1
|
Medrano-Ruiz LG, Molina-Domínguez CC, Rascón-Valenzuela LA, Dórame-Miranda RF, Osorio-Díaz P, Medina-Juárez LÁ, Ovando-Martínez M. Bioaccessibility of bioactive compounds and associated compounds to the indigestible fraction after in vitro digestion of three dry Capsicum annuum varieties. Food Funct 2025. [PMID: 39903098 DOI: 10.1039/d4fo04168b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Mexico has a wide variety of dry chilies used in Mexican food preparation because they are spicy, a property related to the bioactive compound named capsaicin. Apart from capsaicin, dry chilies have compounds such as phenolic compounds and tocopherols. Except for phenolic compounds, capsaicin and tocopherol have not been totally assessed to measure their release from the food matrix (bioaccessibility) after in vitro digestion. Therefore, this study is aimed at analyzing the bioaccessibility of phenolic compounds, tocopherols and capsaicinoids after in vitro digestion process of three dry chilies, namely, chiltepin, Colorado, and de Arbol, as well as the bioactive compounds associated with the indigestible fraction (IF). Results indicated that the bioaccessibility values of capsaicinoids were above 80% for all the three chili varieties without showing significant differences. Although these chilies showed high capsaicinoid bioaccessibility values, there were still compounds associated with the IF that could reach the colon and exhibit bioactivity. Regarding phenolic compounds, no differences in the bioaccessibility values were observed; however, there was a major concentration of flavonoids in the IF of the Colorado and de Arbol chilies, which could have a regulatory effect on the colonic microbiome. Regarding the bioaccessibility of α-tocopherol, there was a significant difference between de Arbol and the other two varieties (above 60%). The IF of Colorado chili was a source of α-tocopherol in the colon because it had the lowest bioaccessibility percentage. The overall results demonstrate that dry chilies are a source of bioactive compounds with bioaccessibility values favorable to human health.
Collapse
Affiliation(s)
- Luis Gerardo Medrano-Ruiz
- Departamento de Investigaciones Científicas y Tecnológicas de La Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| | | | - Luisa Alondra Rascón-Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Campus Hermosillo, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora, Mexico
| | | | - Perla Osorio-Díaz
- Instituto Polit, é, cnico Nacional, Centro de Desarrollo de Productos Bióticos, Carretera Yautepec-Jojutla, Km.6 calle CEPROBI No.8, Colonia San Isidro, Yautepec C.P. 62730, Mexico
| | - Luis Ángel Medina-Juárez
- Departamento de Investigaciones Científicas y Tecnológicas de La Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| | - Maribel Ovando-Martínez
- Departamento de Investigaciones Científicas y Tecnológicas de La Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
2
|
Lu Q, Xu Z, Zhang Q, Zhang Z, Zhang Y, Zhang T, Li J, Wang X. Foliar application of Fe-fulvic acid: A strategy to reduce heavy metal accumulation and enhance nutritional quality. Food Chem X 2024; 24:101904. [PMID: 39469282 PMCID: PMC11513662 DOI: 10.1016/j.fochx.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Pepper is a key agricultural crop susceptible to accumulating heavy metals like cadmium (Cd) and barium (Ba), posing significant health risks. To address these issues, this study investigated the effects of foliar applications of fulvic acid (FA), Zn-fulvic acid (Zn-FA), and Fe-fulvic acid (Fe-FA) on Ba and Cd uptake in pepper tissues, as well as their impact on nutritional quality, biomass, and leaf enzyme activity. Results indicated that Fe-FA application significantly reduced Cd and Ba in pepper fruit by 25 % and 93 %, respectively. Additionally, Fe-FA enhanced pepper growth, increasing vitamin C and phenolic compounds by 136 % and 13 %, respectively. Metabolomics analysis revealed that Fe-FA application up-regulated 857 metabolites and down-regulated 1045 metabolites. Furthermore, Fe-FA primarily influenced amino acid, carbohydrate, and lipid metabolism, promoting pepper growth. These findings suggest that Fe-FA foliar application offers a promising strategy for reducing Ba and Cd accumulation in pepper fruits while enhancing its nutritional quality.
