1
|
Pitzer EM, Shafer TJ, Herr DW. Identification of neurotoxicology (NT)/developmental neurotoxicology (DNT) adverse outcome pathways and key event linkages with in vitro DNT screening assays. Neurotoxicology 2023; 99:184-194. [PMID: 37866692 DOI: 10.1016/j.neuro.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/14/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
There is a need to assess compounds reliably and quickly for neurotoxicity (NT) and developmental neurotoxicity (DNT). Adverse outcome pathways (AOPs) enable the mapping of molecular events to an apical endpoint in a chemical agnostic manner and have begun to be applied in NT and DNT testing frameworks. We assessed the status of NT/DNT AOPs in the AOP-Wiki (ca. 2/1/23; https://aopwiki.org/), to characterize the state of AOP development, identify strengths and knowledge gaps, elucidate areas for improvement, and describe areas for future focus. AOPs in the Wiki database were assessed for inclusion of NT/DNT molecular events and endpoints, AOP development and endorsement, as well as the linkages of key neurodevelopmental processes with in vitro new approach methods (NAMs). This review found that 41 AOPs have been proposed detailing NT/DNT, of which eight were endorsed by working parties in OECD. Further, this review determined that learning and memory is included as an adverse outcome in eight NT/DNT AOPS, often without distinction regarding the varying forms of learning and memory, regional specification, temporal dynamics, or acquisition mechanisms involved. There is also an overlap with key events (KEs) and in vitro NAMs, which synaptogenesis appeared as a common process. Overall, progress on NT/DNT AOPs could be expanded, adding in modes of action that are missing, improvement in defining apical endpoints, as well as utilizing NAMs further to develop AOPs and identify gaps in current knowledge.
Collapse
Affiliation(s)
- Emily M Pitzer
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - David W Herr
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
2
|
Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal GP, Lucena MI, Andrade RJ, Fromenty B, Kranendonk M, Cubero FJ, Nelson LJ. Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J Hepatol 2021; 75:935-959. [PMID: 34171436 DOI: 10.1016/j.jhep.2021.06.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.
Collapse
Affiliation(s)
- Jose C Fernandez-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033.
| | - Pierre Bagnaninchi
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK
| | - Hui Ye
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Pau Sancho-Bru
- Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Falcon-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48015, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Joana Miranda
- Research Institute for iMedicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Gareth J Sullivan
- University of Oslo and the Oslo University Hospital, Oslo, Norway; Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hosptial, Oslo, Norway
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación, Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Leonard J Nelson
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK; Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH12 2AS, Scotland, UK.
| |
Collapse
|
3
|
Petroff R, Hendrix A, Shum S, Grant KS, Lefebvre KA, Burbacher TM. Public health risks associated with chronic, low-level domoic acid exposure: A review of the evidence. Pharmacol Ther 2021; 227:107865. [PMID: 33930455 DOI: 10.1016/j.pharmthera.2021.107865] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Domoic acid (DA), the causative agent for the human syndrome Amnesic Shellfish Poisoning (ASP), is a potent, naturally occurring neurotoxin produced by common marine algae. DA accumulates in seafood, and humans and wildlife alike can subsequently be exposed when consuming DA-contaminated shellfish or finfish. While strong regulatory limits protect people from the acute effects associated with ASP, DA is an increasingly significant public health concern, particularly for coastal dwelling populations, and there is a growing body of evidence suggesting that there are significant health consequences following repeated exposures to levels of the toxin below current safety guidelines. However, gaps in scientific knowledge make it difficult to precisely determine the risks of contemporary low-level exposure scenarios. The present review characterizes the toxicokinetics and neurotoxicology of DA, discussing results from clinical and preclinical studies after both adult and developmental DA exposure. The review also highlights crucial areas for future DA research and makes the case that DA safety limits need to be reassessed to best protect public health from deleterious effects of this widespread marine toxin.
Collapse
Affiliation(s)
- Rebekah Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Alicia Hendrix
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kimberly S Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Kathi A Lefebvre
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA; Infant Primate Research Laboratory, Washington National Primate Research Center, Seattle,WA, USA.
| |
Collapse
|
4
|
Jin Y, Feng M, Ma W, Wei Y, Qi G, Luo J, Xu L, Li X, Li C, Wang Y, Li D, Chen J, Zhao Y, Hou Y, Zhao Q, Jiang L, Xie M, Zheng Y, Yu D. A toxicity pathway-oriented approach to develop adverse outcome pathway: AHR activation as a case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115733. [PMID: 33011576 DOI: 10.1016/j.envpol.2020.115733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/03/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
With numerous new chemicals introduced into the environment everyday, identification of their potential hazards to the environment and human health is a considerable challenge. Developing adverse outcome pathway (AOP) framework is promising in helping to achieve this goal as it can bring In Vitro testing into toxicity measurement and understanding. To explore the toxic mechanism underlying environmental chemicals via the AOP approach, an integration of adequate experimental data with systems biology understanding is preferred. Here, we describe a novel method to develop reliable and sensible AOPs that relies on chemical-gene interactions, toxicity pathways, molecular regulations, phenotypes, and outcomes information obtained from comparative toxicogenomics database (CTD) and Ingenuity Pathway Analysis (IPA). Using Benzo(a)pyrene (BaP), a highly studied chemical as a stressor, we identified the pivotal IPA toxicity pathways, the molecular initiating event (MIE), and candidate key events (KEs) to structure AOPs in the liver and lung, respectively. Further, we used the corresponding CTD information of multiple typical AHR-ligands, including 2,3,7,8-tetrachlorodibenzoparadioxin (TCDD), valproic acid, quercetin, and particulate matter, to validate our AOP networks. Our approach is likely to speed up AOP development as providing a time- and cost-efficient way to collect all fragmented bioinformation in published studies. It also facilitates a better understanding of the toxic mechanism of environmental chemicals, and potentially brings new insights into the screening of critical paths in the AOP network.
Collapse
Affiliation(s)
- Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Meiyao Feng
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanhong Wei
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guangshuai Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Xinmei Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yufei Hou
- School of Public Health, Qingdao University, Qingdao, China
| | - Qianwen Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Lidan Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Mengyue Xie
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Characterization and application of electrically active neuronal networks established from human induced pluripotent stem cell-derived neural progenitor cells for neurotoxicity evaluation. Stem Cell Res 2020; 45:101761. [PMID: 32244191 DOI: 10.1016/j.scr.2020.101761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurotoxicity is mediated by a variety of modes-of-actions leading to disturbance of neuronal function. In order to screen larger numbers of compounds for their neurotoxic potential, in vitro functional neuronal networks (NN) might be helpful tools. We established and characterized human NN (hNN) from hiPSC-derived neural progenitor cells by comparing hNN formation with two different differentiation media: in presence (CINDA) and absence (neural differentiation medium (NDM)) of maturation-supporting factors. As a NN control we included differentiating rat NN (rNN) in the study. Gene/protein expression and electrical activity from in vitro developing NN were assessed at multiple time points. Transcriptomes of 5, 14 and 28 days in vitro CINDA-grown hNN were compared to gene expression profiles of in vivo human developing brains. Molecular expression analyses as well as measures of electrical activity indicate that NN mature into neurons of different subtypes and astrocytes over time. In contrast to rNN, hNN are less electrically active within the same period of differentiation time, yet hNN grown in CINDA medium develop higher firing rates than hNN without supplements. Challenge of NN with neuronal receptor stimulators and inhibitors demonstrate presence of inhibitory, GABAergic neurons, whereas glutamatergic responses are limited. hiPSC-derived GABAergic hNN grown in CINDA medium might be a useful tool as part of an in vitro battery for assessing neurotoxicity.
