1
|
Park Y, Sung N, Kim E, Jeong J, Sim J, Park MJ, Lydon J, Guan X, Han SJ. Polychlorinated Biphenyl-126 Activates AXL/ERb/DNMT3A Axis to Drive Endometriosis Progression. RESEARCH SQUARE 2025:rs.3.rs-6631264. [PMID: 40470214 PMCID: PMC12136210 DOI: 10.21203/rs.3.rs-6631264/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Endometriosis is a pathological condition in which endometrial cells proliferate outside the uterine cavity, resulting in pelvic pain and infertility. Exposure to endocrine-disrupting chemicals (EDCs) has been implicated in the progression of endometriosis, though the precise mechanisms remain largely undefined. Among EDCs, elevated levels of polychlorinated biphenyl (PCB)-126 have been strongly associated with endometriosis, particularly in patients with deep infiltrating disease. In a mouse model of endometriosis, PCB-126 exposure significantly promoted the growth of ectopic lesions by activating the Steroid Receptor Coactivator-1 (SRC-1) isoform/Matrix Metalloproteinase-9 (MMP9)/Estrogen Receptor-β (ERβ) axis, a key driver of disease progression. PCB-126 also enhanced ERβ activity via upregulation of the AXL Receptor Tyrosine Kinase (AXL)/Growth Arrest-Specific 6 (GAS6) signaling pathway in endometriotic lesions. Notably, BMS-777607, an AXL inhibitor, effectively suppressed lesion growth in this model. Moreover, the PCB-126/ERβ axis directly increased expression of DNA Methyltransferase 3A (DNMT3A), contributing to inflammation and immune dysregulation in endometriotic tissue. Collectively, these findings suggest that PCB-126 promotes endometriosis progression through coordinated activation of the AXL/ERβ/DNMT3A axis, driving estrogen-mediated epigenetic and immunoinflammatory responses.
Collapse
|
2
|
LaSalle JM. DNA methylation biomarkers of intellectual/developmental disability across the lifespan. J Neurodev Disord 2025; 17:10. [PMID: 39972408 PMCID: PMC11841270 DOI: 10.1186/s11689-025-09598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Epigenetic mechanisms, including DNA methylation, act at the interface of genes and environment by allowing a static genome to respond and adapt to a dynamic environment during the lifespan of an individual. Genome-wide DNA methylation analyses on a wide range of human biospecimens are beginning to identify epigenetic biomarkers that can predict risk of intellectual/developmental disabilities (IDD). DNA methylation-based epigenetic signatures are becoming clinically useful in categorizing benign from pathogenic genetic variants following exome sequencing. While DNA methylation marks differ by tissue source, recent studies have shown that accessible perinatal tissues, such as placenta, cord blood, newborn blood spots, and cell free DNA may serve as accessible surrogate tissues for testing epigenetic biomarkers relevant to understanding genetic, environmental, and gene by environment interactions on the developing brain. These DNA methylation signatures may also provide important information about the biological pathways that become dysregulated prior to disease progression that could be used to develop early pharmacological interventions. Future applications could involve preventative screenings using DNA methylation biomarkers during pregnancy or the newborn period for IDDs and other neurodevelopmental disorders. DNA methylation biomarkers in adolescence and adulthood are also likely to be clinically useful for tracking biological aging or co-occurring health conditions that develop across the lifespan. In conclusion, DNA methylation biomarkers are expected to become more common in clinical diagnoses of IDD, to improve understanding of complex IDD etiologies, to improve endpoints for clinical trials, and to monitor potential health concerns for individuals with IDD as they age.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Li X, Bullert AJ, Gautam B, Han W, Yang W, Zhang QY, Ding X, Lehmler HJ. Elucidating the Metabolism of Chiral PCB95 in Wildtype and Transgenic Mouse Models with Altered Cytochrome P450 Enzymes Using Intestinal Content Screening. Chem Res Toxicol 2024; 37:1989-2002. [PMID: 39561283 DOI: 10.1021/acs.chemrestox.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Polychlorinated biphenyls (PCBs), such as 2,2',3,5',6-pentachlorobiphenyl (PCB95), are persistent organic pollutants associated with adverse health outcomes, including developmental neurotoxicity. PCB95 is a chiral neurotoxic PCB congener atropselectively metabolized to potentially neurotoxic metabolites in vivo. However, the metabolic pathways of most PCB congeners, including PCB95, remain unknown. To address this knowledge gap, we analyzed the intestinal contents of mice exposed to PCB95 to elucidate the PCB95 metabolism pathway and assess if genetic manipulation of hepatic drug-metabolizing enzymes affects PCB95 metabolism. Our study exposed male and female wildtype (WT), Cyp2abfgs-null (KO), and CYP2A6-transgenic/Cyp2abfgs-null (KI) mice orally to 1.0 mg/kg body weight of PCB95. Intestinal content was collected 24 h after PCB administration. aS-PCB95 was enriched in all intestinal content samples, irrespective of sex and genotype. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analyses identified 5 mono- (OH-PCB95) and 4 dihydroxylated PCB (diOH-PCB95) metabolites. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) identified 15 polar hydroxylated, methoxylated, and sulfated PCB95 metabolites, including 3 dechlorinated metabolites. A sex difference in the relative OH-PCB95 levels was observed only for KO in the LC-HRMS analysis. Genotype-dependent differences were observed for female, but not male, mice, with OH-PCB95 levels in female KO (FKO) mice tending to be lower than those in female WT (FWT) and KI (FKI) mice. Based on the GC-MS/MS analysis, these differences are due to the unknown PCB95 metabolites, X1-95 and Y1-95. These findings demonstrate that combining GC-MS/MS analyses and LC-HRMS subject screening of the intestinal content of PCB95-exposed mice can significantly advance our understanding of PCB95 metabolism in vivo.
Collapse
Affiliation(s)
- Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242, United States
| | - Binita Gautam
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Weiguo Han
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Weizhu Yang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
4
|
Kuodza GE, Kawai R, LaSalle JM. Intercontinental insights into autism spectrum disorder: a synthesis of environmental influences and DNA methylation. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae023. [PMID: 39703685 PMCID: PMC11658417 DOI: 10.1093/eep/dvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by a broad range of symptoms. The etiology of ASD is thought to involve complex gene-environment interactions, which are crucial to understanding its various causes and symptoms. DNA methylation is an epigenetic mechanism that potentially links genetic predispositions to environmental factors in the development of ASD. This review provides a global perspective on ASD, focusing on how DNA methylation studies may reveal gene-environment interactions characteristic of specific geographical regions. It delves into the role of DNA methylation in influencing the causes and prevalence of ASD in regions where environmental influences vary significantly. We also address potential explanations for the high ASD prevalence in North America, considering lifestyle factors, environmental toxins, and diagnostic considerations. Asian and European studies offer insights into endocrine-disrupting compounds, persistent organic pollutants, maternal smoking, and their associations with DNA methylation alterations in ASD. In areas with limited data on DNA methylation and ASD, such as Africa, Oceania, and South America, we discuss prevalent environmental factors based on epidemiological studies. Additionally, the review integrates global and country-specific prevalence data from various studies, providing a comprehensive picture of the variables influencing ASD diagnoses over region and year of assessment. This prevalence data, coupled with regional environmental variables and DNA methylation studies, provides a perspective on the complexities of ASD research. Integrating global prevalence data, we underscore the need for a comprehensive global understanding of ASD's complex etiology. Expanded research into epigenetic mechanisms of ASD is needed, particularly in underrepresented populations and locations, to enhance biomarker development for diagnosis and intervention strategies for ASD that reflect the varied environmental and genetic landscapes worldwide.
Collapse
Affiliation(s)
- George E Kuodza
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Ray Kawai
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
5
|
Lefèvre-Arbogast S, Duquenne P, Helmer C, Auriacombe S, Sirot V, Samieri C. Association between dietary exposure to chemical contaminants and risk of dementia in older persons. ENVIRONMENT INTERNATIONAL 2024; 192:109033. [PMID: 39326243 DOI: 10.1016/j.envint.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Diet is a major route of exposure to potentially neurotoxic chemicals, yet the epidemiological association of diet contaminants with dementia is unknown. We studied the link between dietary exposure to multiple chemicals and dementia risk in older persons, considering interaction with dietary fat content, which may modify the bioavailability and toxicity of (lipophilic) chemicals. METHODS We included 1,288 non-demented participants from the French Three-City cohort who answered a food frequency questionnaire and 24-hour recall at baseline and were followed for incident dementia. Dietary exposure to 167 contaminants was assessed by combining food intakes with food chemical content from the French second Total Diet Study. We assessed the relation of each individual contaminant with dementia risk using multivariable-adjusted Cox models, exploring effect modification by high-fat diet (>35 % energy from fat). Among high-fat diet consumers, we looked for a signature of contaminants associated with dementia using elastic-net penalization and assess their joint effect. RESULTS Participants were 76 years-old on average at baseline and 62 % were women. In total, 314 individuals developed dementia over a median 10 years. No contaminant was associated with dementia in the whole population. However, having a high-fat diet was a strong effect modifier for 85 contaminants (FDR-corrected p < 0.05 for interactions) in single-chemical analyses, so that higher intakes were significantly associated with higher dementia risk among high-fat consumers only (n = 386). Among them, a multi-chemical approach revealed a signature of 9 contaminants related to dementia, including 4 perfluoroalkyl substances, 2 flame retardants hexabromocyclododecane (HBCDD) congeners, 2 mycotoxins, and nitrites. This selection included two top hits from the single-chemical analyses (α-HBCDD and perfluorooctanesulfonic acid [PFOS]), and was mainly provided by delicatessen meat, seafood and bread/crispbread. CONCLUSION In this large population-based study, dietary exposure to several chemicals was associated with higher dementia risk among older persons consuming > 35 % energy from fat in diet.
Collapse
Affiliation(s)
| | | | | | - Sophie Auriacombe
- Univ. Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Véronique Sirot
- ANSES, Direction de l'évaluation des risques, F-94701 Maisons-Alfort, France
| | - Cécilia Samieri
- Univ. Bordeaux, Inserm, BPH, U1219, F-33000 Bordeaux, France
| |
Collapse
|
6
|
Li Y, Zhen X, Liu L, Zhang J, Tang J. Species-specific and habitat-dependent bioaccumulation of halogenated flame retardants in marine organisms from estuary to coastal seas. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134529. [PMID: 38723482 DOI: 10.1016/j.jhazmat.2024.134529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Halogenated flame retardants (HFRs) have attracted global attention owing to their adverse effects on ecosystems and humans. The Shandong Peninsula is the largest manufacturing base for HFRs in East Asia, yet its impacts on marine ecosystems are unclear. Seventeen HFRs were analyzed in organisms captured from the Xiaoqing River estuary, Bohai Sea (BS), Yellow Sea and Northern East China Sea to investigate the distribution and bioaccumulation of HFRs on a broad scale. The results showed a downward trend in ΣHFR concentrations from the estuary (37.7 ng/g lw on average) to Laizhou Bay (192 ng/g lw) and to coastal seas (3.13 ng/g lw). The concentrations of ΣHFRs were significantly higher in demersal fish (0.71-198 ng/g lw) and benthic invertebrates (0.81-3340 ng/g lw) than in pelagic fish (0.30-27.6 ng/g lw), reflecting a habitat dependence. The concentrations of higher-brominated homologs were greater in benthic invertebrates, whereas a greater level of lower-brominated PBDE congeners was observed in fish, suggesting different profiles between species. Furthermore, the analogue composition of HFRs in fish was similar to that in the dissolved phase of seawater, whereas the HFR pattern in benthic invertebrates was consistent with the profile in sediment. The concentrations of HFRs in organisms vary widely depending on emissions from anthropogenic activities, whereas bioaccumulation patterns are strongly influenced by species and habitat.
