: 10.4049/immunohorizons.2300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
T cell immunity, including CD4+ and CD8+ T cell immunity, is critical to host immune responses to infection. Transcriptomic analyses of both CD4+ and CD8+ T cells of C57BL/6 mice show high expression the gene encoding embigin, Emb, which encodes a transmembrane glycoprotein. Moreover, we found that lung CD4+ Th17 tissue-resident memory T cells of C57BL/6 mice also express high levels of Emb. However, deletion of Emb in αβ T cells of C57BL/6 mice revealed that Emb is dispensable for thymic T cell development, generation of lung Th17 tissue-resident memory T cells, tissue-resident memory T cell homing to the lung, experimental autoimmune encephalitis, as well as clearance of pulmonary viral or fungal infection. Thus, based on this study, embigin appears to play a minor role if any in αβ T cell development or αβ T cell effector functions in C57BL/6 mice.
Collapse
Affiliation(s)
- Haoran Yang
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Naoki Iwanaga
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Alexis R. Katz
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Andy R. Ridley
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Haiyan D. Miller
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Michaela J. Allen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Dereck Pociask
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Jay K. Kolls
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
7
|
Ria F, Delogu G, Ingrosso L, Sali M, Di Sante G. Secrets and lies of host-microbial interactions: MHC restriction and trans-regulation of T cell trafficking conceal the role of microbial agents on the edge between health and multifactorial/complex diseases. Cell Mol Life Sci 2024; 81:40. [PMID: 38216734 PMCID: PMC11071949 DOI: 10.1007/s00018-023-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 01/14/2024]
Abstract
Here we critically discuss data supporting the view that microbial agents (pathogens, pathobionts or commensals alike) play a relevant role in the pathogenesis of multifactorial diseases, but their role is concealed by the rules presiding over T cell antigen recognition and trafficking. These rules make it difficult to associate univocally infectious agents to diseases' pathogenesis using the paradigm developed for canonical infectious diseases. (Cross-)recognition of a variable repertoire of epitopes leads to the possibility that distinct infectious agents can determine the same disease(s). There can be the need for sequential infection/colonization by two or more microorganisms to develop a given disease. Altered spreading of infectious agents can determine an unwanted activation of T cells towards a pro-inflammatory and trafficking phenotype, due to differences in the local microenvironment. Finally, trans-regulation of T cell trafficking allows infectious agents unrelated to the specificity of T cell to modify their homing to target organs, thereby driving flares of disease. The relevant role of microbial agents in largely prevalent diseases provides a conceptual basis for the evaluation of more specific therapeutic approaches, targeted to prevent (vaccine) or cure (antibiotics and/or Biologic Response Modifiers) multifactorial diseases.
Collapse
Affiliation(s)
- F Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - G Delogu
- Mater Olbia Hospital, 07026, Olbia, Italy
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
| | - L Ingrosso
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - M Sali
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - G Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132, Perugia, Italy.
| |
Collapse
|
8
|
Zhu Y, Liu B, Chen Z, Wang X, Wang Y, Zhang W, Wang S, Zhang M, Li Y. Synthesis, evaluation and molecular dynamics study of human toll-like receptor 2/6 specific monoacyl lipopeptides as candidate immunostimulants. Bioorg Chem 2023; 141:106823. [PMID: 37708825 DOI: 10.1016/j.bioorg.2023.106823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
TLR2 agonists typified by the S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-R-cysteinyl-S-serine (Pam2CS) motif have exhibited powerful immunostimulatory activities. Based on simplified monoacyl lipopeptide (Carbamate-linked N-Ac PamCS), we describe interesting SAR investigations where modifications are done to alter the size of substituents on the cysteine amine, introduce ionizable groups to the terminal and insert aromatic substitutions to the aliphatic chain. Our structural modifications have led to a highly specific human TLR2/6 agonist 14a (EC50 = 0.424 nM), which behaves like Pam2CSK4 by inducing NF-κB activation to trigger downstream signaling pathways, such as subsequent phosphorylation of related proteins (p65, p38) and production of key inflammatory cytokines (IL-6, IL-1β, TNF-α). Importantly, the ability to stimulate enhanced T cell response compared to Carbamate-linked N-Ac PamCS makes compound 14a a further potential candidate immunostimulant.
Collapse
Affiliation(s)
- Yueyue Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Bo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zonglong Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xianyang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yujie Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, China; Shanghai Huashen Institute of Microbes and Infections, NO.6 Lane 1220 Huashan Rd., Shanghai 200052, China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, China; Shanghai Huashen Institute of Microbes and Infections, NO.6 Lane 1220 Huashan Rd., Shanghai 200052, China
| | - Mingming Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yingxia Li
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
9
|
Chakraborty S, Ye J, Wang H, Sun M, Zhang Y, Sang X, Zhuang Z. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front Immunol 2023; 14:1227833. [PMID: 37936697 PMCID: PMC10626551 DOI: 10.3389/fimmu.2023.1227833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) expressed in various immune cell types and perform multiple purposes and duties involved in the induction of innate and adaptive immunity. Their capability to propagate immunity makes them attractive targets for the expansion of numerous immunotherapeutic approaches targeting cancer. These immunotherapeutic strategies include using TLR ligands/agonists as monotherapy or combined therapeutic strategies. Several TLR agonists have demonstrated significant efficacy in advanced clinical trials. In recent years, multiple reports established the applicability of TLR agonists as adjuvants to chemotherapeutic drugs, radiation, and immunotherapies, including cancer vaccines. Cancer vaccines are a relatively novel approach in the field of cancer immunotherapy and are currently under extensive evaluation for treating different cancers. In the present review, we tried to deliver an inclusive discussion of the significant TLR agonists and discussed their application and challenges to their incorporation into cancer immunotherapy approaches, particularly highlighting the usage of TLR agonists as functional adjuvants to cancer vaccines. Finally, we present the translational potential of rWTC-MBTA vaccination [irradiated whole tumor cells (rWTC) pulsed with phagocytic agonists Mannan-BAM, TLR ligands, and anti-CD40 agonisticAntibody], an autologous cancer vaccine leveraging membrane-bound Mannan-BAM, and the immune-inducing prowess of TLR agonists as a probable immunotherapy in multiple cancer types.
Collapse
Affiliation(s)
- Samik Chakraborty
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- NE1 Inc., New York, NY, United States
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mitchell Sun
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yaping Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueyu Sang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Liao X, He J, Wang R, Zhang J, Wei S, Xiao Y, Zhou Q, Zheng X, Zhu Z, Zheng Z, Li J, Zeng Z, Chen D, Chen J. TLR-2 agonist Pam3CSK4 has no therapeutic effect on visceral leishmaniasis in BALB/c mice and may enhance the pathogenesis of the disease. Immunobiology 2023; 228:152725. [PMID: 37562277 DOI: 10.1016/j.imbio.2023.152725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Most of the existing Leishmania-related research about TLR-2 agonists was focusing on their role as adjuvants in the vaccine, few studied its therapeutic effect. This paper aims to explore the therapeutic effect of TLR-2 agonist Pam3CSK4 on Leishmania-infected mice and the underlying immune molecular mechanisms. In L. donovani-infected BALB/c mice, one group was treated with Pam3CSK4 after infection and the other group was not treated. Normal uninfected mice treated with Pam3CSK4 or untreated were used as controls. Parasite load, hepatic pathology and serum antibodies were detected to assess the severity of the infection. The expression of immune-related genes, spleen lymphocyte subsets and liver RNA-seq were employed to reveal possible molecular mechanisms. The results showed that the liver and spleen parasite load of infected mice in Pam3CSK4 treated and untreated groups had no statistical difference, indicating Pam3CSK4 might have no therapeutic effect on visceral leishmaniasis. Infected mice treated with Pam3CSK4 possessed more hepatic inflammation focus, lower IgG and IgG2a antibody titers, and a lower proportion of spleen CD3+CD4+ T cells. Transcriptome analysis revealed that Th1/Th2 differentiation, NK cells, Th17 cell, complement system and calcium signaling pathways were down-regulated post-treatment of Pam3CSK4. In this study, TLR-2 agonist Pam3CSK4 showed no therapeutic effect on visceral leishmaniasis in BALB/c mice and might enhance the pathogenesis of the disease possibly due to the down-regulation of several immune-related pathways, which can improve our understanding of the role of TLR-2 in both treatment and vaccine development.
