1
|
Těšínská P, Škarohlíd R, Kroužek J, McGachy L. Environmental fate of organic UV filters: Global occurrence, transformation, and mitigation via advanced oxidation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125134. [PMID: 39419468 DOI: 10.1016/j.envpol.2024.125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Organic UV filters are used in personal care products, plastics, paints, and textiles to protect against UV radiation. Despite regulatory limits, these compounds still enter the environment through direct wash-off during swimming, evaporation, leaching from products, and incomplete removal in wastewater treatment plants. They have been detected in various environmental matrices worldwide. Once in the environment, organic UV filters can undergo phototransformation and biotransformation, forming transformation products that, together with parent substances, pose health risks to humans and wildlife and harm marine ecosystems, especially coral reefs. The increasing concern over water scarcity and the environmental impact of pollutants underscores the importance of eliminating these contaminants from aquatic environments. This review primarily focuses on organic UV filters approved for use in sunscreens, many of which are also utilized in other materials, with a few exceptions including UV stabilizer UV-328. It includes an in-depth analysis of 155 peer-reviewed articles published from 2015 to 2024, assessing the concentrations of these filters in various environmental matrices, including water and solid matrices, air and biota. Moreover, this review explores the environmental transformation of these chemicals and assesses the effectiveness of advanced oxidation processes (AOPs) in removing these pollutants. The findings highlight the pervasive presence of organic UV filters in the environment and the promising potential of AOPs to mitigate the associated environmental challenges.
Collapse
Affiliation(s)
- Pavlína Těšínská
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Radek Škarohlíd
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Jiří Kroužek
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.
| |
Collapse
|
2
|
Ramanayaka S, Zhang H, Semple KT. Environmental fate of microplastics and common polymer additives in non-biodegradable plastic mulch applied agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125249. [PMID: 39510302 DOI: 10.1016/j.envpol.2024.125249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Numerous studies have been conducted to investigate the impact of microplastics on soil eco-system, yet little attention has been given to the specific effects of mulch microplastics and the leaching of plastic additives from mulch films. This review inspects the propensity of commonly used plastic additives in mulch films, such as Di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), and benzophenones (BPs), to migrate into soils and pose potential risks to soil biota. Further, we highlight the degradation of non-biodegradable plastic mulch films over time, which leads to an increase in the release of plastic additives and microplastics into agricultural soils. DEHP has been detected in high concentrations for example 25.2 mg/kg in agricultural soils, indicating a potential risk of uptake, translocation and accumulation in plants, ultimately altering soil physicochemical properties and affecting soil microflora and invertebrates. The review also explores how exposure to ultraviolet (UV) radiation and microbial activities accelerates the weathering of mulch films. Moreover, the resultant plastic additives and mulch microplastics can lead to genotoxicity and growth inhibition in earthworms (Eisenia fetida) and negatively impact the soil microbiome. Despite the significant implications, there has been a lack of comprehensive reviews comparing the effects of non-biodegradable mulch film additives on agricultural soil flora and fauna. Therefore, this review addresses the knowledge gaps providing a bibliometric analysis and eco-toxicological evaluation, discussing the challenges and future perspectives regarding mulch plastic additives and microplastics, thus offering a comprehensive understanding of their impact.
Collapse
Affiliation(s)
- Sammani Ramanayaka
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
3
|
Sun YH, Wu HY, Xie FQ, Ma JR, Tang QL, Chen YF, Li H, Liu YS, Ying GG. Environmental contamination and risks of organic UV filters: Source, discharge, analytical methods and implications for ecological and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176930. [PMID: 39461514 DOI: 10.1016/j.scitotenv.2024.176930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Organic Ultraviolet Filters (OUVFs), commonly used in sunscreens, cosmetics and industrial products to prevent ultraviolet radiation damage, are increasingly detected in the environment due to their widespread use and persistence. This has raised concerns over their toxicity and environmental impact, leading to the classification of OUVF 2-(2H-Benzotriazol-2-yl)-4,6-ditertpentylphenol (UV-328) as a persistent organic pollutant under the Stockholm Convention in 2023. In this review, current knowledge on the usage, discharge and environmental contamination of OUVFs is briefly discussed. The available analytical methodologies are also reviewed, especially for the extraction and detection of OUVFs in different matrix samples. Finally, the reported levels of OUVFs pollution in surface water, drinking water, aquatic organisms and human urine worldwide are discussed, along with their potential implications for ecological and human health. In general, typical OUVFs ethylhexyl methoxy cinnamate (EHMC) and Octocrylene (OC) have been shown to pose a significant potential risks in the surface waters of multiple countries such as Australia, China, Japan, the United States. Furthermore, while the OUVFs exposure concentrations in drinking water are generally low (below detection limit to 450 ng/L), prolonged exposure may still present potential health risks for humans.
Collapse
Affiliation(s)
- Yue-Hong Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Heng-Yu Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Feng-Qi Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jia-Ru Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qin-Lin Tang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yan-Fen Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
4
|
Jou-Claus S, Rodríguez-Escales P, Martínez-Landa L, Diaz-Cruz MS, Carrera J, Sunyer-Caldú A, Quintana G, Valhondo C. Assessing the Fate of Benzophenone-Type UV Filters and Transformation Products during Soil Aquifer Treatment: The Biofilm Compartment as Bioaccumulator and Biodegrader in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5472-5482. [PMID: 38466321 DOI: 10.1021/acs.est.3c08465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The fate of selected UV filters (UVFs) was investigated in two soil aquifer treatment (SAT) systems, one supplemented with a reactive barrier containing clay and vegetable compost and the other as a traditional SAT reference system. We monitored benzophenone-3 (BP-3) and its transformation products (TPs), including benzophenone-1 (BP-1), 4,4'-dihydroxybenzophenone (4DHB), 4-hydroxybenzophenone (4HB), and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB), along with benzophenone-4 (BP-4) and avobenzone (AVO) in all involved compartments (water, aquifer sediments, and biofilm). The reactive barrier, which enhances biochemical activity and biofilm development, improved the removal of all detected UVFs in water samples. Among monitored UVFs, only 4HB, BP-4, and AVO were detected in sediment and biofilm samples. But the overall retained amounts were several orders of magnitude larger than those dissolved. These amounts were quantitatively reproduced with a specifically developed simple analytical model that consists of a mobile compartment and an immobile compartment. Retention and degradation are restricted to the immobile water compartment, where biofilm absorption was simulated with well-known compound-specific Kow values. The fact that the model reproduced observations, including metabolites detected in the biofilm but not in the (mobile) water samples, supports its validity. The results imply that accumulation ensures significant biodegradation even if the degradation rates are very low and suggest that our experimental findings for UVFs and TPs can be extended to other hydrophobic compounds. Biofilms act as accumulators and biodegraders of hydrophobic compounds.
Collapse
Affiliation(s)
- Sònia Jou-Claus
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Paula Rodríguez-Escales
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
| | - Lurdes Martínez-Landa
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Jesús Carrera
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
- Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Gerard Quintana
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Cristina Valhondo
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| |
Collapse
|
5
|
Liu B, Zhang S, Liu M, Cao S, Qu R, Wang Z. Insights into enhanced oxidation of benzophenone-type UV filters (BPs) by ferrate(VI)/ferrihydrite: Increased conversion of Fe(VI) to Fe(V)/Fe(IV). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168860. [PMID: 38040358 DOI: 10.1016/j.scitotenv.2023.168860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
In this work, the oxidation performance of a new ferrate(VI)/ferrihydrite (Fe(VI)/Fh) system was systematically explored to degrade efficiently six kinds of benzophenone-type UV filters (BPs). Fe(VI)/Fh system not only had a superior degradation capacity towards different BPs, but also exhibited higher reactivity over a pH range of 6.0-9.0. The second-order kinetic model successfully described the process of BP-4 degradation by heterogeneous Fh catalyzed Fe(VI) system (R2 = 0.93), and the presence of Fh could increase the BP-4 degradation rate by Fe(VI) by an order of magnitude (198 M-1·s-1 v.s. 14.2 M-1·s-1). Remarkably, there are higher utilization efficiency and potential of Fe(VI) in Fe(VI)/Fh system than in Fe(VI) alone system. Moreover, characterization and recycling experiments demonstrated that Fh achieved certain long-term running performance, and the residual Fe content of solution after clarifying process meet World Health Organization (WHO) guidelines for drinking water. The contributions of reactive species could be ranked as Fe(V)/Fe(IV) > Fe(VI) > •OH. Fe(IV)/Fe(V) were the dominant species for the enhanced removal in the Fe(VI)/Fh system, whose percentage contribution (72 %-36 %) were much higher than those in Fe(VI) alone system (5 %-17 %). However, the contribution of Fe(VI) in oxidizing BP-4 should not be underestimated (20 %-56 %). These findings reasonably exploit available Fh resources to reduce the relatively high cost of Fe(VI), which offers a proper strategies for efficient utilization of high-valent iron species and may be used as a highly-efficient and cost-effective BPs purification method.
Collapse
Affiliation(s)
- Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Siyu Cao
- School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
6
|
Liu YJ, Zhang Y, Bian Y, Sang Q, Ma J, Li PY, Zhang JH, Feng XS. The environmental sources of benzophenones: Distribution, pretreatment, analysis and removal techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115650. [PMID: 37939555 DOI: 10.1016/j.ecoenv.2023.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Benzophenones (BPs) have wide practical applications in real human life due to its presence in personal care products, UV-filters, drugs, food packaging bags, etc. It enters the wastewater by daily routine activities such as showering, impacting the whole aquatic system, then posing a threat to human health. Due to this fact, the monitoring and removal of BPs in the environment is quite important. In the past decade, various novel analytical and removal techniques have been developed for the determination of BPs in environmental samples including wastewater, municipal landfill leachate, sewage sludge, and aquatic plants. This review provides a critical summary and comparison of the available cutting-edge pretreatment, determination and removal techniques of BPs in environment. It also focuses on novel materials and techniques in keeping with the concept of "green chemistry", and describes on challenges associated with the analysis of BPs, removal technologies, suggesting future development strategies.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qi Sang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jing Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Peng-Yun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing 100850, China
| | - Ji-Hong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Jentzsch F, Kümmerer K, Olsson O. Status quo on identified transformation products of organic ultraviolet filters and their persistence. Int J Cosmet Sci 2023; 45 Suppl 1:101-126. [PMID: 37638891 DOI: 10.1111/ics.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 08/29/2023]
Abstract
Organic micropollutants of concern-including organic UV filters (UVF)-are getting increasing attention. Personal care products such as sunscreens or cosmetic articles often contain large quantities of UVF. These substances enter the environment either directly (during outdoor activities) or indirectly (via sewages from households). Therefore, the removal or degradation of UVF by natural or technical treatment processes is important to understand. UVF are often incompletely removed and transformed to side products of incomplete mineralization by abiotic and biotic processes. An extensive overview on transformation products (TPs) is essential to systematically identify knowledge gaps and to derive research needs. While there are many reviews on the UVF themselves, the number of reviews which focus on their TPs is limited. Consequently, this review gives an overview on the latest findings regarding TPs of UVF. In this publication, known TPs of UVF, which were formed during abiotic and biotic processes, are reviewed. Target substances were defined and a literature database was reviewed for studies on TPs of the target substances. The first list of studies was shortened stepwise, thus generating a final list of studies which contained only the relevant studies. Since biodegradation is one of the most important pathways for removal of organic compounds from the environment, this review presents an overview on known TPs of organic UVF and their biodegradability, which determines their environmental fate. In this way, all identified TPs of UVF were listed and checked for information on their biodegradability. A total of 2731 records of studies were assessed. Forty-two studies, which assessed 46 processes that lead to the formation of identified TPs, were included in this review. One hundred and seventyseven different TPs resulting from 11 different UVF were identified. Little to no data on the biodegradability was found for TPs. This indicates a severe lack of data on the biodegradability of TPs of organic UVF substances. Since most TPs lack information on biodegradability, further research should provide information on both-identity and biodegradability-of formed TPs to be able to assess their hazardousness for the environment.