Collapse
Affiliation(s)
- Yanan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China
| | - Xiaomei Zhen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Nanjing 210000, China; Research and Development Project of Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210000, China
| | - Lin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266071, China
| | - Jian Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China; Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
7
|
Sánchez RM, Bermeo Losada JF, Marín Martínez JA. The research landscape concerning environmental factors in neurodevelopmental disorders: Endocrine disrupters and pesticides-A review. Front Neuroendocrinol 2024; 73:101132. [PMID: 38561126 DOI: 10.1016/j.yfrne.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.
Collapse
Affiliation(s)
- Rebeca Mira Sánchez
- Universidad de Murcia, Spain; Instituto de Ciencias Medioambientales y Neurodesarrollo ICMYN, Murcia, Spain.
| | | | | |
Collapse
|
8
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
9
|
Griffin JA, Li X, Lehmler HJ, Holland EB. Predicted versus observed activity of PCB mixtures toward the ryanodine receptor. Neurotoxicology 2024; 100:25-34. [PMID: 38065417 PMCID: PMC10842331 DOI: 10.1016/j.neuro.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) alter the activity of the ryanodine receptor (RyR), and this activity is linked to developmental neurotoxicity. Most work to date has focused on the activity of single congeners rather than relevant mixtures. The current study assessed the RyR activity of single congeners or binary, tertiary, and complex PCB mixtures. Observed mixture activity was then compared to the expected activity calculated using the concentration addition (CA) model or a RyR-specific neurotoxic equivalency scheme (rNEQ). The predictions of the CA model were consistent with the observed activity of binary mixtures at the lower portion of the concentration-response curve, supporting the additivity of RyR1 active PCBs. Findings also show that minimally active congeners can compete for the RyR1 binding site, and congeners that do not activate the RyR1 do not interfere with the activity of a full agonist. Complex PCB mixtures that mimic PCB profiles detected in indoor air, fish tissue, and the serum of mothers and children activated the RyR1 and displayed similar efficacy and potency regardless of varying congener profiles. Neither the CA model nor the rNEQ perfectly predicted the observed activity of complex mixtures, but predictions were often within one magnitude of change from the observed response. Importantly, PCB mixtures approximating profiles found in environmental samples or human serum displayed RyR1 activity at concentrations reported in published research. The work presented will aid in the development of risk assessment platforms for NDL PCBs and similar compounds toward RyR1 activation and related neurotoxicity.
Collapse
Affiliation(s)
- Justin A Griffin
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Erika B Holland
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA.
| |
Collapse
|
10
|
Griffin JA, Li X, Lehmler HJ, Holland EB. Predicted Versus Observed Activity of PCB Mixtures Toward the Ryanodine Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554299. [PMID: 37662381 PMCID: PMC10473618 DOI: 10.1101/2023.08.22.554299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) alter the activity of the ryanodine receptor (RyR), and this activity is linked to developmental neurotoxicity. Most work to date has focused on the activity of single congeners rather than relevant mixtures. The current study assessed the RyR activity of single congeners or binary, tertiary, and complex PCB mixtures. Observed mixture activity was then compared to the expected activity calculated using the concentration addition (CA) model or a RyR-specific neurotoxic equivalency scheme (rNEQ). The predictions of the CA model were consistent with the observed activity of binary mixtures at the lower portion of the concentration-response curve, supporting the additivity of RyR1 active PCBs. Findings also show that minimally active congeners can compete for the RyR1 binding site, and congeners that do not activate the RyR1 do not interfere with the activity of a full agonist. Complex PCB mixtures that mimic PCB profiles detected in indoor air, fish tissue, and the serum of mothers and children activated the RyR1 and displayed similar efficacy and potency regardless of varying congener profiles. Neither the CA model nor the rNEQ perfectly predicted the observed activity of complex mixtures, but predictions were often within one magnitude of change from the observed response. Importantly, PCB mixtures approximating profiles found in environmental samples or human serum displayed RyR1 activity at concentrations reported in published research. The work presented will aid in the development of risk assessment platforms for NDL PCBs, and similar compounds, towards RyR1 activation and related neurotoxicity.
Collapse
Affiliation(s)
- Justin A. Griffin
- Department of Biological Science, California State University of Long Beach, Long Beach California
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Erika B. Holland
- Department of Biological Science, California State University of Long Beach, Long Beach California
| |
Collapse
|
11
|
Li X, Bullert AJ, Han W, Yang W, Zhang QY, Ding X, Lehmler HJ. Enantiomeric Fractions Reveal Differences in the Atropselective Disposition of 2,2',3,5',6-Pentachlorobiphenyl (PCB 95) in Wildtype, Cyp2abfgs-Null, and CYP2A6-Humanized Mice. Chem Res Toxicol 2023; 36:1386-1397. [PMID: 37467352 PMCID: PMC10445290 DOI: 10.1021/acs.chemrestox.3c00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 07/21/2023]
Abstract
Polychlorinated biphenyls (PCBs) are environmental contaminants that can cause neurotoxicity. PCBs, such as PCB 95 (2,2',3,5',6-pentachlorobiphenyl), can be metabolized by cytochrome P450 enzymes into neurotoxic metabolites. To better understand how the metabolism of PCB 95 affects neurotoxic outcomes, we conducted a study on the disposition of PCB 95 in transgenic mouse models. The mice were given a single oral dose of PCB 95 (1.0 mg/kg) and were euthanized 24 h later for analysis. PCB 95 levels were highest in adipose tissue, followed by the liver, brain, and blood. Adipose tissue levels were significantly higher in wild-type (WT) mice than in Cyp2abfgs-null (KO) or CYP2A6-transgenic (KI) mice. We also observed genotype-dependent differences in the enrichment of aS-PCB 95 in female mice, with a less pronounced enrichment in KO than WT and KI mice. Ten hydroxylated PCB 95 metabolites were detected in blood and tissue across all exposure groups. The metabolite profiles differed across tissues, while sex and genotype-dependent differences were less pronounced. Total OH-PCB levels were highest in the blood, followed by the liver, adipose tissue, and brain. Total OH-PCB blood levels were lower in KO than in WT mice, while the opposite trend was observed in the liver. In male mice, total OH-PCB metabolite levels were significantly lower in KI than in WT mice in blood and the liver, while the opposite trend was observed in female mice. In conclusion, the study highlights the differences in the atropselective disposition of PCB 95 and its metabolites in different types of mice, demonstrating the usefulness of these transgenic mouse models for characterizing the role of PCB metabolism in PCB neurotoxicity.
Collapse
Affiliation(s)
- Xueshu Li
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amanda J. Bullert
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Weiguo Han
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Weizhu Yang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Qing-Yu Zhang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Xinxin Ding
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Vuong NB, Quang HV, Linh Trang BN, Duong DH, Toan NL, Tong HV. Association of PKLR gene copy number, expression levels and enzyme activity with 2,3,7,8-TCDD exposure in individuals exposed to Agent Orange/Dioxin in Vietnam. CHEMOSPHERE 2023; 329:138677. [PMID: 37060958 DOI: 10.1016/j.chemosphere.2023.138677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) is the most toxic congener of dioxin and has serious long-term effects on the environment and human health. Pyruvate Kinase L/R (PKLR) gene expression levels and gene variants are associated with pyruvate kinase enzyme deficiency, which has been identified as the cause of several diseases linked to dioxin exposure. In this study, we estimated PKLR gene copy number and gene expression levels using real-time quantitative PCR (RT-qPCR) assays, genotyped PKLR SNP rs3020781 by Sanger sequencing, and quantified plasma pyruvate kinase enzyme activity in 100 individuals exposed to Agent Orange/Dioxin near Bien Hoa and Da Nang airfields in Vietnam and 100 healthy controls. The means of PKLR copy numbers and PKLR gene expression levels were significantly higher, while pyruvate kinase enzyme activity was significantly decreased in Agent Orange/Dioxin-exposed individuals compared to healthy controls (P < 0.0001). Positive correlations of PKLR gene copy number and gene expression with 2,3,7,8-TCDD concentrations were observed (r = 0.2, P = 0.045 and r = 0.54, P < 0.0001, respectively). In contrast, pyruvate kinase enzyme activity was inversely correlated with 2,3,7,8-TCDD concentrations (r = -0.52, P < 0.0001). PKLR gene copy number and gene expression levels were also inversely correlated with pyruvate kinase enzyme activity. Additionally, PKLR SNP rs3020781 was found to be associated with 2,3,7,8-TCDD concentrations and PKLR gene expression. In conclusion, PKLR copy number, gene expression levels, and pyruvate kinase enzyme activity are associated with 2,3,7,8-TCDD exposure in individuals living in Agent Orange/Dioxin-contaminated areas.
Collapse
Affiliation(s)
- Nguyen Ba Vuong
- Department of Haematology, Toxicology, Radiation, and Occupation, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Ha Van Quang
- The Center of Toxicological and Radiological Training and Research, Vietnam Military Medical University, Viet Nam
| | - Bui Ngoc Linh Trang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Dao Hong Duong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Viet Nam; Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam.
| |
Collapse
|
13
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
14
|
Ossai CJ, Iwegbue CMA, Tesi GO, Olisah C, Egobueze FE, Nwajei GE, Martincigh BS. Spatial characteristics, sources and exposure risk of polychlorinated biphenyls in dusts and soils from an urban environment in the Niger Delta of Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163513. [PMID: 37061053 DOI: 10.1016/j.scitotenv.2023.163513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Chlorinated organic compounds, such as polychlorinated biphenyls (PCBs), are a threat to both humans and the environment because of their toxicity, persistence, and capacity for long-range atmospheric transport. The concentrations of 28 PCB congeners, including 12 dioxin-like and seven indicator PCBs, were investigated in soils, and indoor and outdoor dusts from Port Harcourt city, Nigeria, in order to evaluate the characteristic distribution patterns in these media, their sources, and possible risk. The PCB concentrations varied from 4.59 to 116 ng g-1 for soils, and from 1.80 to 23.0 ng g-1 and 2.73 to 57.4 ng g-1 for indoor and outdoor dusts respectively. The sequence of PCB concentrations in these matrices was soil > outdoor dust > indoor dust. The composition of PCBs in these matrices indicated the prevalence of lower chlorinated PCBs in indoor and outdoor dusts, while the higher chlorinated congeners were dominant in soils. Di-PCBs were the predominant homologues in indoor dusts, while deca-PCBs were the most prevalent homologues in outdoor dusts and soils. The TEQ values of dioxin-like PCBs in 60 % of the soils, 100 % of the indoor dust, and 30 % of the outdoor dust were above the indicative value of 4 pg TEQ g-1 established by the Canadian authority. The hazard index (HI) values for exposure of adults and children to PCBs in these media were mostly greater than one, while the total cancer risk (TCR) values exceeded the acceptable risk value of 10-6, which indicate probable non-carcinogenic and carcinogenic risks resulting from exposure to PCBs in these media. Source analysis for PCBs in these matrices shows that they originated from diverse sources.
