1
|
Escobar Vasco MA, Fantaye SH, Raghunathan S, Solis-Herrera C. The potential role of finerenone in patients with type 1 diabetes and chronic kidney disease. Diabetes Obes Metab 2024; 26:4135-4146. [PMID: 39021345 DOI: 10.1111/dom.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
Chronic kidney disease (CKD) represents a global health concern, associated with an increased risk of cardiovascular morbidity and mortality and decreased quality of life. Many patients with type 1 diabetes (T1D) will develop CKD over their lifetime. Uncontrolled glucose levels, which occur in patients with T1D as well as type 2 diabetes (T2D), are associated with substantial mortality and cardiovascular disease burden. T2D and T1D share common pathological features of CKD, which is thought to be driven by haemodynamic dysfunction, metabolic disturbances, and subsequently an influx of inflammatory and profibrotic mediators, both of which are major interrelated contributors to CKD progression. The mineralocorticoid receptor is also involved, and, under conditions of oxidative stress, salt loading and hyperglycaemia, it switches from homeostatic regulator to pathophysiological mediator by promoting oxidative stress, inflammation and fibrosis. Progressive glomerular and tubular injury leads to macroalbuminuria a progressive reduction in the glomerular filtration rate and eventually end-stage renal disease. Finerenone, a non-steroidal, selective mineralocorticoid receptor antagonist, is approved for treatment of patients with CKD associated with T2D; however, the benefit of finerenone in patients with T1D has yet to be determined. This narrative review will discuss treatment of CKD in T1D and the potential future role of finerenone in this setting.
Collapse
Affiliation(s)
| | - Samuel H Fantaye
- Division of Endocrinology, University of Texas Health, San Antonio, Texas, USA
| | - Sapna Raghunathan
- Division of Endocrinology, University of Texas Health, San Antonio, Texas, USA
| | | |
Collapse
|
2
|
Tatovic D, Marwaha A, Taylor P, Hanna SJ, Carter K, Cheung WY, Luzio S, Dunseath G, Hutchings HA, Holland G, Hiles S, Fegan G, Williams E, Yang JHM, Domingo-Vila C, Pollock E, Wadud M, Ward-Hartstonge K, Marques-Jones S, Bowen-Morris J, Stenson R, Levings MK, Gregory JW, Tree TIM, Dayan C. Ustekinumab for type 1 diabetes in adolescents: a multicenter, double-blind, randomized phase 2 trial. Nat Med 2024; 30:2657-2666. [PMID: 39079992 PMCID: PMC11405276 DOI: 10.1038/s41591-024-03115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 09/18/2024]
Abstract
Immunotherapy targeting the autoimmune process in type 1 diabetes (T1D) can delay the loss of β-cells but needs to have minimal adverse effects to be an adjunct to insulin in the management of T1D. Ustekinumab binds to the shared p40 subunit of interleukin (IL)-12 and IL-23, targeting development of T helper 1 cells and T helper 17 cells (TH1 and TH17 cells) implicated in the pathogenesis of T1D. We conducted a double-blind, randomized controlled trial of ustekinumab in 72 adolescents aged 12-18 years with recent-onset T1D. Treatment was well tolerated with no increase in adverse events. At 12 months, β-cell function, measured by stimulated C-peptide, was 49% higher in the intervention group (P = 0.02), meeting the prespecified primary outcome. Preservation of C-peptide correlated with the reduction of T helper cells co-secreting IL-17A and interferon-γ (TH17.1 cells, P = 0.04) and, in particular, with the reduction in a subset of TH17.1 cells co-expressing IL-2 and granulocyte-macrophage colony-stimulating factor (IL-2+ GM-CSF+ TH17.1 cells, P = 0.04). A significant fall in β-cell-targeted (proinsulin-specific) IL-17A-secreting T cells was also seen (P = 0.0003). Although exploratory, our data suggest a role for an activated subset of TH17.1 cells in T1D that can be targeted with minimal adverse effects to reduce C-peptide loss, which requires confirmation in a larger study. (International Standard Randomised Controlled Trial Number Registry: ISRCTN 14274380).
Collapse
Affiliation(s)
- Danijela Tatovic
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | | | - Peter Taylor
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Stephanie J Hanna
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kym Carter
- Diabetes Research Unit Cymru, Institute for Life Sciences, Swansea University, Swansea, UK
| | - W Y Cheung
- Diabetes Research Unit Cymru, Institute for Life Sciences, Swansea University, Swansea, UK
| | - Steve Luzio
- Diabetes Research Unit Cymru, Institute for Life Sciences, Swansea University, Swansea, UK
| | - Gareth Dunseath
- Diabetes Research Unit Cymru, Institute for Life Sciences, Swansea University, Swansea, UK
| | | | - Gail Holland
- Swansea Trials Unit, Swansea University Medical School, Swansea, UK
| | - Steve Hiles
- Swansea Trials Unit, Swansea University Medical School, Swansea, UK
| | - Greg Fegan
- Swansea Trials Unit, Swansea University Medical School, Swansea, UK
| | - Evangelia Williams
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Jennie H M Yang
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Clara Domingo-Vila
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Emily Pollock
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Muntaha Wadud
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Kirsten Ward-Hartstonge
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jane Bowen-Morris
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Rachel Stenson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - John W Gregory
- Division of Population Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Timothy I M Tree
- Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Colin Dayan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
3
|
Li J, Zhao T, Sun Y. Interleukin-17A in diabetic retinopathy: The crosstalk of inflammation and angiogenesis. Biochem Pharmacol 2024; 225:116311. [PMID: 38788958 DOI: 10.1016/j.bcp.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Diabetic retinopathy (DR) is a severe ocular complication of diabetes which can leads to irreversible vision loss in its late-stage. Chronic inflammation results from long-term hyperglycemia contributes to the pathogenesis and progression of DR. In recent years, the interleukin-17 (IL-17) family have attracted the interest of researchers. IL-17A is the most widely explored cytokine in IL-17 family, involved in various acute and chronic inflammatory diseases. Growing body of evidence indicate the role of IL-17A in the pathogenesis of DR. However, the pro-inflammatory and pro-angiogenic effect of IL-17A in DR have not hitherto been reviewed. Gaining an understanding of the pro-inflammatory role of IL-17A, and how IL-17A control/impact angiogenesis pathways in the eye will deepen our understanding of how IL-17A contributes to DR pathogenesis. Herein, we aimed to thoroughly review the pro-inflammatory role of IL-17A in DR, with focus in how IL-17A impact inflammation and angiogenesis crosstalk.
Collapse
Affiliation(s)
- Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
4
|
Liu YC, Liao YT, Lin KH. The relationship between schizophrenia or schizoaffective disorder and type 1 diabetes mellitus: a scoping review of observational studies. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2024:10.1007/s40211-024-00499-y. [PMID: 38833151 DOI: 10.1007/s40211-024-00499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/11/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Both schizophrenia and type 1 diabetes mellitus (T1D) are known as immune-related disorders. We systematically reviewed observational studies to explore the relationship between schizophrenia or schizoaffective disorder and T1D. METHODS A preliminary search of articles was completed using the following databases: Airiti Library, CINAHL Complete (via EBSCOhost), OVID MEDLINE, Embase, and PubMed. Two researchers independently assessed each study's quality based on Joanna Briggs Institute (JBI). A narrative review summarized the potential relationship between the two diseases. RESULTS Eleven studies were included in the final analysis. Six observational studies investigated the risk of schizophrenia and schizoaffective disorder in patients with T1D. Two studies showed negative correlations, one showed no correlation, and three showed positive correlations. On the other hand, five studies reported the prevalence of T1D in patients with schizophrenia. Two of them showed positive associations, and three others showed no association. Although the majority of the included studies suggested a positive association between the two medical conditions, these studies were still too heterogeneous to draw consistent results. CONCLUSION We found conflicting results regarding the bidirectional relationship between schizophrenia or schizoaffective disorder and T1D. These may stem from differences in study design, sampling methods, or definition of diagnoses, which are essential aspects to consider in future research.
Collapse
Affiliation(s)
- Yi-Chun Liu
- Department of Psychiatry, Changhua Christian Children's Hospital, 500, Changhua, Taiwan
- Department of Psychiatry, Changhua Christian Hospital, 500, Changhua, Taiwan
- Department of Healthcare Administration, Asia University, 413, Taichung, Taiwan
- Department of Eldercare, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yin-To Liao
- Department of Psychiatry, China Medical University and China Medical University Hospital, 413, Taichung, Taiwan
| | - Kuan-Han Lin
- Department of Healthcare Administration, Asia University, 413, Taichung, Taiwan.
- Asia University, No.500, Lioufeng Road, 41354, Taichung City, Wufeng District, Taiwan.
| |
Collapse
|
5
|
Schmälter AK, Löhr P, Konrad M, Waidhauser J, Arndt TT, Schiele S, Thoma A, Hackanson B, Rank A. Alterations in Peripheral Lymphocyte Subsets under Immunochemotherapy in Stage IV SCLC Patients: Th17 Cells as Potential Early Predictive Biomarker for Response. Int J Mol Sci 2024; 25:5056. [PMID: 38791096 PMCID: PMC11121216 DOI: 10.3390/ijms25105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
UICC stage IV small-cell lung cancer (SCLC) is a highly aggressive malignancy without curative treatment options. Several randomized trials have demonstrated improved survival rates through the addition of checkpoint inhibitors to first-line platin-based chemotherapy. Consequently, a combination of chemo- and immunotherapy has become standard palliative treatment. However, no reliable predictive biomarkers for treatment response exist. Neither PD-L1 expression nor tumor mutational burden have proven to be effective predictive biomarkers. In this study, we compared the cellular immune statuses of SCLC patients to a healthy control cohort and investigated changes in peripheral blood B, T, and NK lymphocytes, as well as several of their respective subsets, during treatment with immunochemotherapy (ICT) using flow cytometry. Our findings revealed a significant decrease in B cells, while T cells showed a trend to increase throughout ICT. Notably, high levels of exhausted CD4+ and CD8+ cells, alongside NK subsets, increased significantly during treatment. Furthermore, we correlated decreases/increases in subsets after two cycles of ICT with survival. Specifically, a decrease in Th17 cells indicated a better overall survival. Based on these findings, we suggest conducting further investigation into Th17 cells as a potential early predictive biomarkers for response in patients receiving palliative ICT for stage IV SCLC.