Collapse
Affiliation(s)
- Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruanyan Wang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shulan Wei
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoting Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zheying Zhu
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| |
Collapse
|
11
|
Pergolizzi S, Fumia A, D'Angelo R, Mangano A, Lombardo GP, Giliberti A, Messina E, Alesci A, Lauriano ER. Expression and function of toll-like receptor 2 in vertebrate. Acta Histochem 2023; 125:152028. [PMID: 37075649 DOI: 10.1016/j.acthis.2023.152028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Toll-like receptors (TLRs) are essential for identifying and detecting pathogen-associated molecular patterns (PAMPs) produced by a variety of pathogens, including viruses and bacteria. Since TLR2 is the only TLR capable of creating functional heterodimers with more than two other TLR types, it is very important for vertebrate immunity. TLR2 not only broadens the variety of PAMPs that it can recognize but has also the potential to diversify the subsequent signaling cascades. TLR2 is ubiquitous, which is consistent with the wide variety of tasks and functions it serves. Immune cells, endothelial cells, and epithelial cells have all been found to express TLR2. This review aims to gather currently available information about the preservation of this intriguing immunological molecule in the phylum of vertebrates.
Collapse
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124 Messina, Italy
| | - Roberta D'Angelo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelica Mangano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Giliberti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
12
|
Qiu C, Wang J, Zhu L, Cheng X, Xia B, Jin Y, Qin R, Zhang L, Hu H, Yan J, Zhao C, Zhang X, Xu J. Improving the ex vivo expansion of human tumor-reactive CD8 + T cells by targeting toll-like receptors. Front Bioeng Biotechnol 2022; 10:1027619. [DOI: 10.3389/fbioe.2022.1027619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) are important pattern recognition receptor(s) known to mediate the sensing of invading pathogens and subsequent immune responses. In this study, we investigate whether TLRs could be explored for the preparation of human CD8+ T cell products used in adoptive cell therapy (ACT). Following characterization of TLRs expression on human CD8+ T cells, we screened TLR-specific agonists for their ability to act in concert with anti-CD3 to stimulate the proliferation of these cells and corroborated the observed co-stimulatory effect by transcriptional profiling analyses. Consequently, we developed an optimal formulation for human CD8+ T cell amplification by combining CD3/CD28 antibody, interleukin 7 (IL-7), interleukin 15 (IL-15), and three agonists respectively targeting TLR1/2, TLR2/6, and TLR5. This new formulation performed better in amplifying PD-1+CD8+ T cells, a potential repertoire of tumor-reactive CD8+ T cells, from tumor patients than the conventional formulation. Importantly, the expanded CD8+ T cells showed restored functionality and consequently a robust anti-tumor activity in an in vitro co-culturing system. Together, our study established the utility of TLR agonists in ex vivo expansion of tumor-targeting CD8+ T cells, thus providing a new avenue toward a more effective ACT.
Collapse
|
13
|
Contribution of T- and B-cell intrinsic toll-like receptors to the adaptive immune response in viral infectious diseases. Cell Mol Life Sci 2022; 79:547. [PMID: 36224474 PMCID: PMC9555683 DOI: 10.1007/s00018-022-04582-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022]
Abstract
Toll-like receptors (TLRs) comprise a class of highly conserved molecules that recognize pathogen-associated molecular patterns and play a vital role in host defense against multiple viral infectious diseases. Although TLRs are highly expressed on innate immune cells and play indirect roles in regulating antiviral adaptive immune responses, intrinsic expression of TLRs in adaptive immune cells, including T cells and B cells, cannot be ignored. TLRs expressed in CD4 + and CD8 + T cells play roles in enhancing TCR signal-induced T-cell activation, proliferation, function, and survival, serving as costimulatory molecules. Gene knockout of TLR signaling molecules has been shown to diminish antiviral adaptive immune responses and affect viral clearance in multiple viral infectious animal models. These results have highlighted the critical role of TLRs in the long-term immunological control of viral infection. This review summarizes the expression and function of TLR signaling pathways in T and B cells, focusing on the in vitro and vivo mechanisms and effects of intrinsic TLR signaling in regulating T- and B-cell responses during viral infection. The potential clinical use of TLR-based immune regulatory drugs for viral infectious diseases is also explored.
Collapse
|
14
|
Du Y, Wu J, Liu J, Zheng X, Yang D, Lu M. Toll-like receptor-mediated innate immunity orchestrates adaptive immune responses in HBV infection. Front Immunol 2022; 13:965018. [PMID: 35967443 PMCID: PMC9372436 DOI: 10.3389/fimmu.2022.965018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains to be a substantial global burden, especially for end-stage liver diseases. It is well accepted that HBV-specific T and B cells are essential for controlling HBV infection. Toll-like receptors (TLRs) represent one of the major first-line antiviral defenses through intracellular signaling pathways that induce antiviral inflammatory cytokines and interferons, thereby shaping adaptive immunity. However, HBV has evolved strategies to counter TLR responses by suppressing the expression of TLRs and blocking the downstream signaling pathways, thus limiting HBV-specific adaptive immunity and facilitating viral persistence. Recent studies have stated that stimulation of the TLR signaling pathway by different TLR agonists strengthens host innate immune responses and results in suppression of HBV replication. In this review, we will discuss how TLR-mediated responses shape HBV-specific adaptive immunity as demonstrated in different experimental models. This information may provide important insight for HBV functional cure based on TLR agonists as immunomodulators.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Mengji Lu,
| |
Collapse
|
15
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022. [PMID: 35309296 DOI: 10.3389/fimmu.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Jeon D, McNeel DG. Toll-like receptor agonist combinations augment mouse T-cell anti-tumor immunity via IL-12- and interferon ß-mediated suppression of immune checkpoint receptor expression. Oncoimmunology 2022; 11:2054758. [PMID: 35340661 PMCID: PMC8942433 DOI: 10.1080/2162402x.2022.2054758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
We previously found that activated CD8+ T-cells increase expression of PD-1, which can be attenuated in the presence of specific Toll-like receptor (TLR) agonists, mediated by IL-12 secreted by professional antigen-presenting cells. While these CD8+ T-cells had greater anti-tumor activity, T-cells stimulated by different TLR had different gene expression profiles. Consequently, we sought to determine whether combinations of TLR agonists might further affect the expression of T-cell checkpoint receptors and improve T-cell anti-tumor immunity. Activation of CD8+ T-cells in the presence of specific TLR ligands resulted in decreased expression of PD-1, LAG-3, and CD160, notably with combinations of TLR1/2, TLR3, and TLR9 agonists. Immunization of E.G7-OVA or TRAMP-C1 tumor-bearing mice with peptide or DNA vaccines, co-administered with combination of TLR3 and TLR9 agonists, showed greater suppression of tumor growth. The anti-tumor effect of TLR1/2 and/or TLR9, but not TLR3, was abrogated in IL-12KO mice. RNA sequencing of TLR-conditioned CD8+ T-cells revealed IL-12 pathway activation, and type 1 IFN pathway activation following TLR3 stimulation. Our results provide a mechanistic rationale for the choice of optimal combinations of TLR ligands to use as adjuvants to improve the efficacy of anti-tumor vaccines.
Collapse
Affiliation(s)
- Donghwan Jeon
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | | |
Collapse
|
17
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022; 13:812774. [PMID: 35309296 PMCID: PMC8927970 DOI: 10.3389/fimmu.2022.812774] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Nouri Y, Weinkove R, Perret R. T-cell intrinsic Toll-like receptor signaling: implications for cancer immunotherapy and CAR T-cells. J Immunother Cancer 2021; 9:jitc-2021-003065. [PMID: 34799397 PMCID: PMC8606765 DOI: 10.1136/jitc-2021-003065] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved molecules that specifically recognize common microbial patterns, and have a critical role in innate and adaptive immunity. Although TLRs are highly expressed by innate immune cells, particularly antigen-presenting cells, the very first report of a human TLR also described its expression and function within T-cells. Gene knock-out models and adoptive cell transfer studies have since confirmed that TLRs function as important costimulatory and regulatory molecules within T-cells themselves. By acting directly on T-cells, TLR agonists can enhance cytokine production by activated T-cells, increase T-cell sensitivity to T-cell receptor stimulation, promote long-lived T-cell memory, and reduce the suppressive activity of regulatory T-cells. Direct stimulation of T-cell intrinsic TLRs may be a relevant mechanism of action of TLR ligands currently under clinical investigation as cancer immunotherapies. Finally, chimeric antigen receptor (CAR) T-cells afford a new opportunity to specifically exploit T-cell intrinsic TLR function. This can be achieved by expressing TLR signaling domains, or domains from their signaling partner myeloid differentiation primary response 88 (MyD88), within or alongside the CAR. This review summarizes the expression and function of TLRs within T-cells, and explores the relevance of T-cell intrinsic TLR expression to the benefits and risks of TLR-stimulating cancer immunotherapies, including CAR T-cells.