Collapse
Affiliation(s)
- Franziska Jentzsch
- Institute of Sustainable Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| |
Collapse
|
8
|
Liu M, Wu N, Li X, Zhang S, Sharma VK, Ajarem JS, Allam AA, Qu R. Insights into manganese(VII) enhanced oxidation of benzophenone-8 by ferrate(VI): Mechanism and transformation products. WATER RESEARCH 2023; 238:120034. [PMID: 37150061 DOI: 10.1016/j.watres.2023.120034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Benzophenones (BPs) are commonly used as UV filters in cosmetics and plastics products and are potentially toxic to the environment. This paper presents kinetics and products of BPs oxidation by ferrate(VI) (FeO42-, Fe(VI)) promoted by permanganate (Mn(VII)) . Degradation of 10.0 µM 2,2'-dihydroxy-4-methoxybenzophenone (BP-8)were determined under different experimental conditions ([Mn(VII)] = 0.5-1.5 µM, [Fe(VI)] = 50-150 µM, and pH = 7.0-10.0). The addition of Mn(VII) traces to Fe(VI)-BP-8 solution enhanced kinetics and efficiency of the removal. Similar enhanced removals were also seen for other BPs (BP-1, BP-3, and BP-4) under optimized conditions. The second-order rate constants (k, M-1s-1) of the degradation of BPs showed positive relationship with the energy of the highest occupied orbital (EHOMO). The possible interaction between Mn(VII) and BP-8 and the enhanced generation of Fe(V)/Fe(IV) and •OH was proposed to facilitate the oxidation of the target benzophenone, supported by in-situ electrochemical measurements, theoretical calculations and reactive species quenching experiments. Thirteen oxidation products of BP-8 suggested hydroxylation, bond breaking, polymerization and carboxylation steps in the oxidation. Toxicity assessments by ECOSAR program showed that the oxidized intermediate products posed a tapering ecological risk during the degradation process. Overall, the addition of Mn(VII) could improve the oxidation efficiency of Fe(VI).
Collapse
Affiliation(s)
- Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Xiaoyu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - ShengNan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, United States.
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China.
| |
Collapse
|
9
|
Wang Y, Jiang S, Chen X, Liu X, Li N, Nie Y, Lu G. Comparison of developmental toxicity of benzophenone-3 and its metabolite benzophenone-8 in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106515. [PMID: 37011548 DOI: 10.1016/j.aquatox.2023.106515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Benzophenone-3 (BP-3) as one of frequently used organic UV filters has been considered an emerging pollutant due to its toxicities. Benzophenone-8 (BP-8) is one of the main metabolites of BP-3 in organisms. Current reports show that BP-8 may be more toxic than BP-3. However, difference of their toxicities on embryonic development has rarely been reported. In this study, zebrafish embryos were chosen as the target organism to explore the developmental toxicities of BP-3 and BP-8. Non-targeted metabolomic analysis was performed to compare their modes of action. Results showed that BP-8 exposures led to higher bioaccumulation and lower hatching rate of zebrafish larvae than BP-3. Both BP-8 and BP-3 exposures caused behavioral abnormalities of zebrafish larvae, but no significant difference was found between them. At the metabolome level, 1 μg/L BP-3 and 1 μg/L BP-8 exposures altered neuroactive ligand-receptor interaction pathway and FoxO signaling pathway, respectively, which might be involved in the abnormal behaviors in zebrafish larvae. For higher exposure groups (30 and 300 μg/L), both BP-3 and BP-8 exposures changed metabolism of cofactors and vitamins of zebrafish larvae. Exposure of BP-3 altered the metabolism by pantothenate and CoA biosynthesis pathway, while BP-8 exposure changed riboflavin metabolism and folate biosynthesis. The above results indicated different modes of action of BP-3 and BP-8 in zebrafish embryonic development. This study sheds new light to biological hazards of BP-3 due to its metabolism in aquatic organisms.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Shengnan Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaodan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Na Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yang Nie
- Hangzhou Hydrology and Water Resources Monitoring Center, Hangzhou 310016, PR China.
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
10
|
Carstensen L, Beil S, Schwab E, Banke S, Börnick H, Stolte S. Primary and ultimate degradation of benzophenone-type UV filters under different environmental conditions and the underlying structure-biodegradability relationships. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130634. [PMID: 36599278 DOI: 10.1016/j.jhazmat.2022.130634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Ten common benzophenone-based UV filters (BPs), sharing the same basic structure and differing only in their substituents, were investigated with respect to their primary and ultimate biodegradability. This study was carried out in order to gain deeper insights into the relationship between structure and biodegradability. The primary biodegradation of the selected BPs was studied in river water at environmentally relevant concentrations (1 µg/L) while varying specific, crucial environmental conditions (aerobic, suboxic, supplementation of nutrients). For this purpose, both batch and column degradation tests were performed, which allowed a systematic study of the effects. Subsequently, the ultimate biodegradation, i.e. the potential to achieve full mineralization of BPs, was examined according to OECD guideline 301 F. The results indicate that mineralization is limited to derivatives in which both aromatic rings contain substituents. This hypothesis was supported by docking simulations showing systematic differences in the orientation of BPs within the active site of the cytochrome P450 enzyme. These differences in orientation correspond to the substitution pattern of the BPs. This study provides valuable insights for assessing the environmental hazards of this class of trace organic compounds.
Collapse
Affiliation(s)
- Lale Carstensen
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Ekaterina Schwab
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Sophie Banke
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Hilmar Börnick
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany.
| |
Collapse
|
11
|
Wang W, Liu A, Chen X, Zheng X, Fu W, Wang G, Ji J, Jin C, Guan C. The potential role of betaine in enhancement of microbial-assisted phytoremediation of benzophenone-3 contaminated soil. CHEMOSPHERE 2022; 307:135783. [PMID: 35868529 DOI: 10.1016/j.chemosphere.2022.135783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Benzophenone-3 (BP-3) is an emerging environmental pollutant used in personal care products, helping to reduce the risk of ultraviolet radiation to human skin. The BP-3 removal potential from soil by tobacco (Nicotiana tabacum) assisted with Methylophilus sp. FP-6 was explored in our previous study. However, the reduced BP-3 remediation efficiency by FP-6 in soil and the inhibited plant growth by BP-3 limited the application of this phytoremediation strategy. The aim of the present study was to reveal the potential roles of betaine, as the methyl donor of methylotrophic bacteria and plant regulator, in improving the strain FP-6-assisted phytoremediation capacity of BP-3 contaminated soil. The results revealed that strain FP-6 could use betaine as a co-metabolism substrate to enhance the BP-3 degradation activity. About 97.32% BP-3 in soil was effectively removed in the phytoremediation system using tobacco in combination with FP-6 and betaine for 40 d while the concentration of BP-3 in tobacco significantly reduced. Moreover, the biomass and photosynthetic efficiency of plants were remarkably improved through the combined treatment of betaine and strain FP-6. Simultaneously, inoculation of FP-6 in the presence of betaine stimulated the change of local microbial community structure, which might correlate with the production of a series of hydrolases and reductases involved in soil carbon, nitrogen and phosphorus cycling processes. Meantime, some of the dominant bacteria could secrete various multiple enzymes involved in degrading organic pollutants, such as laccase, to accelerate the demethylation and hydroxylation of BP-3. Overall, the results from this study proposed that the co-metabolic role of betaine could be utilized to strengthen microbial-assisted phytoremediation process by increasing the degradation ability of methylotrophic bacteria and enhancing plant tolerance to BP-3. The present results provide novel insights and perspectives for broadening the engineering application scope of microbial-assisted phytoremediation of organic pollutants without sacrificing economic crop safety.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenting Fu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chao Jin
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
12
|
Gkika DA, Mitropoulos AC, Lambropoulou DA, Kalavrouziotis IK, Kyzas GZ. Cosmetic wastewater treatment technologies: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75223-75247. [PMID: 36131179 PMCID: PMC9553780 DOI: 10.1007/s11356-022-23045-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Over the past three decades, environmental concerns about the water pollution have been raised on societal and industrial levels. The presence of pollutants stemming from cosmetic products has been documented in wastewater streams outflowing from industrial as well as wastewater treatment plants. To this end, a series of consistent measures should be taken to prevent emerging contaminants of water resources. This need has driven the development of technologies, in an attempt to mitigate their impact on the environment. This work offers a thorough review of existing knowledge on cosmetic wastewater treatment approaches, including, coagulation, dissolved air flotation, adsorption, activated sludge, biodegradation, constructed wetlands, and advanced oxidation processes. Various studies have already documented the appearance of cosmetics in samples retrieved from wastewater treatment plants (WWTPs), which have definitely promoted our comprehension of the path of cosmetics within the treatment cycle; however, there are still multiple blanks to our knowledge. All treatments have, without exception, their own limitations, not only cost-wise, but also in terms of being feasible, effective, practical, reliable, and environmentally friendly.