Collapse
Affiliation(s)
- Ann-Kristin Schmälter
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| | - Phillip Löhr
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| | - Maik Konrad
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
| | - Johanna Waidhauser
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
| | - Tim Tobias Arndt
- Institute of Mathematics, University of Augsburg, 86159 Augsburg, Germany; (T.T.A.); (S.S.)
| | - Stefan Schiele
- Institute of Mathematics, University of Augsburg, 86159 Augsburg, Germany; (T.T.A.); (S.S.)
| | - Alicia Thoma
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
| | - Björn Hackanson
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andreas Rank
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
| |
Collapse
|
6
|
He G, Chen J, Hao W, Hu W. Causal effect of gut microbiota and diabetic nephropathy: a Mendelian randomization study. Diabetol Metab Syndr 2024; 16:89. [PMID: 38658966 PMCID: PMC11044463 DOI: 10.1186/s13098-024-01327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND The interaction of dysbiosis of gut microbiota (GM) with diabetic nephropathy (DN) drew our attention and a better understanding of GM on DN might provide potential therapeutic approaches. However, the exact causal effect of GM on DN remains unknown. METHODS We applied two-sample Mendelian Randomization (MR) analysis, including inverse variance weighted (IVW), MR-Egger methods, etc., to screen the significant bacterial taxa based on the GWAS data. Sensitivity analysis was conducted to assess the robustness of MR results. To identify the most critical factor on DN, Mendelian randomization-Bayesian model averaging (MR-BMA) method was utilized. Then, whether the reverse causality existed was verified by reverse MR analysis. Finally, transcriptome MR analysis was performed to investigate the possible mechanism of GM on DN. RESULTS At locus-wide significance levels, the results of IVW suggested that order Bacteroidales (odds ratio (OR) = 1.412, 95% confidence interval (CI): 1.025-1.945, P = 0.035), genus Akkermansia (OR = 1.449, 95% CI: 1.120-1.875, P = 0.005), genus Coprococcus 1 (OR = 1.328, 95% CI: 1.066-1.793, P = 0.015), genus Marvinbryantia (OR = 1.353, 95% CI: 1.037-1.777, P = 0.030) and genus Parasutterella (OR = 1.276, 95% CI: 1.022-1.593, P = 0.032) were risk factors for DN. Reversely, genus Eubacterium ventriosum (OR = 0.756, 95% CI: 0.594-0.963, P = 0.023), genus Ruminococcus gauvreauii (OR = 0.663, 95% CI: 0.506-0.870, P = 0.003) and genus Erysipelotrichaceae (UCG003) (OR = 0.801, 95% CI: 0.644-0.997, P = 0.047) were negatively associated with the risk of DN. Among these taxa, genus Ruminococcus gauvreauii played a crucial role in DN. No significant heterogeneity or pleiotropy in the MR result was found. Mapped genes (FDR < 0.05) related to GM had causal effects on DN, while FCGR2B and VNN2 might be potential therapeutic targets. CONCLUSIONS This work provided new evidence for the causal effect of GM on DN occurrence and potential biomarkers for DN. The significant bacterial taxa in our study provided new insights for the 'gut-kidney' axis, as well as unconventional prevention and treatment strategies for DN.
Collapse
Affiliation(s)
- Ganyuan He
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
| | - Jiayi Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
| | - Wenke Hao
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China.
| | - Wenxue Hu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Khan IA, Singh N, Gunjan D, Dash NR, Nayak B, Gupta S, Saraya A. Elevated levels of peripheral Th17 cells and Th17-related cytokines in patients with periampullary adenocarcinoma. Hum Immunol 2024; 85:110748. [PMID: 38177009 DOI: 10.1016/j.humimm.2023.110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
AIM Periampullary adenocarcinoma (PAC) is a malignant tumor originating at the ampulla of Vater, distal common bile duct, head of the pancreas, ampulla and duodenum. The levels of circulating Th17 cells and Th17-related cytokines in patients with PAC remain unreported. Therefore, the aim of this study was to determine the levels of circulating Th17 cells and Th17-related cytokines in patients with PAC. MATERIALS AND METHODS Flow cytometry was used to measure Th17 cell proportions in PBMCs from 60 PAC patients and 30 healthy controls. Enzyme-linked immunosorbent assay (ELISA) was used to quantify IL-17A and IL-23 levels in serum samples, while quantitative reverse transcription polymerase chain reaction (qRT-PCR) assessed IL-17A mRNA expression and Th17-related transcription factors (RORγt and STAT3) in tissue samples. RESULTS The findings showed a substantial increase in Th17 cell percentages, elevated concentrations of IL-17A and IL-23, and higher mRNA expression levels of IL-17A, RORγt, and STAT3 in patients with PAC when compared to healthy controls (HCs). CONCLUSION Th17 cells play an important role in the pathogenesis of PAC and may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Nidhi Singh
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gunjan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Nihar Ranjan Dash
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
8
|
Yin Y, Ouyang S, Li Q, Du Y, Xiong S, Zhang M, Wang W, Zhang T, Liu C, Gao Y. Salivary interleukin-17A and interferon-γ levels are elevated in children with food allergies in China. Front Immunol 2023; 14:1232187. [PMID: 38090557 PMCID: PMC10715589 DOI: 10.3389/fimmu.2023.1232187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Food allergies have a substantial impact on patient health, but their mechanisms are poorly understood, and strategies for diagnosing, preventing, and treating food allergies are not optimal. This study explored the levels of and relationship between IL-17A and IFN-γ in the saliva of children with food allergies, which will form the basis for further mechanistic discoveries as well as prevention and treatment measures for food allergies. Methods A case-control study with 1:1 matching was designed. Based on the inclusion criteria, 20 case-control pairs were selected from patients at the Skin and Allergy Clinic and children of employees. IL-17A and IFN-γ levels in saliva were measured with a Luminex 200 instrument. A general linear model was used to analyze whether the salivary IL-17A and IFN-γ levels in the food allergy group differed from those in the control group. Results The general linear model showed a significant main effect of group (allergy vs. healthy) on the levels of IL-17A and IFN-γ. The mean IL-17A level (0.97 ± 0.09 pg/ml) in the food allergy group was higher than that in the healthy group (0.69 ± 0.09 pg/ml). The mean IFN-γ level (3.0 ± 0.43 pg/ml) in the food allergy group was significantly higher than that in the healthy group (1.38 ± 0.43 pg/ml). IL-17A levels were significantly positively related to IFN-γ levels in children with food allergies (r=0.79) and in healthy children (r=0.98). Discussion The salivary IL-17A and IFN-γ levels in children with food allergies were higher than those in healthy children. This finding provides a basis for research on new methods of diagnosing food allergies and measuring the effectiveness of treatment.
Collapse
Affiliation(s)
- Yan Yin
- Department of Integrated Early Childhood Development, Capital Institute of Pediatrics, Beijing, China
| | - Shengrong Ouyang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Qin Li
- Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuyang Du
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Shiqiu Xiong
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Min Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Wei Wang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Chuanhe Liu
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ying Gao
- Department of Dermatology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
9
|
Liu YC, Liao YT, Chen VCH, Chen YL. Association Between Maternal Mood Disorders and Schizophrenia and the Risk of Type 1 Diabetes in Offspring: A Nationwide Cohort Study. Neuropsychiatr Dis Treat 2023; 19:2511-2518. [PMID: 38029045 PMCID: PMC10674753 DOI: 10.2147/ndt.s437430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Our study aimed to determine whether mothers with bipolar disorder, major depressive disorder, schizophrenia, or schizoaffective disorder affected the risk of type 1 diabetes (T1D) in their offspring. Methods We conducted a nationwide cohort study by using data from Taiwan's National Health Insurance Research Database and the Maternal and Child Health Database from 2004 to 2018. A total of 2,556,640 mother-child pairs were identified. Cox proportional hazards models were used to compare the risk of T1D between children born to mothers with mood disorders and schizophrenia and those without. Results No significant difference in risk of T1D was observed between the offspring of mothers with major psychiatric disorders and those without (adjusted hazard ratio (aHR) of 0.86 with a 95% confidence interval (CI) of 0.58-1.24). In subgroup analysis, we found an aHR of 1.81 with a 95% CI of 0.83-3.82 in the maternal bipolar disorder on the risk of T1D in offspring and an aHR of 0.87 (95% CI: 0.59-1.25) in maternal major depressive disorder. In the schizophrenia/schizoaffective disorder group, aHR cannot be obtained due to lesser than three events in the analysis. Conclusion The risk of T1D in offspring of mothers with mood disorders and schizophrenia was not significant. However, children born to mothers with bipolar disorder may have a tendency to develop T1D. The relationship between maternal psychiatric disorders and the risk of T1D in offspring warrants further investigation in studies with longer follow-up periods.
Collapse
Affiliation(s)
- Yi-Chun Liu
- Department of Psychiatry, Changhua Christian Children’s Hospital, Changhua, 500, Taiwan
- Department of Psychiatry, Changhua Christian Hospital, Changhua, 500, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, 413, Taiwan
- Department of Eldercare, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yin-To Liao
- Department of Psychiatry, China Medical University Hospital, Taichung, 404, Taiwan
- China Medical University, Taichung, 406, Taiwan
| | - Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Psychiatry, Chiayi Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
| | - Yi-Lung Chen
- Department of Healthcare Administration, Asia University, Taichung, 413, Taiwan
- Department of Psychology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
10
|
Huang P, Wang Y, Zhang P, Li Q. Ubiquitin-specific peptidase 1: assessing its role in cancer therapy. Clin Exp Med 2023; 23:2953-2966. [PMID: 37093451 DOI: 10.1007/s10238-023-01075-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Reversible protein ubiquitination represents an essential determinator of cellular homeostasis, and the ubiquitin-specific enzymes, particularly deubiquitinases (DUBs), are emerging as promising targets for drug development. DUBs are composed of seven different subfamilies, out of which ubiquitin-specific proteases (USPs) are the largest family with 56 members. One of the well-characterized USPs is USP1, which contributes to several cellular biological processes including DNA damage response, immune regulation, cell proliferation, apoptosis, and migration. USP1 levels and activity are regulated by multiple mechanisms, including transcription regulation, phosphorylation, autocleavage, and proteasomal degradation, ensuring that the cellular function of USP1 is performed in a suitably modulated spatio-temporal manner. Moreover, USP1 with deregulated expression and activity are found in several human cancers, indicating that targeting USP1 is a feasible therapeutic approach in anti-cancer treatment. In this review, we highlight the essential role of USP1 in cancer development and the regulatory landscape of USP1 activity, which might provide novel insights into cancer treatment.