Collapse
|
6
|
Renaud L, Agarwal N, Richards DJ, Falcinelli S, Hazard ES, Carnevali O, Hyde J, Hardiman G. Transcriptomic analysis of short-term 17α-ethynylestradiol exposure in two Californian sentinel fish species sardine (Sardinops sagax) and mackerel (Scomber japonicus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:926-937. [PMID: 30469287 DOI: 10.1016/j.envpol.2018.10.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are substances which disrupt normal functioning of the endocrine system by interfering with hormone regulated physiological pathways. Aquatic environments provide the ultimate reservoir for many EDCs as they enter rivers and the ocean via effluent discharges and accumulate in sediments. One EDC widely dispersed in municipal wastewater effluent discharges is 17α-ethynylestradiol (EE2), which is one of the most widely prescribed medicines. EE2 is a bio-active estrogen employed in the majority of oral contraceptive pill formulations. As evidence of the health risks posed by EDCs mount, there is an urgent need to improve diagnostic tools for monitoring the effects of pollutants. As the cost of high throughput sequencing (HTS) diminishes, transcriptional profiling of an organism in response to EDC perturbation presents a cost-effective way of screening a wide range of endocrine responses. Coastal pelagic filter feeding fish species analyzed using HTS provide an excellent tool for EDC risk assessment in the marine environment. Unfortunately, there are limited genome sequence data and annotation for many of these species including Pacific sardine (Sardinops sagax) and chub mackerel (Scomber japonicus), which limits the utility of molecular tools such as HTS to interrogate the effects of endocrine disruption. In this study, we carried out RNA sequencing (RNAseq) of liver RNA harvested from wild sardine and mackerel exposed for 5 h under laboratory conditions to a concentration of 12.5 pM EE2 in the tank water. We developed an analytical framework for transcriptomic analyses of species with limited genomic information. EE2 exposure altered expression patterns of key genes involved in important metabolic and physiological processes. The systems approach presented here provides a powerful tool for obtaining a comprehensive picture of endocrine disruption in aquatic organisms.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Nisha Agarwal
- Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA
| | | | - Silvia Falcinelli
- Dipartimento di Scienze della Vita e Dell'Ambiente, Università Politecnica della Marche, 60131, Ancona, Italy
| | - E Starr Hazard
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA; Academic Affairs Faculty & Computational Biology Resource Center, Medical University of South Carolina, Charleston, SC, USA
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e Dell'Ambiente, Università Politecnica della Marche, 60131, Ancona, Italy
| | - John Hyde
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA, USA
| | - Gary Hardiman
- Department of Medicine, Nephrology, Medical University of South Carolina, Charleston, SC, USA; Biomedical Informatics Research Center, San Diego State University, San Diego, CA, USA; MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA; Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC, USA; School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
7
|
A Time Series of Water Column Distributions and Sinking Particle Flux of Pseudo-Nitzschia and Domoic Acid in the Santa Barbara Basin, California. Toxins (Basel) 2018; 10:toxins10110480. [PMID: 30453659 PMCID: PMC6265954 DOI: 10.3390/toxins10110480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
Water column bulk Pseudo-nitzschia abundance and the dissolved and particulate domoic acid (DA) concentrations were measured in the Santa Barbara Basin (SBB), California from 2009–2013 and compared to bulk Pseudo-nitzschia cell abundance and DA concentrations and fluxes in sediment traps moored at 147 m and 509 m. Pseudo-nitzschia abundance throughout the study period was spatially and temporally heterogeneous (<200 cells L−1 to 3.8 × 106 cells L−1, avg. 2 × 105 ± 5 × 105 cells L−1) and did not correspond with upwelling conditions or the total DA (tDA) concentration, which was also spatially and temporally diverse (<1.3 ng L−1 to 2.2 × 105 ng L−1, avg. 7.8 × 103 ± 2.2 × 104 ng L−1). We hypothesize that the toxicity is likely driven in part by specific Pseudo-nitzschia species as well as bloom stage. Dissolved (dDA) and particulate (pDA) DA were significantly and positively correlated (p < 0.01) and both comprised major components of the total DA pool (pDA = 57 ± 35%, and dDA = 42 ± 35%) with substantial water column concentrations (>1000 cells L−1 and tDA = 200 ng L−1) measured as deep as 150 m. Our results highlight that dDA should not be ignored when examining bloom toxicity. Although water column abundance and pDA concentrations were poorly correlated with sediment trap Pseudo-nitzschia abundance and fluxes, DA toxicity is likely associated with senescent blooms that rapidly sink to the seafloor, adding another potential source of DA to benthic organisms.
Collapse
|
8
|
Strickland JD, Martin MT, Richard AM, Houck KA, Shafer TJ. Screening the ToxCast phase II libraries for alterations in network function using cortical neurons grown on multi-well microelectrode array (mwMEA) plates. Arch Toxicol 2018; 92:487-500. [PMID: 28766123 PMCID: PMC6438628 DOI: 10.1007/s00204-017-2035-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Methods are needed for rapid screening of environmental compounds for neurotoxicity, particularly ones that assess function. To demonstrate the utility of microelectrode array (MEA)-based approaches as a rapid neurotoxicity screening tool, 1055 chemicals from EPA's phase II ToxCast library were evaluated for effects on neural function and cell health. Primary cortical networks were grown on multi-well microelectrode array (mwMEA) plates. On day in vitro 13, baseline activity (40 min) was recorded prior to exposure to each compound (40 µM). Changes in spontaneous network activity [mean firing rate (MFR)] and cell viability (lactate dehydrogenase and CellTiter Blue) were assessed within the same well following compound exposure. Following exposure, 326 compounds altered (increased or decreased) normalized MFR beyond hit thresholds based on 2× the median absolute deviation of DMSO-treated wells. Pharmaceuticals, pesticides, fungicides, chemical intermediates, and herbicides accounted for 86% of the hits. Further, changes in MFR occurred in the absence of cytotoxicity, as only eight compounds decreased cell viability. ToxPrint chemotype analysis identified several structural domains (e.g., biphenyls and alkyl phenols) significantly enriched with MEA actives relative to the total test set. The top 5 enriched ToxPrint chemotypes were represented in 26% of the MEA hits, whereas the top 11 ToxPrints were represented in 34% of MEA hits. These results demonstrate that large-scale functional screening using neural networks on MEAs can fill a critical gap in assessment of neurotoxicity potential in ToxCast assay results. Further, a data-mining approach identified ToxPrint chemotypes enriched in the MEA-hit subset, which define initial structure-activity relationship inferences, establish potential mechanistic associations to other ToxCast assay endpoints, and provide working hypotheses for future studies.
Collapse
Affiliation(s)
- Jenna D Strickland
- Axion Biosystems, Atlanta, GA, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Matthew T Martin
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, MD D143-02, Research Triangle Park, NC, 27711, USA
- Pfizer Inc, Groton, CT, USA
| | - Ann M Richard
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, MD D143-02, Research Triangle Park, NC, 27711, USA
| | - Keith A Houck
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, MD D143-02, Research Triangle Park, NC, 27711, USA
| | - Timothy J Shafer
- Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, MD105-05, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
9
|
Legradi JB, Di Paolo C, Kraak MHS, van der Geest HG, Schymanski EL, Williams AJ, Dingemans MML, Massei R, Brack W, Cousin X, Begout ML, van der Oost R, Carion A, Suarez-Ulloa V, Silvestre F, Escher BI, Engwall M, Nilén G, Keiter SH, Pollet D, Waldmann P, Kienle C, Werner I, Haigis AC, Knapen D, Vergauwen L, Spehr M, Schulz W, Busch W, Leuthold D, Scholz S, vom Berg CM, Basu N, Murphy CA, Lampert A, Kuckelkorn J, Grummt T, Hollert H. An ecotoxicological view on neurotoxicity assessment. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:46. [PMID: 30595996 PMCID: PMC6292971 DOI: 10.1186/s12302-018-0173-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 05/04/2023]
Abstract
The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.