Collapse
Affiliation(s)
- Qinhui Lu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China
| | - Zhi Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China
| | - Yuxin Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China
| | - Ting Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China
| | - Jun Li
- College of Environmental and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiaolin Wang
- Future Energy Center, School of Business, Society and Engineering, Mälardalen University, 722 23 Västerås, Sweden
| |
Collapse
|
3
|
Ávila-Oviedo JL, Méndez-Inocencio C, Rodríguez-Torres MD, Angoa-Pérez MV, Chávez-Avilés MN, Martínez-Mendoza EK, Oregel-Zamudio E, Villar-Luna E. Antagonistic Effects and Volatile Organic Compound Profiles of Rhizobacteria in the Biocontrol of Phytophthora capsici. PLANTS (BASEL, SWITZERLAND) 2024; 13:3224. [PMID: 39599433 PMCID: PMC11598575 DOI: 10.3390/plants13223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Phytophthora capsici is a devastating pathogen in horticultural crops, particularly affecting Capsicum annuum (pepper). The overuse of chemical fungicides has led to resistance development, necessitating alternative strategies. This study investigates the antagonistic effects of four rhizobacterial isolates (Bacillus sp., Pseudomonas putida, Bacillus subtilis, Bacillus amyloliquefaciens) against P. capsici, focusing on the production of volatile organic compounds (VOCs). Using in vitro dual culture assays, we observed a significant inhibition of mycelial growth and sporangia production, especially by B. subtilis and B. amyloliquefaciens. The GC-MS/SPME-HS analysis identified key VOCs responsible for these antagonistic effects. Our findings demonstrate that specific rhizobacteria and their VOCs offer a promising biocontrol strategy, potentially reducing the reliance on chemical fungicides and contributing to sustainable agriculture.
Collapse
Affiliation(s)
- José Luis Ávila-Oviedo
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - Carlos Méndez-Inocencio
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - María Dolores Rodríguez-Torres
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - María Valentina Angoa-Pérez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - Mauricio Nahuam Chávez-Avilés
- Laboratorio de Bioquímica y Biología Molecular, División de Ingeniería Bioquímica, Tecnológico Nacional de México/ITS de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez No. 2120 Fracc. Valle de La Herradura C.P., Hidalgo 61100, Michoacán, Mexico;
| | - Erika Karina Martínez-Mendoza
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - Ernesto Oregel-Zamudio
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| | - Edgar Villar-Luna
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Michoacán, Mexico; (J.L.Á.-O.); (C.M.-I.); (M.D.R.-T.); (M.V.A.-P.); (E.K.M.-M.)
| |
Collapse
|
4
|
Delai C, Muhae-Ud-Din G, Abid R, Tian T, Liu R, Xiong Y, Ma S, Ghorbani A. A comprehensive review of integrated management strategies for damping-off disease in chili. Front Microbiol 2024; 15:1479957. [PMID: 39483761 PMCID: PMC11524829 DOI: 10.3389/fmicb.2024.1479957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Damping-off disease in chili (Capsicum annum L.) cultivation is a significant global issue, severely affecting seeds, seedlings, and young plants, regardless of the location of cultivation, whether in greenhouses or open fields. Despite chili being a widely popular vegetable used in various cuisines globally, farmers face challenges in meeting the growing demand due to the extensive damage caused by this disease, ranging from 20 to 85%. The shelf life and quality of mature pods are also severely affected. Damping-off disease is mainly caused by soil-borne fungus from the Pythium species, with additional contributions from Phytophthora, Fusarium, and Rhizoctonia species. These pathogens' adaptability to diverse environmental conditions and resistance to synthetic fungicides make controlling damping-off on a commercial scale challenging. However, integrated disease management has shown promising results as a remedial approach. In this review, we discuss the current state of chili diseases, the nature of the pathogens causing damping-off, the epidemiology of the disease, and various control mechanisms. In this review, we broadly discuss the current state of chili diseases, the nature of the pathogens causing damping-off, the epidemiology of the disease, and various control mechanisms. Furthermore, we highlight the importance and efficacy of integrated disease management techniques, along with future prospects in unexplored areas, such as host-pathogen interaction and sustainable disease control measures. The information in this review aims to assist chili growers in understanding the epidemiology and management of damping-off in chili cultivation.