Collapse
Affiliation(s)
- Peng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - YuHan Wang
- Department of Anorectal, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - PengFei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Riaz F, Wei P, Pan F. PPARs at the crossroads of T cell differentiation and type 1 diabetes. Front Immunol 2023; 14:1292238. [PMID: 37928539 PMCID: PMC10623333 DOI: 10.3389/fimmu.2023.1292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
T-cell-mediated autoimmune type 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells (β-cells). The increasing prevalence of T1D poses significant challenges to the healthcare system, particularly in countries with struggling economies. This review paper highlights the multifaceted roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the context of T1D, shedding light on their potential as regulators of immune responses and β-cell biology. Recent research has elucidated the intricate interplay between CD4+ T cell subsets, such as Tregs and Th17, in developing autoimmune diseases like T1D. Th17 cells drive inflammation, while Tregs exert immunosuppressive functions, highlighting the delicate balance crucial for immune homeostasis. Immunotherapy has shown promise in reinstating self-tolerance and restricting the destruction of autoimmune responses, but further investigations are required to refine these therapeutic strategies. Intriguingly, PPARs, initially recognized for their role in lipid metabolism, have emerged as potent modulators of inflammation in autoimmune diseases, particularly in T1D. Although evidence suggests that PPARs affect the β-cell function, their influence on T-cell responses and their potential impact on T1D remains largely unexplored. It was noted that PPARα is involved in restricting the transcription of IL17A and enhancing the expression of Foxp3 by minimizing its proteasomal degradation. Thus, antagonizing PPARs may exert beneficial effects in regulating the differentiation of CD4+ T cells and preventing T1D. Therefore, this review advocates for comprehensive investigations to delineate the precise roles of PPARs in T1D pathogenesis, offering innovative therapeutic avenues that target both the immune system and pancreatic function. This review paper seeks to bridge the knowledge gap between PPARs, immune responses, and T1D, providing insights that may revolutionize the treatment landscape for this autoimmune disorder. Moreover, further studies involving PPAR agonists in non-obese diabetic (NOD) mice hold promise for developing novel T1D therapies.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
12
|
Infante M, Vitiello L, Fabbri A, Ricordi C, Padilla N, Pacifici F, Perna PD, Passeri M, Della-Morte D, Caprio M, Uccioli L. Prolonged clinical remission of type 1 diabetes sustained by calcifediol and low-dose basal insulin: a case report. Immunotherapy 2023; 15:1009-1019. [PMID: 37401348 DOI: 10.2217/imt-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
Herein, we describe an unusually prolonged duration (31 months) of the clinical remission phase in a 22-year-old Italian man with new-onset type 1 diabetes. Shortly after the disease diagnosis, the patient was treated with calcifediol (also known as 25-hydroxyvitamin D3 or calcidiol), coupled with low-dose basal insulin, to correct hypovitaminosis D and to exploit the anti-inflammatory and immunomodulatory properties of vitamin D. During the follow-up period, the patient retained a substantial residual β-cell function and remained within the clinical remission phase, as evidenced by an insulin dose-adjusted glycated hemoglobin value <9. At 24 months, we detected a peculiar immunoregulatory profile of peripheral blood cells, which may explain the prolonged duration of the clinical remission sustained by calcifediol as add-on treatment to insulin.
Collapse
Affiliation(s)
- Marco Infante
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome, 00131, Italy
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Via Cola di Rienzo 28, Rome, 00192, Italy
| | - Laura Vitiello
- Laboratory of Flow Cytometry, IRCCS San Raffaele, Via di Val Cannuta 247, Rome, 00166, Italy
| | - Andrea Fabbri
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Camillo Ricordi
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA
| | - Nathalia Padilla
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Colonia Centroamérica L-823, Managua, 14048, Nicaragua
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Pasquale Di Perna
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| | - Marina Passeri
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
- Department of Human Sciences & Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, Rome, 00166, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL 33136, USA
| | - Massimiliano Caprio
- Department of Human Sciences & Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, Rome, 00166, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Via di Val Cannuta 247, Rome, 00166, Italy
| | - Luigi Uccioli
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| |
Collapse
|
13
|
Jacobsen LM, Diggins K, Blanchfield L, McNichols J, Perry DJ, Brant J, Dong X, Bacher R, Gersuk VH, Schatz DA, Atkinson MA, Mathews CE, Haller MJ, Long SA, Linsley PS, Brusko TM. Responders to low-dose ATG induce CD4+ T cell exhaustion in type 1 diabetes. JCI Insight 2023; 8:e161812. [PMID: 37432736 PMCID: PMC10543726 DOI: 10.1172/jci.insight.161812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUNDLow-dose anti-thymocyte globulin (ATG) transiently preserves C-peptide and lowers HbA1c in individuals with recent-onset type 1 diabetes (T1D); however, the mechanisms of action and features of the response remain unclear. Here, we characterized the post hoc immunological outcomes of ATG administration and their potential use as biomarkers of metabolic response to therapy (i.e., improved preservation of endogenous insulin production).METHODSWe assessed gene and protein expression, targeted gene methylation, and cytokine concentrations in peripheral blood following treatment with ATG (n = 29), ATG plus granulocyte colony-stimulating factor (ATG/G-CSF, n = 28), or placebo (n = 31).RESULTSTreatment with low-dose ATG preserved regulatory T cells (Tregs), as measured by stable methylation of FOXP3 Treg-specific demethylation region (TSDR) and increased proportions of CD4+FOXP3+ Tregs (P < 0.001) identified by flow cytometry. While treatment effects were consistent across participants, not all maintained C-peptide. Responders exhibited a transient rise in IL-6, IP-10, and TNF-α (P < 0.05 for all) 2 weeks after treatment and a durable CD4+ exhaustion phenotype (increased PD-1+KLRG1+CD57- on CD4+ T cells [P = 0.011] and PD1+CD4+ Temra MFI [P < 0.001] at 12 weeks, following ATG and ATG/G-CSF, respectively). ATG nonresponders displayed higher proportions of senescent T cells (at baseline and after treatment) and increased methylation of EOMES (i.e., less expression of this exhaustion marker).CONCLUSIONAltogether in these exploratory analyses, Th1 inflammation-associated serum and CD4+ exhaustion transcript and cellular phenotyping profiles may be useful for identifying signatures of clinical response to ATG in T1D.TRIAL REGISTRATIONClinicalTrials.gov NCT02215200.FUNDINGThe Leona M. and Harry B. Helmsley Charitable Trust (2019PG-T1D011), the NIH (R01 DK106191 Supplement, K08 DK128628), NIH TrialNet (U01 DK085461), and the NIH NIAID (P01 AI042288).
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Kirsten Diggins
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Lori Blanchfield
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - James McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Jason Brant
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Xiaoru Dong
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Vivian H. Gersuk
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Desmond A. Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Todd M. Brusko
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
14
|
What's the role of thymus in diabetes mellitus? Int Immunopharmacol 2023; 116:109765. [PMID: 36702074 DOI: 10.1016/j.intimp.2023.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Diabetes mellitus is considered as an autoimmune inflammatory and age-related disease. As an important immune organ, the thymus is involved in the immune response and inflammatory response process. Therefore, there may be a link between changes in thymus function and diabetes. Based on previous studies, we hypothesized that thymus dysfunction due to aging and other reasons leads to changes in the generation of various inflammatory-immune cells and inflammatory cytokines that regulate insulin resistance, and then participates in the development of diabetes and its complications. Therefore, thymus may be a key factor in diabetes and complications, and it may be a promising therapeutic strategy to improve the thymus function for patients with diabetes. The purpose of this review is to summarize and discuss recent advances in the influence of thymus function on diabetes, especially its potential mechanisms.
Collapse
|
15
|
Iraji D, Oftedal BE, Wolff ASB. Th17 Cells: Orchestrators of Mucosal Inflammation and Potential Therapeutic Targets. Crit Rev Immunol 2023; 43:25-52. [PMID: 37831521 DOI: 10.1615/critrevimmunol.2023050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
T helper 17 (Th17) cells represent a specialized subgroup of effector CD4+ T cells known for their role in provoking neutrophil-driven tissue inflammation, particularly within mucosal tissues. Although they are pivotal for defending the host against extracellular bacteria and fungi, they have also been associated with development of various T cell-mediated inflammatory conditions, autoimmune diseases, and even cancer. Notably, Th17 cells exhibit a dual nature, with different Th17 cell subtypes showcasing distinct effector functions and varying capacities to incite autoimmune tissue inflammation. Furthermore, Th17 cells exhibit significant plasticity, which carries important functional implications, both in terms of their expression of cytokines typically associated with other effector T cell subsets and in their interactions with regulatory CD4+ T cells. The intricate balance of Th17 cytokines can also be a double-edged sword in inflammation, autoimmunity, and cancer. Within this article, we delve into the mechanisms that govern the differentiation, function, and adaptability of Th17 cells. We culminate with an exploration of therapeutic potentials in harnessing the power of Th17 cells and their cytokines. Targeted interventions to modulate Th17 responses are emerging as promising strategies for autoimmunity, inflammation, and cancer treatment. By precisely fine-tuning Th17-related pathways, we may unlock new avenues for personalized therapeutic approaches, aiming to restore immune balance, alleviate the challenges of these disorders, and ultimately enhance the quality of life for individuals affected by them.
Collapse
Affiliation(s)
- Dorsa Iraji
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
16
|
Xu Q, Zhang X, Li T, Shao S. Exenatide regulates Th17/Treg balance via PI3K/Akt/FoxO1 pathway in db/db mice. Mol Med 2022; 28:144. [PMID: 36463128 PMCID: PMC9719171 DOI: 10.1186/s10020-022-00574-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The T helper 17 (Th17)/T regulatory (Treg) cell imbalance is involved in the course of obesity and type 2 diabetes mellitus (T2DM). In the current study, the exact role of glucagon-like peptide-1 receptor agonist (GLP-1RA) exenatide on regulating the Th17/Treg balance and the underlying molecular mechanisms are investigated in obese diabetic mice model. METHODS Metabolic parameters were monitored in db/db mice treated with/without exenatide during 8-week study period. The frequencies of Th17 and Treg cells from peripheral blood and pancreas in db/db mice were assessed. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/Forkhead box O1 (FoxO1) pathway in Th17 and Treg cells from the spleens of male C57BL/6J mice was detected by western blotting. In addition, the expression of glucagon-like peptide-1 receptor (GLP-1R) in peripheral blood mononuclear cells (PBMCs) of male C57BL/6J mice was analyzed. RESULTS Exenatide treatment improved β-cell function and insulitis in addition to glucose, insulin sensitivity and weight. Increased Th17 and decreased Treg cells in peripheral blood were present as diabetes progressed while exenatide corrected this imbalance. Progressive IL-17 + T cell infiltration of pancreatic islets was alleviated by exenatide intervention. In vitro study showed no significant difference in the level of GLP-1R expression in PBMCs between control and palmitate (PA) groups. In addition, PA could promote Th17 but suppress Treg differentiation along with down-regulating the phosphorylation of PI3K/Akt/FoxO1, which was reversed by exenatide intervention. FoxO1 inhibitor AS1842856 could abrogate all these effects of exenatide against lipid stress. CONCLUSIONS Exenatide could restore systemic Th17/Treg balance via regulating FoxO1 pathway with the progression of diabetes in db/db mice. The protection of pancreatic β-cell function may be partially mediated by inhibiting Th17 cell infiltration into pancreatic islets, and the resultant alleviation of islet inflammation.