Collapse
Affiliation(s)
- Despina A. Gkika
- Department of Chemistry, International Hellenic University, Kavala, Greece
| | | | | | | | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, Kavala, Greece
| |
Collapse
|
13
|
Li Y, Zhu Q, Bi S, Zhou Q, Liang Y, Liu S, Liao C. Associations between concentrations of typical ultraviolet filter benzophenones in indoor dust and human hair from China: A human exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156789. [PMID: 35724781 DOI: 10.1016/j.scitotenv.2022.156789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Benzophenone-3 (BP-3) has been widely used as a typical ultraviolet (UV) filter in various personal care products. While BP-3 and its derivatives (BPs) have been detected in various environmental matrices, very little is known about the concentration profile of BPs in human hair. The associations of BPs in human hair with those in indoor dust samples collected from the same locations remain largely unclear. In this study, a total of 258 indoor dust samples and 66 human hair samples were collected across China and analyzed to determine the presence of BP-3 and its derivatives. The BP-3 concentrations ranged from 0.386 to 1230 ng/g dw in indoor dust and from 0.149 to 696 ng/g dw in human hair. No difference was found between BPs in indoor dust samples from different geographic regions (p > 0.05), whereas relatively higher BP concentrations were observed for dust from urban regions than dust from rural ones (p < 0.05). A positive correlation was found between the BP-3 concentrations of indoor dust and human hair samples (p < 0.05). The estimated daily intake (EDI) of BPs for humans from indoor dust showed a gender difference (females > males; p < 0.05), with the highest EDI value being found in Southwest China (males: 35.5 pg/kg bw/day; females: 40.6 pg/kg bw/day). This study provides the concentration profiles of BPs in human hair and elucidates the associations between the BP concentrations in indoor dust samples and human hair samples collected across China.
Collapse
Affiliation(s)
- Yifan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Degradation of the UV Filter Benzophenone-4 by Ferrate (VI) in Aquatic Environments. Processes (Basel) 2022. [DOI: 10.3390/pr10091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work demonstrates the potential utility of ferrate(VI)-based advanced oxidation processes for the degradation of a representative UV filter, BP-4. The operational parameters of oxidant dose and temperature were determined with kinetic experiments. In addition, the effects of water constituents including anions (Cl−, HCO3−, NO3−, SO42−), cations (Na+, K+, Ca2+, Mg2+, Cu2+, Fe3+), and humic acid (HA) were investigated. Results suggested that the removal rate of BP-4 (5 mg/L) could reach 95% in 60 min, when [Fe(VI)]:[BP-4] = 100:1, T = 25 °C and pH = 7.0, The presence of K+, Cu2+ and Fe3+ could promote the removal of BP-4, but Cl−, SO42−, NO3−, HA and Na+ could significantly inhibit the removal of BP-4. Furthermore, this Fe(VI) oxidation processes has good feasibility in real water samples. These results may provide useful information for the environmental elimination of benzophenone-type UV filters by Fe(VI).
Collapse
|
15
|
Fagervold SK, Lebaron P. Evaluation of the degradation capacity of WWTP sludge enrichment cultures towards several organic UV filters and the isolation of octocrylene-degrading microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154013. [PMID: 35189223 DOI: 10.1016/j.scitotenv.2022.154013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Organic UV filters are present in wastewater treatment plants (WWTPs) due to the use of these compounds in many personal care products (PCPs) and their subsequent release into the wastewater system from showering/bathing. Once in the wastewater system, organic UV filters generally partition into the solid phase but might also undergo other processes, such as degradation by microorganisms. To further understand the fate of organic UV filters in WWTPs, the degradation of 7 UV filters by WWTP sludge was investigated The UV filters 2-ethylhexyl salicylate (ES), homosalate (HS), butyl methoxydibenzoylmethane (BM) and octocrylene (OC) were degraded after 20-60 days. The rest of the filters tested, namely, bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) and diethylhexyl butamido triazone (DBT), did not degrade even after 120 days of incubation. The microbial community from the microcosms degrading ES, HS, OC and BM was transferred every 30 days into new microcosms to enrich for microorganisms capable of utilizing the individual UV filters for growth. The enrichment cultures continued to degrade throughout 20 transfers. The microbial community was clearly different between the enrichments degrading ES, HS, OC and BM, meaning that the microbial community was strongly influenced by the UV filter present. Furthermore, several strains were isolated from OC-degrading cultures and two of these strains, Gordonia sp. strain OC_S5 and Sphingopyxis sp. strain OC_4D, degraded OC with and without other carbon sources present. These experiments show that several organic UV filters can be degraded by a specific set of microorganisms. The lack of degradation observed for BEMT, MBBT and DBT is probably due to limited bioavailability. Indeed, this is the first biodegradation study of these filters, in addition to being the first description of ES and HS degradation in microcosm experiments.
Collapse
Affiliation(s)
- S K Fagervold
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, France.
| | - P Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| |
Collapse
|
16
|
Wang W, Liu A, Fu W, Peng D, Wang G, Ji J, Jin C, Guan C. Tobacco-associated with Methylophilus sp. FP-6 enhances phytoremediation of benzophenone-3 through regulating soil microbial community, increasing photosynthetic capacity and maintaining redox homeostasis of plant. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128588. [PMID: 35248957 DOI: 10.1016/j.jhazmat.2022.128588] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Benzophenone-3 (BP-3) has attracted widespread attention due to its large accumulation in the environment and its potential toxicity effects to human. This study aimed to investigate the effects of the combined application of tobacco and Methylophilus sp. strain FP-6 with both plant growth promoting (PGP) traits and BP-3 degradation function on BP-3 remediation in soil. The results showed that about 79.18% of BP-3 was removed from the soil after 30 days of plant culture inoculated with the FP-6 strain, which was significantly higher than the plant-alone treatment. Simultaneously, inoculation with strain FP-6 significantly improved growth performance, biomass production, antioxidant levels, osmoregulation substance, photosynthetic capacity and chlorophyll accumulation in tobacco. Moreover, the application of FP-6 shifted the bacterial community, and enhanced the abundance of BP-3-degrading or soil nutrient cycling-affecting bacteria (e.g., Chloroflexi, Bryobacter, MND1 and Myxococcales), which might be valuable for the promotion of plant growth and degradation of BP-3 in the soil. The results from this study gave first insights into the enhancement of BP-3 removal efficiency from soil by phytoremediation assisted with bacteria possessing both PGP properties and BP-3 degradation function. The role of soil bacterial community in this remediation process was also discussed.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Wenting Fu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Danliu Peng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chao Jin
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
17
|
Carstensen L, Beil S, Börnick H, Stolte S. Structure-related endocrine-disrupting potential of environmental transformation products of benzophenone-type UV filters: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128495. [PMID: 35739676 DOI: 10.1016/j.jhazmat.2022.128495] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
Benzophenone-type UV filters (BPs) represent a very diverse group of chemicals that are used across a range of industrial sectors around the world. They are found within different environmental compartments (e.g. surface water, groundwater, wastewater, sediments and biota) at concentrations ranging from ng/L to mg/L. Some are known as endocrine disruptors and are currently within the scope of international regulations. A structural alert for high potential of endocrine disrupting activity was assigned to 11 BP derivatives. Due to the widespread use, distribution and disruptive effects of some BPs, knowledge of their elimination pathways is required. This review demonstrates that biodegradation and photolytic decomposition are the major elimination processes for BP-type UV filters in the environment. Under aerobic conditions, transformation pathways have only been reported for BP, BP-3 and BP-4, which are also the most common derivatives. Primary biodegradation mainly results in the formation of hydroxylated BPs, which exhibit a structure-related increase in endocrine activity when compared to their parent substances. By combining 76 literature-based transformation products (TPs) with in silico results relating to their receptor activity, it is demonstrated that 32 TPs may retain activity and that further knowledge of the degradation of BPs in the environment is needed.
Collapse
Affiliation(s)
- Lale Carstensen
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Hilmar Börnick
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| |
Collapse
|
18
|
Baek JH, Kim KH, Lee Y, Jeong SE, Jin HM, Jia B, Jeon CO. Elucidating the biodegradation pathway and catabolic genes of benzophenone-3 in Rhodococcus sp. S2-17. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118890. [PMID: 35085657 DOI: 10.1016/j.envpol.2022.118890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A new bacterium, Rhodococcus sp. S2-17, which could completely degrade an emerging organic pollutant, benzophenone-3 (BP-3), was isolated from contaminated sediment through an enrichment procedure, and its BP-3 catabolic pathway and genes were identified through metabolic intermediate and transcriptomic analyses and biochemical and genetic studies. Metabolic intermediate analysis suggested that strain S2-17 may degrade BP-3 using a catabolic pathway progressing via the intermediates BP-1, 2,4,5-trihydroxy-benzophenone, 3-hydroxy-4-benzoyl-2,4-hexadienedioic acid, 4-benzoyl-3-oxoadipic acid, 3-oxoadipic acid, and benzoic acid. A putative BP-3 catabolic gene cluster including cytochrome P450, flavin-dependent oxidoreductase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, and α/β hydrolase genes was identified through genomic and transcriptomic analyses. Genes encoding the cytochrome P450 complex that demethylates BP-3 to BP-1 were functionally verified through protein expression, and the functions of the other genes were also verified through knockout mutant construction and intermediate analysis. This study suggested that strain S2-17 might have acquired the ability to catabolize BP-3 by recruiting the cytochrome P450 complex and α/β hydrolase, which hydrolyzes 4-benzoyl-3-oxoadipic acid to benzoic acid and 3-oxoadipic acid, genes, providing insights into the recruitment of genes of for the catabolism of emerging organic pollutants.
Collapse
Affiliation(s)
- Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yunhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea; Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Hyun Mi Jin
- Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
19
|
Li Y, Zhu Q, Li G, Zhou Q, Liang Y, Liao C, Jiang G. Concentration profiles of a typical ultraviolet filter benzophenone-3 and its derivatives in municipal sewage sludge in China: Risk assessment in sludge-amended soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152329. [PMID: 34914995 DOI: 10.1016/j.scitotenv.2021.152329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The widespread occurrence of benzophenones in various environmental matrices is a public health concern due to their endocrine-disrupting effects. Nevertheless, information on the exposure and health risk of benzophenones derived from sludge-amended soil is scarce. Herein, we measured a typical ultraviolet filter benzophenone-3 (BP-3) and its four derivatives in sewage sludges from different regions of China. BP-3 was the most abundant benzophenone analog in sludge (range: 0.581-305 ng/g dw), whereas no difference was found for BP-3 in sludge from different regions (p > 0.05). The sum concentration range of the four BP-3 derivatives in sludge was 0.128-74.2 ng/g dw. The mass loading and per capita daily release were calculated to determine the environmental release of benzophenones. The highest mass loading of benzophenones was found in Eastern China (20.9 kg/yr), followed by Northeast China (8.41 kg/yr) and Northwest China (8.13 kg/yr). The per capita daily release value of benzophenones via sludge was estimated as 100 ng/day/person. Calculation of the risk quotients (RQs) of BP-3 and its derivatives showed that benzophenones in sludge-amended soils had low environmental risks (RQs < 0.1) in all geographic regions. This nationwide study provides information outlining the environmental release of benzophenones through sludge composting and potential ecological risk from sludge-amended soil.