Collapse
Affiliation(s)
- J. B. Legradi
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Environment and Health, VU University, 1081 HV Amsterdam, The Netherlands
| | - C. Di Paolo
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - M. H. S. Kraak
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - H. G. van der Geest
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - E. L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - A. J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - M. M. L. Dingemans
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - R. Massei
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - W. Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - X. Cousin
- Ifremer, UMR MARBEC, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, 34250 Palavas-les-Flots, France
- INRA, UMR GABI, INRA, AgroParisTech, Domaine de Vilvert, Batiment 231, 78350 Jouy-en-Josas, France
| | - M.-L. Begout
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, 17137 L’Houmeau, France
| | - R. van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, The Netherlands
| | - A. Carion
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - V. Suarez-Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - F. Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - B. I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| | - M. Engwall
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - G. Nilén
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - S. H. Keiter
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - D. Pollet
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - P. Waldmann
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - C. Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - I. Werner
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - A.-C. Haigis
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - D. Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - L. Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - M. Spehr
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - W. Schulz
- Zweckverband Landeswasserversorgung, Langenau, Germany
| | - W. Busch
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - D. Leuthold
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - S. Scholz
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - C. M. vom Berg
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600 Switzerland
| | - N. Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - C. A. Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, USA
| | - A. Lampert
- Institute of Physiology (Neurophysiology), Aachen, Germany
| | - J. Kuckelkorn
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - T. Grummt
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - H. Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
10
|
Arini A, Mittal K, Dornbos P, Head J, Rutkiewicz J, Basu N. A cell-free testing platform to screen chemicals of potential neurotoxic concern across twenty vertebrate species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3081-3090. [PMID: 28594109 DOI: 10.1002/etc.3880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/09/2017] [Accepted: 06/05/2017] [Indexed: 05/20/2023]
Abstract
There is global demand for new in vitro testing tools for ecological risk assessment. The objective of the present study was to apply a set of cell-free neurochemical assays to screen many chemicals across many species in a relatively high-throughput manner. The platform assessed 7 receptors and enzymes that mediate neurotransmission of γ-aminobutyric acid, dopamine, glutamate, and acetylcholine. Each assay was optimized to work across 20 vertebrate species (5 fish, 5 birds, 7 mammalian wildlife, 3 biomedical species including humans). We tested the screening assay platform against 80 chemicals (23 pharmaceuticals and personal care products, 20 metal[loid]s, 22 polycyclic aromatic hydrocarbons and halogenated organic compounds, 15 pesticides). In total, 10 800 species-chemical-assay combinations were tested, and significant differences were found in 4041 cases. All 7 assays were significantly affected by at least one chemical in each species tested. Among the 80 chemicals tested, nearly all resulted in a significant impact on at least one species and one assay. The 5 most active chemicals were prochloraz, HgCl2 , Sn, benzo[a]pyrene, and vinclozolin. Clustering analyses revealed groupings according to chemicals, species, and chemical-assay combinations. The results show that cell-free assays can screen a large number of samples in a short period of time in a cost-effective manner in a range of animals not easily studied using traditional approaches. Strengths and limitations of this approach are discussed, as well as next steps. Environ Toxicol Chem 2017;36:3081-3090. © 2017 SETAC.
Collapse
Affiliation(s)
- Adeline Arini
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Krittika Mittal
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Peter Dornbos
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Jessica Head
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer Rutkiewicz
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- ToxServices, Ann Arbor, Michigan, USA
| | - Niladri Basu
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Aschner M, Ceccatelli S, Daneshian M, Fritsche E, Hasiwa N, Hartung T, Hogberg HT, Leist M, Li A, Mundi WR, Padilla S, Piersma AH, Bal-Price A, Seiler A, Westerink RH, Zimmer B, Lein PJ. Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2016; 34:49-74. [PMID: 27452664 PMCID: PMC5250586 DOI: 10.14573/altex.1604201] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/09/2016] [Indexed: 11/23/2022]
Abstract
There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e. alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of >50 endpoint-specific control compounds was identified. For further test development, an additional “test” set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the >100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems.
Collapse
Affiliation(s)
| | | | - Mardas Daneshian
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Nina Hasiwa
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany.,Center for Alternatives to Animal Testing (CAAT), The Johns Hopkins University, Baltimore, MD, USA
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), The Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany.,In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation at the University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), Konstanz University
| | - Abby Li
- Exponent Inc.,San Francisco, USA
| | - William R Mundi
- United States Environmental Protection Agency (USEPA), NHEERL, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- United States Environmental Protection Agency (USEPA), NHEERL, Research Triangle Park, NC, USA
| | - Aldert H Piersma
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anna Bal-Price
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Andrea Seiler
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Remco H Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | | - Pamela J Lein
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, USA.,Department of Molecular Biosciences, University of California, Davis, USA
| |
Collapse
|
12
|
Gust KA, Collier ZA, Mayo ML, Stanley JK, Gong P, Chappell MA. Limitations of toxicity characterization in life cycle assessment: Can adverse outcome pathways provide a new foundation? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2016; 12:580-590. [PMID: 26331849 DOI: 10.1002/ieam.1708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/05/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
Life cycle assessment (LCA) has considerable merit for holistic evaluation of product planning, development, production, and disposal, with the inherent benefit of providing a forecast of potential health and environmental impacts. However, a technical review of current life cycle impact assessment (LCIA) methods revealed limitations within the biological effects assessment protocols, including: simplistic assessment approaches and models; an inability to integrate emerging types of toxicity data; a reliance on linear impact assessment models; a lack of methods to mitigate uncertainty; and no explicit consideration of effects in species of concern. The purpose of the current study is to demonstrate that a new concept in toxicological and regulatory assessment, the adverse outcome pathway (AOP), has many useful attributes of potential use to ameliorate many of these problems, to expand data utility and model robustness, and to enable more accurate and defensible biological effects assessments within LCIA. Background, context, and examples have been provided to demonstrate these potential benefits. We additionally propose that these benefits can be most effectively realized through development of quantitative AOPs (qAOPs) crafted to meet the needs of the LCIA framework. As a means to stimulate qAOP research and development in support of LCIA, we propose 3 conceptual classes of qAOP, each with unique inherent attributes for supporting LCIA: 1) mechanistic, including computational toxicology models; 2) probabilistic, including Bayesian networks and supervised machine learning models; and 3) weight of evidence, including models built using decision-analytic methods. Overall, we have highlighted a number of potential applications of qAOPs that can refine and add value to LCIA. As the AOP concept and support framework matures, we see the potential for qAOPs to serve a foundational role for next-generation effects characterization within LCIA. Integr Environ Assess Manag 2016;12:580-590. Published 2015. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Kurt A Gust
- US Army Engineer Research & Development Center, Vicksburg, Mississippi
| | - Zachary A Collier
- US Army Engineer Research & Development Center, Vicksburg, Mississippi
| | - Michael L Mayo
- US Army Engineer Research & Development Center, Vicksburg, Mississippi
| | - Jacob K Stanley
- US Army Engineer Research & Development Center, Vicksburg, Mississippi
| | - Ping Gong
- US Army Engineer Research & Development Center, Vicksburg, Mississippi
| | - Mark A Chappell
- US Army Engineer Research & Development Center, Vicksburg, Mississippi
| |
Collapse
|
13
|
Vassallo A, Chiappalone M, De Camargos Lopes R, Scelfo B, Novellino A, Defranchi E, Palosaari T, Weisschu T, Ramirez T, Martinoia S, Johnstone AFM, Mack CM, Landsiedel R, Whelan M, Bal-Price A, Shafer TJ. A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing. Neurotoxicology 2016; 60:280-292. [PMID: 27036093 DOI: 10.1016/j.neuro.2016.03.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/25/2016] [Accepted: 03/28/2016] [Indexed: 12/19/2022]
Abstract
There is a need for methods to screen and prioritize chemicals for potential hazard, including neurotoxicity. Microelectrode array (MEA) systems enable simultaneous extracellular recordings from multiple sites in neural networks in real time and thereby provide a robust measure of network activity. In this study, spontaneous activity measurements from primary neuronal cultures treated with three neurotoxic or three non-neurotoxic compounds was evaluated across four different laboratories. All four individual laboratories correctly identifed the neurotoxic compounds chlorpyrifos oxon (an organophosphate insecticide), deltamethrin (a pyrethroid insecticide) and domoic acid (an excitotoxicant). By contrast, the other three compounds (glyphosate, dimethyl phthalate and acetaminophen) considered to be non-neurotoxic ("negative controls"), produced only sporadic changes of the measured parameters. The results were consistent across the different laboratories, as all three neurotoxic compounds caused concentration-dependent inhibition of mean firing rate (MFR). Further, MFR appeared to be the most sensitive parameter for effects of neurotoxic compounds, as changes in electrical activity measured by mean frequency intra burst (MFIB), and mean burst duration (MBD) did not result in concentration-response relationships for some of the positive compounds, or required higher concentrations for an effect to be observed. However, greater numbers of compounds need to be tested to confirm this. The results obtained indicate that measurement of spontaneous electrical activity using MEAs provides a robust assessment of compound effects on neural network function.