Collapse
Affiliation(s)
- Qinqin Xu
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| | - Xiaoling Zhang
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| | - Tao Li
- grid.33199.310000 0004 0368 7223Division of Ophthalmology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China
| | - Shiying Shao
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| |
Collapse
|
17
|
Guindi C, Khan FU, Cloutier A, Khongorzul P, Raki AA, Gaudreau S, McDonald PP, Gris D, Amrani A. Inhibition of PI3K/C/EBPβ axis in tolerogenic bone marrow-derived dendritic cells of NOD mice promotes Th17 differentiation and diabetes development. Transl Res 2022; 255:37-49. [PMID: 36400308 DOI: 10.1016/j.trsl.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DCs) are key regulators of the adaptive immune response. Tolerogenic dendritic cells play a crucial role in inducing and maintaining immune tolerance in autoimmune diseases such as type 1 diabetes in humans as well as in the NOD mouse model. We previously reported that bone marrow-derived DCs (BM.DCs) from NOD mice, generated with a low dose of GM-CSF (GM/DCs), induce Treg differentiation and are able to protect NOD mice from diabetes. We had also found that the p38 MAPK/C/EBPβ axis is involved in regulating the phenotype, as well as the production of IL-10 and IL-12p70, by tolerogenic GM/DCs. Here, we report that the inhibition of the PI3K signaling switched the cytokine profile of GM/DCs toward Th17-promoting cytokines without affecting their phenotype. PI3K inhibition abrogated the production of IL-10 by GM/DCs, whereas it enhanced their production of IL-23 and TGFβ. Inhibition of PI3K signaling in tolerogenic GM/DCs also induced naive CD4+ T cells differentiation toward Th17 cells. Mechanistically, PI3K inhibition increased the DNA-binding activity of C/EBPβ through a GSK3-dependent pathway, which is important to maintain the semimature phenotype of tolerogenic GM/DCs. Furthermore, analysis of C/EBPβ-/- GM/DCs demonstrated that C/EBPβ is required for IL-23 production. Of physiological relevance, the level of protection from diabetes following transfusion of GM/DCs into young NOD mice was significantly reduced when NOD mice were transfused with GM/DCs pretreated with a PI3K inhibitor. Our data suggest that PI3K/C/EBPβ signaling is important in controlling tolerogenic function of GM/DCs by limiting their Th17-promoting cytokines.
Collapse
Affiliation(s)
- Chantal Guindi
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Farhan Ullah Khan
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Alexandre Cloutier
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Puregmaa Khongorzul
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Ahmed Aziz Raki
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Simon Gaudreau
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Patrick P McDonald
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Denis Gris
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Abdelaziz Amrani
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada.
| |
Collapse
|
18
|
Husein‐ElAhmed H, Steinhoff M. Potential role of interleukin‐17 in the pathogenesis of oral lichen planus: A systematic review with meta‐analysis. J Eur Acad Dermatol Venereol 2022; 36:1735-1744. [DOI: 10.1111/jdv.18219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Husein Husein‐ElAhmed
- Department of Dermatology and Venereology. Hospital de Baza. Granada. Spain
- Translational Research Institute Hamad Medical Corporation Doha Qatar
| | - Martin Steinhoff
- Translational Research Institute Hamad Medical Corporation Doha Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation Doha Qatar
- Weill Cornell Medicine‐Qatar College of Medicine Doha Qatar
- Qatar University Medical School Doha Qatar
- Dept. of Dermatology, Weill Cornell Medicine New York NY USA
| |
Collapse
|
19
|
Linke A, Tiegs G, Neumann K. Pathogenic T-Cell Responses in Immune-Mediated Glomerulonephritis. Cells 2022; 11:cells11101625. [PMID: 35626662 PMCID: PMC9139939 DOI: 10.3390/cells11101625] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Glomerulonephritis (GN) comprises a group of immune-mediated kidney diseases affecting glomeruli and the tubulointerstitium. Glomerular crescent formation is a histopathological characteristic of severe forms of GN, also referred to as crescentic GN (cGN). Based on histological findings, cGN includes anti-neutrophil cytoplasmic antibody (ANCA)-associated GN, a severe form of ANCA-associated vasculitis, lupus nephritis associated with systemic lupus erythematosus, Goodpasture’s disease, and IgA nephropathy. The immunopathogenesis of cGN is associated with activation of CD4+ and CD8+ T cells, which particularly accumulate in the periglomerular and tubulointerstitial space but also infiltrate glomeruli. Clinical observations and functional studies in pre-clinical animal models provide evidence for a pathogenic role of Th1 and Th17 cell-mediated immune responses in cGN. Emerging evidence further argues that CD8+ T cells have a role in disease pathology and the mechanisms of activation and function of recently identified tissue-resident CD4+ and CD8+ T cells in cGN are currently under investigation. This review summarizes the mechanisms of pathogenic T-cell responses leading to glomerular damage and renal inflammation in cGN. Advanced knowledge of the underlying immune mechanisms involved with cGN will enable the identification of novel therapeutic targets for the replacement or reduction in standard immunosuppressive therapy or the treatment of refractory disease.
Collapse
Affiliation(s)
- Alexandra Linke
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence: (G.T.); (K.N.); Tel.: +49-40-741058731 (G.T.); +49-40-741058738 (K.N.)
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence: (G.T.); (K.N.); Tel.: +49-40-741058731 (G.T.); +49-40-741058738 (K.N.)
| |
Collapse
|
20
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Moeinafshar A, Razi S, Rezaei N. Interleukin 17, the double-edged sword in atherosclerosis. Immunobiology 2022; 227:152220. [PMID: 35452921 DOI: 10.1016/j.imbio.2022.152220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022]
Abstract
Cardiovascular diseases, including atherosclerosis, are the number one cause of death worldwide. These diseases have taken the place of pneumonia and other infectious diseases in the epidemiological charts. Thus, their importance should not be underestimated. Atherosclerosis is an inflammatory disease. Therefore, immunological signaling molecules and immune cells carry out a central role in its etiology. One of these signaling molecules is interleukin (IL)-17. This relatively newly discovered signaling molecule might have a dual role as acting both pro-atherogenic and anti-atherogenic depending on the situation. The majority of articles have discussed IL-17 and its action in atherosclerosis, and it may be a new target for the treatment of patients with this disease. In this review, the immunological basis of atherosclerosis with an emphasis on the role of IL-17 and a brief explanation of the role of IL-17 on atherosclerogenic disorders will be discussed.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Human CD4 +CD45RA + T Cells Behavior after In Vitro Activation: Modulatory Role of Vasoactive Intestinal Peptide. Int J Mol Sci 2022; 23:ijms23042346. [PMID: 35216459 PMCID: PMC8878027 DOI: 10.3390/ijms23042346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Naїve CD4+ T cells, which suffer different polarizing signals during T cell receptor activation, are responsible for an adequate immune response. In this study, we aimed to evaluate the behavior of human CD4+CD45RA+ T cells after in vitro activation by anti-CD3/CD28 bead stimulation for 14 days. We also wanted to check the role of the VIP system during this process. The metabolic biomarker Glut1 was increased, pointing to an increase in glucose requirement whereas Hif-1α expression was higher in resting than in activated cells. Expression of Th1 markers increased at the beginning of activation, whereas Th17-associated biomarkers augmented after that, showing a pathogenic Th17 profile with a possible plasticity to Th17/1. Foxp3 mRNA expression augmented from day 4, but no parallel increases were observed in IL-10, IL-2, or TGFβ mRNA expression, meaning that these potential differentiated Treg could not be functional. Both VIP receptors were located on the plasma membrane, and expression of VPAC2 receptor increased significantly with respect to the VPAC1 receptor from day 4 of CD4+CD45RA+ T activation, pointing to a shift in VPAC receptors. VIP decreased IFNγ and IL-23R expression during the activation, suggesting a feasible modulation of Th17/1 plasticity and Th17 stabilization through both VPAC receptors. These novel results show that, without polarizing conditions, CD4+CD45RA+ T cells differentiate mainly to a pathogenic Th17 subset and an unpaired Treg subset after several days of activation. Moreover, they confirm the important immunomodulatory role of VIP, also on naїve Th cells, stressing the importance of this neuropeptide on lymphocyte responses in different pathological or non-pathological situations.
Collapse
|
23
|
Patel V, Jayaraman A, Jayaraman S. Epigenetic drug ameliorated type 1 diabetes via decreased generation of Th1 and Th17 subsets and restoration of self-tolerance in CD4 + T cells. Int Immunopharmacol 2021; 103:108490. [PMID: 34954557 DOI: 10.1016/j.intimp.2021.108490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/05/2022]
Abstract
Female NOD mice develop autoimmune diabetes spontaneously without extrinsic manipulation. Previously, we have shown that weekly administration of the prediabetic female NOD mice with the histone modifier Trichostatin A (TSA) prevented diabetes onset. Herein we show that T lymphocytes from diabetic mice transferred diabetes into immunodeficient NOD.scid recipients while those isolated from drug-treated mice displayed reduced disease-causing ability. Drug treatment also repressed T cell receptor-mediated IFN-γ transcription. Splenic CD4+ T-cells purified from prediabetic mice could be polarized into IFN-γ -producing Th1 and IL-17A-expressing Th17 subsets ex vivo. Adoptive transfer of these cells into immunocompromised NOD.scid mice caused diabetes comparably. Polarized Th1 cells were devoid of IL-17A-producing cells and did not transdifferentiate into Th17 cells in the spleen of immunodeficient recipients. However, polarized Th17 cell preparation had a few contaminant Th1 cells. Adoptive transfer of polarized Th17 cells into NOD.scid recipients led to IFN-γ transcription in recipient splenocytes. Notably, TSA treatment of prediabetic mice abolished the ability of CD4+ T-cells to differentiate into diabetogenic Th1 and Th17 cells ex vivo. This was accompanied by the absence of Ifng and Il17a transcription in the spleen of NOD.scid recipients receiving cells, respectively cultured under Th1 and Th17 polarizing conditions. Significantly, the histone modifier restored the ability of CD4+ but not CD8+ T-cells to undergo CD3-mediated apoptosis ex vivo in a caspase-dependent manner. These results indicate that the histone modifier bestowed protection against type 1 diabetes via negative regulation of signature lymphokines and restitution of self-tolerance in CD4+ T cells.
Collapse
Affiliation(s)
- Vasu Patel
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Arathi Jayaraman
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sundararajan Jayaraman
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612, USA; Current address: Dept. of Surgery, the University of Illinois, College of Medicine at Peoria, Peoria, IL 60613, USA.
| |
Collapse
|
24
|
Marwaha AK, Chow S, Pesenacker AM, Cook L, Sun A, Long SA, Yang JHM, Ward-Hartstonge KA, Williams E, Domingo-Vila C, Halani K, Harris KM, Tree TIM, Levings MK, Elliott T, Tan R, Dutz JP. A phase 1b open-label dose-finding study of ustekinumab in young adults with type 1 diabetes. IMMUNOTHERAPY ADVANCES 2021; 2:ltab022. [PMID: 35072168 PMCID: PMC8769169 DOI: 10.1093/immadv/ltab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives We assessed the safety of ustekinumab (a monoclonal antibody used in psoriasis to target the IL-12 and IL-23 pathways) in a small cohort of recent-onset (<100 days of diagnosis) adults with type 1 diabetes (T1D) by conducting a pilot open-label dose-finding and mechanistic study (NCT02117765) at the University of British Columbia. Methods We sequentially enrolled 20 participants into four subcutaneous dosing cohorts: (i) 45 mg loading weeks 0/4/16, (ii) 45 mg maintenance weeks 0/4/16/28/40, (iii) 90 mg loading weeks 0/4/16, and (iv) 90 mg maintenance weeks 0/4/16/28/40. The primary endpoint was safety as assessed by an independent data and safety monitoring board (DSMB) but we also measured mixed meal tolerance test C-peptide, insulin use/kg, and HbA1c. Immunophenotyping was performed to assess immune cell subsets and islet antigen-specific T cell responses. Results Although several adverse events were reported, only two (bacterial vaginosis and hallucinations) were thought to be possibly related to drug administration by the study investigators. At 1 year, the 90 mg maintenance dosing cohort had the smallest mean decline in C-peptide area under the curve (AUC) (0.1 pmol/ml). Immunophenotyping showed that ustekinumab reduced the percentage of circulating Th17, Th1, and Th17.1 cells and proinsulin-specific T cells that secreted IFN-γ and IL-17A. Conclusion Ustekinumab was deemed safe to progress to efficacy studies by the DSMB at doses used to treat psoriasis in adults with T1D. A 90 mg maintenance dosing schedule reduced proinsulin-specific IFN-γ and IL-17A-producing T cells. Further studies are warranted to determine if ustekinumab can prevent C-peptide AUC decline and induce a clinical response.