Collapse
Affiliation(s)
- Yifan Li
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guoliang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Chunyang Liao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Complete Genome Sequence and Benzophenone-3 Mineralisation Potential of Rhodococcus sp. USK10, A Bacterium Isolated from Riverbank Sediment. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzophenone-3 (BP3) is an organic UV filter whose presence in the aquatic environment has been linked to detrimental developmental impacts in aquatic organisms such as coral and fish. The genus Rhodococcus has been extensively studied and is known for possessing large genomes housing genes for biodegradation of a wide range of compounds, including aromatic carbons. Here, we present the genome sequence of Rhodococcus sp. USK10, which was isolated from Chinese riverbank sediment and is capable of utilising BP3 as the sole carbon source, resulting in full BP3 mineralisation. The genome consisted of 9,870,030 bp in 3 replicons, a G+C content of 67.2%, and 9722 coding DNA sequences (CDSs). Annotation of the genome revealed that 179 of these CDSs are involved in the metabolism of aromatic carbons. The complete genome of Rhodococcus sp. USK10 is the first complete, annotated genome sequence of a Benzophenone-3-degrading bacterium. Through radiolabelling, it is also the first bacterium proven to mineralise Benzophenone-3. Due to the widespread environmental prevalence of Benzophenone-3, coupled with its adverse impact on aquatic organisms, this characterisation provides an integral first step in better understanding the environmentally relevant degradation pathway of the commonly used UV filter. Given USK10′s ability to completely mineralise Benzophenone-3, it could prove to be a suitable candidate for bioremediation application.
Collapse
|
21
|
Guedes P, Martins C, Couto N, Silva J, Mateus EP, Ribeiro AB, Pereira CS. Irrigation of soil with reclaimed wastewater acts as a buffer of microbial taxonomic and functional biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149671. [PMID: 34454147 DOI: 10.1016/j.scitotenv.2021.149671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The usage of reclaimed wastewater (RWW) for irrigation of agricultural soils is increasingly being acknowledged for reducing water consumption by promoting reuse of treated wastewater, and for the delivery of extant nutrients in the soil. The downside is that RWW may be a vector for contamination of soils with contaminants of emerging concern (CECs), if left uncontrolled. Its usage is anticipated to alter the soil properties, consequently also the soil microbial community. In the present study, soil microcosms were set to monitor how short periods (up to fourteen days) of RWW irrigation influence the soil ecosystem, namely its physicochemical properties, functioning, and colonising microbiota (differentiating fungi from bacteria). Two scenarios were studied: clean soil and soil contaminated (spiked) with 9 CECs, at conditions that limit any abiotic decay processes, monitoring along time fluctuations in the taxonomic and functional microbiota diversity. As shortly as fourteen days, the irrigation of either soil with RWW did not significantly (p > 0.05) alter its physicochemical properties and scarcely impacted the bioremediation processes of the CECs that showed decay levels ranging from 24% to 100%. Bacillus spp. dominance was enhanced along time in all the soil microcosms (reaching over 70% of the total abundance on the 7th day) but the RWW help to preserve, to some extent, high bacterial diversity. Besides, irrigation with RWW acted as a buffer of the soil mycobiota, limiting alterations in its composition caused either along time (to a minor degree) or due to contamination with CECs (to a great degree). This includes limiting the rise of Rhizopus sp. relative abundance. Collectively, our data support the utility of short-term periods of RWW irrigation for preserving the soil microbial diversity and functioning, especially when fungi are considered.
Collapse
Affiliation(s)
- Paula Guedes
- CENSE - Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Nazaré Couto
- CENSE - Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Joana Silva
- CENSE - Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Eduardo P Mateus
- CENSE - Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Alexandra B Ribeiro
- CENSE - Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
22
|
Chiriac FL, Pirvu F, Paun I. Investigation of endocrine disruptor pollutants and their metabolites along the Romanian Black Sea Coast: Occurrence, distribution and risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103673. [PMID: 34029729 DOI: 10.1016/j.etap.2021.103673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
In recent years, the occurrence of organic UV-filters (UVFs) and bisphenol derivatives (BPs) in the marine environment has raised high concerns all over the world, due to the potentially adverse impacts on marine organism and, indirectly on human health. This paper reports, for the first time in Romania, the occurrence, distribution pattern and environmental risk assessment of UVFs, BPs and their metabolites in seawater, sediment and algae collected from the Romania Black Sea coastal region. BP-3 (2-hydroxy-4-methoxy-benzophenone) was the most abundant contaminant in seawater samples, with detection frequency of 100 %. Sediment samples were dominated by ES (Ethylhexyl salicylate), with concentration values up to 5823 ng/g d.w., while for algae, concentrations of several hundreds of ng/g d.w. were determined for BP-3, BS (Benzyl salicylate) and BPE (Bisphenol E). Environmental risk assessment revealed that some UVFs and BPs detected in seawater samples were hazardous to the marine organism of the Black Sea.
Collapse
Affiliation(s)
- Florentina Laura Chiriac
- National Research and Development Institute for Industrial Ecology - ECOIND, Drumul Podu Dambovitei 71-73, Sector 6, 060652, Bucharest, Romania.
| | - Florinela Pirvu
- National Research and Development Institute for Industrial Ecology - ECOIND, Drumul Podu Dambovitei 71-73, Sector 6, 060652, Bucharest, Romania
| | - Iuliana Paun
- National Research and Development Institute for Industrial Ecology - ECOIND, Drumul Podu Dambovitei 71-73, Sector 6, 060652, Bucharest, Romania.
| |
Collapse
|
23
|
Cao W, Wu N, Qu R, Sun C, Huo Z, Ajarem JS, Allam AA, Wang Z, Zhu F. Oxidation of benzophenone-3 in aqueous solution by potassium permanganate: kinetics, degradation products, reaction pathways, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31301-31311. [PMID: 33599933 DOI: 10.1007/s11356-021-12913-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Benzophenone-3 (BP-3) is used in a wide range of personal care products and plastics to resist ultraviolet light, which has aroused considerable public concern due to its endocrine-disrupting effects. In this work, we systematically investigated the chemical oxidation process of BP-3 by KMnO4. The influences of several factors, such as pH, oxidant dose, temperature, coexisting water constituents, and water matrices, on BP-3 degradation efficiency were evaluated. The removal rate of 10 μM BP-3 could reach 91.3% in 2 h under the conditions of pH = 8.0, [BP-3]0:[KMnO4]0 = 1:20, and T = 25 °C, with the observed rate constant (kobs) value of 0.0202 min-1. The presence of typical anions (Cl-, NO3-, SO42-) and HA could slightly increase BP-3 removal, while HCO3- caused a relatively significant promotion of BP-3 degradation. On the basis of mass spectrometry and theoretical calculations, hydroxylation, direct oxidation, and carbon-carbon bridge bond cleavage were mainly involved in the oxidation process. Toxicity assessment revealed that the acute and chronic toxicities were reduced significantly, which suggested KMnO4 is a promising technique for BP-3 removal.
Collapse
Affiliation(s)
- Wanming Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Zongli Huo
- Jiangsu Province Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef, 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Feng Zhu
- Jiangsu Province Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Zhang P, Lu G, Liu J, Yan Z, Dong H, Zhou R. Biodegradation of 2-ethylhexyl-4-methoxycinnamate in river sediments and its impact on microbial communities. J Environ Sci (China) 2021; 104:307-316. [PMID: 33985734 DOI: 10.1016/j.jes.2020.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms, but little is known about their biodegradation in river sediments and their impact on microorganisms. We have set up the sterile and microbiological systems in the laboratory, adding 2-ethylhexyl-4-methoxycinnamate (EHMC), one of organic UV filters included in the list of high yield chemicals, at concentrations of 2, 20 and 200 μg/L, and characterized the microbial community composition and diversity in sediments. Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system (3.49 days) was much shorter than that in the sterile system (7.55 days). Two potential degradation products, 4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system. Furthermore, high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi, Acidobacteria, Bacteroidetes and Nitrospirae; Eukaryota_uncultured fungus dominated the sediment fungal assemblages. Correlation analysis demonstrated that two bacterium genera (Anaerolineaceae_uncultured and Burkholderiaceae_uncultured) were significantly correlated with the biodegradation of EHMC. These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities, which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydraulic and Civil Engineering, XiZang Agriculture and Animal Husbandry College, Linzhi 860000, China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ranran Zhou
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
25
|
Fagervold SK, Rohée C, Rodrigues AMS, Stien D, Lebaron P. Efficient degradation of the organic UV filter benzophenone-3 by Sphingomonas wittichii strain BP14P isolated from WWTP sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143674. [PMID: 33248773 DOI: 10.1016/j.scitotenv.2020.143674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Benzophenone-3 (BP3) is a widely used organic UV filter present in many environmental compartments. One way BP3 is released into the environment is through effluents from wastewater treatment plants (WWTPs). These plants are possible sources for degradation activity and WWTP sludge may potentially degrade BP3. Our goal was to identify any BP3 degrading microorganism(s) in WWTP sludge and to investigate whether the degradation was co-metabolic. Initial WWTP sludge microcosms spiked with BP3 showed 100% degradation after 20 days. Multiple transfers of these microcosms, while maintaining a strong selective pressure for BP3 degradation capabilities, resulted in the dominance of one bacterial strain. This strain was identified as Sphingomonas wittichii BP14P and was subsequently isolated. It was shown to degrade BP3 in a growth dependent manner. Strain BP14P utilized BP3 as the sole energy and carbon source and completely degraded BP3 after 7 days in minimal media. We tested the capability of BP14P to degrade nine other UV filters, but the degradation ability seemed to be restricted to BP3. However, whether this specificity is due to the lack of degradation genes, cellular transport or low bioavailability of the other UV filters remained unclear. The efficient degradation of BP3 by a group of bacteria well known for their potential for xenobiotic degradation is an important step forward for a complete risk assessment of the long-term environmental impact of BP3.