Collapse
Affiliation(s)
- Yasmin Nouri
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand.,Department of Pathology & Molecular Medicine, University of Otago, Wellington, Wellington, New Zealand.,Wellington Blood & Cancer Centre, Capital and Coast District Health Board, Wellington, New Zealand
| | - Rachel Perret
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
19
|
Hong S, Ruan S, Greenberg Z, He M, McGill JL. Development of surface engineered antigenic exosomes as vaccines for respiratory syncytial virus. Sci Rep 2021; 11:21358. [PMID: 34725399 PMCID: PMC8560785 DOI: 10.1038/s41598-021-00765-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/13/2021] [Indexed: 01/17/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the main pathogens associated with lower respiratory tract infections in infants and young children worldwide. Exosomes secreted by antigen presenting cells (APCs) can elicit immune responses by carrying major histocompatibility complex (MHC) class I molecules complexed with antigenic peptides and other co-stimulating factors. Therefore, we developed novel immunomagnetic nanographene particles to sequentially isolate, surface engineer, and release intact dendritic cell (DC) exosomes for use as a potential vaccine platform against RSV. The H-2Db-restricted, immunodominant peptides from RSV (M187-195 and NS161-75) were introduced to MHC-I on DC-derived exosomes to express peptide/MHC-I (pMHC-I) complexes. A mouse model of RSV infection was used to define the immunogenicity of surface engineered exosomes for activating virus-specific immune responses. Ex vivo assays demonstrated that engineered exosomes carrying RSV-specific peptides can elicit interferon-gamma (IFN-γ) production by virus-specific CD8+ T cells isolated from RSV-infected C57BL/6 mice. In vivo assays demonstrated that subcutaneous administration of both M187-195 and NS161-75 engineered exosomes to mice, with or without additional adjuvant, appeared safe and well tolerated, however, did not prime antigen-specific CD8+ T cell responses. Surface engineered exosomes are immunogenic and promising for further development as a vaccine platform.
Collapse
Affiliation(s)
- Suyeon Hong
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Shaobo Ruan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Zachary Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
20
|
Xu J, Guo R, Jia J, He Y, He S. Activation of Toll-like receptor 2 enhances peripheral and tumor-infiltrating CD8 + T cell cytotoxicity in patients with gastric cancer. BMC Immunol 2021; 22:67. [PMID: 34620075 PMCID: PMC8499526 DOI: 10.1186/s12865-021-00459-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) play central roles in the initiation of innate immune response, and also control adaptive immunity activation. Thus, the aim of the study was to investigate the regulation of TLR activation to CD8+ T cells has not been fully elucidated in gastric cancer (GC). MATERIALS AND METHODS Thirty-two GC patients and twenty-three healthy controls were enrolled. Expression profile of TLRs in peripheral and tumor-infiltrating CD8+ T cells was investigated. Purified CD8+ T cells were stimulated with Pam3Csk4, an agonist of TLR2, and cytotoxic and co-inhibitory molecules in CD8+ T cells was measured. Direct and indirect contact coculture system between CD8+ T cells and AGS cells was set up. Modulation of TLR2 activation to CD8+ T cells was assessed by measuring lactate dehydrogenase release and cytokine secretion. RESULTS TLR2 mRNA and TLR2+ cell percentage was down-regulated in GC derived peripheral and tumor-infiltrating CD8+ T cells. CD8+ T cells from GC patients showed exhausted phenotype, which presented as decreased perforin/granzyme B, increased programmed death-1, and reduced cytotoxicity to AGS cells. TLR2 activation by Pam3Csk4 enhanced perforin and granzyme B expression in CD8+ T cells, however, did not affect either proinflammatory cytokine production or co-inhibitory molecules expression. Pam3Csk4 stimulation enhanced cytolytic activation of peripheral and tumor-infiltrating CD8+ T cells from GC, but not those from healthy individuals. CONCLUSION The present data revealed an important immunomodulatory activity of TLR2 to CD8+ T cells in GC patients.
Collapse
Affiliation(s)
- Junli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Rd, Xi'an, 710061, Shaanxi Province, China.,Department of Gastroenterology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
| | - Rongya Guo
- Department of Chemistry, Shaanxi Institute for Food and Drug Control, Xi'an, 710065, Shaanxi Province, China
| | - Jing Jia
- Department of Dermatology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
| | - Yun He
- Department of Gastroenterology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Rd, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
21
|
Abstract
The immune (innate and adaptive) system has evolved to protect the host from any danger present in the surrounding outer environment (microbes and associated MAMPs or PAMPs, xenobiotics, and allergens) and dangers originated within the host called danger or damage-associated molecular patterns (DAMPs) and recognizing and clearing the cells dying due to apoptosis. It also helps to lower the tissue damage during trauma and initiates the healing process. The pattern recognition receptors (PRRs) play a crucial role in recognizing different PAMPs or MAMPs and DAMPs to initiate the pro-inflammatory immune response to clear them. Toll-like receptors (TLRs) are first recognized PRRs and their discovery proved milestone in the field of immunology as it filled the gap between the first recognition of the pathogen by the immune system and the initiation of the appropriate immune response required to clear the infection by innate immune cells (macrophages, neutrophils, dendritic cells or DCs, and mast cells). However, in addition to their expression by innate immune cells and controlling their function, TLRs are also expressed by adaptive immune cells. We have identified 10 TLRs (TLR1-TLR10) in humans and 12 TLRs (TLR1-TLR13) in laboratory mice till date as TLR10 in mice is present only as a defective pseudogene. The present chapter starts with the introduction of innate immunity, timing of TLR evolution, and the evolution of adaptive immune system and its receptors (T cell receptors or TCRs and B cell receptors or BCRs). The next section describes the role of TLRs in the innate immune function and signaling involved in the generation of inflammation. The subsequent sections describe the expression and function of different TLRs in murine and human adaptive immune cells (B cells and different types of T cells, including CD4+T cells, CD8+T cells, CD4+CD25+Tregs, and CD8+CD25+Tregs, etc.). The modulation of TLRs expressed on T and B cells has a great potential to develop different vaccine candidates, adjuvants, immunotherapies to target various microbial infections, including current COVID-19 pandemic, cancers, and autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA.
| |
Collapse
|
22
|
Marks KE, Flaherty S, Patterson KM, Stratton M, Martinez GJ, Reynolds JM. Toll-like receptor 2 induces pathogenicity in Th17 cells and reveals a role for IPCEF in regulating Th17 cell migration. Cell Rep 2021; 35:109303. [PMID: 34192530 PMCID: PMC8270556 DOI: 10.1016/j.celrep.2021.109303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Pathogenic Th17 cells drive inflammation in autoimmune disease, yet the molecular programming underlying Th17 cell pathogenicity remains insufficiently understood. Activation of Toll-like receptor 2 (TLR2) increases Th17 cell inflammatory potential, but little is known regarding the mechanistic outcomes of TLR2 signaling in Th17 cells. Here, we demonstrate that TLR2 is comparable to IL-23 in inducing pathogenicity and increasing the migratory capacity of Th17 cells. We perform RNA sequencing of Th17 cells stimulated though the TLR2 pathway and find differential expression of several genes linked with the Th17 genetic program as well as genes not previously associated with pathogenic Th17 cells, including Ipcef1. Enforced expression of Ipcef1 in Th17 cells abolishes the TLR2-dependent increases in migratory capacity and severely impairs the ability of Th17 cells to induce experimental autoimmune encephalomyelitis. This study establishes the importance of the TLR2 signaling pathway in inducing Th17 cell pathogenicity and driving autoimmune inflammation.
Collapse
Affiliation(s)
- Kathryne E Marks
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Stephanie Flaherty
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kristen M Patterson
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Matthew Stratton
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gustavo J Martinez
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joseph M Reynolds
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; Edward Hines Jr. VA Hospital, Hines, IL, USA.
| |
Collapse
|
23
|
Marks KE, Cho K, Stickling C, Reynolds JM. Toll-like Receptor 2 in Autoimmune Inflammation. Immune Netw 2021; 21:e18. [PMID: 34277108 PMCID: PMC8263214 DOI: 10.4110/in.2021.21.e18] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
TLR signaling is critical for broad scale immune recognition of pathogens and/or danger molecules. TLRs are particularly important for the activation and the maturation of cells comprising the innate immune response. In recent years it has become apparent that several different TLRs regulate the function of lymphocytes as well, albeit to a lesser degree compared to innate immunity. TLR2 heterodimerizes with either TLR1 or TLR6 to broadly recognize bacterial lipopeptides as well as several danger-associated molecular patterns. In general, TLR2 signaling promotes immune cell activation leading to tissue inflammation, which is advantageous for combating an infection. Conversely, inappropriate or dysfunctional TLR2 signaling leading to an overactive inflammatory response could be detrimental during sterile inflammation and autoimmune disease. This review will highlight and discuss recent research advances linking TLR2 engagement to autoimmune inflammation.