Collapse
Affiliation(s)
- Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | | | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | | | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
15
|
Mouat JS, Li X, Neier K, Zhu Y, Mordaunt CE, La Merrill MA, Lehmler HJ, Jones MP, Lein PJ, Schmidt RJ, LaSalle JM. Networks of placental DNA methylation correlate with maternal serum PCB concentrations and child neurodevelopment. ENVIRONMENTAL RESEARCH 2023; 220:115227. [PMID: 36608759 PMCID: PMC10518186 DOI: 10.1016/j.envres.2023.115227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gestational exposure to polychlorinated biphenyls (PCBs) has been associated with elevated risk for neurodevelopmental disorders. Placental epigenetics may serve as a potential mechanism of risk or marker of altered placental function. Prior studies have associated differential placental DNA methylation with maternal PCB exposure or with increased risk of autism spectrum disorder (ASD). However, sequencing-based placental methylomes have not previously been tested for simultaneous associations with maternal PCB levels and child neurodevelopmental outcomes. OBJECTIVES We aimed to identify placental DNA methylation patterns associated with maternal PCB levels and child neurodevelopmental outcomes in the high-risk ASD MARBLES cohort. METHODS We measured 209 PCB congeners in 104 maternal serum samples collected at delivery. We identified networks of DNA methylation from 147 placenta samples using the Comethyl R package, which performs weighted gene correlation network analysis for whole genome bisulfite sequencing data. We tested placental DNA methylation modules for association with maternal serum PCB levels, child neurodevelopment, and other participant traits. RESULTS PCBs 153 + 168, 170, 180 + 193, and 187 were detected in over 50% of maternal serum samples and were highly correlated with one another. Consistent with previous findings, maternal age was the strongest predictor of serum PCB levels, alongside year of sample collection, pre-pregnancy BMI, and polyunsaturated fatty acid levels. Twenty seven modules of placental DNA methylation were identified, including five which significantly correlated with one or more PCBs, and four which correlated with child neurodevelopment. Two modules associated with maternal PCB levels as well as child neurodevelopment, and mapped to CSMD1 and AUTS2, genes previously implicated in ASD and identified as differentially methylated regions in mouse brain and placenta following gestational PCB exposure. CONCLUSIONS Placental DNA co-methylation modules were associated with maternal PCBs and child neurodevelopment. Methylation of CSMD1 and AUTS2 could be markers of altered placental function and/or ASD risk following maternal PCB exposure.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Michele A La Merrill
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Michael P Jones
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Pamela J Lein
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
16
|
Lehmler HJ, Uwimana E, Dean LE, Kovalchuk N, Zhang QY, Ding X. Probing the Role of CYP2 Enzymes in the Atropselective Metabolism of Polychlorinated Biphenyls Using Liver Microsomes from Transgenic Mouse Models. Chem Res Toxicol 2022; 35:2310-2323. [PMID: 36473170 PMCID: PMC9957597 DOI: 10.1021/acs.chemrestox.2c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chiral polychlorinated biphenyls (PCB) are environmentally relevant developmental neurotoxicants. Because their hydroxylated metabolites (OH-PCBs) are also neurotoxic, it is necessary to determine how PCB metabolism affects the developing brain, for example, in mouse models. Because the cytochrome P450 isoforms involved in the metabolism of chiral PCBs remain unexplored, we investigated the metabolism of PCB 91 (2,2',3,4',6-pentachlorobiphenyl), PCB 95 (2,2',3,5',6-pentachlorobiphenyl), PCB 132 (2,2',3,3',4,6'-hexachlorobiphenyl), and PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) using liver microsomes from male and female Cyp2a(4/5)bgs-null, Cyp2f2-null, and wild-type mice. Microsomes, pooled by sex, were incubated with 50 μM PCB for 30 min, and the levels and enantiomeric fractions of the OH-PCBs were determined gas chromatographically. All four PCB congeners appear to be atropselectively metabolized by CYP2A(4/5)BGS and CYP2F2 enzymes in a congener- and sex-dependent manner. The OH-PCB metabolite profiles of PCB 91 and PCB 132, PCB congeners with one para-chlorine substituent, differed between null and wild-type mice. No differences in the metabolite profiles were observed for PCB 95 and PCB 136, PCB congeners without a para-chlorine group. These findings suggest that Cyp2a(4/5)bgs-null and Cyp2f2-null mice can be used to study how a loss of a specific metabolic function (e.g., deletion of Cyp2a(4/5)bgs or Cyp2f2) affects the toxicity of chiral PCB congeners.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States
| | - Eric Uwimana
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States
| | - Laura E. Dean
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States
| | - Nataliia Kovalchuk
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Qing-Yu Zhang
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Xinxin Ding
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
17
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
18
|
Maggio AG, Shu HT, Laufer BI, Bi C, Lai Y, LaSalle JM, Hu VW. Elevated exposures to persistent endocrine disrupting compounds impact the sperm methylome in regions associated with autism spectrum disorder. Front Genet 2022; 13:929471. [PMID: 36035158 PMCID: PMC9403863 DOI: 10.3389/fgene.2022.929471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental exposures to endocrine disrupting compounds (EDCs) such as the organochlorines have been linked with various diseases including neurodevelopmental disorders. Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder that is considered strongly genetic in origin due to its high heritability. However, the rapidly rising prevalence of ASD suggests that environmental factors may also influence risk for ASD. In the present study, whole genome bisulfite sequencing was used to identify genome-wide differentially methylated regions (DMRs) in a total of 52 sperm samples from a cohort of men from the Faroe Islands (Denmark) who were equally divided into high and low exposure groups based on their serum levels of the long-lived organochlorine 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), a primary breakdown product of the now banned insecticide dichlorodiphenyltrichloroethane (DDT). Aside from being considered a genetic isolate, inhabitants of the Faroe Islands have a native diet that potentially exposes them to a wide range of seafood neurotoxicants in the form of persistent organic pollutants (POPs). The DMRs were mapped to the human genome using Bismark, a 3-letter aligner used for methyl-seq analyses. Gene ontology, functional, and pathway analyses of the DMR-associated genes showed significant enrichment for genes involved in neurological functions and neurodevelopmental processes frequently impacted by ASD. Notably, these genes also significantly overlap with autism risk genes as well as those previously identified in sperm from fathers of children with ASD in comparison to that of fathers of neurotypical children. These results collectively suggest a possible mechanism involving altered methylation of a significant number of neurologically relevant ASD risk genes for introducing epigenetic changes associated with environmental exposures into the sperm methylome. Such changes may provide the potential for transgenerational inheritance of ASD as well as other disorders.
Collapse
Affiliation(s)
- Angela G. Maggio
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Henry T. Shu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- The Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Benjamin I. Laufer
- Genome Center, Perinatal Origins of Disparities Center, Environmental Health Sciences Center, Medical Microbiology and Immunology, MIND Institute, UC Davis School of Medicine, Davis, CA, United States
| | - Chongfeng Bi
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yinglei Lai
- Department of Statistics, The George Washington University, Washington, DC, United States
| | - Janine M. LaSalle
- Genome Center, Perinatal Origins of Disparities Center, Environmental Health Sciences Center, Medical Microbiology and Immunology, MIND Institute, UC Davis School of Medicine, Davis, CA, United States
| | - Valerie W. Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
19
|
Yadav A, Verhaegen S, Filis P, Domanska D, Lyle R, Sundaram AYM, Leithaug M, Østby GC, Aleksandersen M, Berntsen HF, Zimmer KE, Fowler PA, Paulsen RE, Ropstad E. Exposure to a human relevant mixture of persistent organic pollutants or to perfluorooctane sulfonic acid alone dysregulates the developing cerebellum of chicken embryo. ENVIRONMENT INTERNATIONAL 2022; 166:107379. [PMID: 35792514 DOI: 10.1016/j.envint.2022.107379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Prenatal exposure to persistent organic pollutants (POPs) is associated with neurodevelopmental disorders. In the present study, we explored whether a human-relevant POP mixture affects the development of chicken embryo cerebellum. We used a defined mixture of 29 POPs, with chemical composition and concentrations based on blood levels in the Scandinavian population. We also evaluated exposure to a prominent compound in the mixture, perfluorooctane sulfonic acid (PFOS), alone. Embryos (n = 7-9 per exposure group) were exposed by injection directly into the allantois at embryonic day 13 (E13). Cerebella were isolated at E17 and subjected to morphological, RNA-seq and shot-gun proteomics analyses. There was a reduction in thickness of the molecular layer of cerebellar cortex in both exposure scenarios. Exposure to the POP mixture significantly affected expression of 65 of 13,800 transcripts, and 43 of 2,568 proteins, when compared to solvent control. PFOS alone affected expression of 80 of 13,859 transcripts, and 69 of 2,555 proteins. Twenty-five genes and 15 proteins were common for both exposure groups. These findings point to alterations in molecular events linked to retinoid X receptor (RXR) signalling, neuronal cell proliferation and migration, cellular stress responses including unfolded protein response, lipid metabolism, and myelination. Exposure to the POP mixture increased methionine oxidation, whereas PFOS decreased oxidation. Several of the altered genes and proteins are involved in a wide variety of neurological disorders. We conclude that POP exposure can interfere with fundamental aspects of neurodevelopment, altering molecular pathways that are associated with adverse neurocognitive and behavioural outcomes.
Collapse
Affiliation(s)
- Ajay Yadav
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Diana Domanska
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, NO-0304, Oslo, Norway.
| | - Karin Elisabeth Zimmer
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| |
Collapse
|
20
|
Li X, Hefti MM, Marek RF, Hornbuckle KC, Wang K, Lehmler HJ. Assessment of Polychlorinated Biphenyls and Their Hydroxylated Metabolites in Postmortem Human Brain Samples: Age and Brain Region Differences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9515-9526. [PMID: 35658127 PMCID: PMC9260965 DOI: 10.1021/acs.est.2c00581] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) has been implicated in neurodevelopmental disorders. However, the distribution of PCBs and OH-PCBs in the human brain has not been characterized. This study investigated the age-, sex-, and brain region-specific distribution of all 209 PCBs using gaschromatography-tandem mass spectrometry (GC-MS/MS) in neonatal (N = 7) and adult (N = 7) postmortem brain samples. OH-PCB analyses were performed by GC-MS/MS (as methylated derivatives) and, in a subset of samples, by nontarget liquid chromatography high-resolution mass spectrometry (Nt-LCMS). Fourteen higher chlorinated PCB congeners were observed with a detection frequency >50%. Six lower chlorinated PCBs were detected with a detection frequency >10%. Higher chlorinated PCBs were observed with higher levels in samples from adult versus younger donors. PCB congener profiles from adult donors showed more similarities across brain regions and donors than younger donors. We also assess the potential neurotoxicity of the PCB residues in the human brain with neurotoxic equivalency (NEQ) approaches. The median ΣNEQs, calculated for the PCB homologues, were 40-fold higher in older versus younger donors. Importantly, lower chlorinated PCBs made considerable contributions to the neurotoxic potential of PCB residues in some donors. OH-PCBs were identified for the first time in a small number of human brain samples by GC-MS/MS and Nt-LCMS analyses, and all contained four or fewer chlorine.