Collapse
Affiliation(s)
- S K Fagervold
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-mer, France.
| | - C Rohée
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, 31000 Toulouse, France
| | - A M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-mer, France
| | - D Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-mer, France
| | - P Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-mer, France
| |
Collapse
|
26
|
Porter AW, Wolfson SJ, Häggblom M, Young LY. Microbial transformation of widely used pharmaceutical and personal care product compounds. F1000Res 2020; 9. [PMID: 32148768 PMCID: PMC7043110 DOI: 10.12688/f1000research.21827.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 01/17/2023] Open
Abstract
Pharmaceutical and personal care products (PPCPs) are commonly used chemicals that are increasingly detected in urban-impacted environments, particularly those receiving treated wastewater. PPCPs may have toxicological effects on the macrofauna that are exposed through contaminated water; thus, there is interest in microbially mediated transformations that may degrade PPCPs. This review discusses specific examples of PPCP transformations that may occur in anoxic environments, including O-methylation and O-demethylation.
Collapse
Affiliation(s)
- Abigail W Porter
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Sarah J Wolfson
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Max Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Lily Y Young
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
27
|
Mao H, Li H, Li Y, Li L, Yin L, Yang Z. Four typical personal care products in a municipal wastewater treatment plant in China: Occurrence, removal efficiency, mass loading and emission. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109818. [PMID: 31689659 DOI: 10.1016/j.ecoenv.2019.109818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
The occurrence, removal efficiency, mass loading and environmental emission of four categories (benzotriazoles; parabens; antimicrobials; benzophenones) of personal care products were simultaneously determined along the whole process line through an integrated approach (involving both dissolved and adsorbed phase) at a typical wastewater treatment plant in Hunan Province, Southern China. The results showed the prevalence of 13 and 11 target compounds in wastewater and suspended particulate matter, respectively. Twelve substances were detected in the sludge with the mean concentrations ranging from 0.12 to 591.23 ng/g dry weight. Benzotriazoles were the dominant compounds existing in water and antimicrobials were readily being absorbed onto suspended particulate matter and sludge. The overall removal efficiencies of compounds in the total treatment were -84.06%-98.53%. Mass balance results revealed that 85.17%-98.73% of the parabens and benzophenones were removed by degradation, while antimicrobials were removed by being adsorbed onto sludge. However, benzotriazoles could not be efficiently removed and the mass loss was lower than 61.03%. Although ultraviolet radiation played a limited role in removing most target compounds, it still had an impact on removing antimicrobials, 5,6-dimethyl-1H-benzotriazole and 2-hydroxy-4-methoxybenzophenone. The total mass loading and emission of personal care products were 506.35 mg/d/1000 people and 357.56 mg/d/1000 people, respectively. This work would help understand the removal approaches and real pollution of personal care products in the water environment.
Collapse
Affiliation(s)
- Huiyue Mao
- Center for Environment and Water Resources/College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, PR China
| | - Haipu Li
- Center for Environment and Water Resources/College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, PR China.
| | - Yue Li
- Center for Environment and Water Resources/College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, PR China
| | - Lei Li
- Changsha Water Group Co., LTD, Changsha, 410015, PR China
| | - Ling Yin
- Changsha Water Group Co., LTD, Changsha, 410015, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources/College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, PR China.
| |
Collapse
|
28
|
Rodríguez-Escales P, Sanchez-Vila X. Modeling the fate of UV filters in subsurface: Co-metabolic degradation and the role of biomass in sorption processes. WATER RESEARCH 2020; 168:115192. [PMID: 31654962 DOI: 10.1016/j.watres.2019.115192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/17/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Ultraviolet filters (UVFs) are emerging organic compounds found in most water systems. They are constituents of personal care products, as well as industrial ones. The concentration of UVFs in the water bodies in space and time is mostly determined by degradation and sorption, both processes being determinant of their bioavailability and toxicity to ecosystems and humans. UVFs are a wide group of compounds, with different sorption behavior expected depending on the individual chemical properties (pKa,Koc,Kow). The goal of this work is framed in the context of improving our understanding of the sorption processes of UVFs occurring in the aquifer; that is, to evaluate the role of biomass growth, solid organic matter (SOM) and redox conditions in the characterization of sorption of a set of UVFs. We constructed a conceptual and a numerical model to evaluate the fate of selected UV filters, focused on both sorption and degradation. The models were validated with published data by Liu et al. (2013), consisting in a suite of batch experiments evaluating the fate of a cocktail of UVs under different redox conditions. The compounds evaluated included ionic UV filters (Benzophenone-3; 2-(3-t-butyl-2-hydroxy-5-methylphenyl)5-chloro-benzotriazole; 2-(2'-hydroxy-5'-octylphenyl)-benzotriazole) and neutral ones (octyl 4-methoxycinnamatte; and octocrylene).
Collapse
Affiliation(s)
- P Rodríguez-Escales
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034, Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain.
| | - X Sanchez-Vila
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034, Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| |
Collapse
|
29
|
Jin C, Geng Z, Pang X, Zhang Y, Wang G, Ji J, Li X, Guan C. Isolation and characterization of a novel benzophenone-3-degrading bacterium Methylophilus sp. strain FP-6. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109780. [PMID: 31627096 DOI: 10.1016/j.ecoenv.2019.109780] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/09/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Benzophenone-3 (BP-3) is extensively applied in sunscreens and some other related cosmetic products. It is necessary to efficiently and safely remove BP-3 from environments by application of various treatment technologies. However, to the authors' knowledge, BP-3 biodegradation by a single bacterial strain has not been reported before. In this study, a Gram-negative aerobic bacterium capable of degrading BP-3 as a sole carbon source was isolated from a municipal wastewater treatment plant and classified as Methylophilus sp. FP-6 according to BIOLOG GEN III and 16S rDNA analysis. Methanol was chosen for further experiments as a co-metabolic carbon source to enhance the microbial degradation efficiency of BP-3. Orthogonal and one-way experiments were all performed to investigate the optimal culture conditions for degradation of BP-3 by Methylophilus sp. FP-6. The degradation rate of BP-3 reached about 65% after 8 days of incubation with strain FP-6 under optimal culture conditions. The half-life (t1/2) of BP-3 biodegradation by strain FP-6 was estimated as 2.95 days according to the BP-3 degradation curve. The metabolite intermediates generated during the BP-3 degradation process were analyzed by LC-MS/MS and three metabolite products were identified. According to the analysis of metabolic intermediates, three pathways for degradation of BP-3 by strain FP-6 were proposed. The results from this study gave first insights into the potential of BP-3 biodegradation by a single bacterial strain.
Collapse
Affiliation(s)
- Chao Jin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenlong Geng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xintong Pang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yue Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaozhou Li
- Tianjin Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
30
|
Zhou C, Wang Y, Chen J, Niu J. Electrochemical degradation of sunscreen agent benzophenone-3 and its metabolite by Ti/SnO 2-Sb/Ce-PbO 2 anode: Kinetics, mechanism, toxicity and energy consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:75-82. [PMID: 31229830 DOI: 10.1016/j.scitotenv.2019.06.197] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Electrochemical degradation of sunscreen agent benzophenone-3 (BP-3) and its metabolite 4-hydroxybenzophenone (4-OH-BP) was investigated by using a Ti/SnO2-Sb/Ce-PbO2 anode. Results showed that the degradation of BP-3 and 4-OH-BP followed pseudo-first-order kinetics, and the rate constants were 0.083 and 0.113 min-1 at a current density of 25 mA cm-2, respectively. The electrochemical degradation of BP-3 and 4-OH-BP was efficient over a wide range of pH values, and the degradation was obviously accelerated in the presence of Cl-. Degradation intermediates were identified during the electrochemical process, and the degradation pathways, mainly including hydroxylation, carbonyl group broken from aromatic ring, benzene ring opening and carboxylation, were proposed. Quantitative structure-activity relationship model indicated that the potential risks of BP-3 and 4-OH-BP to fish, daphnia and green algae were decreased with the increase of reaction time. The energy consumption for the degradation of 90% BP-3 and 4-OH-BP was 3.3-62.1 and 3.6-79.5 Wh L-1, respectively. The results illustrate that the electrochemical technique with Ti/SnO2-Sb/Ce-PbO2 anode is expected to be an effective way for removing BP-3 and its metabolite 4-OH-BP from wastewater.
Collapse
Affiliation(s)
- Chengzhi Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Yanping Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jie Chen
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
31
|
Tsui MMP, Chen L, He T, Wang Q, Hu C, Lam JCW, Lam PKS. Organic ultraviolet (UV) filters in the South China sea coastal region: Environmental occurrence, toxicological effects and risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:26-33. [PMID: 31154117 DOI: 10.1016/j.ecoenv.2019.05.075] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Organic ultraviolet (UV) filters are common ingredients of personal care products and occur ubiquitously in the aquatic environment; however, little is known about their distribution in and potential effects to the marine environment. This study reports the occurrence, toxicological effects and risk assessment of eleven commonly consumed UV filters in marine surface water collected from the South China Sea (SCS) coastal region. The concentrations of UV filters ranged from <MDL to 145 ng/L in the SCS, in which benzophenone-3, octocrylene and butyl methoxydibenzoylmethane were the most dominant compounds with their detection frequencies over 97%. Relatively higher levels of total UV filters were found near the highly industrialized and urbanized Pearl River Estuary (PRE) and the concentrations gradually decreased towards the SCS. In general, the environmental levels of UV filters were higher at the western marine waters in Hong Kong than the eastern marine waters. Significant negative correlations were observed between benzophenone-4 and water temperature, as well as ethylhexyl methoxycinnamate and salinity (P < 0.001; r < -0.5). Immobilization test of barnacle nauplius larvae (Balanus amphitrite) was conducted to assess the acute toxicity of organic UV filters to marine organisms. Benzophenone-8 and 4-methylbenzylidene camphor showed relatively higher toxicity with the 50% effect concentrations (EC50) of 2.2 and 3.9 mg/L, respectively. A preliminary risk assessment was conducted by the results obtained from our field and laboratory studies. Results showed that the risk to cause immobilization in barnacle nauplius larvae in associated with exposure to current levels of organic UV filters in the SCS was minimal.