Collapse
Affiliation(s)
- Chen Delai
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Ghulam Muhae-Ud-Din
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Rimsha Abid
- Institute of Plant Protection, MNS University of Agriculture, Multan, Pakistan
| | - Tian Tian
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Ruirui Liu
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Yan Xiong
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Shirong Ma
- School of Agriculture and Bioengineering, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Jia G, Kim SH, Min J, Zamora NV, Montero SS, Kim SY, Oh SK. Cestrum tomentosum L.f. Extracts against Colletotrichum scovillei by Altering Cell Membrane Permeability and Inducing ROS Accumulation. THE PLANT PATHOLOGY JOURNAL 2024; 40:475-485. [PMID: 39397302 PMCID: PMC11471931 DOI: 10.5423/ppj.oa.07.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
Chili pepper anthracnose, caused by Colletotrichum spp., is a significant biotic stress affecting chili fruits globally. While fungicide application is commonly used for disease management due to its efficiency and costeffectiveness, excessive use poses risks to human health and the environment. Botanical fungicides offer advantages such as rapid degradation and low toxicity to mammals, making them increasingly popular for sustainable plant disease control. This study investigated the antifungal properties of Cestrum tomentosum L.f. crude extracts (CTCE) against Colletotrichum scovillei. The results demonstrated that CTCE effectively inhibited conidia germination and germ tube elongation at 40 µg/ml concentrations. Moreover, CTCE exhibited strong antifungal activity against C. scovillei mycelial growth, with an EC50 value of 18.81 µg/ml. In vivo experiments confirmed the protective and curative effects of CTCE on chili pepper fruits infected with C. scovillei. XTT analysis showed that the CTCE could significantly inhibit the cell viability of C. scovillei. Mechanistic studies revealed that CTCE disrupted the plasma membrane integrity of C. scovillei and induced the accumulation of reactive oxygen species in hyphal cells. These findings highlight CTCE as a promising eco-friendly botanical fungicide for managing C. scovillei infections in chili peppers.
Collapse
Affiliation(s)
- Guogeng Jia
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sun Ha Kim
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jiyoung Min
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | | | - Silvia Soto Montero
- Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, 22-3100, Costa Rica
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sang-Keun Oh
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
6
|
Akhter MJ, Akhter S, Islam S, Sarker MSH, Hasan SMK. Varietal influence on bioactive compounds and antioxidant activity in chilies during development stages. Heliyon 2024; 10:e37406. [PMID: 39296116 PMCID: PMC11408790 DOI: 10.1016/j.heliyon.2024.e37406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/11/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Numerous cultivars of chili are grown in Bangladesh for their nutritional and sensory attributes, serving as both spices and food items. Among many, indigenous chili cultivars in Bangladesh include Sada Akshi, Kajini, Dhani, and Naga are the important ones. The functional qualities of chili peppers are attributed to the plentiful presence of bioactive substances. Consequently, this study aimed to determine the variations in bioactive compounds, antioxidant activities, and hotness among the pre-mature, mature, pre-ripening, and ripening stages of four distinct chili cultivars. Four different cultivars of chilis at four different maturity stages were collected and analyzed for their antioxidant and bioactive profiles. The findings of the research revealed that all chili varieties exhibited a notable range of vitamin C concentration, ranging from 1.67 to 8.45 mg/g FW during the maturity stages. The values of TPC, TFC, total carotenoids, and chlorophyll a and b ranged from 16.68 to 46.76 mg GAE/g, 2.80-8.53 mg QE/g, 4.31-85.79 μg/g DW, 2.83-15.54 and 0.74-5.66 μg/g DW on a dry weight basis, respectively. The antioxidant activity was assessed using the FRAP and the DPPH scavenging assay and the values ranged from 142.62 to 311.03 mM Fe (II) Equivalent/100g DW and 216.36-329.52 μM Trolox Equivalent/g DW, respectively. The content of vitamin C, TPC, total carotenoids, and chlorophyll b was increased with the stages of development. The hotness of chili also increased with the development stages. However, the antioxidant activity fluctuated during the development stages of chili. Furthermore, the study incorporated the evaluation of physical parameters, such as height, weight, and color attributes concerning chilies. The Naga variety of chili demonstrated the highest level of efficacy when compared to other varieties. The nutritional and physicochemical information of the different cultivars of chili in this study might be useful to the breeders, spice processors, and consumers for desired size, taste, and hotness with health-promoting bioactive compounds, eventually for determining the harvest time.