Collapse
Affiliation(s)
- Ashish K Marwaha
- Department of Medical Genetics, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Samuel Chow
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Anne M Pesenacker
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annika Sun
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - S Alice Long
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, WA, USA
| | - Jennie H M Yang
- Department of Immunobiology, King’s College London, London, UK
| | - Kirsten A Ward-Hartstonge
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | - Megan K Levings
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas Elliott
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BCDiabetes, Vancouver, British Columbia, Canada
| | - Rusung Tan
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan P Dutz
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Jayaraman A, Arianas M, Jayaraman S. Epigenetic modulation of selected immune response genes and altered functions of T lymphocytes and macrophages collectively contribute to autoimmune diabetes protection. BBA ADVANCES 2021; 1:100031. [PMID: 37082012 PMCID: PMC10074972 DOI: 10.1016/j.bbadva.2021.100031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have previously demonstrated that weekly treatment of female prediabetic NOD mice with a low dose of the histone deacetylase inhibitor Trichostatin A (TSA) bestowed long-lasting, irreversible protection against autoimmune diabetes. Herein we show that drug treatment diminished the infiltration of the pancreas with CD4+, CD8+ T cells, and Ly-6C+ monocytes. Significantly, TSA administration selectively repressed the expression of a set of genes exaggerated during diabetes and constitutively expressed primarily in the spleen and rarely in the pancreas. These genes encode lymphokines, macrophage-associated determinants, and transcription factors. Although the copy numbers of many histone deacetylases increased during diabetes in the spleen and pancreas, only those upregulated in the spleen were rendered sensitive to repression by TSA treatment. Mitogen-activated T lymphocytes derived from drug-treated donors displayed diminished diabetogenic potential following transfer into immunodeficient NOD.scid mice. In the immunocompromised recipients, diabetes caused by the transfer of activated T lymphocytes from untreated diabetic mice was hampered by the co-transfer of highly purified splenic CD11b+Ly-6C+ macrophages from drug-treated mice. However, the transfer of CD11b+Ly-6C+ macrophages from drug-treated mice failed to block ongoing diabetes in wild-type NOD mice. These data demonstrate that the modified gene expression and functional alteration of T lymphocytes and macrophages collectively contribute to diabetes protection afforded by the histone modifier in female NOD mice.
Collapse
Affiliation(s)
- Arathi Jayaraman
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612
| | - Maria Arianas
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612
| | - Sundararajan Jayaraman
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612
- Dept. of Surgery, University of Illinois College of Medicine at Peoria, IL 61603
| |
Collapse
|
26
|
McCall JL, Blair HC, Blethen KE, Hall C, Elliott M, Barnett JB. Prenatal cadmium exposure does not induce greater incidence or earlier onset of autoimmunity in the offspring. PLoS One 2021; 16:e0249442. [PMID: 34478449 PMCID: PMC8415597 DOI: 10.1371/journal.pone.0249442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
We previously demonstrated that exposure of adult mice to environmental levels of cadmium (Cd) alters immune cell development and function with increases in anti-streptococcal antibody levels, as well as decreases in splenic natural regulatory T cells (nTreg) in the adult female offspring. Based on these data, we hypothesized that prenatal Cd exposure could predispose an individual to developing autoimmunity as adults. To test this hypothesis, the effects of prenatal Cd on the development of autoimmune diabetes and arthritis were investigated. Non-obese diabetic (NOD) mice were exposed to Cd in a manner identical to our previous studies, and the onset of diabetes was assessed in the offspring. Our results showed a similar time-to-onset and severity of disease to historical data, and there were no statistical differences between Cd-exposed and control offspring. Numerous other immune parameters were measured and none of these parameters showed biologically-relevant differences between Cd-exposed and control animals. To test whether prenatal Cd-exposure affected development of autoimmune arthritis, we used SKG mice. While the levels of arthritis were similar between Cd-exposed and control offspring of both sexes, the pathology of arthritis determined by micro-computed tomography (μCT) between Cd-exposed and control animals, showed some statistically different values, especially in the female offspring. However, the differences were small and thus, the biological significance of these changes is open to speculation. Overall, based on the results from two autoimmune models, we conclude that prenatal exposure to Cd did not lead to a measurable propensity to develop autoimmune disease later in life.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Harry C. Blair
- Department of Pathology, Pittsburgh VA Medical Center, Pittsburgh, PA, United States of America
- Department of Cell Biology, the and the University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kathryn E. Blethen
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Casey Hall
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Meenal Elliott
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - John B. Barnett
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
27
|
Aghajanzadeh H, Abdolmaleki M, Ebrahimzadeh MA, Mojtabavi N, Mousavi T, Izad M. Methanolic Extract of Sambucus ebulus Ameliorates Clinical Symptoms in Experimental Type 1 Diabetes through Anti-Inflammatory and Immunomodulatory Actions. CELL JOURNAL 2021; 23:465-473. [PMID: 34455723 PMCID: PMC8405075 DOI: 10.22074/cellj.2021.7287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/26/2020] [Indexed: 01/10/2023]
Abstract
Objective Sambucus ebulus (SE), a famous traditional Iranian medicine, is grown in the north of Iran. As a traditional
medicine with anti-inflammatory effects, SE has been utilized against inflammatory joint diseases, insect bites,
infectious wounds, edema, and eczema. Type1 diabetes, is an autoimmune disease, characterized by the destruction
of pancreatic beta cells by the immune system. For the first time, we investigated the effect of methanolic extract of SE
on CD4+, CD8+ and regulatory T cells in experimental type 1 diabetes (T1D). Materials and Methods In this experimental study, fifty-six C57BL\6 mice in 8 groups (G1-G8), were enrolled. Diabetes
was induced by a multiple low-dose streptozotocin (MLDS) protocol and mice were daily treated with SE extract at 200
and 400 mg/kg doses, for 35 days. Fasting blood glucose was weekly measured by a glucometer. Islets insulin content
was analyzed by immunohistochemistry. Percentage of CD4+, CD8+ and regulatory T cells and cytokines production
levels were evaluated by flow cytometer and ELISA, respectively.
Results The clinical symptoms of diabetes were significantly alleviated in G2 group mice which received 400 mg/
kg SE extract. Immunohistochemistry analysis showed that the insulin content of islets increased in G2 group mice.
Immunophenotyping analysis indicated that the percentage of CD4+ and CD8+ T cells in G2 group mice was significantly
decreased. SE extract significantly increased the percentage of regulatory T cells. The extract in G2 and G4 groups
mice significantly decreased IFN-γ and IL-17levels. The extract significantly increased IL-10 in G2 group mice.
Conclusion The protective effect of SE extract in MLDS-induced diabetes could be partly due to a decrease of CD4+
and CD8+ T cells and an increase of Treg cells resulting in an inflammation reduction in the pancreatic islets.
Collapse
Affiliation(s)
- Hamid Aghajanzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohsen Abdolmaleki
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Mousavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Multiple Sclerosis Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Gold Nanoparticles: Multifaceted Roles in the Management of Autoimmune Disorders. Biomolecules 2021; 11:biom11091289. [PMID: 34572503 PMCID: PMC8470500 DOI: 10.3390/biom11091289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Gold nanoparticles (GNPs) have been recently applied for various diagnostic and therapeutic purposes. The unique properties of these nanoparticles (NPs), such as relative ease of synthesis in various sizes, shapes and charges, stability, high drug-loading capacity and relative availability for modification accompanied by non-cytotoxicity and biocompatibility, make them an ideal field of research in bio-nanotechnology. Moreover, their potential to alleviate various inflammatory factors, nitrite species, and reactive oxygen production and the capacity to deliver therapeutic agents has attracted attention for further studies in inflammatory and autoimmune disorders. Furthermore, the characteristics of GNPs and surface modification can modulate their toxicity, biodistribution, biocompatibility, and effects. This review discusses in vitro and in vivo effects of GNPs and their functionalized forms in managing various autoimmune disorders (Ads) such as rheumatoid arthritis, type 1 diabetes, and multiple sclerosis.