Collapse
Affiliation(s)
- Mirabelle M P Tsui
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tangtian He
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - James C W Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
32
|
Wolfson SJ, Porter AW, Villani TS, Simon JE, Young LY. Pharmaceuticals and Personal Care Products Can Be Transformed by Anaerobic Microbiomes in the Environment and in Waste-Treatment Processes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1585-1593. [PMID: 30883883 DOI: 10.1002/etc.4406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/18/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are emerging environmental contaminants that can be transformed by anaerobic microorganisms in anoxic environments. The present study examined 2 consortia, enriched under methanogenic and sulfate-rich conditions, that demethylate the phenylmethyl ether anti-inflammatory drug naproxen to 6-O-desmethylnaproxen. Both enriched consortia were also able to demethylate a range of phenylmethyl ether compounds of plant-based origin or used as PPCPs. Results from 16S rRNA gene sequencing showed that the 2 communities were very different despite sharing the same PPCP metabolism. In most cases, the demethylated metabolite was not further degraded but rather accumulated in the culture medium. For the expectorant guaifenesin, this resulted in a novel microbial metabolite. Furthermore, to our knowledge, this is the first report of methylparaben metabolism under methanogenic conditions. The wide range of phenylmethyl ether substrates that underwent O-demethylation in both methanogenic and sulfate-rich conditions suggests that there are potentially bioactive transformation products in the environment that have not yet been quantified. Environ Toxicol Chem 2019;38:1585-1593. © 2019 SETAC.
Collapse
Affiliation(s)
- Sarah J Wolfson
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Abigail W Porter
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Thomas S Villani
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - James E Simon
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Lily Y Young
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
33
|
Biel-Maeso M, Corada-Fernández C, Lara-Martín PA. Removal of personal care products (PCPs) in wastewater and sludge treatment and their occurrence in receiving soils. WATER RESEARCH 2019; 150:129-139. [PMID: 30508710 DOI: 10.1016/j.watres.2018.11.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Clean water is one of the main resources for key activities such as agriculture, power generation, and public and industrial supplies. However, once wastewater generated by these activities is released into the environment, it may represent a potential risk to ecosystems and even human health depending on the presence of certain types and levels of contaminants. This study is focused on personal care products (PCPs), a class of contaminants of emerging concern (CECs) which includes commonly used cosmetic and personal hygiene products (e.g., fragrances, UV filters, antimicrobials, surfactants, among others), and their comparison with legacy contaminants such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). We have monitored the concentrations of up to 66 target compounds in influent and effluent wastewater, sludge, and compost samples from a wastewater treatment plant (WWTP) at Jerez de la Frontera (SW Spain) over a 1-year period. Almost half of the target compounds (44%) were frequently detected in influent wastewater samples, with prevalence of synthetic fragrances and higher abundance of UV filters during warmer periods. Due to their relatively poor removal efficiencies (<70%), 30 target compounds were always detected in the final effluent. The highest levels here were observed for an UV filter (octocrylene) and three synthetic fragrances (traseolide, OTNE, and galaxolide), showing maximum concentrations of 4-7 μg L-1 and 12-95 μg g-1 in the dissolved and particulate fractions, respectively. Concentrations of these compounds increased in sludge, being up to 365 μg g-1 for some fragrances and showing negligible decrease after anaerobic digestion. Windrow composting of this sludge, however, resulted in an efficient removal (up to 100%) for most analytes. On the other hand, levels between <1 and 651 ng g-1 were measured in soils columns (0-150 cm) at the WWTP gardens irrigated with effluent wastewater. The occurrence of PCPs in these soils seemed to be heavily influenced by temperature, as maximum concentrations were measured in colder months, indicating a higher rate of microbial activity degradation and/or volatilization during warmer months.
Collapse
Affiliation(s)
- Miriam Biel-Maeso
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEI·MAR), Cádiz, 11510, Spain
| | - Carmen Corada-Fernández
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEI·MAR), Cádiz, 11510, Spain
| | - Pablo A Lara-Martín
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEI·MAR), Cádiz, 11510, Spain.
| |
Collapse
|
34
|
Mao F, You L, Reinhard M, He Y, Gin KYH. Occurrence and Fate of Benzophenone-Type UV Filters in a Tropical Urban Watershed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3960-3967. [PMID: 29502395 DOI: 10.1021/acs.est.7b05634] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The study investigated the occurrence and fate of seven benzophenone-type UV filters (i.e., 2,4-dihydroxybenzophenone (2,4OH-BP), 2,2',4,4'-tetrahydroxybenzophenone (2,2',4,4'OH-BP), 2-hydroxy-4-methoxybenzophenone (2OH-4MeO-BP), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone (2,2'OH-4,4'MeO-BP), 2,2'-dihydroxy-4-methoxybenzophenone (2,2'OH-4MeO-BP), 4-hydroxybenzophenone (4OH-BP), and 4,4'-dihyroxybenzophenone (4DHB)) in a tropical urban watershed consisting of five major tributaries that discharge into a well-managed basin. Total benzophenone concentrations (∑CBPs) varied from 19-230.8 ng L-1 in overlying bulk water, 48-115 ng L-1 in pore water, 295-5813 ng g-1 dry weight (d.w.) in suspended solids, and 6-37 ng g-1 d.w. in surficial sediments, respectively. The tributaries (∑CBPs: 19-231 ng L-1) were the main source of benzophenone compounds entering the basin (∑CBPs: 20-81 ng L-1). In the water column, the vertical concentration profile in the aqueous phase was uniform while concentrations in the suspended solids decreased with depth. Different distribution profiles were also identified for benzophenones in suspended solids and sediments. A preliminary risk assessment suggested that the seven BPs were unlikely to pose ecotoxicological risks to local aquatic organisms except for 2OH-4MeO-BP in the case of an intermittent release.
Collapse
Affiliation(s)
- Feijian Mao
- Department of Civil and Environmental Engineering , National University of Singapore , 1 Engineering Drive 2, E1A 07-03 , Singapore 117576 , Singapore
| | - Luhua You
- Department of Civil and Environmental Engineering , National University of Singapore , 1 Engineering Drive 2, E1A 07-03 , Singapore 117576 , Singapore
| | - Martin Reinhard
- Department of Civil and Environmental Engineering, Yang & Yamasaki Environment & Energy Building , 473 Via Ortega , Stanford University , Stanford , California 94305 , United States
| | - Yiliang He
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering , National University of Singapore , 1 Engineering Drive 2, E1A 07-03 , Singapore 117576 , Singapore
- NUS Environmental Research Institute , National University of Singapore , 5A Engineering Drive 1, #02-01 , Singapore 117411 , Singapore
| |
Collapse
|
35
|
Pan X, Yan L, Qu R, Wang Z. Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light. CHEMOSPHERE 2018; 196:95-104. [PMID: 29291519 DOI: 10.1016/j.chemosphere.2017.12.152] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The goals of this study were to bring forward new data and insights into the effect of activation methods, operational variables and reaction pathways during sulfate radicals-based oxidation of benzophenone-3 (BP-3) in aqueous solution. Heat, transition metal ions (Fe2+, Cu2+, Co2+), UV and visible light irradiation were used to activate persulfate (PS) to degrade BP-3. The results showed that these three activation methods can remarkably enhance BP-3 removal efficiency. Under the conditions of [BP-3]0: [PS]0 = 1: 500, pH = 7.0, and 40 °C, complete removal of BP-3 (1.31 μM) was observed in 3 h. In the pH range of 3.0-9.0, the degradation of BP-3 decreased with increasing pH. Increasing the PS dosage accelerated the reaction, while the presence of humic acid (HA) significantly inhibited the efficiency of BP-3 removal. Based on electron paramagnetic resonance (EPR) and radical quenching studies, sulfate and hydroxyl radicals contributed to the oxidation process. According to the evolution of BP-3 and its 7 by-products, as well as frontier electron densities (FED) calculation, two routes were proposed involving hydroxylation, demethylation and direct oxidation. On the whole, this work is a unique contribution to the systematic elucidation of BP-3 removal by PS.
Collapse
Affiliation(s)
- Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Liqing Yan
- Environmental Engineering School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0373, USA
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| |
Collapse
|
36
|
Wu MH, Xie DG, Xu G, Sun R, Xia XY, Liu WL, Tang L. Benzophenone-type UV filters in surface waters: An assessment of profiles and ecological risks in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:235-241. [PMID: 28359989 DOI: 10.1016/j.ecoenv.2017.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/07/2023]
Abstract
Benzophenone-type UV filters (BP-UV filters) are frequently introduced into aquatic environment from several sources. The occurrence and fate of select BP-UV filters and their metabolites were investigated in this study. All target compounds were detected in water samples, except for 2, 3, 4-trihydroxybenzophenone (2, 3, 4-OH-BP). The concentration reached up 131ngL-1 for 5-benzoyl-4-hydroxy-2-ethoxybenzenesulfonic acid (BP-4), 30.0ngL-1 for 2-hydroxy-4-methoxybenzophenone (BP-3), and mean value of 158ngL-1 for benzophenone (BP). Concentrations of BP-UV filters were not related to recreational waters but with high population frequencies. In addition, five BP-UV filters, namely 2,2',4,4'-tetrahydroxybenzophenone (BP-2), 2,3,4-OH-BP, 2,4-dihydroxybenzophenone (BP-1), 4-hydroxybenzophenone (4-OH-BP) and BP were investigated for probable sources, and found that they originate from BP-3 metabolism. There is a similar source for BP-3, BP-4, BP-1, 4-OH-BP and BP. Environmental risk assessment (ERA) showed that risk quotients (RQs) of BP-4, BP-3 and BP were 2.7, 0.8 and 0.5, respectively.