Collapse
Affiliation(s)
- Most Jesmin Akhter
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh
| | - Sumaia Akhter
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh
| | - Shanta Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh
| | - Md Sazzat Hossain Sarker
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh
| | - S M Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh
| |
Collapse
|
7
|
Farooq MA, Zeeshan Ul Haq M, Zhang L, Wu S, Mushtaq N, Tahir H, Wang Z. Transcriptomic Insights into Salt Stress Response in Two Pepper Species: The Role of MAPK and Plant Hormone Signaling Pathways. Int J Mol Sci 2024; 25:9355. [PMID: 39273302 PMCID: PMC11394676 DOI: 10.3390/ijms25179355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Salt stress imposes significant plant limitations, altering their molecular, physiological, and biochemical functions. Pepper, a valuable herbaceous plant species of the Solanaceae family, is particularly susceptible to salt stress. This study aimed to elucidate the physiological and molecular mechanisms that contribute to the development of salt tolerance in two pepper species (Capsicum baccatum (moderate salt tolerant) and Capsicum chinense (salt sensitive)) through a transcriptome and weighted gene co-expression network analysis (WGCNA) approach to provide detailed insights. A continuous increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels in C. chinense and higher activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in C. baccatum indicated more tissue damage in C. chinense than in C. baccatum. In transcriptome analysis, we identified 39 DEGs related to salt stress. Meanwhile, KEGG pathway analysis revealed enrichment of MAPK and hormone signaling pathways, with six DEGs each. Through WGCNA, the ME.red module was identified as positively correlated. Moreover, 10 genes, A-ARR (CQW23_24856), CHIb (CQW23_04881), ERF1b (CQW23_08898), PP2C (CQW23_15893), ABI5 (CQW23_29948), P450 (CQW23_16085), Aldedh1 (CQW23_06433), GDA (CQW23_12764), Aldedh2 (CQW23_14182), and Aldedh3 (CQW23_11481), were validated by qRT-PCR. This study provides valuable insights into the genetic mechanisms underlying salt stress tolerance in pepper. It offers potential targets for future breeding efforts to enhance salt stress resilience in this crop.