Collapse
|
29
|
Rajendran S, Quesada-Masachs E, Zilberman S, Graef M, Kiosses WB, Chu T, Benkahla MA, Lee JHM, von Herrath M. IL-17 is expressed on beta and alpha cells of donors with type 1 and type 2 diabetes. J Autoimmun 2021; 123:102708. [PMID: 34358764 DOI: 10.1016/j.jaut.2021.102708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE IL-17 is an important effector cytokine driving immune-mediated destruction in autoimmune diseases such as psoriasis. Blockade of the IL-17 pathway after the initiation of insulitis was effective in delaying or preventing the onset of type 1 diabetes (T1D) in rodent models. Expression of IL-17 transcripts in islets from a donor with recent-onset T1D has been reported, however, studies regarding IL-17 protein expression are lacking. We aimed to study whether IL-17 is being expressed in the islets of diabetic donors. METHODS We stained human pancreatic tissues from non-diabetic (n = 5), auto-antibody positive (aab+) (n = 5), T1D (n = 6) and T2D (n = 5) donors for IL-17, Insulin, and Glucagon, and for CD45 in selected cases. High resolution images were acquired with Zeiss laser scanning confocal microscope LSM780 and analyzed with Zen blue 2.3 software. Cases stained for CD45 were also acquired with widefield slide scanner and analyzed with QuPath software. RESULTS We observed a clear cytoplasmic staining for IL-17 in insulin-containing islets of donors with T1D and T2D, accounting for an average of 7.8 ± 8.4% and 14.9 ± 16.8% of total islet area, respectively. Both beta and alpha cells were sources of IL-17, but CD45+ cells were not a major source of IL-17 in those donors. Expression of IL-17 was reduced in islets of non-diabetic donors, aab+ donors and in insulin-deficient islets of donors with T1D. CONCLUSION Our finding that IL-17 is expressed in islets of donors with T1D or T2D is quite intriguing and warrants further mechanistic studies in human islets to understand the role of IL-17 in the context of metabolic and immune stress in beta cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiffany Chu
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | | |
Collapse
|
30
|
Deng C, Peng N, Tang Y, Yu N, Wang C, Cai X, Zhang L, Hu D, Ciccia F, Lu L. Roles of IL-25 in Type 2 Inflammation and Autoimmune Pathogenesis. Front Immunol 2021; 12:691559. [PMID: 34122457 PMCID: PMC8194343 DOI: 10.3389/fimmu.2021.691559] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17E (IL-25) is a member of the IL-17 cytokine family that includes IL-17A to IL-17F. IL-17 family cytokines play a key role in host defense responses and inflammatory diseases. Compared with other IL-17 cytokine family members, IL-25 has relatively low sequence similarity to IL-17A and exhibits a distinct function from other IL-17 cytokines. IL-25 binds to its receptor composed of IL-17 receptor A (IL-17RA) and IL-17 receptor B (IL-17RB) for signal transduction. IL-25 has been implicated as a type 2 cytokine and can induce the production of IL-4, IL-5 and IL-13, which in turn inhibits the differentiation of T helper (Th) 17. In addition to its anti-inflammatory properties, IL-25 also exhibits a pro-inflammatory effect in the pathogenesis of Th17-dominated diseases. Here, we review recent advances in the roles of IL-25 in the pathogenesis of inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Na Yu
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lijun Zhang
- Department of Rheumatology, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Chalan P, Thomas N, Caturegli P. Th17 Cells Contribute to the Pathology of Autoimmune Hypophysitis. THE JOURNAL OF IMMUNOLOGY 2021; 206:2536-2543. [PMID: 34011522 DOI: 10.4049/jimmunol.2001073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Autoimmune hypophysitis is classified as primary if its origin is idiopathic and secondary if it develops as a consequence of treatment with immune checkpoint inhibitors. Expanding use of immunotherapy has been paralleled by the increasing hypophysitis prevalence. However, understanding of the immune responses driving the disease remains limited. Using a mouse model of primary hypophysitis, we have identified CD4+ T lymphocytes to be the main pituitary-infiltrating immune cell population. Functional analysis showed that they display a Th17 and Th1/Th17 phenotype. To examine involvement of proinflammatory Th1, Th17, and Th1/17 subsets in hypophysitis, we have isolated RNA from the formalin-fixed paraffin-embedded pituitary specimens from 16 hypophysitis patients (three of whom had hypophysitis secondary to immune checkpoint inhibitors), 10 patients with adenoma, and 23 normal pituitaries obtained at autopsy. Transcript levels of IFN-γ, IL-17A, IL-4, IL-10, TGF-β, CD4, CD8α, and class II MHC transactivator were analyzed by the reverse transcription-quantitative PCR (RT-qPCR). Pituitary glands of patients with hypophysitis showed significantly higher IL-17A, CD4, and class II MHC transactivator mRNA levels compared with adenoma and normal pituitaries. All three secondary hypophysitis patients showed detectable IL-17A levels, but other cytokines were not detected in their pituitaries. Levels of IFN-γ, IL-4, IL-10, and TGF-β did not differ between the groups. TGF-β transcript was found in significantly fewer hypophysitis pituitaries (2 out of 16) compared with adenoma (7 out of 10) and normal pituitaries (11 out of 23). Presence of TGF-β in two hypophysitis patients was associated with significantly lower IL-17A mRNA levels compared with hypophysitis patients with no detectable TGF-β (p = 0.03).
Collapse
Affiliation(s)
- Paulina Chalan
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Nithya Thomas
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
32
|
Zhao Y, Liu Z, Qin L, Wang T, Bai O. Insights into the mechanisms of Th17 differentiation and the Yin-Yang of Th17 cells in human diseases. Mol Immunol 2021; 134:109-117. [PMID: 33756352 DOI: 10.1016/j.molimm.2021.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Th17 cells are a lineage of CD4+ T helper cells with Th17-specific transcription factors RORγt and RoRα. Since its discovery in 2005, research on Th17 has been in rapid progress, and increasing cytokines or transcription factors have been uncovered in the activation and differentiation of Th17 cells. Furthermore, growing evidence proves there are two different subsets of Th17 cells, namely non-pathogenic Th17 (non-pTh17) and pathogenic Th17 (pTh17), both of which play important roles in adaptive immunity, especially in host defenses, autoimmune diseases, and cancer. In this review, we summarize and discuss the mechanisms of Th17 cells differentiation, and their roles in immunity and diseases.
Collapse
Affiliation(s)
- Yangzhi Zhao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| | - Zhongshan Liu
- Department of Radiation Oncology, the Second Affiliated Hospital of Jilin University, Changchun, China.
| | - Lei Qin
- Institute for Immunology, Tsinghua University, Beijing, China.
| | - Tiejun Wang
- Department of Radiation Oncology, the Second Affiliated Hospital of Jilin University, Changchun, China.
| | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
33
|
Doss PMIA, Umair M, Baillargeon J, Fazazi R, Fudge N, Akbar I, Yeola AP, Williams JB, Leclercq M, Joly-Beauparlant C, Beauchemin P, Ruda GF, Alpaugh M, Anderson AC, Brennan PE, Droit A, Lassmann H, Moore CS, Rangachari M. Male sex chromosomal complement exacerbates the pathogenicity of Th17 cells in a chronic model of central nervous system autoimmunity. Cell Rep 2021; 34:108833. [PMID: 33691111 DOI: 10.1016/j.celrep.2021.108833] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in multiple sclerosis (MS) incidence and severity have long been recognized. However, the underlying cellular and molecular mechanisms for why male sex is associated with more aggressive disease remain poorly defined. Using a T cell adoptive transfer model of chronic experimental autoimmune encephalomyelitis (EAE), we find that male Th17 cells induce disease of increased severity relative to female Th17 cells, irrespective of whether transferred to male or female recipients. Throughout the disease course, a greater frequency of male Th17 cells produce IFNγ, a hallmark of pathogenic Th17 responses. Intriguingly, XY chromosomal complement increases the pathogenicity of male Th17 cells. An X-linked immune regulator, Jarid1c, is downregulated in pathogenic male murine Th17 cells, and functional experiments reveal that it represses the severity of Th17-mediated EAE. Furthermore, Jarid1c expression is downregulated in CD4+ T cells from MS-affected individuals. Our data indicate that male sex chromosomal complement critically regulates Th17 cell pathogenicity.
Collapse
Affiliation(s)
- Prenitha Mercy Ignatius Arokia Doss
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Muhammad Umair
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Joanie Baillargeon
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Reda Fazazi
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Neva Fudge
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Irshad Akbar
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Asmita Pradeep Yeola
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - John B Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Mickael Leclercq
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Charles Joly-Beauparlant
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Philippe Beauchemin
- Department of Neurology, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada
| | - Gian Filipo Ruda
- Target Discovery Institute and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Melanie Alpaugh
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham & Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Paul E Brennan
- Target Discovery Institute and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Alzheimer's Research UK, Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Arnaud Droit
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada
| | - Hans Lassmann
- Division of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada; Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Manu Rangachari
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada.
| |
Collapse
|
34
|
Qiu AW, Cao X, Zhang WW, Liu QH. IL-17A is involved in diabetic inflammatory pathogenesis by its receptor IL-17RA. Exp Biol Med (Maywood) 2021; 246:57-65. [PMID: 32903039 PMCID: PMC7798001 DOI: 10.1177/1535370220956943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT The participation of interleukin (IL)-17A in diabetic pathogenesis is suggested in animal models of autoimmune diabetes and in patients with type 1 diabetes (T1D), but with some contradictory results. Particularly, evidence for a direct injury of IL-17A to pancreatic β cells is lacking. We showed that IL-17A deficiency alleviated diabetic signs including hyperglycemia, hypoinsulinemia, and inflammatory response in Ins2Akita (Akita) mice, a T1D model with spontaneous mutation in insulin 2 gene leading to β-cell apoptosis. IL-17A enhanced inflammatory reaction, oxidative stress, and cell apoptosis but attenuated insulin level in mouse insulin-producing MIN6 cells. IL-17A had also a synergistic destruction to MIN6 cells with streptozotocin (STZ), a pancreatic β-cell-specific cytotoxin. Blocking IL-17 receptor A (IL-17RA) reduced all these deleterious effects of IL-17A on MIN6 cells. The results demonstrate the role and the importance of IL-17A in T1D pathogenesis and suggest a potential therapeutic strategy for T1D targeting IL-17A and/or IL-17RA.
Collapse
Affiliation(s)
- Ao-Wang Qiu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin Cao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei-Wei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
35
|
Ullrich KAM, Schulze LL, Paap EM, Müller TM, Neurath MF, Zundler S. Immunology of IL-12: An update on functional activities and implications for disease. EXCLI JOURNAL 2020; 19:1563-1589. [PMID: 33408595 PMCID: PMC7783470 DOI: 10.17179/excli2020-3104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
As its first identified member, Interleukin-12 (IL-12) named a whole family of cytokines. In response to pathogens, the heterodimeric protein, consisting of the two subunits p35 and p40, is secreted by phagocytic cells. Binding of IL-12 to the IL-12 receptor (IL-12R) on T and natural killer (NK) cells leads to signaling via signal transducer and activator of transcription 4 (STAT4) and subsequent interferon gamma (IFN-γ) production and secretion. Signaling downstream of IFN-γ includes activation of T-box transcription factor TBX21 (Tbet) and induces pro-inflammatory functions of T helper 1 (TH1) cells, thereby linking innate and adaptive immune responses. Initial views on the role of IL-12 and clinical efforts to translate them into therapeutic approaches had to be re-interpreted following the discovery of other members of the IL-12 family, such as IL-23, sharing a subunit with IL-12. However, the importance of IL-12 with regard to immune processes in the context of infection and (auto-) inflammation is still beyond doubt. In this review, we will provide an update on functional activities of IL-12 and their implications for disease. We will begin with a summary on structure and function of the cytokine itself as well as its receptor and outline the signal transduction and the transcriptional regulation of IL-12 secretion. In the second part of the review, we will depict the involvement of IL-12 in immune-mediated diseases and relevant experimental disease models, while also providing an outlook on potential translational approaches.
Collapse
Affiliation(s)
- Karen A.-M. Ullrich
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Lisa Lou Schulze
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Eva-Maria Paap
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Tanja M. Müller
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Markus F. Neurath
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Sebastian Zundler
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| |
Collapse
|
36
|
Katayama H. Can immunological manipulation defeat SARS-CoV-2? Why G-CSF induced neutrophil expansion is worth a clinical trial: G-CSF treatment against COVID-19. Bioessays 2020; 43:e2000232. [PMID: 33166093 DOI: 10.1002/bies.202000232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Immunity against SARS-CoV-2 that is acquired by convalescent COVID-19 patients is examined in reference to (A) the Th17 cell generation system in psoriatic epidermis and (B) a recently discovered phenomenon in which Th17 cells are converted into tissue-resident memory T (TRM ) cells with Th1 phenotype. Neutrophils that are attracted to the site of infection secrete IL-17A, which stimulates lung epithelial cells to express CCL20. Natural Th17 (nTh17) cells are recruited to the infection site by CCL20 and expand in the presence of IL-23. These nTh17 cells are converted to TRM cells upon encounter with SARS-CoV-2 and continue to exist as ex-Th17 cells, which exert Th1-like immunity during a memory response. G-CSF can induce nTh17 cell accumulation at the infection site because it promotes neutrophil egress from the bone marrow. Hence, G-CSF may be effective against COVID-19. Administration of G-CSF to patients infected with SARS-CoV-2 is worth a clinical trial.