Collapse
Affiliation(s)
- Xueshu Li
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marco M. Hefti
- Department
of Pathology, University of Iowa Hospital
and Clinics, Iowa City, Iowa 52242, United
States
| | - Rachel F. Marek
- IIHR-Hydroscience
and Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- IIHR-Hydroscience
and Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kai Wang
- Department
of Biostatistics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- . Phone: (319) 335-4310. Fax: (319) 335-4290
| |
Collapse
|
21
|
Gama J, Neves B, Pereira A. Chronic Effects of Dietary Pesticides on the Gut Microbiome and Neurodevelopment. Front Microbiol 2022; 13:931440. [PMID: 35847088 PMCID: PMC9279132 DOI: 10.3389/fmicb.2022.931440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many agricultural pesticides include substances that are known to be harmful to human health and while some have been banned from developed countries, they are still being used in developing countries such as Brazil. Recent studies have shown that low-level chronic dietary exposure to pesticides can affect the human gut microbiota. This possible hazardous effect of pesticides on human health has not been specifically recognized by government regulatory agencies. In Brazil, for instance, of the 10 best-selling active ingredients in pesticides in 2019, two are considered extremely toxic, Paraquat and Chlorpyrifos. Even though Paraquat has been banned in Brazil since 2020, the values of maximum residue limits (MRLs) of toxic pesticides allowed in the country are still higher than in other countries. Unfortunately, many developing countries still lack the resources and expertise needed to monitor adequately and systematically the presence of pesticide residues on food. In this work, we raise awareness to the danger the chronic exposure to high dietary levels of pesticides can pose to the public, especially considering their prolonged effects on the gut microbiome.
Collapse
Affiliation(s)
- Jessica Gama
- Graduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém, Brazil
| | - Bianca Neves
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Pereira
- Graduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém, Brazil
- Institute of Technology, Federal University of Pará, Belém, Brazil
| |
Collapse
|
22
|
Jahnke JC, Martinez A, Hornbuckle KC. Distinguishing Aroclor and non-Aroclor sources to Chicago Air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153263. [PMID: 35066038 PMCID: PMC9116205 DOI: 10.1016/j.scitotenv.2022.153263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 06/03/2023]
Abstract
Many polychlorinated biphenyl (PCB) congeners are found in both legacy Aroclor mixtures and modern materials, and both contribute to PCBs levels in ambient air. The various sources of PCBs make it difficult to quantify the relative importance of emissions from remaining legacy materials and emissions of PCBs released from production and use of modern products. To address this challenge, we utilized active and passive sampling, analytical methods optimized for PCBs, and Positive Matrix Factorization (PMF) and cos theta to examine the chemical signature of PCBs in Chicago air. Here we report our findings for over 640 samples collected over 7 years and analyzed for all 209 congeners. We conclude that Aroclor sources (1254, 1016/1242, and 1260) are consistent and dominant contributors to Chicago air. However, non-Aroclors sources accounted for 13%-16% of the total PCBs measured. Our analysis indicates non-Aroclor sources explain 99% of PCB11, 90% of PCB 68, and 58-69% of congeners with 8 to 10 chlorines in Chicago air. All of these are known to be emitted from paints or silicone polymers. Additionally, we identified over 20 congeners that have non-Aroclor contributions of more than 50% including PCB 3 (4-monochlorobiphenyl, 83% non-Aroclor) as well as 7 congeners of unknown sources: PCBs 43, 46, 55, 89, 96, 137, and 139 + 140. Non-Aroclor emission sources contribute to the entire range of congeners from mono- to deca-chlorobiphenyls. We found evidence of highly localized non-Aroclor sources including a signature similar to that of green paint. We also found source signals similar to the PCB congeners volatilizing from and absorbing to neighboring Lake Michigan. The measured profiles vary from season to season: lower chlorinated congeners dominate in winter months while higher chlorinated congeners contribute more in summer.
Collapse
Affiliation(s)
- Jacob C Jahnke
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andres Martinez
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Keri C Hornbuckle
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
23
|
Mishra A, Prabha PK, Singla R, Kaur G, Sharma AR, Joshi R, Suroy B, Medhi B. Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11-q13 Segment. ACS Chem Neurosci 2022; 13:1684-1696. [PMID: 35635007 DOI: 10.1021/acschemneuro.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASDs) are multifactorial in nature and include both genetic and environmental factors. The increasing evidence advocates an important role of epigenetics in ASD etiology. One of the most common forms of epigenetic changes observed in the case of neurodevelopmental disorders is imprinting which is tightly regulated by developmental and tissue-specific mechanisms. Interestingly, many of these disorders that demonstrate autism-like phenotypes at varying degrees have found involvement of chromosome 15q11-q13 segment. Numerous studies demonstrate occurrence of ASD in the presence of chromosomal abnormalities located mainly in Chr15q11-q13 region. Several plausible candidate genes associated with ASD are in this chromosomal segment, including gamma aminobutyric acid A (GABAA) receptor genes GABRB3, GABRA5 and GABRG3, UBE3A, ATP 10A, MKRN3, ZNF, MAGEL2, Necdin (NDN), and SNRPN. The main objective of this review is to highlight the contribution of epigenetic modulations in chromosome 15q11-q13 segment toward the genetic etiology and pathophysiology of ASD. The present review reports the abnormalities in epigenetic regulation on genes and genomic regions located on chromosome 15 in relation to either syndromic (15q11-q13 maternal duplication) or nonsyndromic forms of ASD. Furthermore, studies reviewed in this article demonstrate conditions in which epigenetic dysregulation has been found to be a pathological factor for ASD development, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD. Also, on the basis of the evidence found so far, we strongly emphasize the need to develop future therapeutic strategies as well as screening procedures for ASD that target mechanisms involving genes located on the chromosomal 15q11-q13 segment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Praisy K Prabha
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rubal Singla
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Dept. of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Benjamin Suroy
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
24
|
Denuzière A, Ghersi-Egea JF. Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. Neurotoxicology 2022; 91:100-118. [DOI: 10.1016/j.neuro.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
|
25
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Laufer BI, Neier K, Valenzuela AE, Yasui DH, Schmidt RJ, Lein PJ, LaSalle JM. Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of prenatal PCB exposure. Cell Rep 2022; 38:110442. [PMID: 35235788 PMCID: PMC8941983 DOI: 10.1016/j.celrep.2022.110442] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that overlap fetal brain DMRs relevant to an NDD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
27
|
Xie MY, Lin ZY, Liu LY, Wu CC, Liu YW, Huang GL, Zeng EY. Use of glioma to assess the distribution patterns of perfluoroalkyl and polyfluoroalkyl substances in human brain. ENVIRONMENTAL RESEARCH 2022; 204:112011. [PMID: 34492276 DOI: 10.1016/j.envres.2021.112011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Human brain has a complex structure and is able to perform powerful functions. Blood-brain barrier blocks the entry of foreign substances and maintains the homeostasis of the brain. However, some exogenous substances are still able to pass through the blood-brain barrier, with distribution patterns yet to be clarified. Perfluoroalkyl and polyfluoroalkyl substances (PFASs), including perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), a precursor (perfluorooctane sulfonamide that can be degraded to other substances), and emerging PFASs, were analyzed for the first time in living human brain glioma. The target compounds were detected and quantified in 25 out of 26 glioma samples. The concentration range of ∑PFAS was < RL-51 ng g-1 wet weight (applied to all reported concentrations), with a median of 2.9 ng g-1. The most abundant compound was PFCAs (40%), followed by PFSAs (28%), emerging PFASs (22%), and perfluorooctane sulfonamide (10%). Abundant alternatives PFASs, including short-chain PFCAs, short-chain PFSAs, and emerging PFASs (52% of ∑PFAS), were found in the glioma samples, supporting the notion that low molecular weight exogenous compounds have high permeability to cross the blood-brain barrier and accumulate in brain tissue. Gender difference was not significant (p > 0.05) in the concentrations of PFASs in the glioma samples. Concentrations of PFASs increased with increasing age, from 0.61 ng g-1 (0-14 years old) to 1.6 ng g-1 (>48 years old), with no significant linear correlation with age. The present study suggested that glioma is an effective indicator for monitoring exogenous contaminants in brain tissues.
Collapse
Affiliation(s)
- Meng-Yi Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Zhi-Ying Lin
- Neurosurgical Institute of Southern Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ya-Wei Liu
- Neurosurgical Institute of Southern Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guang-Long Huang
- Neurosurgical Institute of Southern Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
28
|
Mouat JS, LaSalle JM. The Promise of DNA Methylation in Understanding Multigenerational Factors in Autism Spectrum Disorders. Front Genet 2022; 13:831221. [PMID: 35242170 PMCID: PMC8886225 DOI: 10.3389/fgene.2022.831221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impairments in social reciprocity and communication, restrictive interests, and repetitive behaviors. Most cases of ASD arise from a confluence of genetic susceptibility and environmental risk factors, whose interactions can be studied through epigenetic mechanisms such as DNA methylation. While various parental factors are known to increase risk for ASD, several studies have indicated that grandparental and great-grandparental factors may also contribute. In animal studies, gestational exposure to certain environmental factors, such as insecticides, medications, and social stress, increases risk for altered behavioral phenotypes in multiple subsequent generations. Changes in DNA methylation, gene expression, and chromatin accessibility often accompany these altered behavioral phenotypes, with changes often appearing in genes that are important for neurodevelopment or have been previously implicated in ASD. One hypothesized mechanism for these phenotypic and methylation changes includes the transmission of DNA methylation marks at individual chromosomal loci from parent to offspring and beyond, called multigenerational epigenetic inheritance. Alternatively, intermediate metabolic phenotypes in the parental generation may confer risk from the original grandparental exposure to risk for ASD in grandchildren, mediated by DNA methylation. While hypothesized mechanisms require further research, the potential for multigenerational epigenetics assessments of ASD risk has implications for precision medicine as the field attempts to address the variable etiology and clinical signs of ASD by incorporating genetic, environmental, and lifestyle factors. In this review, we discuss the promise of multigenerational DNA methylation investigations in understanding the complex etiology of ASD.