Collapse
Affiliation(s)
- Ming-Hong Wu
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Deng-Guo Xie
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Gang Xu
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Rui Sun
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiao-Yu Xia
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wen-Long Liu
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Liang Tang
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
37
|
Volpe A, Pagano M, Mascolo G, Grenni P, Rossetti S. Biodegradation of UV-filters in marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:448-457. [PMID: 27750141 DOI: 10.1016/j.scitotenv.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
The degradation of two of the most frequently used UV-filters was investigated through microcosm studies. Marine sediments sampled from two sites in Italy (La Spezia harbour and Sarno river estuary, S1 and S2 respectively) were used to set up aerobic and anaerobic sets of reactors. The sediments were spiked with a methanol solution of 3-(4-methylbenzylidene)camphor (4-MBC) and 2-ethylhexyl 4-(dimethylamino)benzoate (EH-DPAB), at concentrations of either 25 or 50mgkg-1 each. Methanol (6.3g/L) also served as an organic amendment and growth substrate for improving microbial activity. Monitoring of the biotic and abiotic degradation of the selected contaminants over 16months revealed that 4-MBC biodegradation was very slow and incomplete, whereas over 90% of EH-DPAB was degraded both in the aerobic and the anaerobic reactors by the natural microbial communities of both sediments. Repeated spikes of EH-DPAB were followed by complete decay, characterised by first-order kinetics. The calculated kinetic rate constants under aerobic and anaerobic conditions were similar. In reactors inoculated with the S1 sediment the degradation rate constants progressively increased after each spike, up to the value of 0.039d-1. For the S2 sediment the rate constant was around 0.020d-1 throughout the duration of the experiment. Mass spectrometry analysis of sediment extracts allowed detection of potential transformation products of EH-DPAB and 4-MBC. Moreover, the natural microbial community of the sediments was studied using the CAtalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) both in the initial sediments and after degradation under aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Angela Volpe
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (CNR-IRSA) Viale F. De Blasio, 5 - 70132 Bari, Italy.
| | - Michele Pagano
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (CNR-IRSA) Viale F. De Blasio, 5 - 70132 Bari, Italy
| | - Giuseppe Mascolo
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (CNR-IRSA) Viale F. De Blasio, 5 - 70132 Bari, Italy
| | - Paola Grenni
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (CNR-IRSA), Via Salaria Km. 29, 300 - 00015 Monterotondo, RM, Italy
| | - Simona Rossetti
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (CNR-IRSA), Via Salaria Km. 29, 300 - 00015 Monterotondo, RM, Italy
| |
Collapse
|
38
|
Guo Y, Lin Q, Xu B, Qi F. Degradation of benzophenone-3 by the ozonation in aqueous solution: kinetics, intermediates and toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7962-7974. [PMID: 26769481 DOI: 10.1007/s11356-015-5941-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Benzophenone-3 (BP-3) is a popular ultraviolet absorbing chemical and has an adverse impact on aquatic ecosystems and human health. We determined the reaction kinetic constants of BP-3 and its de-proton pattern reacting with the molecular ozone or hydroxyl radical (·OH) for the first time. The obtained constant of the molecular ozone reacting with BP-3 or BP-3(-) was 1.03(±0.21) × 10(2) or 1.85(±0.098) × 10(5) M(-1) s(-1), respectively. And, the constant for BP-3 reacting with ·OH was 9.74(±0.21) × 10(9) or 10.13(±0.25) × 10(9) M(-1) s(-1) as using 4-chlorobenzoic acid and benzotriazole as reference compounds, respectively. The intermediates generated in the molecular ozone (12 kinds) or ·OH oxidation (18 kinds) were identified by LC-MS/MS. The removal efficiency of BP-3 in ozonation was dependent on the initial concentration of ozone, BP-3, and matrix water quality. The detoxification of BP-3 ozonation was depended on initial ozone dose using Chlorella vulgaris as the probe. Higher ozone dose increased the toxicity of the solution for more BP-3 being degraded and more intermediates formed, suggesting that the sole ozonation is not an effect approach for the degradation of BP-3 and some other energy should be combined.
Collapse
Affiliation(s)
- Yang Guo
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Qiaoxin Lin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Bingbing Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
39
|
Peng MG, Li HJ, Du ED, Feng HQ, Wang JL, Li DD, Zhou J. OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study. CHEMICAL PAPERS 2016. [DOI: 10.1515/chempap-2016-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBenzophenone-3 (BP-3), as an important organic UV filter, is widely used in the sunscreen, cosmetic, and personal care products. The chemical reaction mechanism and kinetics of BP-3 degradation initiated by hydroxyl (OH) radical was investigated in the atmosphere based on the density functional theory (DFT). The results showed that the OH radical is more easily added to the C3 position of the aromatic ring (pathway 3), while the H atom abstraction from the OH group on the aromatic ring (pathway 23) is an energetically favorable reaction pathway. At ambient temperature, 298 K, the overall rate constant for the primary reaction is about 1.50 × 10
Collapse
|
40
|
Tsui MMP, Leung HW, Kwan BKY, Ng KY, Yamashita N, Taniyasu S, Lam PKS, Murphy MB. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan. JOURNAL OF HAZARDOUS MATERIALS 2015; 292:180-187. [PMID: 25804793 DOI: 10.1016/j.jhazmat.2015.03.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
Organic ultraviolet (UV) filters are used widely in various personal care products and their ubiquitous occurrence in the aquatic environment has been reported in recent years. However, data on their fate and potential impacts in marine sediments is limited. This study reports the occurrence and risk assessment of eleven widely used organic UV filters in marine sediment collected in Hong Kong and Tokyo Bay. Seven of the 11 target UV filters were detected in all sediment samples (median concentrations: <MLOD-21 ng/g dry weight) with detection frequencies higher in the wet season than in the dry season. Composition profiles showed that BMDM, EHMC and ODPABA were the predominant compounds, accounting for more than 60% of the total UV filter occurrence; this was likely due to their relatively higher octanol-water partition coefficients. Probabilistic ecological risk assessment showed that the likelihood of EHMC causing toxic effects on reproduction in snails was over 84% and 32% based on toxicity data for two species, respectively, suggesting potential risks of UV filters to benthic organisms and possible wider effects on the marine food web. However, more toxicity data for sediment organisms is necessary for better risk assessment of these compounds in benthic communities.
Collapse
Affiliation(s)
- Mirabelle M P Tsui
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - H W Leung
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Applied Science, Hong Kong Institute of Vocational Education, Chai Wan, Hong Kong, China
| | - Billy K Y Kwan
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ka-Yan Ng
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Paul K S Lam
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Margaret B Murphy
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
41
|
Careghini A, Mastorgio AF, Saponaro S, Sezenna E. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5711-41. [PMID: 25548011 PMCID: PMC4381092 DOI: 10.1007/s11356-014-3974-5] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/08/2014] [Indexed: 04/15/2023]
Abstract
Contaminants of emerging concern (CECs) are not commonly monitored in the environment, but they can enter the environment from a variety of sources. The most worrying consequence of their wide use and environmental diffusion is the increase in the possible exposure pathways for humans. Moreover, knowledge of their behavior in the environment, toxicity, and biological effects is limited or not available for most CECs. The aim of this work is to edit the state of the art on few selected CECs having the potential to enter the soil and aquatic systems and cause adverse effects in humans, wildlife, and the environment: bisphenol A (BPA), nonylphenol (NP), benzophenones (BPs), and benzotriazole (BT). Some reviews are already available on BPA and NP, reporting about their behavior in surface water and sediments, but scarce and scattered information is available about their presence in soil and groundwater. Only a few studies are available about BPs and BT in the environment, in particular in soil and groundwater. This work summarizes the information available in the literature about the incidence and behavior of these compounds in the different environmental matrices and food. In particular, the review focuses on the physical-chemical properties, the environmental fate, the major degradation byproducts, and the environmental evidence of the selected CECs.
Collapse
Affiliation(s)
- Alessando Careghini
- DICA - Sezione Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Andrea Filippo Mastorgio
- DICA - Sezione Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Sabrina Saponaro
- DICA - Sezione Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Elena Sezenna
- DICA - Sezione Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
42
|
Teo TLL, Coleman HM, Khan SJ. Chemical contaminants in swimming pools: Occurrence, implications and control. ENVIRONMENT INTERNATIONAL 2015; 76:16-31. [PMID: 25497109 DOI: 10.1016/j.envint.2014.11.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
A range of trace chemical contaminants have been reported to occur in swimming pools. Current disinfection practices and monitoring of swimming pool water quality are aimed at preventing the spread of microbial infections and diseases. However, disinfection by-products (DBPs) are formed when the disinfectants used react with organic and inorganic matter in the pool. Additional chemicals may be present in swimming pools originating from anthropogenic sources (bodily excretions, lotions, cosmetics, etc.) or from the source water used where trace chemicals may already be present. DBPs have been the most widely investigated trace chemical contaminants, including trihalomethanes (THMs), haloacetic acids (HAAs), halobenzoquinones (HBQs), haloacetonitriles (HANs), halonitromethanes (HNMs), N-nitrosamines, nitrite, nitrates and chloramines. The presence and concentrations of these chemical contaminants are dependent upon several factors including the types of pools, types of disinfectants used, disinfectant dosages, bather loads, temperature and pH of swimming pool waters. Chemical constituents of personal care products (PCPs) such as parabens and ultraviolet (UV) filters from sunscreens have also been reported. By-products from reactions of these chemicals with disinfectants and UV irradiation have been reported and some may be more toxic than their parent compounds. There is evidence to suggest that exposure to some of these chemicals may lead to health risks. This paper provides a detailed review of various chemical contaminants reported in swimming pools. The concentrations of chemicals present in swimming pools may also provide an alternative indicator to swimming pool water quality, providing insights to contamination sources. Alternative treatment methods such as activated carbon filtration and advanced oxidation processes may be beneficial in improving swimming pool water quality.
Collapse
Affiliation(s)
- Tiffany L L Teo
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Heather M Coleman
- Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Jordanstown, County Antrim BT37 0QB, Northern Ireland, United Kingdom.
| | - Stuart J Khan
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
43
|
Kim S, Choi K. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: a mini-review. ENVIRONMENT INTERNATIONAL 2014; 70:143-57. [PMID: 24934855 DOI: 10.1016/j.envint.2014.05.015] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 05/20/2023]
Abstract
Benzophenone-3 (BP-3) has been widely used in sunscreens and many other consumer products, including cosmetics. The widespread use of BP-3 has resulted in its release into the water environment, and hence its potential impact on aquatic ecosystem is of concern. To better understand the risk associated with BP-3 in aquatic ecosystems, we conducted a thorough review of available articles regarding the physicochemical properties, toxicokinetics, environmental occurrence, and toxic effects of BP-3 and its suspected metabolites. BP-3 is lipophilic, photostable, and bioaccumulative, and can be rapidly absorbed via oral and dermal routes. BP-3 is reported to be transformed into three major metabolites in vivo, i.e., benzophenone-1 (BP-1), benzophenone-8 (BP-8), and 2,3,4-trihydroxybenzophenone (THB). BP-1 has a longer biological half-life than its parent compound and exhibits greater estrogenic potency in vitro. BP-3 has been detected in water, soil, sediments, sludge, and biota. The maximum detected level in ambient freshwater and seawater is 125ng/L and 577.5ng/L, respectively, and in wastewater influent is 10,400ng/L. The major sources of BP-3 are reported to be human recreational activities and wastewater treatment plant (WWTP) effluents. BP-3 and its derivatives have been also detected in fish lipid. In humans, BP-3 has been detected in urine, serum, and breast milk samples worldwide. BP-1 has also been detected in placental tissues of delivering women. While sunscreens and cosmetics are known to be major sources of exposure, the fact that BP-3 has been detected frequently among young children and men suggests other sources. An increasing number of in vitro studies have indicated the endocrine disrupting capacity of BP-3. Based on a receptor binding assay, BP-3 has shown strong anti-androgenic and weak estrogenic activities but at the same time BP-3 displays anti-estrogenic activity as well. Predicted no effect concentration (PNEC) for BP-3 was derived at 1.32μg/L. The levels observed in ambient water are generally an order of magnitude lower than the PNEC, but in wastewater influents, hazard quotients (HQs) greater than 1 were noted. Considering limited ecotoxicological information and significant seasonal and spatial variations of BP-3 in water, further studies on environmental monitoring and potential consequences of long-term exposure in aquatic ecosystem are warranted.