Collapse
Affiliation(s)
- Andrea Vassallo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Infomatics Bioengineering, Robotics, SystemEngeneering, University of Genova, Genova, Italy
| | - Michela Chiappalone
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Ricardo De Camargos Lopes
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Clinical Engineering, University Hospital of Santa Maria, Av. Roraima, 1000-Predio 22, Bairro Camobi, Santa Maria, CEP: 97105-900 RS, Brazil
| | - Bibiana Scelfo
- Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Antonio Novellino
- Alternative Toxicity Service Unit-ETT SpA, via Sestri 37, 16154 Genova, Italy
| | - Enrico Defranchi
- Alternative Toxicity Service Unit-ETT SpA, via Sestri 37, 16154 Genova, Italy
| | - Taina Palosaari
- Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Timo Weisschu
- Experimental Toxicology and Ecology, BASF, Carl Bosch-Strasse, 67056 Ludwigshafen am Rhein, Germany
| | - Tzutzuy Ramirez
- Experimental Toxicology and Ecology, BASF, Carl Bosch-Strasse, 67056 Ludwigshafen am Rhein, Germany
| | - Sergio Martinoia
- Department of Infomatics Bioengineering, Robotics, SystemEngeneering, University of Genova, Genova, Italy
| | - Andrew F M Johnstone
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Cina M Mack
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, BASF, Carl Bosch-Strasse, 67056 Ludwigshafen am Rhein, Germany
| | - Maurice Whelan
- Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Anna Bal-Price
- Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Timothy J Shafer
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
14
|
Zuloaga DG, Lahvis GP, Mills B, Pearce HL, Turner J, Raber J. Fetal domoic acid exposure affects lateral amygdala neurons, diminishes social investigation and alters sensory-motor gating. Neurotoxicology 2016; 53:132-140. [PMID: 26797589 PMCID: PMC5929993 DOI: 10.1016/j.neuro.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/01/2023]
Abstract
Domoic acid (DA) is an algal neurotoxin that accumulates in marine fish and shellfish. DA can move across the placenta and concentrate in amniotic fluid, which can be swallowed during late gestation. DA also transfers to infants via milk. Preclinical studies to determine effects of developmental DA expose have primarily involved DA exposure during the postnatal period and little is known about late CNS effects following prenatal DA. In the present study, we tested the hypothesis that prenatal exposure of FVB mice to low levels of DA would result in diminished social interaction and sensory motor gating associated with alterations in parvalbumin immunoreactivity in relevant brain regions undergoing development during and following DA exposure. In addition to parvalbumin, we stained with NeuN for a neuronal specific nuclear protein to determine if neuronal loss followed prenatal DA exposure. A single moderate dose of DA administered during gestation produces diminishes social investigation and alters sensorimotor gating, behavioral effects more pronounced in males than females. These behavioral changes were associated with discrete alterations in the parvalbumin-positive subtype of GABAergic neurons in the dentate gyrus and lateral amygdala.
Collapse
Affiliation(s)
- D G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - G P Lahvis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States.
| | - B Mills
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - H L Pearce
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - J Turner
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - J Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
15
|
Margiotta-Casaluci L, Owen SF, Huerta B, Rodríguez-Mozaz S, Kugathas S, Barceló D, Rand-Weaver M, Sumpter JP. Internal exposure dynamics drive the Adverse Outcome Pathways of synthetic glucocorticoids in fish. Sci Rep 2016; 6:21978. [PMID: 26917256 PMCID: PMC4768075 DOI: 10.1038/srep21978] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/03/2016] [Indexed: 01/22/2023] Open
Abstract
The Adverse Outcome Pathway (AOP) framework represents a valuable conceptual tool to systematically integrate existing toxicological knowledge from a mechanistic perspective to facilitate predictions of chemical-induced effects across species. However, its application for decision-making requires the transition from qualitative to quantitative AOP (qAOP). Here we used a fish model and the synthetic glucocorticoid beclomethasone dipropionate (BDP) to investigate the role of chemical-specific properties, pharmacokinetics, and internal exposure dynamics in the development of qAOPs. We generated a qAOP network based on drug plasma concentrations and focused on immunodepression, skin androgenisation, disruption of gluconeogenesis and reproductive performance. We showed that internal exposure dynamics and chemical-specific properties influence the development of qAOPs and their predictive power. Comparing the effects of two different glucocorticoids, we highlight how relatively similar in vitro hazard-based indicators can lead to different in vivo risk. This discrepancy can be predicted by their different uptake potential, pharmacokinetic (PK) and pharmacodynamic (PD) profiles. We recommend that the development phase of qAOPs should include the application of species-specific uptake and physiologically-based PK/PD models. This integration will significantly enhance the predictive power, enabling a more accurate assessment of the risk and the reliable transferability of qAOPs across chemicals.
Collapse
Affiliation(s)
- Luigi Margiotta-Casaluci
- Brunel University London, Institute of Environment, Health and Societies, London, UB8 3PH, United Kingdom.,AstraZeneca, Global Environment, Alderley Park, Macclesfield, SK10 4TF, United Kingdom
| | - Stewart F Owen
- AstraZeneca, Global Environment, Alderley Park, Macclesfield, SK10 4TF, United Kingdom
| | - Belinda Huerta
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, 17003, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, 17003, Spain
| | - Subramanian Kugathas
- Brunel University London, Institute of Environment, Health and Societies, London, UB8 3PH, United Kingdom
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, 17003, Spain.,Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Mariann Rand-Weaver
- Brunel University London, College of Health and Life Sciences, London, UB8 3PH, United Kingdom
| | - John P Sumpter
- Brunel University London, Institute of Environment, Health and Societies, London, UB8 3PH, United Kingdom
| |
Collapse
|
16
|
Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. A Workflow to Investigate Exposure and Pharmacokinetic Influences on High-Throughput in Vitro Chemical Screening Based on Adverse Outcome Pathways. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:53-60. [PMID: 25978103 PMCID: PMC4710605 DOI: 10.1289/ehp.1409450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/13/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals. OBJECTIVES We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition. METHODS Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood-brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites. RESULTS Application of the workflow screened 10 "low-priority" chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation. CONCLUSIONS The incorporation of exposure and ADME properties into the conceptual workflow eliminated 10 "low-priority" chemicals that may otherwise have undergone additional, resource-consuming analyses. Our workflow also increased confidence in interpretation of in vitro results by identifying possible "false negatives." CITATION Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. 2016. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways. Environ Health Perspect 124:53-60; http://dx.doi.org/10.1289/ehp.1409450.
Collapse
Affiliation(s)
- Martin B. Phillips
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Jeremy A. Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | | | | | - Stephen W. Edwards
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Raina Brooks
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Hisham El-Masri
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Yu-Mei Tan
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
17
|
Madden JC, Rogiers V, Vinken M. Application of in silico and in vitro methods in the development of adverse outcome pathway constructs in wildlife. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0584. [PMID: 25405971 DOI: 10.1098/rstb.2013.0584] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There is a long history of using both in silico and in vitro methods to predict adverse effects in humans and environmental species where toxicity data are lacking. Currently, there is a great deal of interest in applying these methods to the development of so-called 'adverse outcome pathway' (AOP) constructs. The AOP approach provides a framework for organizing information at the chemical and biological level, allowing evidence from both in silico and in vitro studies to be rationally combined to fill gaps in knowledge concerning toxicological events. Fundamental to this new paradigm is a greater understanding of the mechanisms of toxicity and, in particular, where these mechanisms may be conserved across taxa, such as between model animals and related wild species. This presents an opportunity to make predictions across diverse species, where empirical data are unlikely to become available as is the case for most species of wildlife.