Collapse
|
37
|
Cerboni S, Gehrmann U, Preite S, Mitra S. Cytokine-regulated Th17 plasticity in human health and diseases. Immunology 2020; 163:3-18. [PMID: 33064842 DOI: 10.1111/imm.13280] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Upon activation, naïve CD4+ T helper (Th) cells differentiate into distinct Th effector cell lineages depending on the local cytokine environment. However, these polarized Th cells can also adapt their function and phenotype depending on the changing cytokine environment, demonstrating functional plasticity. Here, Th17 cells, which play a critical role in host protection from extracellular pathogens and in autoimmune disorders, are of particular interest. While being able to shift phenotype within their lineage, Th17 cells can also acquire characteristics of Th1, Th2, T follicular helper (Tfh) or regulatory T cells. Th17 cell identity is determined by a spectrum of extracellular signals, including cytokines, which are critical orchestrators of cellular immune responses. Cytokine induces changes in epigenetic, transcriptional, translational and metabolomic parameters. How these signals are integrated to determine Th17 plasticity is not well defined, yet this is a crucial point of investigation as it represents a potential target to treat autoimmune and inflammatory diseases. The goal of this review was to discuss how cytokines regulate intracellular networks, focusing on the regulation of lineage-specific transcription factors, chromatin remodelling and metabolism, to control human Th17 cell plasticity. We discuss the importance of Th17 plasticity in autoimmunity and cancer and present current strategies and challenges in targeting pathogenic Th17 cells with cytokine-based approaches, considering human genetic variants associated with altered Th17 differentiation. Finally, we discuss how modulating Th17 plasticity rather than targeting the Th17 lineage as a whole might preserve its essential immune function while purging its adverse effects.
Collapse
Affiliation(s)
- Silvia Cerboni
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Silvia Preite
- Bioscience, In vivo, Research and Early Development, Respiratory & Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suman Mitra
- CNRS, INSERM, CHU Lille, Institut pour la Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| |
Collapse
|
38
|
Hu F, Guo F, Zhu Y, Zhou Q, Li T, Xiang H, Shang D. IL-17 in pancreatic disease: pathogenesis and pharmacotherapy. Am J Cancer Res 2020; 10:3551-3564. [PMID: 33294254 PMCID: PMC7716161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023] Open
Abstract
Increasing evidence highlights the role of the interleukin (IL)-17 family in pancreatic diseases. IL-17A induces acinar cell injury directly, recruits neutrophils, and cooperates with other inflammatory factors to exacerbate pancreatic inflammation. It also triggers islet β-cell apoptosis and nitric oxide-dependent cytotoxicity, thus aggravating islet inflammation. IL-17A seems to have different roles in pancreatic intraepithelial neoplasia (PanIN) and pancreatic cancer (PC). IL-17A participates in the progression of acinar-ductal metaplasia (ADM) and PanIN, but not related to the characteristics of PC stem cells and the overall survival of patients. Acting similar to IL-17A, IL-17B accelerates the invasion and metastasis of PC, and predicts prognosis of PC and the therapeutic effect of gemcitabine. Herein, we review the current understanding of the pathogenesis of IL-17 in pancreatitis, type 1 diabetes mellitus (T1DM), and PC, as well as potential pharmacotherapy targeting IL-17 and its receptors in pancreatic diseases. The findings summarized in this article are of considerable significance for understanding the essential role of IL-17 in pancreatic diseases.
Collapse
Affiliation(s)
- Fenglin Hu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116000, Liaoning, China
- Department of General Surgery, Pancreatic-Biliary Center, First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Yutong Zhu
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Qi Zhou
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Tongming Li
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116000, Liaoning, China
- Department of General Surgery, Pancreatic-Biliary Center, First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, China
| |
Collapse
|
39
|
A proteolytic method for evaluating O-GlcNAcylation on proteins of similar molecular weight to antibody heavy chain after immunoprecipitation. Anal Biochem 2020; 611:114001. [PMID: 33129762 DOI: 10.1016/j.ab.2020.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022]
Abstract
Investigating a protein of interest that runs at the same molecular weight as antibody heavy chain is a frequent deterrent to its evaluation by immunoprecipitation. Methods of minimizing the detection of the immunoprecipitating antibody are available. However, these still present a barrier to evaluating if intracellular proteins are modified by the O-GlcNAc post-translation protein modification due to interfering glycosylation on antibodies. IdeZ protease specifically cleaves antibody at the hinge region, allowing collapse of the antibody fragments to 25 kDa after denaturation. Thus, this proteolytic method uniquely allows evaluation of O-GlcNAcylation of proteins of interest formerly obscured by antibody heavy chain.
Collapse
|
40
|
Catterall T, Fynch S, Kay TWH, Thomas HE, Sutherland APR. IL-17F induces inflammation, dysfunction and cell death in mouse islets. Sci Rep 2020; 10:13077. [PMID: 32753746 PMCID: PMC7403586 DOI: 10.1038/s41598-020-69805-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/16/2020] [Indexed: 01/10/2023] Open
Abstract
Type 17 immune responses, typified by the production of the cytokines IL-17A and IL-17F, have been implicated in the development of type 1 diabetes in animal models and human patients, however the underlying pathogenic mechanisms have not been clearly elucidated. While previous studies show that IL-17A enhances inflammatory gene expression and cell death in mouse β-cells and human islets, the function of IL-17F in pancreatic β-cells is completely untested to date. Here we show that IL-17F exhibits potent pathogenic effects in mouse β-cell lines and islets. IL-17F signals via the IL-17RA and -RC subunits in β-cells and in combination with other inflammatory cytokines induces expression of chemokine transcripts, suppresses the expression of β-cell identity genes and impairs glucose stimulated insulin secretion. Further IL-17F induces cell death in primary mouse islets. This occurs via Jnk, p38 and NF-κB dependent induction of Nos2 and is completely ablated in the presence of an inducible nitric oxide synthase (iNOS) inhibitor. Together these data indicate that IL-17F possesses similar pathogenic activities to IL-17A in mouse β-cell lines and islets and is likely to be a type 17 associated pathogenic factor in type 1 diabetes.
Collapse
Affiliation(s)
- Tara Catterall
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Stacey Fynch
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Thomas W H Kay
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Andrew P R Sutherland
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia. .,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
41
|
Frangieh M, McHenry A, Phillips R, Ye C, Bernier A, Laffel L, Elyaman W, Bradshaw EM. IL-27: An endogenous constitutive repressor of human monocytes. Clin Immunol 2020; 217:108498. [PMID: 32531345 PMCID: PMC8984538 DOI: 10.1016/j.clim.2020.108498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/21/2020] [Accepted: 06/07/2020] [Indexed: 12/23/2022]
Abstract
Interleukin (IL)-27 is a pleiotropic cytokine that initially was described as being pro-inflammatory and an inducer of T helper (Th)1 cells. In contrast, it has also been described as an anti-inflammatory cytokine in that it suppresses pro-inflammatory Th17 cells and induces anti-inflammatory IL-10 producing T regulatory (Tr)1 cells. While the majority of studies have been focused on the effects of IL-27 on T cells, human antigen-presenting cells express high levels of the IL-27 receptor ex vivo, in addition to being the major producer of IL-27. We report here that human monocytes are repressed by endogenous IL-27, in that the addition of an anti-IL-27 neutralizing antibody increases the production of pro-inflammatory cytokines ex vivo. We observed that neutralizing monocyte-derived IL-27 leads to increased IL-17A production by CD4+ T cells and a down-regulation of the IL-17 modulating ectonucleotidase CD39 on monocytes. The locus that contains the IL27 gene has been linked to susceptibility for type 1 diabetes (T1D). Interestingly, ex vivo monocytes from subjects with T1D produce more IL-27 suggesting this upregulation of IL-27 acts as a negative feedback loop to attempt to counterbalance the pro-inflammatory immune response in the disease state. In summary, we provide evidence that IL-27 is an endogenous regulator of human monocytes and has consequences on CD4+ T cell phenotype, particularly Th17 cells.
Collapse
Affiliation(s)
- Michael Frangieh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allison McHenry
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Roxanne Phillips
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chun Ye
- Institute for Human Genetics, University of California San Francisco, CA 94143, USA; Institute of Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA; Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Angelina Bernier
- Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Lori Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wassim Elyaman
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
42
|
Dadaglio G, Fayolle C, Oberkampf M, Tang A, Rudilla F, Couillin I, Torheim EA, Rosenbaum P, Leclerc C. IL-17 suppresses the therapeutic activity of cancer vaccines through the inhibition of CD8 + T-cell responses. Oncoimmunology 2020; 9:1758606. [PMID: 32923117 PMCID: PMC7458594 DOI: 10.1080/2162402x.2020.1758606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Antitumor immunity is mediated by Th1 CD4+ and CD8+ T lymphocytes, which induce tumor-specific cytolysis, whereas Th17 CD4+ T cells have been described to promote tumor growth. Here, we explored the influence of IL-17 on the ability of therapeutic vaccines to induce the rejection of tumors in mice using several adjuvants known to elicit either Th1 or Th17-type immunity. Immunization of mice with Th1-adjuvanted vaccine induced high levels of IFN-γ-producing T cells, whereas injection with Th17-promoting adjuvants triggered the stimulation of both IL-17 and IFN-γ-producing T cells. However, despite their capacity to induce strong Th1 responses, these Th17-promoting adjuvants failed to induce the eradication of tumors. In addition, the systemic administration of IL-17A strongly decreases the therapeutic effect of Th1-adjuvanted vaccines in two different tumor models. This suppressive effect correlated with the capacity of systemically delivered IL-17A to inhibit the induction of CD8+ T-cell responses. The suppressive effect of IL-17A on the induction of CD8+ T-cell responses was abolished in mice depleted of neutrophils, clearly demonstrating the role played by these cells in the inhibitory effect of IL-17A in the induction of antitumor responses. These results demonstrate that even though strong Th1-type responses favor tumor control, the simultaneous activation of Th17 cells may redirect or curtail tumor-specific immunity through a mechanism involving neutrophils. This study establishes that IL-17 plays a detrimental role in the development of an effective antitumor T cell response and thus could strongly affect the efficiency of immunotherapy through the inhibition of CTL responses.