Collapse
Affiliation(s)
- Kathryne E Marks
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kaylin Cho
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Courtney Stickling
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joseph M Reynolds
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
24
|
Pahlavanneshan S, Sayadmanesh A, Ebrahimiyan H, Basiri M. Toll-Like Receptor-Based Strategies for Cancer Immunotherapy. J Immunol Res 2021; 2021:9912188. [PMID: 34124272 PMCID: PMC8166496 DOI: 10.1155/2021/9912188] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are expressed and play multiple functional roles in a variety of immune cell types involved in tumor immunity. There are plenty of data on the pharmacological targeting of TLR signaling using agonist molecules that boost the antitumor immune response. A recent body of research has also demonstrated promising strategies for improving the cell-based immunotherapy methods by inducing TLR signaling. These strategies include systemic administration of TLR antagonist along with immune cell transfer and also genetic engineering of the immune cells using TLR signaling components to improve the function of genetically engineered immune cells such as chimeric antigen receptor-modified T cells. Here, we explore the current status of the cancer immunotherapy approaches based on manipulation of TLR signaling to provide a perspective of the underlying rationales and potential clinical applications. Altogether, reviewed publications suggest that TLRs make a potential target for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Saghar Pahlavanneshan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Sayadmanesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamidreza Ebrahimiyan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
25
|
Freen-van Heeren JJ. Post-transcriptional control of T-cell cytokine production: Implications for cancer therapy. Immunology 2021; 164:57-72. [PMID: 33884612 DOI: 10.1111/imm.13339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/05/2023] Open
Abstract
As part of the adaptive immune system, T cells are vital for the eradication of infected and malignantly transformed cells. To perform their protective function, T cells produce effector molecules that are either directly cytotoxic, such as granzymes, perforin, interferon-γ and tumour necrosis factor α, or attract and stimulate (immune) cells, such as interleukin-2. As these molecules can also induce immunopathology, tight control of their production is required. Indeed, inflammatory cytokine production is regulated on multiple levels. Firstly, locus accessibility and transcription factor availability and activity determine the amount of mRNA produced. Secondly, post-transcriptional mechanisms, influencing mRNA splicing/codon usage, stability, decay, localization and translation rate subsequently determine the amount of protein that is produced. In the immune suppressive environments of tumours, T cells gradually lose the capacity to produce effector molecules, resulting in tumour immune escape. Recently, the role of post-transcriptional regulation in fine-tuning T-cell effector function has become more appreciated. Furthermore, several groups have shown that exhausted or dysfunctional T cells from cancer patients or murine models possess mRNA for inflammatory mediators, but fail to produce effector molecules, hinting that post-transcriptional events also play a role in hampering tumour-infiltrating lymphocyte effector function. Here, the post-transcriptional regulatory events governing T-cell cytokine production are reviewed, with a specific focus on the importance of post-transcriptional regulation in anti-tumour responses. Furthermore, potential approaches to circumvent tumour-mediated dampening of T-cell effector function through the (dis)engagement of post-transcriptional events are explored, such as CRISPR/Cas9-mediated genome editing or chimeric antigen receptors.
Collapse
|
26
|
Imanishi T, Unno M, Kobayashi W, Yoneda N, Akira S, Saito T. mTORC1 Signaling Controls TLR2-Mediated T-Cell Activation by Inducing TIRAP Expression. Cell Rep 2021; 32:107911. [PMID: 32698010 DOI: 10.1016/j.celrep.2020.107911] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/07/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023] Open
Abstract
Effector, but not naïve, T cells are activated by toll-like receptor-2 (TLR2) stimulation, leading to cytokine production and proliferation. We found that the differential response is attributable to the lack of expression of the adaptor protein TIRAP in naive T cells. TIRAP expression is induced upon T-cell receptor (TCR) stimulation and sustained by strong interleukin-2 (IL-2) signals. Expression of TIRAP requires TCR- and IL-2-induced mTORC1 activation. TLR2 stimulation induced the activation of nuclear factor κB (NF-κB) and ERK, leading to much higher production of interferon-γ (IFN-γ) by T helper 1 (Th1) cells cultured in a high concentration of IL-2 than by those cultured in a low concentration of IL-2. In contrast, TLR2 stimulation induces mTORC1 activation through TIRAP, which is essential for TLR2-mediated IFN-γ production. These data demonstrate that the mTORC1 signal confers the response to TLR2 signaling by inducing TIRAP expression and that the TIRAP-mTORC1 axis is critical for TLR2-mediated IFN-γ production by effector T cells.
Collapse
Affiliation(s)
- Takayuki Imanishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan.
| | - Midori Unno
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Wakana Kobayashi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Natsumi Yoneda
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan; Laboratory for Cell Signaling, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
27
|
Kasimsetty S, Hawkes A, DeWolf SE, Welch A, McKay DB. Blockade of T cell activation induced by the simultaneous absence of Nod1 and Nod2 is bypassed by TLR2 signals. Transpl Immunol 2021; 65:101348. [PMID: 33706865 PMCID: PMC10425202 DOI: 10.1016/j.trim.2020.101348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Pattern recognition receptors (PRRs) trigger adaptive inflammatory responses and as such are attractive targets for therapeutic manipulation of inflammation. In order to develop effective therapies however we need to understand the complexities of PRR signaling and clarify how individual PRRs contribute to an inflammatory response in a given cell type. Data from our lab and others have shown that cross-talk occurs between different PRR family members that directs T cell responses to a particular stimuli. It is well-established that the cell surface toll-like receptor 2 (TLR2) provides a potent costimulatory signal for TCR-stimulated T cell activation. We have shown that signaling through the intracellular nucleotide-binding oligomerization domain-containing proteins 1 and 2 (Nod1 and Nod2) also provides important signals for T cell activation, and that when both Nod1 and Nod 2 are deleted stimulated T cells undergo activation-induced cell death. This study found that TLR2 costimulation could bypass the defect induced by the simultaneous absence of Nods1 and 2 in both antibody- and antigen-stimulated T cells. Since blocking one set of PRR-mediated responses can be overcome by signaling through another PRR family member, then effective therapeutic immune blockade strategies will likely require a multi-pronged approach in order to be effective.
Collapse
Affiliation(s)
- Sashi Kasimsetty
- Department of Immunology and Microbiology, Scripps Research, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America
| | - Alana Hawkes
- Department of Immunology and Microbiology, Scripps Research, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America
| | - Sean E DeWolf
- Department of Immunology and Microbiology, Scripps Research, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America; Department of Medicine, Division of Pulmonary Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92037, United States of America
| | - Alexander Welch
- Department of Immunology and Microbiology, Scripps Research, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America
| | - Dianne B McKay
- Department of Immunology and Microbiology, Scripps Research, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America.
| |
Collapse
|
28
|
Freen-van Heeren JJ. Using CRISPR to enhance T cell effector function for therapeutic applications. Cytokine X 2021; 3:100049. [PMID: 33604565 PMCID: PMC7885876 DOI: 10.1016/j.cytox.2020.100049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
T cells are critical to fight pathogenic microbes and combat malignantly transformed cells in the fight against cancer. To exert their effector function, T cells produce effector molecules, such as the pro-inflammatory cytokines IFN-γ, TNF-α and IL-2. Tumors possess many inhibitory mechanisms that dampen T cell effector function, limiting the secretion of cytotoxic molecules. As a result, the control and elimination of tumors is impaired. Through recent advances in genomic editing, T cells can now be successfully modified via CRISPR/Cas9 technology. For instance, engaging (post-)transcriptional mechanisms to enhance T cell cytokine production, the retargeting of T cell antigen specificity or rendering T cells refractive to inhibitory receptor signaling can augment T cell effector function. Therefore, CRISPR/Cas9-mediated genome editing might provide novel strategies for cancer immunotherapy. Recently, the first-in-patient clinical trial was successfully performed with CRISPR/Cas9-modified human T cell therapy. In this review, a brief overview of currently available techniques is provided, and recent advances in T cell genomic engineering for the enhancement of T cell effector function for therapeutic purposes are discussed.