Collapse
Affiliation(s)
- Judith C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St., Liverpool L3 3AF, UK
| | - Vera Rogiers
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| |
Collapse
|
18
|
Biales AD, Denton DL, Riordan D, Breuer R, Batt AL, Crane DB, Schoenfuss HL. Complex watersheds, collaborative teams: Assessing pollutant presence and effects in the San Francisco Delta. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2015; 11:674-688. [PMID: 25779725 DOI: 10.1002/ieam.1633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/19/2014] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
There is a great diversity of sources of chemical contaminants and stressors over large geographic areas. Chemical contaminant inputs and magnitude can potentially exhibit wide seasonal variation over large geographic areas. Together, these factors make linking exposure to monitored chemical contaminants and effects difficult. In practice, this linkage typically relies on relatively limited chemical occurrence data loosely coupled with individual effects, and population- or community-level assessments. Increased discriminatory power may be gained by approaching watershed level assessment in a more holistic manner, drawing from a number of disciplines that target endpoints spanning levels of the biological hierarchy. Using the Sacramento River as a case study, the present study aimed to 1) evaluate the performance of new analytical and biomarker tools in a real world setting and their potential for linking occurrence and effect; 2) characterize the effects of geographic and temporal variability through the integration of suborganismal, tissue, and individual level endpoints, as well as extensive chemical analyses; 3) identify knowledge gaps and research needs that limit the implementation of this holistic approach; and 4) provide an experimental design workflow for these types of assessments. Sites were selected to target inputs into the Sacramento River as it transitions from an agricultural to a mixed but primarily urban landscape. Chemical analyses were conducted on surface water samples at each site in both the spring and fall for pesticides, hormones, and active pharmaceutical ingredients (APIs). Active pharmaceutical ingredients were more often detected across sampling events in the fall; however, at the most downstream site the number of analytes detected and their concentrations were greater in the spring, which may be due to seasonal differences in rainfall. Changes in gene and protein expression targeting endocrine and reproductive effects were observed within each sampling event; however, they were inconsistent across seasons. Larval mortality at the most downstream site was seen in both seasons; however, behavioral changes were only observed in the spring. No clear linkages of specific analyte exposure to biological response were observed, nor were linkages across biological levels of organization. This failure may have resulted from limitations of the scope of molecular endpoints used, inconsistent timing of exposure, or discordance of analytical chemistry through grab sampling and longer term, integrative exposure. Together, results indicate a complicated view of the watershed.
Collapse
Affiliation(s)
- Adam D Biales
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio
| | - Debra L Denton
- US Environmental Protection Agency, Region 9, Sacramento, California
| | - Dan Riordan
- California Department of Water Resources, West Sacramento, California, USA
| | - Richard Breuer
- State Water Resources Control Board, Sacramento, California, USA
| | - Angela L Batt
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio
| | - David B Crane
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, USA
| |
Collapse
|
19
|
Hala D, Petersen LH, Martinović D, Huggett DB. In Silico analysis of perturbed steroidogenesis and gonad growth in fathead minnows (P. promelas) exposed to 17α-ethynylestradiol. Syst Biol Reprod Med 2015; 61:122-38. [PMID: 25910217 DOI: 10.3109/19396368.2015.1035817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The multi-factorial nature of adverse reproductive effects mediated by endocrine disrupting compounds (or EDCs) makes understanding the mechanistic basis of reproductive dysfunction a highly pertinent area of research. As a consequence, a main motivator for continued research is to integrate 'multi-leveled' complexity (i.e., from genes to phenotype) using mathematical methods capable of encapsulating properties of physiological relevance. In this study, an in silico stoichiometric model of piscine steroidogenesis was augmented with a 'biomass' reaction associating the underlying stoichiometry of steroidogenesis with a reaction representative of gonad growth. The ability of the in silico model to predict perturbed steroidogenesis and subsequent effects on gonad growth was tested by exposing reproductively active male and female fathead minnows (Pimephales promelas) to 88 ng/L of the synthetic estrogen, 17α-ethynylestradiol (EE2). The in silico model was parameterized (or constrained) with experimentally quantified concentrations of selected steroid hormones (using mass spectrometry) and fold changes in gene expression (using RT-qPCR) for selected steroidogenic enzyme genes, in gonads of male and female fish. Once constrained, the optimization framework of flux balance analysis (FBA) was used to calculate an optimal flux through the biomass reaction (analogous to gonad growth) and associated steroidogenic flux distributions required to generate biomass. FBA successfully predicted effects of EE2 exposure on fathead minnow gonad growth (%gonadosomatic index or %GSI) and perturbed production of steroid hormones. Specifically, FBA accurately predicted no effects of exposure on male %GSI and a significant reduction for female %GSI. Furthermore, in silico simulations accurately identified disrupted reaction fluxes catalyzing productions of androgens (in male fish) and progestogens (in female fish), an observation which agreed with in vivo experimentation. The analyses presented is the first-ever to successfully associate underlying flux properties of the steroidogenic network with gonad growth in fish, an approach which can incorporate in silico predictions with toxicological risk assessments.
Collapse
Affiliation(s)
- David Hala
- Department of Biology, University of North Texas , Denton, TX , USA
| | | | | | | |
Collapse
|
20
|
Alves VM, Muratov E, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicol Appl Pharmacol 2015; 284:262-72. [PMID: 25560674 PMCID: PMC4546933 DOI: 10.1016/j.taap.2014.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/14/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022]
Abstract
Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71-88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation.
Collapse
Affiliation(s)
- Vinicius M Alves
- Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220, Brazil; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical-Chemical Institute NAS of Ukraine, Odessa 65080, Ukraine
| | - Denis Fourches
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Judy Strickland
- ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Nicole Kleinstreuer
- ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Carolina H Andrade
- Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220, Brazil
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Knudsen TB, Keller DA, Sander M, Carney EW, Doerrer NG, Eaton DL, Fitzpatrick SC, Hastings KL, Mendrick DL, Tice RR, Watkins PB, Whelan M. FutureTox II: in vitro data and in silico models for predictive toxicology. Toxicol Sci 2015; 143:256-67. [PMID: 25628403 PMCID: PMC4318934 DOI: 10.1093/toxsci/kfu234] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology.
Collapse
Affiliation(s)
- Thomas B Knudsen
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Douglas A Keller
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Miriam Sander
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Edward W Carney
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Nancy G Doerrer
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - David L Eaton
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Suzanne Compton Fitzpatrick
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Kenneth L Hastings
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Donna L Mendrick
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Raymond R Tice
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Paul B Watkins
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Maurice Whelan
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| |
Collapse
|
22
|
Bal-Price A, Crofton KM, Leist M, Allen S, Arand M, Buetler T, Delrue N, FitzGerald RE, Hartung T, Heinonen T, Hogberg H, Bennekou SH, Lichtensteiger W, Oggier D, Paparella M, Axelstad M, Piersma A, Rached E, Schilter B, Schmuck G, Stoppini L, Tongiorgi E, Tiramani M, Monnet-Tschudi F, Wilks MF, Ylikomi T, Fritsche E. International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch Toxicol 2015; 89:269-87. [PMID: 25618548 PMCID: PMC4309915 DOI: 10.1007/s00204-015-1464-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/04/2014] [Indexed: 01/03/2023]
Abstract
A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISTNET) in DNT testing. The first meeting of ISTNET was held in Zurich on 23-24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems development according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a road map towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and addressing the transition from qualitative descriptions to quantitative network modelling.
Collapse
Affiliation(s)
- Anna Bal-Price
- Systems Toxicology Unit, EURL-ECVAM, Institute for Health and Consumer Protection, European Commission, Joint Research Centre, TP 580, Via Fermi 1, 21026, Ispra, VA, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
CONTEXT Bilastine is a new oral selective, non-sedating histamine H1 antagonist for the symptomatic treatment of allergic rhinoconjunctivitis and urticaria. The European Medicines Agency requires an Environmental Risk Assessment (ERA) for all novel medicines for human use. OBJECTIVE To calculate the bilastine predicted environmental concentration in surface water (PECsw; phase I ERA), and to determine the effects of bilastine on aquatic systems (phase II [tier A]). MATERIALS AND METHODS Bilastine PECsw was calculated using the maximum daily dosage (20 mg), assuming that all administered bilastine was released into the aquatic environment. A persistence, bioaccumulation and toxicity assessment was conducted using the log Kow from the molecular structure. In phase II (tier A), a ready biodegradability test was performed, and bilastine's potential toxicity to various aquatic and sediment-dwelling micro-organisms was evaluated. RESULTS Bilastine PECSW was calculated as 0.1 μg L(-1), and the compound was not readily biodegradable. Bilastine had no significant effects on Chironomus riparius midges, or on the respiration rate of activated sludge. For green algae, the bilastine no observed effect concentration (NOEC) was 22 mg L(-1); bilastine had no effect on zebra fish development, or on the reproduction rate of daphnids. DISCUSSION Bilastine NOEC values against zebra fish, algae, daphnids, and aerobic organisms in activated sludge were at least 130 000-fold greater than the calculated PECSW value. CONCLUSION No environmental concerns exist from bilastine use in patients with allergic rhinoconjunctivitis or urticaria.