Collapse
Affiliation(s)
- Gilles Dadaglio
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Catherine Fayolle
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Marine Oberkampf
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Alexandre Tang
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Francesc Rudilla
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Isabelle Couillin
- Molecular and Experimental Immunology and Neurogenetics, NEM, CNRS, UMR7355 INEM, CNRS and University of Orléans, Orléans, France
| | - Eirik A Torheim
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Pierre Rosenbaum
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| |
Collapse
|
43
|
Bittner-Eddy PD, Fischer LA, Costalonga M. Transient Expression of IL-17A in Foxp3 Fate-Tracked Cells in Porphyromonas gingivalis-Mediated Oral Dysbiosis. Front Immunol 2020; 11:677. [PMID: 32391008 PMCID: PMC7190800 DOI: 10.3389/fimmu.2020.00677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/26/2020] [Indexed: 01/26/2023] Open
Abstract
In periodontitis Porphyromonas gingivalis contributes to the development of a dysbiotic oral microbiome. This altered ecosystem elicits a diverse innate and adaptive immune response that simultaneously involves Th1, Th17, and Treg cells. It has been shown that Th17 cells can alter their gene expression to produce interferon-gamma (IFN-γ). Forkhead box P3 (Foxp3) is considered the master regulator of Treg cells that produce inhibitory cytokines like IL-10. Differentiation pathways that lead to Th17 and Treg cells from naïve progenitors are considered antagonistic. However, it has been reported that Treg cells expressing IL-17A as well as IFN-γ producing Th17 cells have been observed in several inflammatory conditions. Each scenario appears plausible with T cell transdifferentiation resulting from persistent microbial challenge and consequent inflammation. We established that oral colonization with P. gingivalis drives an initial IL-17A dominated Th17 response in the oral mucosa that is dependent on intraepithelial Langerhans cells (LCs). We hypothesized that Treg cells contribute to this initial IL-17A response through transient expression of IL-17A and that persistent mucosal colonization with P. gingivalis drives Th17 cells toward an IFN-γ phenotype at later stages of infection. We utilized fate-tracking mice where IL-17A- or Foxp3-promoter activity drives the permanent expression of red fluorescent protein tdTomato to test our hypothesis. At day 28 of infection timeline, Th17 cells dominated in the oral mucosa, outnumbering Th1 cells by 3:1. By day 48 this dominance was inverted with Th1 cells outnumbering Th17 cells by nearly 2:1. Tracking tdTomato+ Th17 cells revealed only sporadic transdifferentiation to an IFN-γ-producing phenotype by day 48; the appearance of Th1 cells at day 48 was due to a late de novo Th1 response. tdTomato+ Foxp3+ T cells were 35% of the total live CD4+T cells in the oral mucosa and 3.9% of them developed a transient IL-17A-producing phenotype by day 28. Interestingly, by day 48 these IL-17A-producing Foxp3+ T cells had disappeared. Therefore, persistent oral P. gingivalis infection stimulates an initial IL-17A-biased response led by Th17 cells and a small but significant number of IL-17A-expressing Treg cells that changes into a late de novo Th1 response with only sporadic transdifferentiation of Th17 cells.
Collapse
|
44
|
Crosstalk Between Immunity System Cells and Pancreas. Transformation of Stem Cells Used in the 3D Bioprinting Process as a Personalized Treatment Method for Type 1 Diabetes. Arch Immunol Ther Exp (Warsz) 2020; 68:13. [PMID: 32297019 DOI: 10.1007/s00005-020-00578-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/27/2020] [Indexed: 12/17/2022]
Abstract
Interactions between the immune system and the pancreas are pivotal in understanding how and why β cells' damage causes problems with pancreas functioning. Pancreatic islets are crucial in maintaining glucose homeostasis in organs, tissue and cells. Autoimmune aggression towards pancreatic islets, mainly β cells, leads to type 1 diabetes-one of the most prevalent autoimmune disease in the world, being a worldwide risk to health of many people. In this review, we highlight the role of immune cells and its influence in the development of autoimmunity in Langerhans islets. Moreover, we discuss the impact of the immunological factors on future understanding possible recurrence of autoimmunity on 3D-bioprinted bionic pancreas.
Collapse
|
45
|
The Interplay between Immune System and Microbiota in Diabetes. Mediators Inflamm 2019; 2019:9367404. [PMID: 32082078 PMCID: PMC7012204 DOI: 10.1155/2019/9367404] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes is not a single and homogeneous disease, but a cluster of metabolic diseases characterized by the common feature of hyperglycemia. The pathogenesis of type 1 diabetes (T1D) and type 2 diabetes (T2D) (and all other intermediate forms of diabetes) involves the immune system, in terms of inflammation and autoimmunity. The past decades have seen an increase in all types of diabetes, accompanied by changes in eating habits and consequently a structural evolution of gut microbiota. It is likely that all these events could be related and that gut microbiota alterations might be involved in the immunomodulation of diabetes. Thus, gut microbiota seems to have a direct, even causative role in mediating connections between the environment, food intake, and chronic disease. As many conditions that increase the risk of diabetes modulate gut microbiota composition, it is likely that immune-mediated reactions, induced by alterations in the composition of the microbiota, can act as facilitators for the onset of diabetes in predisposed subjects. In this review, we summarize recent evidence in the field of gut microbiota and the role of the latter in modulating the immune reactions involved in the pathogenesis of diabetes.
Collapse
|
46
|
Amelioration of type 1 diabetes by recombinant fructose-1,6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine model. Parasitol Res 2019; 119:203-214. [PMID: 31845020 DOI: 10.1007/s00436-019-06511-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Infection with helminth parasites or the administration of their antigens can prevent or attenuate autoimmune diseases. To date, the specific molecules that prime the amelioration are only limited. In this study, recombinant Schistosoma japonicum cystatin (rSjcystatin) and fructose-1,6-bisphosphate aldolase (rSjFBPA) were administered to female NOD mice via intraperitoneal (i.p.) injection to characterize the immunological response by the recombinant proteins. We have shown that the administration of rSjcystatin or rSjFBPA significantly reduced the diabetes incidence and ameliorated the severity of type 1 diabetes mellitus (T1DM). Disease attenuation was associated with suppressed interferon-gamma (IFN-γ) production in autoreactive T cells and with a switch to the production of Th2 cytokines. Following rSjcystatin or rSjFBPA injection, regulatory T cells (Tregs) were remarkably increased, which was accompanied by increased expression of interleukin-10 (IL-10) and transforming growth factor beta (TGF-β). Our study suggests that helminth-derived proteins may be useful in strategies to limit pathology by promoting the Th2 response and upregulating Tregs during the inflammatory tissue-damage process in T1DM.
Collapse
|
47
|
Mazzoni A, Maggi L, Liotta F, Cosmi L, Annunziato F. Biological and clinical significance of T helper 17 cell plasticity. Immunology 2019; 158:287-295. [PMID: 31566706 DOI: 10.1111/imm.13124] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Mature T helper (Th) effector cells originate following antigen recognition by naive T precursors. The maturation process is accompanied by the acquisition of specific effector functions that distinguish at least three different T helper subsets: Th1, Th2 and Th17. In general, maturation of somatic cells is accompanied by terminal differentiation. However, accumulating evidence shows that effector T cells retain a certain degree of plasticity. This is especially true for Th17 cells, which have been shown to converge towards other phenotypes in response to specific microenvironmental pressure. In this review we will discuss the experimental evidence that supports the hypothesis of Th17 plasticity, with particular emphasis on the generation of Th17-derived 'non-classic' Th1 cells, and the molecular networks that control it. Moreover, we will consider why Th17 plasticity is important for host protection, but also why it can have pathogenic functions during chronic inflammation. Regarding the last point, we will discuss a possible role for biological drugs in the control of Th17 plasticity and disease course.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
48
|
Bittner-Eddy PD, Fischer LA, Costalonga M. Cre-loxP Reporter Mouse Reveals Stochastic Activity of the Foxp3 Promoter. Front Immunol 2019; 10:2228. [PMID: 31616418 PMCID: PMC6763954 DOI: 10.3389/fimmu.2019.02228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Mouse models that combine specific loxP-flanked gene sequences with Cre recombinase expressed from cell-regulated promoters have become important tools to investigate gene function. Critically however, expression of Cre recombinase may not always be restricted to the target cell or tissue of interest due to promiscuous activity of the driving promoter. Expression of Cre recombinase and, by extension, excision of the loxP-flanked gene may occur in non-target cells and may not be readily apparent. Here we report on the fidelity of Cre recombinase expressed from the il17a or Foxp3 promoters by combining them with a constitutively expressed floxed-stopped tdTomato reporter gene. Foxp3-driven Cre recombinase in F1 mice induced tdTomato red fluorescent protein in Treg cells but also in a range of other immune cells. Frequency of tdTomato expression was variable but positively correlated (p < 0.0001) amongst lymphoid (B cells and CD8 T cells) and blood-resident myeloid cells (dendritic cells, monocytes, neutrophils) suggesting stochastic activity of the Foxp3 promoter rather than developmental regulation in common ancestral progenitors. Interestingly, frequency of tdTomato+ dendritic cells, monocytes and neutrophils did not correlate with the tdTomato+ fraction in eosinophils, indicating that activity of the Foxp3 promoter in eosinophils occurred after the split from a common multipotent progenitor. When these F1 mice were crossed to achieve homozygosity of the promoter and reporter gene, a novel visually red phenotype was observed segregating amongst littermates. The red coloration was widespread and prevalent in non-immune tissues. Thymocytes examined from these red mice showed that all four subsets of immature thymocytes (CD4− CD8−) based on differential expression of CD25 and CD44 were expressing tdTomato. Finally, we show evidence of Foxp3 Cre recombinase independent tdTomato expression, suggesting germ line transmission of an activated tdTomato reporter gene. Our data highlights potential issues with conclusions drawn from using specifically the B6.129(Cg)-Foxp3tm4(YFP/Cre)Ayr/J mice.
Collapse
Affiliation(s)
- Peter D Bittner-Eddy
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Lori A Fischer
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Massimo Costalonga
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
49
|
Sikder S, Williams NL, Sorenson AE, Alim MA, Vidgen ME, Moreland NJ, Rush CM, Simpson RS, Govan BL, Norton RE, Cunningham MW, McMillan DJ, Sriprakash KS, Ketheesan N. Group G Streptococcus Induces an Autoimmune Carditis Mediated by Interleukin 17A and Interferon γ in the Lewis Rat Model of Rheumatic Heart Disease. J Infect Dis 2019; 218:324-335. [PMID: 29236994 DOI: 10.1093/infdis/jix637] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
Acute rheumatic fever and rheumatic heart disease (ARF/RHD) have long been described as autoimmune sequelae of Streptococcus pyogenes or group A streptococcal (GAS) infection. Both antibody and T-cell responses against immunodominant GAS virulence factors, including M protein, cross-react with host tissue proteins, triggering an inflammatory response leading to permanent heart damage. However, in some ARF/RHD-endemic regions, throat carriage of GAS is low. Because Streptococcus dysgalactiae subspecies equisimilis organisms, also known as β-hemolytic group C streptococci and group G streptococci (GGS), also express M protein, we postulated that streptococci other than GAS may have the potential to initiate or exacerbate ARF/RHD. Using a model initially developed to investigate the uniquely human disease of ARF/RHD, we have discovered that GGS causes interleukin 17A/interferon γ-induced myocarditis and valvulitis, hallmarks of ARF/RHD. Remarkably the histological, immunological, and functional changes in the hearts of rats exposed to GGS are identical to those exposed to GAS. Furthermore, antibody cross-reactivity to cardiac myosin was comparable in both GGS- and GAS-exposed animals, providing additional evidence that GGS can induce and/or exacerbate ARF/RHD.
Collapse
Affiliation(s)
- Suchandan Sikder
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | - Natasha L Williams
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | - Alanna E Sorenson
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | - Md A Alim
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | - Miranda E Vidgen
- INFLAME Biomedical Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore
| | | | - Catherine M Rush
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | | | - Brenda L Govan
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | | | - Madeleine W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - David J McMillan
- INFLAME Biomedical Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore
| | - Kadaba S Sriprakash
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Natkunam Ketheesan
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| |
Collapse
|
50
|
Haque N, Ramasamy TS, Kasim NHA. Mechanisms of Mesenchymal Stem Cells for Autoimmune Disease Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-23421-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|