Collapse
Key Words
- AP-1, activator protein 1
- ARE, AU-rich element
- ARE-Del, deletion of the 3′UTR AREs from the Ifng/IFNG gene
- CAR T cells
- CAR, Chimeric Antigen Receptor
- CRISPR
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- CRS, cytokine release syndrome
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cas, CRISPR-associated
- Cas9
- Cytokines
- DGK, Diacylglycerol kinase
- DHX37, DEAH-box helicase 37
- EBV, Epstein Barr virus
- FOXP3, Forkhead box P3
- GATA, GATA binding protein
- Genome editing
- IFN, interferon
- IL, interleukin
- LAG-3, Lymphocyte Activating 3
- NF-κB, nuclear factor of activated B cells
- PD-1, Programmed cell Death 1
- PD-L1, Programmed Death Ligand 1
- PTPN2, Protein Tyrosine Phosphatase Non-Receptor 2
- Pdia3, Protein Disulfide Isomerase Family A Member 3
- RBP, RNA-binding protein
- RNP, ribonuclear protein
- T cell effector function
- T cells
- TCR, T cell receptor
- TGF, transforming growth factor
- TIL, Tumor Infiltrating Lymphocyte
- TLRs, Toll-like receptors
- TNF, tumor necrosis factor
- TRAC, TCR-α chain
- TRBC, TCR-β chain
- UTR, untranslated region
- tTCR, transgenic TCR
Collapse
|
29
|
Ciavattone NG, Wu L, O'Neill R, Qiu J, Davila E, Cao X. MyD88 Costimulation in Donor CD8 + T Cells Enhances the Graft-versus-Tumor Effect in Murine Hematopoietic Cell Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:892-903. [PMID: 33408257 PMCID: PMC8691539 DOI: 10.4049/jimmunol.2000479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
Abstract
Donor-derived lymphocytes from allogeneic hematopoietic cell transplantation (allo-HCT) or donor lymphocyte infusion can mediate eradication of host tumor cells in a process labeled the graft-versus-tumor (GVT) effect. Unfortunately, these treatments have produced limited results in various types of leukemia because of an insufficient GVT effect. In this context, molecular engineering of donor lymphocytes to increase the GVT effect may benefit cancer patients. Activating MyD88 signaling in CD8+ T cells via TLR enhances T cell activation and cytotoxicity. However, systemic administration of TLR ligands to stimulate MyD88 could induce hyperinflammation or elicit protumor effects. To circumvent this problem, we devised a synthetic molecule consisting of MyD88 linked to the ectopic domain of CD8a (CD8α:MyD88). We used this construct to test the hypothesis that MyD88 costimulation in donor CD8+ T cells increases tumor control following allo-HCT in mice by increasing T cell activation, function, and direct tumor cytotoxicity. Indeed, an increase in both in vitro and in vivo tumor control was observed with CD8α:MyD88 T cells. This increase in the GVT response was associated with increased T cell expansion, increased functional capacity, and an increase in direct cytotoxic killing of the tumor cells. However, MyD88 costimulation in donor CD8+ T cells was linked to increased yet nonlethal graft-versus-host disease in mice treated with these engineered CD8+ T cells. Given these observations, synthetic CD8α:MyD88 donor T cells may represent a unique and versatile approach to enhance the GVT response that merits further refinement to improve the effectiveness of allo-HCT.
Collapse
Affiliation(s)
- Nicholas G Ciavattone
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201
| | - Long Wu
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201
| | - Rachel O'Neill
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Eduardo Davila
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201
| |
Collapse
|
30
|
Amiset L, Fend L, Gatard-Scheikl T, Rittner K, Duong V, Rooke R, Muller S, Bonnefoy JY, Préville X, Haegel H. TLR2 ligation protects effector T cells from regulatory T-cell mediated suppression and repolarizes T helper responses following MVA-based cancer immunotherapy. Oncoimmunology 2021; 1:1271-1280. [PMID: 23243590 PMCID: PMC3518499 DOI: 10.4161/onci.21479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer immunotherapy is hampered by the immunosuppression maintained by regulatory T cells (Tregs) in tumor-bearing hosts. Stimulation of the Toll-like receptor 2 (TLR2) by Pam3Cys is known to affect Treg-mediated suppression. We found that Pam3Cys increases the proliferation of both CD4+ effector T cells (Teffs) and Tregs co-cultured in vitro, but did not induce the proliferation of Tregs alone upon CD3 and CD28 stimulation. In a mouse model of RMA-MUC1 tumors, Pam3Cys was administered either alone or in combination with a modified vaccinia ankara (MVA)-based mucin 1 (MUC1) therapeutic vaccine. The combination of Pam3Cys with MVA-MUC1 (1) diminished splenic Treg/CD4+ T-cell ratios to those found in tumor-free mice, (2) stimulated a specific anti-MUC1 interferon γ (IFNγ) response and (3) had a significant therapeutic effect on tumor growth and mouse survival. When CD4+ Teffs and Tregs were isolated from Pam3Cys-treated mice, Teffs had become resistant to Treg-mediated suppression while upregulating the expression of BclL-xL. Tregs from Pam3Cys-treated mice were fully suppressive for Teffs from naïve mice. Bcl-xL was induced by Pam3Cys with different kinetics in Tregs and Teffs. Teff from Pam3Cys-treated mice produced increased levels of Th1 and Th2-type cytokines and an interleukin (IL)-6-dependent secretion of IL-17 was observed in Teff:Treg co-cultures, suggesting that TLR2 stimulation had skewed the immune response toward a Th17 profile. Our results show for the first time that in a tumor-bearing host, TLR2 stimulation with Pam3Cys affects both Tregs and Teffs, protects Teff from Treg-mediated suppression and has strong therapeutic effects when combined with an MVA-based antitumor vaccine.
Collapse
Affiliation(s)
- Laurent Amiset
- Département d'Immunopharmacologie; Transgene S.A.; Parc d'Innovation; Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Freen-van Heeren JJ. Toll-like receptor-2/7-mediated T cell activation: An innate potential to augment CD8 + T cell cytokine production. Scand J Immunol 2021; 93:e13019. [PMID: 33377182 DOI: 10.1111/sji.13019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
Abstract
CD8+ T cells are critical to combat pathogens and eradicate malignantly transformed cells. To exert their effector function and kill target cells, T cells produce copious amounts of effector molecules, including the pro-inflammatory cytokines interferon γ, tumour necrosis factor α and interleukin 2. TCR triggering alone is sufficient to induce cytokine secretion by effector and memory CD8+ T cells. However, T cells can also be directly activated by pathogen-derived molecules, such as through the triggering of Toll-like receptors (TLRs). TLR-mediated pathogen sensing by T cells results in the production of only interferon γ. However, in particular when the antigen load on target cells is low, or when TCR affinity to the antigen is limited, antigen-experienced T cells can benefit from costimulatory signals. TLR stimulation can also function in a costimulatory fashion to enhance TCR triggering. Combined TCR and TLR triggering enhances the proliferation, memory formation and effector function of T cells, resulting in enhanced production of interferon γ, tumour necrosis factor α and interleukin 2. Therefore, TLR ligands or the exploitation of TLR signalling could provide novel opportunities for immunotherapy approaches. In fact, CD19 CAR T cells bearing an intracellular TLR2 costimulatory domain were recently employed to treat cancer patients in a clinical trial. Here, the current knowledge regarding TLR2/7 stimulation-induced cytokine production by T cells is reviewed. Specifically, the transcriptional and post-transcriptional pathways engaged upon TLR2/7 sensing and TLR2/7 signalling are discussed. Finally, the potential uses of TLRs to enhance the anti-tumor effector function of T cells are explored.
Collapse
|
32
|
Martínez Cuesta L, Pérez SE. Perforin and granzymes in neurological infections: From humans to cattle. Comp Immunol Microbiol Infect Dis 2021; 75:101610. [PMID: 33453589 DOI: 10.1016/j.cimid.2021.101610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
Perforin and granzymes are essential components of the cytotoxic granules present in cytotoxic T lymphocytes and natural killer cells. These proteins play a crucial role in a variety of conditions, including viral infections, tumor immune surveillance, and tissue rejection. Besides their beneficial effect in most of these situations, perforin and granzymes have also been associated with tissue damage and immune diseases. Moreover, it has been reported that perforin and granzymes released during viral infections could contribute to the pathogenesis of diseases. In this review, we summarize the information available on human perforin and granzymes and their relationship with neurological infections and immune disorders. Furthermore, we compare this information with that available for bovine and present data on perforin and granzymes expression in cattle infected with bovine alphaherpesvirus types1 and -5. To our knowledge, this is the first review analyzing the impact of perforin and granzymes on neurological infections caused by bovine herpesviruses.