Collapse
|
24
|
Garcia-Reyero N. Are adverse outcome pathways here to stay? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3-9. [PMID: 25469516 DOI: 10.1021/es504976d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Social pressure to minimize the use of animal testing and the ever-increasing concern on animal welfare, together with the need for more human-relevant and more predictive toxicity tests, are some of the drivers for new approaches to chemical screening. These approaches must also be able to accelerate the screening and assessment of the thousands of chemicals that are currently in use and in development for potential hazards to human and ecological health. Ideally, approaches are needed that decrease (or eliminate) animal testing while increasing predictivity. Efforts in many countries have focused on a toxicological pathway-based vision for human health assessments relying on in vitro systems and predictive models,1 vision equally applicable to ecological risk assessment.2 A pathway-based analysis of chemical effects opens numerous opportunities to apply nontraditional approaches for understanding the risks of chemical exposure. Conservation of molecular initiating and key events leading to adverse outcomes of regulatory concern provide a defensible framework for extrapolating chemical effects across species, even if the specific adverse outcomes differ between them.3.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University , Starkville, Mississippi 39762, United States
| |
Collapse
|
25
|
Basu N. Applications and implications of neurochemical biomarkers in environmental toxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:22-9. [PMID: 25331165 DOI: 10.1002/etc.2783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 05/20/2023]
Abstract
Thousands of environmental contaminants have neurotoxic properties, but their ecological risk is poorly characterized. Contaminant-associated disruptions to animal behavior and reproduction, both of which are regulated by the nervous system, provide decision makers with compelling evidence of harm, but such apical endpoints are of limited predictive or harm-preventative value. Neurochemical biomarkers, which may be used to indicate subtle changes at the subcellular level, may help overcome these limitations. Neurochemical biomarkers have been used for decades in the human health sciences and are now gaining increased attention in the environmental realm. In the present review, the applications and implications of neurochemical biomarkers to the field of ecotoxicology are discussed. The review provides a brief introduction to neurochemistry, covers neurochemical-based adverse outcome pathways, discusses pertinent strengths and limitations of neurochemical biomarkers, and provides selected examples across invertebrate and vertebrate taxa (worms, bivalves, fish, terrestrial and marine mammals, and birds) to document contaminant-associated neurochemical disruption. With continued research and development, neurochemical biomarkers may increase understanding of the mechanisms that underlie injury to ecological organisms, complement other measures of neurological health, and be integrated into risk assessment practices.
Collapse
Affiliation(s)
- Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Bal-Price A, Crofton KM, Sachana M, Shafer TJ, Behl M, Forsby A, Hargreaves A, Landesmann B, Lein PJ, Louisse J, Monnet-Tschudi F, Paini A, Rolaki A, Schrattenholz A, Suñol C, van Thriel C, Whelan M, Fritsche E. Putative adverse outcome pathways relevant to neurotoxicity. Crit Rev Toxicol 2015; 45:83-91. [PMID: 25605028 PMCID: PMC5072123 DOI: 10.3109/10408444.2014.981331] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Kevin M. Crofton
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, RTP, USA
| | - Magdalini Sachana
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Timothy J. Shafer
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, RTP, USA
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Anna Forsby
- Department of Neurochemistry, the Arrhenius Laboratories for NaturalScience, Stockholm University, Stockholm, Sweden, Swetox, Swedish Toxicology Sciences Research Center, Södertälje, Sweden
| | | | - Brigitte Landesmann
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Jochem Louisse
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | | | - Alicia Paini
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Alexandra Rolaki
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | | | - Cristina Suñol
- Institut d’Investigacions Biomèdiques de Barcelona, IIBB-CSIC, IDIBAPS, CIBERESP, Barcelona, Spain
| | - Christoph van Thriel
- IfADo-Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Maurice Whelan
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
27
|
Kim WK, Lee SK, Park JW, Choi K, Cargo J, Schlenk D, Jung J. Integration of multi-level biomarker responses to cadmium and benzo[k]fluoranthene in the pale chub (Zacco platypus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:121-128. [PMID: 25217733 DOI: 10.1016/j.ecoenv.2014.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
The Cd exposure for 14 days significantly increased both the molecular (DNA single-strand breaks) and biochemical (metallothionein concentrations) biomarkers in the freshwater pale chub, Zacco platypus, whereas changes in the histological and physiological biomarker responses were negligible. The BkF exposure for 14 days led to significant increases in the mRNA expression of catalase and superoxide dismutase, 7-ethoxyresorufin-O-deethylase enzymatic activity and DNA single-strand breakage at the molecular and biochemical levels. In addition, exposure to 50μg/L of BkF induced histological alteration in the liver, with significant changes to the liver somatic index and condition factor at the physiological level. The integration of multi-level biomarker responses at the molecular, biochemical and physiological levels was highly correlated with the concentrations of Cd and BkF.
Collapse
Affiliation(s)
- Woo-Keun Kim
- Future Environmental Research Center, Korea Institute of Toxicology, Jinju 660-844, Korea
| | - Sung-Kyu Lee
- Future Environmental Research Center, Korea Institute of Toxicology, Jinju 660-844, Korea
| | - June-Woo Park
- Future Environmental Research Center, Korea Institute of Toxicology, Jinju 660-844, Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 151-742, Korea
| | - Jordan Cargo
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | - Daniel Schlenk
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-713, Korea.
| |
Collapse
|
28
|
Russom CL, LaLone CA, Villeneuve DL, Ankley GT. Development of an adverse outcome pathway for acetylcholinesterase inhibition leading to acute mortality. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2157-69. [PMID: 24922588 DOI: 10.1002/etc.2662] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/13/2014] [Accepted: 06/08/2014] [Indexed: 05/05/2023]
Abstract
Adverse outcome pathways (AOPs) are designed to describe linkages of key events within a biological pathway that result in an adverse outcome associated with chemical perturbation of a well-defined molecular initiating event. Risk assessors have traditionally relied on data from apical endpoints (e.g., mortality, growth, reproduction) to derive benchmark values for use in determining the potential adverse impacts of chemicals. One goal in building reliable and well-characterized AOPs is to identify relevant in vitro assays and/or in vivo biomarkers that could be used in screening the potential hazard of substances, thereby reducing costs and increasing the number of chemicals that can be evaluated in a timely fashion. The purpose of this review article is to build an AOP for substances with a molecular initiating event of acetylcholinesterase inhibition leading to acute mortality following guidance developed by the Organisation for Economic Cooperation and Development. In contrast to most other AOPs developed to date, in which coverage is for a relatively limited taxonomic group or life stage, this AOP is applicable to a wide range of species at multiple life stages. Furthermore, while development of most AOPs has relied on data for a few model chemicals, the AOP described in the present review captures information from a large number of studies with a diversity of organophosphate and carbamate insecticides.
Collapse
Affiliation(s)
- Christine L Russom
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | | | | | | |
Collapse
|
29
|
Bo J, Gopalakrishnan S, Chen FY, Wang KJ. Benzo[a]pyrene modulates the biotransformation, DNA damage and cortisol level of red sea bream challenged with lipopolysaccharide. MARINE POLLUTION BULLETIN 2014; 85:463-470. [PMID: 24882445 DOI: 10.1016/j.marpolbul.2014.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 04/30/2014] [Accepted: 05/10/2014] [Indexed: 06/03/2023]
Abstract
In animals, biotransformation and the immune system interact with each other, however, knowledge of the toxic mechanism of benzo[a]pyrene (BaP) on these two systems is not well known. The present study investigated the toxic effects of BaP on the biotransformation system, cortisol level and DNA integrity of red sea bream (Pagrus major). The results showed that cortisol level was induced under the challenge of lipopolysaccharide (LPS). Short-term exposure (96 h) of BaP at environmental concentration significantly increased the cortisol level, hepatic EROD activity and CYP1A1 mRNA expression. When P. major was exposed to BaP for 14 d followed by LPS challenge this increased the cortisol level, EROD activity and hepatic DNA damage except CYP1A1 mRNA expression. Combined with our previous data, which showed that BaP exposure can modulate the immunologic response in P. major challenged with LPS, a hypothetical adverse outcome pathway of BaP on fish was suggested.