Collapse
Affiliation(s)
- Julia S Mouat
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Janine M LaSalle
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
29
|
Kozlova EV, Valdez MC, Denys ME, Bishay AE, Krum JM, Rabbani KM, Carrillo V, Gonzalez GM, Lampel G, Tran JD, Vazquez BM, Anchondo LM, Uddin SA, Huffman NM, Monarrez E, Olomi DS, Chinthirla BD, Hartman RE, Kodavanti PRS, Chompre G, Phillips AL, Stapleton HM, Henkelmann B, Schramm KW, Curras-Collazo MC. Persistent autism-relevant behavioral phenotype and social neuropeptide alterations in female mice offspring induced by maternal transfer of PBDE congeners in the commercial mixture DE-71. Arch Toxicol 2022; 96:335-365. [PMID: 34687351 PMCID: PMC8536480 DOI: 10.1007/s00204-021-03163-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent organic pollutants (POPs) that are known neuroendocrine disrupting chemicals with adverse neurodevelopmental effects. PBDEs may act as risk factors for autism spectrum disorders (ASD), characterized by abnormal psychosocial functioning, although direct evidence is currently lacking. Using a translational exposure model, we tested the hypothesis that maternal transfer of a commercial mixture of PBDEs, DE-71, produces ASD-relevant behavioral and neurochemical deficits in female offspring. C57Bl6/N mouse dams (F0) were exposed to DE-71 via oral administration of 0 (VEH/CON), 0.1 (L-DE-71) or 0.4 (H-DE-71) mg/kg bw/d from 3 wk prior to gestation through end of lactation. Mass spectrometry analysis indicated in utero and lactational transfer of PBDEs (in ppb) to F1 female offspring brain tissue at postnatal day (PND) 15 which was reduced by PND 110. Neurobehavioral testing of social novelty preference (SNP) and social recognition memory (SRM) revealed that adult L-DE-71 F1 offspring display deficient short- and long-term SRM, in the absence of reduced sociability, and increased repetitive behavior. These effects were concomitant with reduced olfactory discrimination of social odors. Additionally, L-DE-71 exposure also altered short-term novel object recognition memory but not anxiety or depressive-like behavior. Moreover, F1 L-DE-71 displayed downregulated mRNA transcripts for oxytocin (Oxt) in the bed nucleus of the stria terminalis (BNST) and supraoptic nucleus, and vasopressin (Avp) in the BNST and upregulated Avp1ar in BNST, and Oxtr in the paraventricular nucleus. Our work demonstrates that developmental PBDE exposure produces ASD-relevant neurochemical, olfactory processing and behavioral phenotypes that may result from early neurodevelopmental reprogramming within central social and memory networks.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Matthew C Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Maximillian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Kayhon M Rabbani
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gwendolyn M Gonzalez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gregory Lampel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jasmin D Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Brigitte M Vazquez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Laura M Anchondo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Syed A Uddin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Nicole M Huffman
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Eduardo Monarrez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Duraan S Olomi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Gladys Chompre
- Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, 00717-9997, USA
| | - Allison L Phillips
- Duke University, Nicholas School of the Environment, Durham, NC, 27710, USA
| | | | - Bernhard Henkelmann
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
- Department Für Biowissenschaftliche Grundlagen, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung Und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| | | |
Collapse
|
30
|
Wang MY, Zhang LF, Wu D, Cai YQ, Huang DM, Tian LL, Fang CL, Shi YF. Simulation experiment on OH-PCB being ingested through daily diet: Accumulation, transformation and distribution of hydroxylated-2, 2', 4, 5, 5'-pentachlorobiphenyl (OH-PCB101) in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149891. [PMID: 34474296 DOI: 10.1016/j.scitotenv.2021.149891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 05/16/2023]
Abstract
Animals exposure to polychlorinated biphenyls (PCBs) may result in retention of hydroxylated PCBs (OH-PCBs). OH-PCBs can be accumulated in animals, including humans, through the transmission of food chain. However, there are few studies on the accumulation and metabolism of OH-PCBs exposed to the body through daily diet. Therefore, this study was conducted to investigate the fate of OH-PCBs after being ingested through dietary intake. By adding 3-OH-PCB101 and 4-OH-PCB101 to the edible tissue of crucian carp, which were used as raw materials to prepare mouse feed, with an exposure concentration of 2.5 μg/kg ww. The exposure experiment lasted for a total of 80 days. The blood, feces and 11 tissues of mice at different times were analyzed qualitatively and quantitatively. It was found that major OH-PCB101 were accumulated in intestine or excreted with feces. A small part was accumulated in heart, lung and spleen. For the first time that the conversion from OH-PCB101 to PCB101 in mice was discovered, which shows from another perspective that persistent organic pollutants are difficult to be completely degraded in the environment. 4-MeO-PCB101, 3-MeSO2-PCB101, and 4-MeSO2-PCB101 were also found in various tissues. The results of this study show that after OH-PCBs accumulated in animals re-enter the organism through the food chain, they can be metabolized again and may be reversely transformed into the parent compounds. The present research shed new light on simulating the metabolic transformation process of OH-PCBs exposed to mammals through ingestion of fish. Available data show that second-generation persistent organic pollutants in the environment still need to be continuously concerned.
Collapse
Affiliation(s)
- Meng-Yuan Wang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long-Fei Zhang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wu
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - You-Qiong Cai
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Dong-Mei Huang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Liang-Liang Tian
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Chang-Ling Fang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Yong-Fu Shi
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China.
| |
Collapse
|
31
|
Baumer A, Jäsch S, Ulrich N, Bechmann I, Landmann J, Stöver A, Escher BI. Chemical mixtures in human post-mortem tissues assessed by a combination of chemical analysis and in vitro bioassays after extraction with silicone. ENVIRONMENT INTERNATIONAL 2021; 157:106867. [PMID: 34537519 DOI: 10.1016/j.envint.2021.106867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 09/05/2021] [Indexed: 05/12/2023]
Abstract
Passive equilibrium sampling of chemical mixtures from different human post-mortem tissues (liver, brain (cerebrum and cerebellum), adipose tissue) and blood was combined with instrumental analysis using direct sample introduction (DSI) GC-MS/MS and bioanalytical profiling using in vitro bioassays targeting the activation of the aryl hydrocarbon receptor (AhR-CALUX), the adaptive stress response (AREc32) and cytotoxicity. The tissues stemmed from pathology samples collected in two German cities and covered males and females aged 21 to 100 with a mean age of 67 years. Neutral organic chemicals were extracted using polydimethylsiloxane (PDMS) at mass ratios of tissue to PDMS of approximately 6 for blood, 3 for adipose tissue and 10 for liver and brain. Amounts of chemicals in PDMS were converted to lipid-associated concentrations using previously measured partition constants that were chemical-independent despite covering eight orders of magnitude in hydrophobicity. Up to 35 of 99 targeted chemicals were detected in 6 tissues of 16 individuals (88 samples in total), among them legacy persistent organic pollutants (POP) such as DDT and derivatives and polychlorinated biphenyls (PCB) but also modern pesticides and chemicals present in consumer products. POPs were highest in adipose tissue and lipid-associated concentrations increased with age, while concentrations of fragrance materials such as galaxolide were independent of age. In tissues from the same individual, chemical concentrations mostly increased from similar levels in brain and blood to higher levels in liver and highest in adipose tissue. However, easily degradable chemicals such as phenanthrene were mainly detected in blood and brain, and very hydrophilic chemicals were least abundant in adipose tissue. The passive sampling method allows a direct comparison of chemical burden between different tissues and may have forensic applications, for example to study internal distributions or to use one tissue type as a proxy for others. The sum of concentrations of the detected chemicals was positively correlated with the bioassay responses but mixture modeling showed that the detected chemicals explained less than 2% of the activation of the AhR and less than 0.5% of cytotoxicity. This means that more than 10,000 chemicals would need to be included in an analytical method to capture all the effects with many chemicals potentially being below detection limits but still contributing to mixture effects. Therefore, we propose a smart combination of chemical analysis and bioassays to quantify priority chemicals but use bioassay responses as effect-scaled concentrations to capture the entire exposome in future epidemiological studies.
Collapse
Affiliation(s)
- Andreas Baumer
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Sandra Jäsch
- Department Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany
| | - Julia Landmann
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany
| | - Andreas Stöver
- Institute of Legal Medicine, Ludwig-Maximilians University Munich, Nußbaumstraße 26, 80336 Munich, Germany
| | - Beate I Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geosciences, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany.
| |
Collapse
|
32
|
Slováčková J, Slavík J, Kulich P, Večeřa J, Kováč O, Paculová H, Straková N, Fedr R, Silva JP, Carvalho F, Machala M, Procházková J. Polychlorinated environmental toxicants affect sphingolipid metabolism during neurogenesis in vitro. Toxicology 2021; 463:152986. [PMID: 34627992 DOI: 10.1016/j.tox.2021.152986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Sphingolipids (SLs) are important signaling molecules and functional components of cellular membranes. Although SLs are known as crucial regulators of neural cell physiology and differentiation, modulations of SLs by environmental neurotoxicants in neural cells and their neuronal progeny have not yet been explored. In this study, we used in vitro models of differentiated neuron-like cells, which were repeatedly exposed during differentiation to model environmental toxicants, and we analyzed changes in sphingolipidome, cellular morphology and gene expression related to SL metabolism or neuronal differentiation. We compared these data with the results obtained in undifferentiated neural cells with progenitor-like features. As model polychlorinated organic pollutants, we used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3'-dichlorobiphenyl (PCB11) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153). PCB153 revealed itself as the most prominent deregulator of SL metabolism and as potent toxicant during early phases of in vitro neurogenesis. TCDD exerted only minor changes in the levels of analysed lipid species, however, it significantly changed the rate of pro-neuronal differentiation and deregulated expression of neuronal markers during neurogenesis. PCB11 acted as a potent disruptor of in vitro neurogenesis, which induced significant alterations in SL metabolism and cellular morphology in both differentiated neuron-like models (differentiated NE4C and NG108-15 cells). We identified ceramide-1-phosphate, lactosylceramides and several glycosphingolipids to be the most sensitive SL species to exposure to polychlorinated pollutants. Additionally, we identified deregulation of several genes related to SL metabolism, which may be explored in future as potential markers of developmental neurotoxicity.
Collapse
Affiliation(s)
- Jana Slováčková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Josef Slavík
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Pavel Kulich
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Josef Večeřa
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Ondrej Kováč
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Hana Paculová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Nicol Straková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - João Pedro Silva
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Félix Carvalho
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic.