Collapse
Affiliation(s)
- Lucía Martínez Cuesta
- Virology, SAMP Department, Centro de Investigación Veterinaria de Tandil (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pinto 399, Tandil, PC7000, Buenos Aires, Argentina
| | - Sandra Elizabeth Pérez
- Virology, SAMP Department, Centro de Investigación Veterinaria de Tandil (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pinto 399, Tandil, PC7000, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Stögerer T, Stäger S. Innate Immune Sensing by Cells of the Adaptive Immune System. Front Immunol 2020; 11:1081. [PMID: 32547564 PMCID: PMC7274159 DOI: 10.3389/fimmu.2020.01081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
Sensing of microbes or of danger signals has mainly been attributed to myeloid innate immune cells. However, T and B cells also express functional pattern recognition receptors (PRRs). In these cells, PRRs mediate signaling cascades that result in different functions depending on the cell's activation and/or differentiation status, on the environment, and on the ligand/agonist. Some of these functions are beneficial for the host; however, some are detrimental and are exploited by pathogens to establish persistent infections. In this review, we summarize the available literature on innate immune sensing by cells of the adaptive immune system and discuss possible implications for chronic infections.
Collapse
Affiliation(s)
- Tanja Stögerer
- INRS Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Simona Stäger
- INRS Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| |
Collapse
|
34
|
Imanishi T, Saito T. T Cell Co-stimulation and Functional Modulation by Innate Signals. Trends Immunol 2020; 41:200-212. [PMID: 32035763 DOI: 10.1016/j.it.2020.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
Abstract
Pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs), play a pivotal role in the initiation of innate immune responses. Certain PRRs are also expressed by CD4+ and CD8+ T cells, where they function to provide co-stimulatory signals for their activation and differentiation. Recently, stimulator of interferon genes (STING) was found to be highly expressed in CD4+ and CD8+ T cells and to modulate T cell function. STING signaling inhibits cell growth and stimulates type I interferon (IFN-I) responses in T cells through reciprocal regulation between T cell receptor (TCR) and STING signals. Here, we propose a model whereby innate signals by TLRs and STING regulate TCR signals and T cell functions.
Collapse
Affiliation(s)
- Takayuki Imanishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan.
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan; Laboratory for Cell Signaling, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
35
|
Zhao H, Xie L, Clemens JL, Zong L, McLane MW, Arif H, Feller MC, Jia B, Zhu Y, Facciabene A, Ozen M, Lei J, Burd I. Mouse Bone Marrow-Derived Mesenchymal Stem Cells Alleviate Perinatal Brain Injury Via a CD8 + T Cell Mechanism in a Model of Intrauterine Inflammation. Reprod Sci 2020; 27:1465-1476. [PMID: 31997258 DOI: 10.1007/s43032-020-00157-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
The objective of this study was to determine if mouse bone marrow-derived mesenchymal stem cells (BMMSCs) ameliorate preterm birth and perinatal brain injury induced by intrauterine inflammation (IUI). A mouse model of IUI-induced perinatal brain injury at embryonic (E) day 17 was utilized. BMMSCs were derived from GFP-transgenic mice and phenotypically confirmed to be CD44+, Sca-1+, CD45-, CD34-, CD11b-, and CD11c- by flow cytometry and sorted by fluorescence-activated cell sorting (FACS). Dams were assigned to four groups: phosphate-buffered saline (PBS) + PBS, PBS + BMMSCs, lipopolysaccharide (LPS) + PBS, and LPS + BMMSCs. Following maternal IUI, there was a significant increase in CD8+ T cells in the placentas. Maternally administered BMMSCs trafficked to the fetal side of the placenta and resulted in significantly decreased placental CD8+ T cells. Furthermore, fetal trafficking of maternally administered BMMSCs correlated with an improved performance on offspring neurobehavioral testing in LPS + BMMSC group compared with LPS + PBS group. Our data support that maternal administration of BMMSCs can alleviate perinatal inflammation-induced brain injury and improve neurobehavioral outcomes in the offspring via CD8+ T cell immunomodulation at the feto-placental interface.
Collapse
Affiliation(s)
- Hongxi Zhao
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Li Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Julia L Clemens
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lu Zong
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hattan Arif
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mia C Feller
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yan Zhu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Andreas Facciabene
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Maide Ozen
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
36
|
Javaid N, Choi S. Toll-like Receptors from the Perspective of Cancer Treatment. Cancers (Basel) 2020; 12:E297. [PMID: 32012718 PMCID: PMC7072551 DOI: 10.3390/cancers12020297] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) represent a family of pattern recognition receptors that recognize certain pathogen-associated molecular patterns and damage-associated molecular patterns. TLRs are highly interesting to researchers including immunologists because of the involvement in various diseases including cancers, allergies, autoimmunity, infections, and inflammation. After ligand engagement, TLRs trigger multiple signaling pathways involving nuclear factor-κB (NF-κB), interferon-regulatory factors (IRFs), and mitogen-activated protein kinases (MAPKs) for the production of various cytokines that play an important role in diseases like cancer. TLR activation in immune as well as cancer cells may prevent the formation and growth of a tumor. Nonetheless, under certain conditions, either hyperactivation or hypoactivation of TLRs supports the survival and metastasis of a tumor. Therefore, the design of TLR-targeting agonists as well as antagonists is a promising immunotherapeutic approach to cancer. In this review, we mainly describe TLRs, their involvement in cancer, and their promising properties for anticancer drug discovery.
Collapse
Affiliation(s)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
37
|
The activation of bystander CD8 + T cells and their roles in viral infection. Exp Mol Med 2019; 51:1-9. [PMID: 31827070 PMCID: PMC6906361 DOI: 10.1038/s12276-019-0316-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/09/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
During viral infections, significant numbers of T cells are activated in a T cell receptor-independent and cytokine-dependent manner, a phenomenon referred to as "bystander activation." Cytokines, including type I interferons, interleukin-18, and interleukin-15, are the most important factors that induce bystander activation of T cells, each of which plays a somewhat different role. Bystander T cells lack specificity for the pathogen, but can nevertheless impact the course of the immune response to the infection. For example, bystander-activated CD8+ T cells can participate in protective immunity by secreting cytokines, such as interferon-γ. They also mediate host injury by exerting cytotoxicity that is facilitated by natural killer cell-activating receptors, such as NKG2D, and cytolytic molecules, such as granzyme B. Interestingly, it has been recently reported that there is a strong association between the cytolytic function of bystander-activated CD8+ T cells and host tissue injury in patients with acute hepatitis A virus infection. The current review addresses the induction of bystander CD8+ T cells, their effector functions, and their potential roles in immunity to infection, immunopathology, and autoimmunity.
Collapse
|
38
|
Zhang E, Ma Z, Li Q, Yan H, Liu J, Wu W, Guo J, Zhang X, Kirschning CJ, Xu H, Lang PA, Yang D, Dittmer U, Yan H, Lu M. TLR2 Stimulation Increases Cellular Metabolism in CD8 + T Cells and Thereby Enhances CD8 + T Cell Activation, Function, and Antiviral Activity. THE JOURNAL OF IMMUNOLOGY 2019; 203:2872-2886. [PMID: 31636238 DOI: 10.4049/jimmunol.1900065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022]
Abstract
TLR2 serves as a costimulatory molecule on activated T cells. However, it is unknown how the functionality and antiviral activity of CD8+ T cells are modulated by direct TLR2 signaling. In this study, we looked at the TLR2-mediated enhancement of TCR-driven CD8+ T cell activation in vitro and in woodchuck hepatitis virus transgenic mice. In vitro stimulation of CD8+ T cells purified from C57BL/6 mice showed that TLR2 agonist Pam3CSK4 directly enhanced the TCR-dependent CD8+ T cell activation. Transcriptome analysis revealed that TLR2 signaling increased expression of bioenergy metabolism-related genes in CD8+ T cells, such as IRF4, leading to improved glycolysis and glutaminolysis. This was associated with the upregulation of genes related to immune regulation and functions such as T-bet and IFN-γ. Glycolysis and glutaminolysis were in turn essential for the TLR2-mediated enhancement of T cell activation. Administration of TLR2 agonist Pam3CSK4 promoted the expansion and functionality of vaccine-primed, Ag-specific CD8+ T cells in both wild type and transgenic mice and improved viral suppression. Thus, TLR2 could promote CD8+ T cell immunity through regulating the energy metabolism.