Collapse
Affiliation(s)
- Jun Bo
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Singaram Gopalakrishnan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
30
|
Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds. Neurotoxicology 2014; 44:204-17. [PMID: 24997244 DOI: 10.1016/j.neuro.2014.06.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/04/2014] [Accepted: 06/23/2014] [Indexed: 11/23/2022]
Abstract
Spontaneous activity in neuronal cultures on microelectrode arrays (MEAs) is sensitive to effects of drugs, chemicals, and particles. Multi-well MEA (mwMEA) systems have increased throughput of MEAs, enabling their use for chemical screening. The present experiments examined a subset of EPA's ToxCast compounds for effects on spontaneous neuronal activity in primary cortical cultures using 48-well MEA plates. A first cohort of 68 compounds was selected from the ToxCast Phase I and II libraries; 37 were positive in one or more of 20 individual ToxCast Novascreen assays related to ion channels (NVS_IC), with the remainder selected based on known neuroactivity. A second cohort of 25 compounds was then tested with 20 originating from the ToxCast Phase I and II libraries (not hits in NVS_IC assays) and 5 known negatives from commercial vendors. Baseline activity (1h) was recorded prior to exposing the networks to compounds for 1h, and the weighted mean firing rate (wMFR) was determined in the absence and presence of each compound. Compounds that altered activity by greater than the weighted change of DMSO-treated wells plus 2SD were considered "hits". Of the first set of 68 compounds, 54 altered wMFR by more than the threshold, while in the second set, 13/25 compounds were hits. MEAs detected 30 of 37 (81.1%) compounds that were hits in NVS_IC assays, as well as detected known neurotoxicants that were negative in NVS_IC assays, primarily pyrethroids and GABAA receptor antagonists. Conversely, wMFR of cortical neuronal networks on MEAs was insensitive to nicotinic compounds, as only one neonicotinoid was detected by MEAs; this accounts for the bulk of non-concordant compounds between MEA and NVS_IC assays. These data demonstrate that mwMEAs can be used to screen chemicals efficiently for potential neurotoxicity, and that the results are concordant with predictions from ToxCast NVS_IC assays for interactions with ion channels.
Collapse
|
31
|
De Coninck DIM, Asselman J, Glaholt S, Janssen C, Colbourne JK, Shaw JR, De
Schamphelaere KAC. Genome-wide transcription profiles reveal genotype-dependent responses of biological pathways and gene-families in Daphnia exposed to single and mixed stressors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3513-22. [PMID: 24552364 PMCID: PMC3983318 DOI: 10.1021/es4053363] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 05/04/2023]
Abstract
The present study investigated the possibilities and limitations of implementing a genome-wide transcription-based approach that takes into account genetic and environmental variation to better understand the response of natural populations to stressors. When exposing two different Daphnia pulex genotypes (a cadmium-sensitive and a cadmium-tolerant one) to cadmium, the toxic cyanobacteria Microcystis aeruginosa, and their mixture, we found that observations at the transcriptomic level do not always explain observations at a higher level (growth, reproduction). For example, although cadmium elicited an adverse effect at the organismal level, almost no genes were differentially expressed after cadmium exposure. In addition, we identified oxidative stress and polyunsaturated fatty acid metabolism-related pathways, as well as trypsin and neurexin IV gene-families as candidates for the underlying causes of genotypic differences in tolerance to Microcystis. Furthermore, the whole-genome transcriptomic data of a stressor mixture allowed a better understanding of mixture responses by evaluating interactions between two stressors at the gene-expression level against the independent action baseline model. This approach has indicated that ubiquinone pathway and the MAPK serine-threonine protein kinase and collagens gene-families were enriched with genes showing an interactive effect in expression response to exposure to the mixture of the stressors, while transcription and translation-related pathways and gene-families were mostly related with genotypic differences in interactive responses to this mixture. Collectively, our results indicate that the methods we employed may improve further characterization of the possibilities and limitations of transcriptomics approaches in the adverse outcome pathway framework and in predictions of multistressor effects on natural populations.
Collapse
Affiliation(s)
| | - Jana Asselman
- Laboratory
of Environmental Toxicology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Stephen Glaholt
- School
of Public & Environmental Affairs, Indiana
University, Bloomington, IN, United States
| | - Colin
R. Janssen
- Laboratory
of Environmental Toxicology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - John K. Colbourne
- Center
for Genomics and Bioinformatics, Indiana
University, Bloomington, IN, United States
- School
of Biosciences, University of Birmingham, Edgebaston, Birmingham, United Kingdom
| | - Joseph R. Shaw
- School
of Public & Environmental Affairs, Indiana
University, Bloomington, IN, United States
- Center
for Genomics and Bioinformatics, Indiana
University, Bloomington, IN, United States
- School
of Biosciences, University of Birmingham, Edgebaston, Birmingham, United Kingdom
| | | |
Collapse
|
32
|
Westerink RH. Do we really want to REACH out to in vitro? Neurotoxicology 2013; 39:169-72. [DOI: 10.1016/j.neuro.2013.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 11/24/2022]
|
33
|
Vinken M. The adverse outcome pathway concept: A pragmatic tool in toxicology. Toxicology 2013; 312:158-65. [DOI: 10.1016/j.tox.2013.08.011] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/20/2022]
|
34
|
Przybylak KR, Schultz TW. Informing Chemical Categories through the Development of Adverse Outcome Pathways. CHEMICAL TOXICITY PREDICTION 2013. [DOI: 10.1039/9781849734400-00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this chapter, the AOP concept has been briefly described together with its usefulness in chemical category formation and the development of the SARs. It presents how the AOP should be developed, assessed and reported. The main advantage of the AOP in grouping chemicals is the categorisation of compounds based on both intrinsic chemical and biological activity. Such categories of chemicals which share not only MIE but also one or more early key events are more toxicologically meaningful than categories based solely on the MIE.
Collapse
Affiliation(s)
- K R Przybylak
- Liverpool John Moores University, School of Pharmacy and Chemistry Byrom Street Liverpool L3 3AF England
| | - T. W. Schultz
- University of Tennessee, College of Veterinary Medicine 2407 River Drive Knoxville TN 37996 USA
| |
Collapse
|
35
|
Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE. Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:32-48. [PMID: 23136056 PMCID: PMC3601417 DOI: 10.1002/etc.2043] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/08/2012] [Accepted: 08/13/2012] [Indexed: 05/20/2023]
Abstract
Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical-GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical-climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.