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.
| |
Collapse
|
33
|
Peripherally administered persistent organic pollutants distribute to the brain of developing chicken embryo in concentrations relevant for human exposure. Neurotoxicology 2021; 88:79-87. [PMID: 34757084 DOI: 10.1016/j.neuro.2021.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022]
Abstract
Persistent organic pollutants (POPs) can reach the fetal brain and contribute to developmental neurotoxicity. To explore the distribution of POPs to the fetal brain, we exposed chicken embryos to a POP mixture, containing 29 different compounds with concentrations based on blood levels measured in the Scandinavian human population. The mixture was injected into the allantois at embryonic day 13 (E13), aiming at a theoretical concentration of 10 times human blood levels. POPs concentrations in the brain were measured at 0.5, 1, 2, 4, 6, 24, 48, and 72 h after administration. Twenty-seven of the individual compounds were detected during at least one of the time-points analyzed. Generally, the concentrations of most of the measured compounds were within the order of magnitude of those reported in human brain samples. Differences in the speed of distribution to the brain were observed between the per- and polyfluoroalkyl substances (PFASs), which have protein binding potential, and the lipophilic polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and brominated flame retardants (BFRs). Based on pharmacokinetic modeling, PFASs were best described by a one compartment model. PFASs displayed relatively slow elimination (Kel) and persisted at high levels in the brain. Lipophilic OCPs and PCBs could be fitted to a 2-compartment model. These showed high levels in the brain relative to the dose administrated as calculated by area under the curve (AUC)/Dose. Altogether, our study showed that chicken is a suitable model to explore the distribution of POPs into the developing brain at concentrations which are relevant for humans.
Collapse
|
34
|
McCann MS, Fernandez HR, Flowers SA, Maguire-Zeiss KA. Polychlorinated biphenyls induce oxidative stress and metabolic responses in astrocytes. Neurotoxicology 2021; 86:59-68. [PMID: 34265337 PMCID: PMC8440398 DOI: 10.1016/j.neuro.2021.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Exposure to environmental toxicants is prevalent, hazardous and linked to varied detrimental health outcomes and disease. Polychlorinated biphenyls (PCBs), a class of hazardous organic chlorines once widely used for industrial purposes, are associated with neurodegenerative disease and oxidative stress in both in vitro and in vivo models. Here, we investigated the impact of Aroclor 1254, a commercially available PCB mixture, on primary murine astrocytes to determine the response to this once ubiquitously used toxicant on the most numerous cells of the central nervous system (CNS). Astrocytes are a critical component of homeostasis throughout the CNS, including at the blood-brain barrier, where they serve as the primary defense against xenobiotics entering the CNS, and at the synapse, where they are closely coupled to neurons through several metabolic pathways. We hypothesized that PCBs cause astrocytic oxidative stress and related dysfunction including altered metabolism. We exposed primary murine cortical astrocytes to PCBs and report an increased expression of antioxidant genes (Prdx1, Gsta2, Gfap, Amigo2) in response to oxidative stress. Our data show increased ATP production and spare respiratory capacity in astrocytes exposed to 10 μM (∼ 3 ppm) PCBs. This dose also causes an increase in glucose uptake that is not seen at a higher dose (50 μM) suggesting that, at a lower dose, astrocytes are able to engage compensatory mechanisms to promote survival. Together, these data suggest that exposure to PCBs impact astrocytic metabolism, which is important to consider both in the context of human health and disease and in in vitro and in vivo disease models.
Collapse
Affiliation(s)
- Mondona S McCann
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Harvey R Fernandez
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Sarah A Flowers
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Kathleen A Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington D.C., United States.
| |
Collapse
|
35
|
Influence of the Aryl Hydrocarbon Receptor Activating Environmental Pollutants on Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22179258. [PMID: 34502168 PMCID: PMC8431328 DOI: 10.3390/ijms22179258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.
Collapse
|
36
|
Myhre O, Zimmer KE, Hudecova AM, Hansen KEA, Khezri A, Berntsen HF, Berg V, Lyche JL, Mandal S, Duale N, Ropstad E. Maternal exposure to a human based mixture of persistent organic pollutants (POPs) affect gene expression related to brain function in mice offspring hippocampus. CHEMOSPHERE 2021; 276:130123. [PMID: 33714876 DOI: 10.1016/j.chemosphere.2021.130123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Male and female mice pups were exposed to a low and high dose of a human relevant mixture of persistent organic pollutants (POPs) during pregnancy and lactation. Most compounds detected in the dams were found in offspring brains. The mice offspring exhibited changed expression of hippocampal genes involved in cognitive function (Adora2a, Auts2, Crlf1, Chrnb2, Gdnf, Gnal, Kcnh3), neuroinflammation (Cd47, Il1a), circadian rhythm (Per1, Clock), redox signalling (Hmox2) and aryl hydrocarbon receptor activation (Cyp1b1). A few genes were differentially expressed in males versus females. Mostly, similar patterns of gene expression changes were observed between the low and high dose groups. Effects on learning and memory function measured in the Barnes maze (not moving, escape latency) were found in the high dose group when combined with moderate stress exposure (air flow from a fan). Mediation analysis indicated adaptation to the effects of exposure since gene expression compensated for learning disabilities (escape latency, walking distance and time spent not moving in the maze). Additionally, random forest analysis indicated that Kcnh3, Gnal, and Crlf1 were the most important genes for escape latency, while Hip1, Gnal and the low exposure level were the most important explanatory factors for passive behaviour (not moving). Altogether, this study showed transfer of POPs to the offspring brains after maternal exposure, modulating the expression level of genes involved in brain function.
Collapse
Affiliation(s)
- Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P. O. Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Karin E Zimmer
- Department of Preclinical Sciences and Pathology, Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Alexandra M Hudecova
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Kristine E A Hansen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Abdolrahman Khezri
- Department of Preclinical Sciences and Pathology, Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Hanne F Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway; National Institute of Occupational Health, P.O. Box 8149 Dep, N-0033, Oslo, Norway.
| | - Vidar Berg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Jan L Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | | | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, P. O. Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| |
Collapse
|
37
|
Ranasinghe P, Thorn RJ, Creton R, Lee CM. Enantioselective Toxicity Effects of 2,2',3,5',6-Pentachloro Biphenyl (PCB-95) on Developing Brains in Zebrafish Larvae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:351-360. [PMID: 34230987 DOI: 10.1007/s00128-021-03294-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
2,2',3,5',6-Pentachlorobiphenyl (PCB-95) is an environmentally relevant, chiral PCB congener that has been shown to act as a developmental neurotoxicant (DNT), targeting the developing brain. However, understanding enantioselective toxic effects for PCB-95 is in its infancy. To investigate these toxic effects, zebrafish embryos were exposed to racemates and enantiomers of PCB-95. Brain areas and pathology were studied. Results indicated dose dependent reduction of brain sizes with increased brain cell death in racemic and Ra (-)-PCB-95 treated groups. To provide a mechanistic basis for the observed neurotoxicity, gene expressions of antioxidant proteins such as Cu/Zn-SOD, Mn-SOD, and GPx were analysed. Antioxidant genes were up regulated with the PCB-95 exposure and racemic PCB-95 showed higher toxicity. These results suggest that the exposure to PCB-95 contributed to developmental neurotoxicity in early developing zebrafish larvae and may confer risks associated with enantioselective enrichment of PCB-95 in the environment.
Collapse
Affiliation(s)
- Prabha Ranasinghe
- Environmental Toxicology Program, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA.
| | - Robert J Thorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Cindy M Lee
- Environmental Toxicology Program, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
38
|
Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev 2021; 129:35-62. [PMID: 34273379 DOI: 10.1016/j.neubiorev.2021.07.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023]
Abstract
Post-mortem studies allow for the direct investigation of brain tissue in those with autism and related disorders. Several review articles have focused on aspects of post-mortem abnormalities but none has brought together the entire post-mortem literature. Here, we systematically review the evidence from post-mortem studies of autism, and of related disorders that present with autistic features. The literature consists of a small body of studies with small sample sizes, but several remarkably consistent findings are evident. Cortical layering is largely undisturbed, but there are consistent reductions in minicolumn numbers and aberrant myelination. Transcriptomics repeatedly implicate abberant synaptic, metabolic, proliferation, apoptosis and immune pathways. Sufficient replicated evidence is available to implicate non-coding RNA, aberrant epigenetic profiles, GABAergic, glutamatergic and glial dysfunction in autism pathogenesis. Overall, the cerebellum and frontal cortex are most consistently implicated, sometimes revealing distinct region-specific alterations. The literature on related disorders such as Rett syndrome, Fragile X and copy number variations (CNVs) predisposing to autism is particularly small and inconclusive. Larger studies, matched for gender, developmental stage, co-morbidities and drug treatment are required.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Price
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK; Patrick Wild Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK
| |
Collapse
|
39
|
Mehri F, Bashirian S, Khazaei S, Jenabi E. Association between pesticide and polychlorinated biphenyl exposure during pregnancy and autism spectrum disorder among children: a meta-analysis. Clin Exp Pediatr 2021; 64:286-292. [PMID: 33902270 PMCID: PMC8181020 DOI: 10.3345/cep.2020.00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/25/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The effect of exposure to environmental factors on autism spectrum disorders (ASD), especially during pregnancy, is unclear. PURPOSE This meta-analysis investigated the association between exposure to pesticides and polychlorinated biphenyls (PCBs) during pregnancy and ASD risk among children. METHODS We searched Scopus, PubMed, Web of Science, and ProQuest for articles published through September 2019. Random-effects models were used to examine the association among studies using pooled odds ratios (ORs) and their 95% confidence intervals (CI). I2 tests were used to measure interstudy heterogeneity. RESULTS The pooled OR indicated a significant association between PCB and pesticide exposure during pregnancy and ASD risk among children (OR, 1.80; 95% CI, 1.26-2.34; and OR, 1.20; 95% CI, 1.02-1.39), respectively. CONCLUSION Findings of the present study indicate that exposure to pesticides and PCBs during pregnancy may affect the risk of ASD among children.