Collapse
Affiliation(s)
- Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.,Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Zhiyong Ma
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Qian Li
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Hu Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Jia Liu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany.,Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Weimin Wu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Jiabao Guo
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Xiaoyong Zhang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Carsten J Kirschning
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany; and
| | - Haifeng Xu
- Institute of Virology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Philipp A Lang
- Institute of Virology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany;
| |
Collapse
|
39
|
Li Q, Yan Y, Liu J, Huang X, Zhang X, Kirschning C, Xu HC, Lang PA, Dittmer U, Zhang E, Lu M. Toll-Like Receptor 7 Activation Enhances CD8+ T Cell Effector Functions by Promoting Cellular Glycolysis. Front Immunol 2019; 10:2191. [PMID: 31572396 PMCID: PMC6751247 DOI: 10.3389/fimmu.2019.02191] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
The activation of TLR7 signaling in T cells accelerates antigen-specific responses. Such responses play an essential role in eliminating viral infections and can be anti-tumorigenic. However, the underlying mechanisms of how TLR7 can promote the optimal function of CD8+ T cells remain unclear. To investigate how TLR signaling directly contributes to CD8+ T cell functions, we examine the activation of cellular TLR7-related pathways and functional and metabolic alterations in TLR7-stimulated T cells during T cell receptor (TCR) signaling. In the present study, we investigated the activation of CD8+ T cells in response to direct stimulation by TLR7 ligands. TLR7 stimulation could promote the effector functions of purified CD8+ T cells in vitro. The TLR7-induced activation of CD8+ T cells occurs if CD8+ T cells were primed by αCD3 activation and increasingly expressed TLR7. MyD88 and AKT-mTOR signaling plays a critical role in TLR7-induced T cell activation. In addition to the upregulation of immune-related genes, metabolic alterations in CD8+ T cells, including the upregulation of glucose uptake and glycolysis, occurred by TLR7 stimulation. Glycolysis was found to be regulated by the AKT-mTOR pathway and a downstream transcription factor IRF4. Blocking glycolysis by either direct glucose deprivation or modulating the mTOR pathway and IRF4 expression was found to impair T cell activation and functions. Taken together, the activation of TLR7 signaling promotes the effector functions of CD8+ T cells by enhancing cellular glycolysis.
Collapse
Affiliation(s)
- Qian Li
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Yan
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jia Liu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Huang
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Carsten Kirschning
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ejuan Zhang
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
40
|
Stark R, Wesselink TH, Behr FM, Kragten NAM, Arens R, Koch-Nolte F, van Gisbergen KPJM, van Lier RAW. T RM maintenance is regulated by tissue damage via P2RX7. Sci Immunol 2019; 3:3/30/eaau1022. [PMID: 30552101 DOI: 10.1126/sciimmunol.aau1022] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Tissue-resident memory T cells (TRM) are noncirculating immune cells that contribute to the first line of local defense against reinfections. Their location at hotspots of pathogen encounter frequently exposes TRM to tissue damage. This history of danger-signal exposure is an important aspect of TRM-mediated immunity that has been overlooked so far. RNA profiling revealed that TRM from liver and small intestine express P2RX7, a damage/danger-associated molecular pattern (DAMP) receptor that is triggered by extracellular nucleotides (ATP, NAD+). We confirmed that P2RX7 protein was expressed in CD8+ TRM but not in circulating T cells (TCIRC) across different infection models. Tissue damage induced during routine isolation of liver lymphocytes led to P2RX7 activation and resulted in selective cell death of TRM P2RX7 activation in vivo by exogenous NAD+ led to a specific depletion of TRM while retaining TCIRC The effect was absent in P2RX7-deficient mice and after P2RX7 blockade. TCR triggering down-regulated P2RX7 expression and made TRM resistant to NAD-induced cell death. Physiological triggering of P2RX7 by sterile tissue damage during acetaminophen-induced liver injury led to a loss of previously acquired pathogen-specific local TRM in wild-type but not in P2RX7 KO T cells. Our results highlight P2RX7-mediated signaling as a critical pathway for the regulation of TRM maintenance. Extracellular nucleotides released during infection and tissue damage could deplete TRM locally and free niches for new and infection-relevant specificities. This suggests that the recognition of tissue damage promotes persistence of antigen-specific over bystander TRM in the tissue niche.
Collapse
Affiliation(s)
- Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands. .,Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands
| | - Thomas H Wesselink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
41
|
Lu BL, Williams GM, Verdon DJ, Dunbar PR, Brimble MA. Synthesis and Evaluation of Novel TLR2 Agonists as Potential Adjuvants for Cancer Vaccines. J Med Chem 2019; 63:2282-2291. [PMID: 31418565 DOI: 10.1021/acs.jmedchem.9b01044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy has gained increasing attention due to its potential specificity and lack of adverse side effects when compared to more traditional modes of treatment. Toll-like receptor 2 (TLR2) agonists are lipopeptides possessing the S-[2,3-bis(palmitoyloxy)propyl]-l-cysteine (Pam2Cys) motif and exhibit potent immunostimulatory effects. These agonists offer a means of providing "danger signals" in order to activate the immune system toward tumor antigens. Thus, the development of TLR2 agonists is attractive in the search of potential immunostimulants for cancer. Existing SAR studies of Pam2Cys with TLR2 indicate that the structural requirements for activity are, for the most part, very intolerable. We have investigated the importance of stereochemistry, the effect of N-terminal acylation, and homologation between the two ester functionalities in Pam2Cys-conjugated lipopeptides on TLR2 activity. The R diastereomer is significantly more potent than the S diastereomer and N-terminal modification generally lowers TLR2 activity. Most notably, homologation gives rise to analogues which are comparatively active to the native Pam2Cys containing constructs.
Collapse
Affiliation(s)
- Benjamin L Lu
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street 1010, Auckland, New Zealand
| | - Geoffrey M Williams
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street 1010, Auckland, New Zealand
| | - Daniel J Verdon
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street 1010, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street 1010, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street 1010, Auckland, New Zealand
| |
Collapse
|
42
|
Adaptive innate immunity or innate adaptive immunity? Clin Sci (Lond) 2019; 133:1549-1565. [DOI: 10.1042/cs20180548] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
Abstract
The innate immunity is frequently accepted as a first line of relatively primitive defense interfering with the pathogen invasion until the mechanisms of ‘privileged’ adaptive immunity with the production of antibodies and activation of cytotoxic lymphocytes ‘steal the show’. Recent advancements on the molecular and cellular levels have shaken the traditional view of adaptive and innate immunity. The innate immune memory or ‘trained immunity’ based on metabolic changes and epigenetic reprogramming is a complementary process insuring adaptation of host defense to previous infections.
Innate immune cells are able to recognize large number of pathogen- or danger- associated molecular patterns (PAMPs and DAMPs) to behave in a highly specific manner and regulate adaptive immune responses. Innate lymphoid cells (ILC1, ILC2, ILC3) and NK cells express transcription factors and cytokines related to subsets of T helper cells (Th1, Th2, Th17). On the other hand, T and B lymphocytes exhibit functional properties traditionally attributed to innate immunity such as phagocytosis or production of tissue remodeling growth factors. They are also able to benefit from the information provided by pattern recognition receptors (PRRs), e.g. γδT lymphocytes use T-cell receptor (TCR) in a manner close to PRR recognition. Innate B cells represent another example of limited combinational diversity usage participating in various innate responses. In the view of current knowledge, the traditional black and white classification of immune mechanisms as either innate or an adaptive needs to be adjusted and many shades of gray need to be included.
Collapse
|
43
|
TLR1/2 ligand enhances antitumor efficacy of CTLA-4 blockade by increasing intratumoral Treg depletion. Proc Natl Acad Sci U S A 2019; 116:10453-10462. [PMID: 31076558 PMCID: PMC6534983 DOI: 10.1073/pnas.1819004116] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors such as anti-CTLA-4 antibody are widely accepted therapeutic options for many cancers, but there is still a considerable gap in achieving their full potential. We explored the potential of activating the innate and adaptive immune pathways together to improve tumor reduction and survival outcomes. We treated a mouse model of melanoma with intratumoral injections of Toll-like receptor 1/2 (TLR1/2) ligand Pam3CSK4 plus i.p. injections of anti-CTLA-4 antibody. This combination treatment enhanced antitumor immune responses both qualitatively and quantitatively over anti-CTLA-4 alone, and its efficacy depended on CD4 T cells, CD8 T cells, Fcγ receptor IV, and macrophages. Interestingly, our results suggest a unique mechanism by which TLR1/2 ligand increased Fcγ receptor IV expression on macrophages, leading to antibody-dependent macrophage-mediated depletion of regulatory T cells in the tumor microenvironment and increasing efficacy of anti-CTLA-4 antibody in the combination treatment. This mechanism could be harnessed to modulate the clinical outcome of anti-CTLA-4 antibodies and possibly other antibody-based immunotherapies.