Collapse
Affiliation(s)
- Sujin Kim
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
44
|
Tsui MMP, Leung HW, Lam PKS, Murphy MB. Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants. WATER RESEARCH 2014; 53:58-67. [PMID: 24503280 DOI: 10.1016/j.watres.2014.01.014] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 05/21/2023]
Abstract
Organic ultraviolet (UV) filters are applied widely in personal care products (PCPs), but the distribution and risks of these compounds in the marine environment are not well known. In this study, the occurrence and removal efficiencies of 12 organic UV filters in five wastewater treatment plants (WWTPs) equipped with different treatment levels in Hong Kong, South China, were investigated during one year and a preliminary environmental risk assessment was carried out. Using a newly developed simultaneous multiclass quantification liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, butyl methoxydibenzoylmethane (BMDM), 2,4-dihydroxybenzophenone (BP-1), benzophenone-3 (BP-3), benzophenone-4 (BP-4) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) were frequently (≥80%) detected in both influent and effluent with mean concentrations ranging from 23 to 1290 ng/L and 18-1018 ng/L, respectively; less than 2% of samples contained levels greater than 1000 ng/L. Higher concentrations of these frequently detected compounds were found during the wet/summer season, except for BP-4, which was the most abundant compound detected in all samples in terms of total mass. The target compounds behaved differently depending on the treatment level in WWTPs; overall, removal efficiencies were greater after secondary treatment when compared to primary treatment with >55% and <20% of compounds showing high removal (defined as >70% removal), respectively. Reverse osmosis was found to effectively eliminate UV filters from effluent (>99% removal). A preliminary risk assessment indicated that BP-3 and EHMC discharged from WWTPs may pose high risk to fishes in the local environment.
Collapse
Affiliation(s)
- Mirabelle M P Tsui
- Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - H W Leung
- Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Applied Science, Hong Kong Institute of Vocational Education, Chai Wan, Hong Kong, China
| | - Paul K S Lam
- Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Margaret B Murphy
- Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
45
|
Beel R, Lütke Eversloh C, Ternes TA. Biotransformation of the UV-filter sulisobenzone: challenges for the identification of transformation products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6819-6828. [PMID: 23815618 DOI: 10.1021/es400451w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The UV-filter substance Sulisobenzone (BP-4) is widely employed in sunscreens and other personal care products. In the current study, its behavior during biological wastewater treatment was investigated. In contact with activated sludge BP-4 was degraded in aerobic batch experiments forming at least nine transformation products (TPs). The mass balance in the batch experiments was closed, as measurements with LC-UV underlined that the quantity of the TPs was comparable to the BP-4 quantity transformed. The chemical structures of the nine TPs could be proposed based on accurate mass measurements by high resolution mass spectrometry (LTQ-Orbitrap-MS), several fragmentation experiments up to MS(6) and synthesis of one TP. NMR analyses of the main TP confirmed its proposed chemical structure. At the beginning of the biotransformation of BP-4, a benzhydrol analogue was formed due to the reduction of the keto moiety. Further reactions (e.g., oxidation, demethylation, decarboxylation) led to the formation of extremely polar TPs. A biodegradation pathway was proposed based on the TP structures identified and the sequence of the TP formation. The isolated TPs exhibited higher toxic effects on Vibrio fischeri than BP-4. The results contribute to a better general understanding and prediction of the biotransformation of aromatic sulfonic acids in WWTPs.
Collapse
Affiliation(s)
- Rita Beel
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | | | | |
Collapse
|
46
|
Has the bacterial biphenyl catabolic pathway evolved primarily to degrade biphenyl? The diphenylmethane case. J Bacteriol 2013; 195:3563-74. [PMID: 23749969 DOI: 10.1128/jb.00161-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we have compared the ability of Pandoraea pnomenusa B356 and of Burkholderia xenovorans LB400 to metabolize diphenylmethane and benzophenone, two biphenyl analogs in which the phenyl rings are bonded to a single carbon. Both chemicals are of environmental concern. P. pnomenusa B356 grew well on diphenylmethane. On the basis of growth kinetics analyses, diphenylmethane and biphenyl were shown to induce the same catabolic pathway. The profile of metabolites produced during growth of strain B356 on diphenylmethane was the same as the one produced by isolated enzymes of the biphenyl catabolic pathway acting individually or in coupled reactions. The biphenyl dioxygenase oxidizes diphenylmethane to 3-benzylcyclohexa-3,5-diene-1,2-diol very efficiently, and ultimately this metabolite is transformed to phenylacetic acid, which is further metabolized by a lower pathway. Strain B356 was also able to cometabolize benzophenone through its biphenyl pathway, although in this case, this substrate was unable to induce the biphenyl catabolic pathway and the degradation was incomplete, with accumulation of 2-hydroxy-6,7-dioxo-7-phenylheptanoic acid. Unlike strain B356, B. xenovorans LB400 did not grow on diphenylmethane. Its biphenyl pathway enzymes metabolized diphenylmethane, but they poorly metabolize benzophenone. The fact that the biphenyl catabolic pathway of strain B356 metabolized diphenylmethane and benzophenone more efficiently than that of strain LB400 brings us to postulate that in strain B356, this pathway evolved divergently to serve other functions not related to biphenyl degradation.
Collapse
|
47
|
Yang B, Ying GG. Oxidation of benzophenone-3 during water treatment with ferrate(VI). WATER RESEARCH 2013; 47:2458-66. [PMID: 23481287 DOI: 10.1016/j.watres.2013.02.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 05/24/2023]
Abstract
Benzophenone-3 (BP-3), a sunscreen agent widely used in many cosmetic products, has been found to have a wide presence in aquatic environments, which could affect the water quality and human health. We investigated oxidation of BP-3 by aqueous ferrate(VI) (Fe(VI)) to determine reaction kinetics, identify the reaction products, and evaluate the removal efficiency of BP-3 during water treatment with Fe(VI). The obtained apparent second-order rate constant (kapp) for Fe(VI) oxidation of BP-3was 81.8 M(-1) s(-1) at pH 8.0 and 24 ± 1 °C with the half-life (t1/2) of 167.8 s for BP-3 at an Fe(VI) concentration of 10 mg L(-1). The kapp of the reaction decreased with increasing pH values. Species-specific rate constants (k) for the reaction of HFeO4(-) with each of BP-3's acid-base species were used to model these pH-dependent variations of kapp. The value of k determined for neutral BP-3 was 3.4(±0.5) × 10(2) M(-1) s(-1), while that measured for dissociated BP-3 was 8.5(±0.7) × 10(3) M(-1) s(-1). The reaction between HFeO4(-) and the dissociated BP-3 controls the overall reaction. 4-Methoxybenzophenone and 4-methoxybenzoyl cation were formed during Fe(VI) degradation of BP-3. The removal efficiency of BP-3 by Fe(VI) treatment was dependent on coexisting constituents present in source water. Humic acids, Mn(2+) and NaCl significantly decreased the removal efficiency of BP-3, while Br(-) and Cu(2+) enhanced the removal. Besides, NH4(+), NO3(-), Fe(3+) and Fe(2+) had no effects on BP-3 removal within the tested concentrations. The results showed that Fe(VI) treatment technology appears to be a promising tool for the removal of hydroxylated benzophenone derivatives in water.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | |
Collapse
|
48
|
Park MA, Hwang KA, Lee HR, Yi BR, Jeung EB, Choi KC. Benzophenone-1 stimulated the growth of BG-1 ovarian cancer cells by cell cycle regulation via an estrogen receptor alpha-mediated signaling pathway in cellular and xenograft mouse models. Toxicology 2013; 305:41-8. [PMID: 23328252 DOI: 10.1016/j.tox.2012.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/10/2012] [Accepted: 12/28/2012] [Indexed: 11/27/2022]
Abstract
2,4-Dihydroxybenzophenone (benzophenone-1; BP-1) is an UV stabilizer primarily used to prevent polymer degradation and deterioration in quality due to UV irradiation. Recently, BP-1 has been reported to bioaccumulate in human bodies by absorption through the skin and has the potential to induce health problems including endocrine disruption. In the present study, we examined the xenoestrogenic effect of BP-1 on BG-1 human ovarian cancer cells expressing estrogen receptors (ERs) and relevant xenografted animal models in comparison with 17-β estradiol (E2). In in vitro cell viability assay, BP-1 (10(-8)-10(-5)M) significantly increased BG-1 cell growth the way E2 did. The mechanism underlying the BG-1 cell proliferation was proved to be related with the up-regulation of cyclin D1, a cell cycle progressor, by E2 or BP-1. Both BP-1 and E2 induced cell growth and up-regulation of cyclin D1 were reversed by co-treatment with ICI 182,780, an ER antagonist, suggesting that BP-1 may mediate the cancer cell proliferation via an ER-dependent pathway like E2. On the other hand, the expression of p21, a regulator of cell cycle progression at G1 phase, was not altered by BP-1 though it was down-regulated by E2. In xenograft mouse models transplanted with BG-1 cells, BP-1 or E2 treatment significantly increased the tumor mass formation compared to a vehicle (corn oil) within 8 weeks. In histopathological analysis, the tumor sections of E2 or BP-1 group displayed extensive cell formations with high density and disordered arrangement, which were supported by the increased number of BrdUrd positive nuclei and the over-expression of cyclin D1 protein. Taken together, these results suggest that BP-1 is an endocrine disrupting chemical (EDC) that exerts xenoestrogenic effects by stimulating the proliferation of BG-1 ovarian cancer via ER signaling pathway associated with cell cycle as did E2.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | | | | | | | | | | |
Collapse
|
49
|
Blüthgen N, Zucchi S, Fent K. Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio). Toxicol Appl Pharmacol 2012; 263:184-94. [DOI: 10.1016/j.taap.2012.06.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 01/16/2023]
|