Collapse
Affiliation(s)
- Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Bashirian
- Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Department of Epidemiology, Hamadan University of medical Sciences, Hamadan, Iran
| | - Ensiyeh Jenabi
- Autism Spectrum disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
40
|
Latchney SE, Majewska AK. Persistent organic pollutants at the synapse: Shared phenotypes and converging mechanisms of developmental neurotoxicity. Dev Neurobiol 2021; 81:623-652. [PMID: 33851516 DOI: 10.1002/dneu.22825] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022]
Abstract
The developing nervous system is sensitive to environmental and physiological perturbations in part due to its protracted period of prenatal and postnatal development. Epidemiological and experimental studies link developmental exposures to persistent organic pollutants (POPs) including polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polybrominated diphenyl ethers, and benzo(a)pyrene to increased risk for neurodevelopmental disorders in children. Mechanistic studies reveal that many of the complex cellular processes that occur during sensitive periods of rapid brain development are cellular targets for developmental neurotoxicants. One area of research interest has focused on synapse formation and plasticity, processes that involve the growth and retraction of dendrites and dendritic spines. For each chemical discussed in this review, we summarize the morphological and electrophysiological data that provide evidence that developmental POP exposure produces long-lasting effects on dendritic morphology, spine formation, glutamatergic and GABAergic signaling systems, and synaptic transmission. We also discuss shared intracellular mechanisms, with a focus on calcium and thyroid hormone homeostasis, by which these chemicals act to modify synapses. We conclude our review highlighting research gaps that merit consideration when characterizing synaptic pathology elicited by chemical exposure. These gaps include low-dose and nonmonotonic dose-response effects, the temporal relationship between dendritic growth, spine formation, and synaptic activity, excitation-inhibition balance, hormonal effects, and the need for more studies in females to identify sex differences. By identifying converging pathological mechanisms elicited by POP exposure at the synapse, we can define future research directions that will advance our understanding of these chemicals on synapse structure and function.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA.,Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ania K Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Center for Visual Science, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
41
|
Foerster C, Zúñiga-Venegas L, Enríquez P, Rojas J, Zamora C, Muñoz X, Pancetti F, Muñoz-Quezada MT, Lucero B, Saracini C, Salas C, Cortés S. Levels of Polychlorinated Dibenzo- p-Dioxins/Furans (PCDD/Fs) and Dioxin-Like Polychlorinated Biphenyls (DL-PCBs) in Human Breast Milk in Chile: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4825. [PMID: 33946521 PMCID: PMC8125136 DOI: 10.3390/ijerph18094825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Persistent organic pollutants (POPs) are organic compounds that resist biochemical degradation, moving long distances across the atmosphere before deposition occurs. Our goal was to provide up-to-date data on the levels of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in breast milk from Chilean women and to estimate the exposure of infants due to breast milk consumption. In Chile, we conducted a cross-sectional study based on methodologies proposed by the WHO, with a sample of 30 women recruited from three defined areas: 10 from the Arica Region (urban; Arica and Parinacota Region), 10 from Coltauco (rural; O'Higgins Region), and 10 from Molina (40% rural; Maule Region). High-resolution gas chromatography coupled with high-resolution mass spectrometry (HRGC/HRMS) was performed on pooled samples from each area. We calculated equivalent toxic concentrations (WHO-TEQ) based on the current WHO Toxic Equivalency Factors (TEF). The minimum and maximum values of ∑ PCDDs/Fs + DL-PCBs-TEQ were 4.317 pg TEQ/g fat in Coltauco and 6.31 pg TEQ/g fat in Arica. Molina had a total TEQ of 5.50 pg TEQ/g fat. The contribution of PCDD/Fs was approximately five-fold higher than that of DL-PCBs. The Estimated Daily Intake (EDI) of ∑ PCDDs/Fs + DL-PCBs based on the three pooled samples ranged between 6.71 and 26.28 pg TEQ/kg body weight (bw)/day, with a mean intake of 16.11 (±6.71) pg TEQ/kg bw/day in breastfed children from 0 to 24 months old. These levels were lower than those reported in international studies. Despite the fact that the observed levels were low compared to those in most industrialized countries, the detection of a variety of POPs in breast milk from Chilean women indicates the need for follow-up studies to determine whether such exposures during childhood could represent a health risk in adulthood.
Collapse
Affiliation(s)
- Claudia Foerster
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O’Higgins, Campus Colchagua, Ruta 90, KM 3, San Fernando 3070000, Chile;
| | - Liliana Zúñiga-Venegas
- Laboratorio de Investigaciones Biomédicas, Departamento de Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3460000, Chile;
| | - Pedro Enríquez
- Laboratorio Química e Inocuidad Alimentaria, Servicio Agrícola Ganadero, Ruta 68 N° 19100, Pudahuel 9020000, Chile; (P.E.); (J.R.); (C.Z.)
| | - Jacqueline Rojas
- Laboratorio Química e Inocuidad Alimentaria, Servicio Agrícola Ganadero, Ruta 68 N° 19100, Pudahuel 9020000, Chile; (P.E.); (J.R.); (C.Z.)
| | - Claudia Zamora
- Laboratorio Química e Inocuidad Alimentaria, Servicio Agrícola Ganadero, Ruta 68 N° 19100, Pudahuel 9020000, Chile; (P.E.); (J.R.); (C.Z.)
| | - Ximena Muñoz
- Secretaria Regional de Salud Arica-Parinacota, Maipú 410, Arica 1000000, Chile;
| | - Floria Pancetti
- Laboratorio de Neurotoxicología Ambiental, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo N° 1281, Coquimbo 1780000, Chile;
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile
| | - María Teresa Muñoz-Quezada
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile; (M.T.M.-Q.); (B.L.)
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile; (M.T.M.-Q.); (B.L.)
| | - Chiara Saracini
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3460000, Chile;
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile; (M.T.M.-Q.); (B.L.)
| | - Claudio Salas
- Instituto de Investigaciones Agropecuarias INIA Intihuasi, Colina San Joaquín S/N, La Serena 1700000, Chile;
| | - Sandra Cortés
- Departamento de Salud Pública, Escuela de Medicina, Universidad Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 8320000, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago 8320000, Chile
| |
Collapse
|
42
|
Koual M, Tomkiewicz C, Guerrera IC, Sherr D, Barouki R, Coumoul X. Aggressiveness and Metastatic Potential of Breast Cancer Cells Co-Cultured with Preadipocytes and Exposed to an Environmental Pollutant Dioxin: An in Vitro and in Vivo Zebrafish Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37002. [PMID: 33683140 PMCID: PMC7939125 DOI: 10.1289/ehp7102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Breast cancer (BC) is a major public health concern, and its prognosis is very poor once metastasis occurs. The tumor microenvironment and chemical pollution have been suggested recently to contribute, independently, to the development of metastatic cells. The BC microenvironment consists, in part, of adipocytes and preadipocytes in which persistent organic pollutants (POPs) can be stored. OBJECTIVES We aimed to test the hypothesis that these two factors (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an extensively studied, toxic POP and the microenvironment) may interact to increase tumor aggressiveness. METHODS We used a co-culture model using BC MCF-7 cells or MDA-MB-231 cells together with hMADS preadipocytes to investigate the contribution of the microenvironment and 2,3,7,8-tetrachlorodibenzo-p-dioxin TCDD on BC cells. Global differences were characterized using a high-throughput proteomic assay. Subsequently we measured the BC stem cell-like activity, analyzed the cell morphology, and used a zebrafish larvae model to study the metastatic potential of the BC cells. RESULTS We found that coexposure to TCDD and preadipocytes modified BC cell properties; moreover, it induced the expression of ALDH1A3, a cancer stem cell marker, and the appearance of giant cancer cells with cell-in-cell structures (CICs), which are associated with malignant metastatic progression, that we demonstrated in vivo. DISCUSSION The results of our study using BC cell lines co-cultured with preadipocytes and a POP and an in vivo zebrafish model of metastasis suggest that the interactions between BC cells and their microenvironment could affect their invasive or metastatic potential. https://doi.org/10.1289/EHP7102.
Collapse
Affiliation(s)
- Meriem Koual
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
- Service de Chirurgie Cancérologique Gynécologique et du Sein, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, France
- Université de Paris, Paris, France
| | - Céline Tomkiewicz
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
| | - Ida Chiara Guerrera
- Plateforme protéomique 3P5-Necker, Structure Fédérative de Recherche Necker, Université de Paris, US24/CNRS UMS3633, Inserm, Paris, France
| | - David Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Robert Barouki
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
- Université de Paris, Paris, France
| | - Xavier Coumoul
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
43
|
Davidsen N, Lauvås AJ, Myhre O, Ropstad E, Carpi D, Gyves EMD, Berntsen HF, Dirven H, Paulsen RE, Bal-Price A, Pistollato F. Exposure to human relevant mixtures of halogenated persistent organic pollutants (POPs) alters neurodevelopmental processes in human neural stem cells undergoing differentiation. Reprod Toxicol 2021; 100:17-34. [PMID: 33333158 PMCID: PMC7992035 DOI: 10.1016/j.reprotox.2020.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Halogenated persistent organic pollutants (POPs) like perfluorinated alkylated substances (PFASs), brominated flame retardants (BFRs), organochlorine pesticides and polychlorinated biphenyls (PCBs) are known to cause cancer, immunotoxicity, neurotoxicity and interfere with reproduction and development. Concerns have been raised about the impact of POPs upon brain development and possibly neurodevelopmental disorders. The developing brain is a particularly vulnerable organ due to dynamic and complex neurodevelopmental processes occurring early in life. However, very few studies have reported on the effects of POP mixtures at human relevant exposures, and their impact on key neurodevelopmental processes using human in vitro test systems. Aiming to reduce this knowledge gap, we exposed mixed neuronal/glial cultures differentiated from neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) to reconstructed mixtures of 29 different POPs using concentrations comparable to Scandinavian human blood levels. Effects of the POP mixtures on neuronal proliferation, differentiation and synaptogenesis were evaluated using in vitro assays anchored to common key events identified in the existing developmental neurotoxicity (DNT) adverse outcome pathways (AOPs). The present study showed that mixtures of POPs (in particular brominated and chlorinated compounds) at human relevant concentrations increased proliferation of NSCs and decreased synapse number. Based on a mathematical modelling, synaptogenesis and neurite outgrowth seem to be the most sensitive DNT in vitro endpoints. Our results indicate that prenatal exposure to POPs may affect human brain development, potentially contributing to recently observed learning and memory deficits in children.
Collapse
Affiliation(s)
- Nichlas Davidsen
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna Jacobsen Lauvås
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Oddvar Myhre
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway; National Institute of Occupational Health, Oslo, Norway
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
44
|
Blanc M, Alfonso S, Bégout ML, Barrachina C, Hyötyläinen T, Keiter SH, Cousin X. An environmentally relevant mixture of polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) disrupts mitochondrial function, lipid metabolism and neurotransmission in the brain of exposed zebrafish and their unexposed F2 offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142097. [PMID: 32911150 DOI: 10.1016/j.scitotenv.2020.142097] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants still present in aquatic environments despite their total or partial ban. Previously, we observed that an environmentally realistic mixture of these compounds affects energy balance, growth, and reproduction in exposed zebrafish (F0), and behavior in their unexposed offspring (F1-F4). In the present work, we performed lipidomic and transcriptomic analyses on brains of zebrafish (F0-F2) from exposed and control lineages to identify molecular changes that could explain the observed phenotypes. The use of both technologies highlighted that F0 zebrafish displayed impaired mitochondrial function and lipid metabolism regulation (depletion in triacylglycerols and phospholipids) which can explain disruption of energy homeostasis. A subset of the regulated biological pathways related to energetic metabolism and neurotransmission were inherited in F2. In addition, there were increasing effects on epigenetic pathways from the F0 to the F2 generation. Altogether, we show that the effects of an environmental exposure to PCBs and PBDEs on energetic metabolism as well as neurotransmission extend over 2 generations of zebrafish, possibly due to transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Sébastien Alfonso
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France; COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Via dei Trulli, n 18, 70126 Bari, Italy
| | - Marie-Laure Bégout
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France
| | - Célia Barrachina
- MGX, Univ. Montpellier, CNRS, INSERM, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France; Université Paris-Saclay, AgroParisTech, INRAE, GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| |
Collapse
|
45
|
A human relevant mixture of persistent organic pollutants (POPs) and perfluorooctane sulfonic acid (PFOS) differentially affect glutamate induced excitotoxic responses in chicken cerebellum granule neurons (CGNs) in vitro. Reprod Toxicol 2021; 100:109-119. [PMID: 33497742 DOI: 10.1016/j.reprotox.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Primary cultures of cerebellar granule neurons (CGNs) derived from chicken embryos were used to explore the effects on developmental neurotoxicity by a complex defined mixture of persistent organic pollutants (POPs). Its chemical composition and concentrations were based on blood levels in the Norwegian/Scandinavian population. Perfluorooctane sulfonic acid (PFOS) alone, its most abundant compound was also evaluated. Different stages of CGNs maturation, between day in vitro (DIV) 1, 3, and 5 were exposed to the POP mixture, or PFOS alone. Their combination with glutamate, an excitatory endogenous neurotransmitter important in neurodevelopment, also known to cause excitotoxicity was evaluated. Outcomes with the mixture at 500x blood levels were compared to PFOS at its corresponding concentration of 20 μM. The POP mixture reduced tetrazolium salt (MTT) conversion at earlier stages of maturation, compared to PFOS alone. Glutamate-induced excitotoxicity was enhanced above the level of that induced by glutamate alone, especially in mature CGNs at DIV5. Glutathione (GSH) concentrations seemed to set the level of sensitivity for the toxic insults from exposures to the pollutants. The role of N-methyl-D-aspartate receptor (NMDA-R) mediated calcium influx in pollutant exposures was investigated using the non-competitive and competitive receptor antagonists MK-801 and CGP 39551. Observations indicate a calcium-independent, but still NMDA-R dependent mechanism in the absence of glutamate, and a calcium- and NMDA-R dependent one in the presence of glutamate. The outcomes for the POP mixture cannot be explained by PFOS alone, indicating that other chemicals in the mixture contribute its overall effect.