Collapse
Affiliation(s)
- Michael J Hooper
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Pleil JD, Williams MA, Sobus JR. Chemical Safety for Sustainability (CSS): Human in vivo biomonitoring data for complementing results from in vitro toxicology—A commentary. Toxicol Lett 2012; 215:201-7. [DOI: 10.1016/j.toxlet.2012.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 01/12/2023]
|
37
|
Bouétard A, Noirot C, Besnard AL, Bouchez O, Choisne D, Robe E, Klopp C, Lagadic L, Coutellec MA. Pyrosequencing-based transcriptomic resources in the pond snail Lymnaea stagnalis, with a focus on genes involved in molecular response to diquat-induced stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2222-2234. [PMID: 22814884 DOI: 10.1007/s10646-012-0977-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
Due to their ability to explore whole genome response to drugs and stressors, omics-based approaches are widely used in toxicology and ecotoxicology, and identified as powerful tools for future ecological risk assessment and environmental monitoring programs. Understanding the long-term effects of contaminants may indeed benefit from the coupling of genomics and eco-evolutionary hypotheses. Next-generation sequencing provides a new way to investigate pollutants impact, by targeting early responses, screening chemicals, and directly quantifying gene expression, even in organisms without reference genome. Lymnaea stagnalis is a freshwater mollusk in which access to genomic resources is critical for many scientific issues, especially in ecotoxicology. We used 454-pyrosequencing to obtain new transcriptomic resources in L. stagnalis and to preliminarily explore gene expression response to a redox-cycling pesticide, diquat. We obtained 151,967 and 128,945 high-quality reads from control and diquat-exposed individuals, respectively. Sequence assembly provided 141,999 contigs, of which 124,387 were singletons. BlastX search revealed significant match for 34.6 % of the contigs (21.2 % protein hits). KEGG annotation showed a predominance of hits with genes involved in energy metabolism and circulatory system, and revealed more than 400 putative genes involved in oxidative stress, cellular/molecular stress and signaling pathways, apoptosis, and metabolism of xenobiotics. Results also suggest that diquat may have a great diversity of molecular effects. Moreover, new genetic markers (putative SNPs) were discovered. We also created a Ensembl-like web-tool for data-mining ( http://genotoul-contigbrowser.toulouse.inra.fr:9095/Lymnaea_stagnalis/index.html ). This resource is expected to be relevant for any genomic approach aimed at understanding the molecular basis of physiological and evolutionary responses to environmental stress in L. stagnalis.
Collapse
Affiliation(s)
- Anthony Bouétard
- INRA, UMR0985 INRA-Agrocampus Ouest ESE, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 rue de Saint-Brieuc, 35042, Rennes cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Warner CM, Gust KA, Stanley JK, Habib T, Wilbanks MS, Garcia-Reyero N, Perkins EJ. A systems toxicology approach to elucidate the mechanisms involved in RDX species-specific sensitivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7790-7798. [PMID: 22697906 DOI: 10.1021/es300495c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Interspecies uncertainty factors in ecological risk assessment provide conservative estimates of risk where limited or no toxicity data is available. We quantitatively examined the validity of interspecies uncertainty factors by comparing the responses of zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) to the energetic compound 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), a known neurotoxicant. Relative toxicity was measured through transcriptional, morphological, and behavioral end points in zebrafish and fathead minnow fry exposed for 96 h to RDX concentrations ranging from 0.9 to 27.7 mg/L. Spinal deformities and lethality occurred at 1.8 and 3.5 mg/L RDX respectively for fathead minnow and at 13.8 and 27.7 mg/L for zebrafish, indicating that zebrafish have an 8-fold greater tolerance for RDX than fathead minnow fry. The number and magnitude of differentially expressed transcripts increased with increasing RDX concentration for both species. Differentially expressed genes were enriched in functions related to neurological disease, oxidative-stress, acute-phase response, vitamin/mineral metabolism and skeletal/muscular disorders. Decreased expression of collagen-coding transcripts were associated with spinal deformity and likely involved in sensitivity to RDX. Our work provides a mechanistic explanation for species-specific sensitivity to RDX where zebrafish responded at lower concentrations with greater numbers of functions related to RDX tolerance than fathead minnow. While the 10-fold interspecies uncertainty factor does provide a reasonable cross-species estimate of toxicity in the present study, the observation that the responses between ZF and FHM are markedly different does initiate a call for concern regarding establishment of broad ecotoxicological conclusions based on model species such as zebrafish.
Collapse
Affiliation(s)
- Christopher M Warner
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, United States
| | | | | | | | | | | | | |
Collapse
|
39
|
Antequera D, Bolos M, Spuch C, Pascual C, Ferrer I, Fernandez-Bachiller MI, Rodríguez-Franco MI, Carro E. Effects of a tacrine-8-hydroxyquinoline hybrid (IQM-622) on Aβ accumulation and cell death: involvement in hippocampal neuronal loss in Alzheimer's disease. Neurobiol Dis 2012; 46:682-91. [PMID: 22426395 DOI: 10.1016/j.nbd.2012.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/06/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022] Open
Abstract
Several studies have implicated the enzyme acetylcholinesterase (AChE) as well as several biometals in the pathogenesis of Alzheimer's disease (AD). A multifunctional molecule, the hybrid tacrine-8-hydroxyquinoline (named IQM-622), displays cholinergic, antioxidant, copper-complexing and neuroprotective properties. Using in vitro and in vivo models, we investigated the modulating effects of IQM-622 on amyloid β-protein (Aβ)-induced pathology as well as on chemically induced neurodegeneration by domoic acid. In the first experimental model, we observed a significant decrease in brain Aβ deposits in IQM-622-treated APP/Ps1 mice for four weeks. Moreover, IQM-622 promoted the degradation of intracellular Aβ in astrocytes, and protected against Aβ toxicity in cultured astrocytes and neurons. These findings suggest that the neuroprotective effect of IQM-622 is not only related to AChE inhibition, but also involves other mechanisms, including the modulation of Aβ-degradation pathways in AD brain. In this study we also compare the neuronal loss in CA1 hippocampal field of AD patients and of mice treated with domoic acid, giving similar patterns. Thus, we used a second experimental model by killing hippocampal neurons by domoic acid damage, in which IQM-622 increased survival in the CA1 and dentate gyrus regions of the hippocampus. Our observations suggest that administration of IQM-622 may have significant beneficial effects in neurodegenerative diseases, including AD, which course with acute or progressive neuronal death.
Collapse
Affiliation(s)
- Desiree Antequera
- Neuroscience Group, Instituto de Investigación Hospital 12 de Octubre i+12, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Worth A, Fuart‐Gatnik M, Lapenna S, Serafimova R. Applicability of QSAR analysis in the evaluation of developmental and neurotoxicity effects for the assessment of the toxicological relevance of metabolites and degradates of pesticide active substances for dietary risk assessment. ACTA ACUST UNITED AC 2011. [DOI: 10.2903/sp.efsa.2011.en-169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andrew Worth
- European Commission Joint Research Centre, Institute for Health & Consumer Protection Italy
| | - Mojca Fuart‐Gatnik
- European Commission Joint Research Centre, Institute for Health & Consumer Protection Italy
| | - Silvia Lapenna
- European Commission Joint Research Centre, Institute for Health & Consumer Protection Italy
| | - Rositsa Serafimova
- European Commission Joint Research Centre, Institute for Health & Consumer Protection Italy
| |
Collapse
|
41
|
Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century. Toxicol Appl Pharmacol 2011; 271:395-404. [PMID: 21291902 DOI: 10.1016/j.taap.2011.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/28/2010] [Accepted: 01/24/2011] [Indexed: 12/27/2022]
Abstract
Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.
Collapse
|
42
|
Kramer VJ, Etterson MA, Hecker M, Murphy CA, Roesijadi G, Spade DJ, Spromberg JA, Wang M, Ankley GT. Adverse outcome pathways and ecological risk assessment: bridging to population-level effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:64-76. [PMID: 20963853 DOI: 10.1002/etc.375] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Maintaining the viability of populations of plants and animals is a key focus for environmental regulation. Population-level responses integrate the cumulative effects of chemical stressors on individuals as those individuals interact with and are affected by their conspecifics, competitors, predators, prey, habitat, and other biotic and abiotic factors. Models of population-level effects of contaminants can integrate information from lower levels of biological organization and feed that information into higher-level community and ecosystem models. As individual-level endpoints are used to predict population responses, this requires that biological responses at lower levels of organization be translated into a form that is usable by the population modeler. In the current study, we describe how mechanistic data, as captured in adverse outcome pathways (AOPs), can be translated into modeling focused on population-level risk assessments. First, we describe the regulatory context surrounding population modeling, risk assessment and the emerging role of AOPs. Then we present a succinct overview of different approaches to population modeling and discuss the types of data needed for these models. We describe how different key biological processes measured at the level of the individual serve as the linkage, or bridge, between AOPs and predictions of population status, including consideration of community-level interactions and genetic adaptation. Several case examples illustrate the potential for use of AOPs in population modeling and predictive ecotoxicology. Finally, we make recommendations for focusing toxicity studies to produce the quantitative data needed to define AOPs and to facilitate their incorporation into population modeling.
Collapse
|