Collapse
|
44
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
45
|
Yousefi M, Mamipour M, Sokullu SE, Ghaderi S, Amini H, Rahbarghazi R. Toll-like receptors in the functional orientation of cardiac progenitor cells. J Cell Physiol 2019; 234:19451-19463. [PMID: 31025370 DOI: 10.1002/jcp.28738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Cardiac progenitor cells (CPCs) have the potential to differentiate into several cell lineages with the ability to restore in cardiac tissue. Multipotency and self-renewal activity are the crucial characteristics of CPCs. Also, CPCs have promising therapeutic roles in cardiac diseases such as valvular disease, thrombosis, atherosclerosis, congestive heart failure, and cardiac remodeling. Toll-like receptors (TLRs), as the main part of the innate immunity, have a key role in the development and differentiation of immune cells. Some reports are found regarding the effect of TLRs in the maturation of stem cells. This article tried to find the potential role of TLRs in the dynamics of CPCs. By showing possible crosstalk between the TLR signaling pathways and CPCs dynamics, we could achieve a better conception related to TLRs in the regeneration of cardiac tissue.
Collapse
Affiliation(s)
- Mohammadreza Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Mina Mamipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Sadiye E Sokullu
- Engineering Sciences, Bioengineering Department, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Shahrooz Ghaderi
- Department of System Physiology, Ruhr University, Bochum, Germany
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Imanishi T, Unno M, Kobayashi W, Yoneda N, Matsuda S, Ikeda K, Hoshii T, Hirao A, Miyake K, Barber GN, Arita M, Ishii KJ, Akira S, Saito T. Reciprocal regulation of STING and TCR signaling by mTORC1 for T-cell activation and function. Life Sci Alliance 2019; 2:2/1/e201800282. [PMID: 30683688 PMCID: PMC6348487 DOI: 10.26508/lsa.201800282] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Stimulator of interferon genes (STING) plays a key role in detecting cytosolic DNA and induces type I interferon (IFN-I) responses for host defense against pathogens. Although T cells highly express STING, its physiological role remains unknown. Here, we show that costimulation of T cells with the STING ligand cGAMP and TCR leads to IFN-I production and strongly inhibits T-cell growth. TCR-mediated mTORC1 activation and sustained activation of IRF3 are required for cGAMP-induced IFN-I production, and the mTORC1 activity is partially counteracted by cGAMP, thereby blocking proliferation. This mTORC1 inhibition in response to costimulation depends on IRF3 and IRF7. Effector T cells produce much higher IFN-I levels than innate cells in response to cGAMP. Finally, we demonstrated that STING stimulation in T cells is effective in inducing antitumor responses in vivo. Our studies demonstrate that the outputs of STING and TCR signaling pathways are mutually regulated through mTORC1 to modulate T-cell functions.
Collapse
Affiliation(s)
- Takayuki Imanishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Midori Unno
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wakana Kobayashi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Natsumi Yoneda
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Matsuda
- Department of Cell Signaling, Institute of Biomedical Sciences, Kansai Medical University, Hirakata, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Japan Agency for Medical Research and Development (AMED)-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Takayuki Hoshii
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Glen N Barber
- Department of Cell Biology and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Suita, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan .,Laboratory for Cell Signaling, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
47
|
Bystander T Cells: A Balancing Act of Friends and Foes. Trends Immunol 2018; 39:1021-1035. [PMID: 30413351 DOI: 10.1016/j.it.2018.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
T cell responses are essential for appropriate protection against pathogens. T cell immunity is achieved through the ability to discriminate between foreign and self-molecules, and this relies heavily on stringent T cell receptor (TCR) specificity. Recently, bystander activated T lymphocytes, that are specific for unrelated epitopes during an antigen-specific response, have been implicated in diverse diseases. Numerous infection models have challenged the classic dogma of T cell activation as being solely dependent on TCR and major histocompatibility complex (MHC) interactions, indicating an unappreciated role for pathogen-associated receptors on T cells. We discuss here the specific roles of bystander activated T cells in pathogenesis, shedding light on the ability of these cells to modulate disease severity independently from TCR recognition.
Collapse
|
48
|
Loomis KH, Lindsay KE, Zurla C, Bhosle SM, Vanover DA, Blanchard EL, Kirschman JL, Bellamkonda RV, Santangelo PJ. In Vitro Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity. Bioconjug Chem 2018; 29:3072-3083. [PMID: 30067354 DOI: 10.1021/acs.bioconjchem.8b00443] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro transcribed (IVT) mRNA is an appealing platform for next generation vaccines, as it can be manufactured rapidly at large scale to meet emerging pathogens. However, its performance as a robust vaccine is strengthened by supplemental immune stimulation, which is typically provided by adjuvant formulations that facilitate delivery and stimulate immune responses. Here, we present a strategy for increasing translation of a model IVT mRNA vaccine while simultaneously modulating its immune-stimulatory properties in a programmable fashion, without relying on delivery vehicle formulations. Substitution of uridine with the modified base N1-methylpseudouridine reduces the intrinsic immune stimulation of the IVT mRNA and enhances antigen translation. Tethering adjuvants to naked IVT mRNA through antisense nucleotides boosts the immunostimulatory properties of adjuvants in vitro, without impairing transgene production or adjuvant activity. In vivo, intramuscular injection of tethered IVT mRNA-TLR7 agonists leads to enhanced local immune responses, and to antigen-specific cell-mediated and humoral responses. We believe this system represents a potential platform compatible with any adjuvant of interest to enable specific programmable stimulation of immune responses.
Collapse
Affiliation(s)
- Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Kevin E Lindsay
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Daryll A Vanover
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Ravi V Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
49
|
Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 2018; 59:391-412. [PMID: 29730580 PMCID: PMC7106078 DOI: 10.1016/j.intimp.2018.03.002] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
The immune system is a very diverse system of the host that evolved during evolution to cope with various pathogens present in the vicinity of environmental surroundings inhabited by multicellular organisms ranging from achordates to chordates (including humans). For example, cells of immune system express various pattern recognition receptors (PRRs) that detect danger via recognizing specific pathogen-associated molecular patterns (PAMPs) and mount a specific immune response. Toll-like receptors (TLRs) are one of these PRRs expressed by various immune cells. However, they were first discovered in the Drosophila melanogaster (common fruit fly) as genes/proteins important in embryonic development and dorso-ventral body patterning/polarity. Till date, 13 different types of TLRs (TLR1-TLR13) have been discovered and described in mammals since the first discovery of TLR4 in humans in late 1997. This discovery of TLR4 in humans revolutionized the field of innate immunity and thus the immunology and host-pathogen interaction. Since then TLRs are found to be expressed on various immune cells and have been targeted for therapeutic drug development for various infectious and inflammatory diseases including cancer. Even, Single nucleotide polymorphisms (SNPs) among various TLR genes have been identified among the different human population and their association with susceptibility/resistance to certain infections and other inflammatory diseases. Thus, in the present review the current and future importance of TLRs in immunity, their pattern of expression among various immune cells along with TLR based therapeutic approach is reviewed. TLRs are first described PRRs that revolutionized the biology of host-pathogen interaction and immune response The discovery of different TLRs in humans proved milestone in the field of innate immunity and inflammation The pattern of expression of all the TLRs expressed by human immune cells An association of various TLR SNPs with different inflammatory diseases Currently available drugs or vaccines based on TLRs and their future in drug targeting along with the role in reproduction, and regeneration
Collapse
|
50
|
Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol 2018; 15:428-437. [PMID: 29553135 PMCID: PMC6068099 DOI: 10.1038/cmi.2018.4] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Cellular energy metabolism not only promotes tumor cell growth and metastasis but also directs immune cell survival, proliferation and the ability to perform specific and functional immune responses within the tumor microenvironment. A better understanding of the molecular regulation of metabolism in different cell components in the tumor-suppressive microenvironment is critical for the development of effective strategies for human cancer treatments. Toll-like receptors (TLRs) have recently been recognized as critical factors involved in tumor pathogenesis, regulating both tumor cells and tumor-infiltrating innate and adaptive immune cells. However, little is known about the molecular crosstalk between TLR signaling and tumor or/and immune cell metabolism, although there is abundant expression of TLRs in these cells. In this review, we explore the functional role of TLR signaling in reprogramming cell metabolism in the tumor microenvironment. In particular, we discuss how malignant tumors regulate metabolism to support their growth and survival, summarize more recently identified metabolic profiles of different immune cell subsets and TLR-mediated regulation of cellular metabolism in both tumor and immune cells, and further explore potential strategies targeting cell metabolism for TLR-based cancer therapy. An improved understanding of these issues should open new avenues for the development of novel strategies via TLR-mediated metabolic reprogramming of the tumor microenvironment for cancer immunotherapy.
Collapse
Affiliation(s)
- Lan Huang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, 63104, Saint Louis, MO, USA.,Department of Microbiology and Immunology, Jiangsu University School of Medicine, 212013, Zhenjiang, China
| | - Huaxi Xu
- Department of Microbiology and Immunology, Jiangsu University School of Medicine, 212013, Zhenjiang, China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, 63104, Saint Louis, MO, USA.
| |
Collapse
|