Collapse
|
46
|
Keil Stietz KP, Kennedy CL, Sethi S, Valenzuela A, Nunez A, Wang K, Wang Z, Wang P, Spiegelhoff A, Puschner B, Bjorling DE, Lein PJ. In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder. Curr Res Toxicol 2021; 2:1-18. [PMID: 34337439 PMCID: PMC8317607 DOI: 10.1016/j.crtox.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bladder dysfunction, including incontinence, difficulty emptying the bladder, or urgency to urinate is a pervasive health and quality of life concern. However, risk factors for developing these symptoms are not completely understood, and the influence of exposure to environmental chemicals, especially during development, on the formation and function of the bladder is understudied. Environmental contaminants such as polychlorinated biphenyls (PCBs) are known to pose a risk to the developing brain; however, their influence on the development of peripheral target organs, such as bladder, are unknown. To address this data gap, C57Bl/6J mouse dams were exposed to an environmentally-relevant PCB mixture at 0, 0.1, 1 or 6 mg/kg daily beginning two weeks prior to mating and continuing through gestation and lactation. Bladders were collected from offspring at postnatal days (P) 28-31. PCB concentrations were detected in bladders in a dose-dependent manner. PCB effects on the bladder were sex- and dose-dependent. Overall, PCB effects were observed in male, but not female, bladders. PCBs increased bladder volume and suburothelial βIII-tubulin-positive nerve density compared to vehicle control. A subset of these nerves were sensory peptidergic axons indicated by increased calcitonin gene-related protein (CGRP) positive nerve fibers in mice exposed to the highest PCB dose compared to the lowest PCB dose. PCB-induced increased nerve density was also positively correlated with the number of mast cells in the bladder, suggesting inflammation may be involved. There were no detectable changes in epithelial composition or apoptosis as indicated by expression of cleaved caspase 3, suggesting PCBs do not cause overt toxicity. Bladder volume changes were not accompanied by changes in bladder mass or epithelial thickness, indicating that obstruction was not likely involved. Together, these results are the first to suggest that following developmental exposure, PCBs can distribute to the bladder and alter neuroanatomic development and bladder volume in male mice.
Collapse
Affiliation(s)
- Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA,Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA,Corresponding author at: Department of Comparative Biosciences University of Wisconsin-Madison School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Conner L. Kennedy
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Anthony Valenzuela
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Alexandra Nunez
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Kathy Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Zunyi Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Peiqing Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Dale E. Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| |
Collapse
|
47
|
Berntsen HF, Duale N, Bjørklund CG, Rangel-Huerta OD, Dyrberg K, Hofer T, Rakkestad KE, Østby G, Halsne R, Boge G, Paulsen RE, Myhre O, Ropstad E. Effects of a human-based mixture of persistent organic pollutants on the in vivo exposed cerebellum and cerebellar neuronal cultures exposed in vitro. ENVIRONMENT INTERNATIONAL 2021; 146:106240. [PMID: 33186814 DOI: 10.1016/j.envint.2020.106240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Exposure to persistent organic pollutants (POPs), encompassing chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) compounds is associated with adverse neurobehaviour in humans and animals, and is observed to cause adverse effects in nerve cell cultures. Most studies focus on single POPs, whereas studies on effects of complex mixtures are limited. We examined the effects of a mixture of 29 persistent compounds (Cl + Br + PFAA, named Total mixture), as well as 6 sub-mixtures on in vitro exposed rat cerebellar granule neurons (CGNs). Protein expression studies of cerebella from in vivo exposed mice offspring were also conducted. The selection of chemicals for the POP mixture was based on compounds being prominent in food, breast milk or blood from the Scandinavian human population. The Total mixture and sub-mixtures containing PFAAs caused greater toxicity in rat CGNs than the single or combined Cl/Br sub-mixtures, with significant impact on viability from 500x human blood levels. The potencies for these mixtures based on LC50 values were Br + PFAA mixture > Total mixture > Cl + PFAA mixture > PFAA mixture. These mixtures also accelerated induced lipid peroxidation. Protection by the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) indicated involvement of the NMDA receptor in PFAA and Total mixture-, but not Cl mixture-induced toxicity. Gene-expression studies in rat CGNs using a sub-toxic and marginally toxic concentration ((0.4 nM-5.5 µM) 333x and (1 nM-8.2 µM) 500x human blood levels) of the mixtures, revealed differential expression of genes involved in apoptosis, oxidative stress, neurotransmission and cerebellar development, with more genes affected at the marginally toxic concentration. The two important neurodevelopmental markers Pax6 and Grin2b were downregulated at 500x human blood levels, accompanied by decreases in PAX6 and GluN2B protein levels, in cerebellum of offspring mice from mothers exposed to the Total mixture throughout pregnancy and lactation. In rat CGNs, the glutathione peroxidase gene Prdx6 and the regulatory transmembrane glycoprotein gene Sirpa were highly upregulated at both concentrations. In conclusion, our results support that early-life exposure to mixtures of POPs can cause adverse neurodevelopmental effects.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, 0304 Oslo, Norway.
| | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Cesilie Granum Bjørklund
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | | | - Kine Dyrberg
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Kirsten Eline Rakkestad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Gunn Østby
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ruth Halsne
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Gudrun Boge
- Department of Companion Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| |
Collapse
|
48
|
Li X, Zhang C, Wang K, Lehmler HJ. Fatty liver and impaired hepatic metabolism alter the congener-specific distribution of polychlorinated biphenyls (PCBs) in mice with a liver-specific deletion of cytochrome P450 reductase. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115233. [PMID: 32712482 PMCID: PMC7492420 DOI: 10.1016/j.envpol.2020.115233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 05/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that are linked to adverse health outcomes. PCB tissue levels are determinants of PCB toxicity; however, it is unclear how factors, such as an altered metabolism and/or a fatty liver, affect PCB distribution in vivo. We determined the congener-specific disposition of PCBs in mice with a liver-specific deletion of cytochrome P450 reductase (KO), a model of fatty liver with impaired hepatic metabolism, and wild-type (WT) mice. Eight-week-old male WT (MWT, n = 3), male KO (MKO, n = 5), female WT (FWT, n = 4), and female KO mice (FKO, n = 4) were exposed orally to Aroclor 1254. PCBs were quantified in adipose, blood, brain, and liver tissues by gas chromatography-mass spectrometry. The ΣPCB levels followed the rank order adipose > liver ∼ brain > blood in WT and adipose ∼ liver > brain > blood in KO mice. PCB levels were much higher in the liver of KO than WT mice, irrespective of the sex. A comparison across exposure groups revealed minor genotype and sex-dependent differences in the PCB congener profiles (cos Θ > 0.92). Within each exposure group, tissue profiles showed small differences between tissues (cos Θ = 0.85 to 0.98). These differences were due to a decrease in metabolically more labile PCB congeners and an increase in congeners resistant to metabolism. The tissue-to-blood ratio of PCBs decreased for adipose, increased for the brain, and remained constant for the liver with an increase in chlorination. While these ratios did not follow the trends predicted using a composition-based model, the agreement between experimental and calculated partition coefficients was reasonable. Although the distribution of PCBs differs between KO and WT mice, the magnitude of the partitioning of PCBs from the blood into tissues can be approximated using composition-based models.
Collapse
Affiliation(s)
- Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Chunyun Zhang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
49
|
Li X, Zhang C, Wang K, Lehmler HJ. Fatty liver and impaired hepatic metabolism alter the congener-specific distribution of polychlorinated biphenyls (PCBs) in mice with a liver-specific deletion of cytochrome P450 reductase. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020. [PMID: 32712482 DOI: 10.25820/data.006117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that are linked to adverse health outcomes. PCB tissue levels are determinants of PCB toxicity; however, it is unclear how factors, such as an altered metabolism and/or a fatty liver, affect PCB distribution in vivo. We determined the congener-specific disposition of PCBs in mice with a liver-specific deletion of cytochrome P450 reductase (KO), a model of fatty liver with impaired hepatic metabolism, and wild-type (WT) mice. Eight-week-old male WT (MWT, n = 3), male KO (MKO, n = 5), female WT (FWT, n = 4), and female KO mice (FKO, n = 4) were exposed orally to Aroclor 1254. PCBs were quantified in adipose, blood, brain, and liver tissues by gas chromatography-mass spectrometry. The ΣPCB levels followed the rank order adipose > liver ∼ brain > blood in WT and adipose ∼ liver > brain > blood in KO mice. PCB levels were much higher in the liver of KO than WT mice, irrespective of the sex. A comparison across exposure groups revealed minor genotype and sex-dependent differences in the PCB congener profiles (cos Θ > 0.92). Within each exposure group, tissue profiles showed small differences between tissues (cos Θ = 0.85 to 0.98). These differences were due to a decrease in metabolically more labile PCB congeners and an increase in congeners resistant to metabolism. The tissue-to-blood ratio of PCBs decreased for adipose, increased for the brain, and remained constant for the liver with an increase in chlorination. While these ratios did not follow the trends predicted using a composition-based model, the agreement between experimental and calculated partition coefficients was reasonable. Although the distribution of PCBs differs between KO and WT mice, the magnitude of the partitioning of PCBs from the blood into tissues can be approximated using composition-based models.
Collapse
Affiliation(s)
- Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Chunyun Zhang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
50
|
Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? TOXICS 2020; 8:toxics8030070. [PMID: 32957475 PMCID: PMC7560399 DOI: 10.3390/toxics8030070] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders defined clinically by core deficits in social reciprocity and communication, restrictive interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89 children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1-2%. While there is increasing consensus that ASD results from complex gene x environment interactions, the identity of specific environmental risk factors and the mechanisms by which environmental and genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically susceptible individuals.
Collapse
|