Collapse
Affiliation(s)
- Muhammad Aamir Farooq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Muhammad Zeeshan Ul Haq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
| | - Liping Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuhua Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Naveed Mushtaq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hassam Tahir
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Ishfaqe Q, Sami A, Zeshan Haider M, Ahmad A, Shafiq M, Ali Q, Batool A, Haider MS, Ali D, Alarifi S, Islam MS, Manzoor MA. Genome wide identification of the NPR1 gene family in plant defense mechanisms against biotic stress in chili ( Capsicum annuum L.). Front Microbiol 2024; 15:1437553. [PMID: 39161600 PMCID: PMC11332612 DOI: 10.3389/fmicb.2024.1437553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Chili pepper cultivation in the Indian subcontinent is severely affected by viral diseases, prompting the need for environmentally friendly disease control methods. To achieve this, it is essential to understand the molecular mechanisms of viral resistance in chili pepper. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) genes are known to provide broad-spectrum resistance to various phytopathogens by activating systemic acquired resistance (SAR). An in-depth understanding of NPR1 gene expression during begomovirus infection and its correlation with different biochemical and physiological parameters is crucial for enhancing resistance against begomoviruses in chili pepper. Nevertheless, limited information on chili CaNPR genes and their role in biotic stress constrains their potential in breeding for biotic stress resistance. By employing bioinformatics for genome mining, we identify 5 CaNPR genes in chili. The promoter regions of 1,500 bp of CaNPR genes contained cis-elements associated with biotic stress responses, signifying their involvement in biotic stress responses. Furthermore, these gene promoters harbored components linked to light, development, and hormone responsiveness, suggesting their roles in plant hormone responses and development. MicroRNAs played a vital role in regulating these five CaNPR genes, highlighting their significance in the regulation of chili genes. Inoculation with the begomovirus "cotton leaf curl Khokhran virus (CLCuKV)" had a detrimental effect on chili plant growth, resulting in stunted development, fibrous roots, and evident virus symptoms. The qRT-PCR analysis of two local chili varieties inoculated with CLCuKV, one resistant (V1) and the other susceptible (V2) to begomoviruses, indicated that CaNPR1 likely provides extended resistance and plays a role in chili plant defense mechanisms, while the remaining genes are activated during the early stages of infection. These findings shed light on the function of chili's CaNPR in biotic stress responses and identify potential genes for biotic stress-resistant breeding. However, further research, including gene cloning and functional analysis, is needed to confirm the role of these genes in various physiological and biological processes. This in-silico analysis enhances our genome-wide understanding of how chili CaNPR genes respond during begomovirus infection.
Collapse
Affiliation(s)
- Qandeel Ishfaqe
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Arsalan Ahmad
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Alia Batool
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Saleem Haider
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Daoud Ali
- Department of Zoology College of Science King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology College of Science King Saud University, Riyadh, Saudi Arabia
| | - Md Samiul Islam
- Graduate School of Agriculture, Hokkaido University/Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Cano ME, Lindgren Å, Rosendahl J, Johansson J, Garcia-Martin A, Galan ML, Kovensky J, Chinga-Carrasco G. Characterization of carboxylated cellulose nanofibrils and oligosaccharides from Kraft pulp fibers and their potential elicitor effect on the gene expression of Capsicum annuum. Int J Biol Macromol 2024; 267:131229. [PMID: 38599438 DOI: 10.1016/j.ijbiomac.2024.131229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Biomass-derived oligo- and polysaccharides may act as elicitors, i.e., bioactive molecules that trigger plant immune responses. This is particularly important to increase the resistance of plants to abiotic and biotic stresses. In this study, cellulose nanofibrils (CNF) gels were obtained by TEMPO-mediated oxidation of unbleached and bleached kraft pulps. The molecular structures were characterized with ESI and MALDI MS. Analysis of the fine sequences was achieved by MS and MS/MS of the water-soluble oligosaccharides obtained by acid hydrolysis of the CNF gels. The analysis revealed the presence of two families: one corresponding to homoglucuronic acid sequences and the other composed by alternating glucose and glucuronic acid units. The CNF gels, alone or with the addition of the water-soluble oligosaccharides, were tested on Chili pepper (Capsicum annuum). Based on the characterization of the gene expression with Next Generation Sequencing (NGS) of the C. annuum's total messenger RNA, the differences in growth of the C. annuum seeds correlated well with the downregulation of the pathways regulating photosynthesis. A downregulation of the response to abiotic factors was detected, suggesting that these gels would improve the resistance of the C. annuum plants to abiotic stress due to, e.g., water deprivation and cold temperatures.
Collapse
Affiliation(s)
- María Emilia Cano
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources UR 7378, Université de Picardie Jules Verne, 80025 Amiens, France; CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Åsa Lindgren
- RISE Methodology, Textile and Medical Device, Biological Function Unit, Box 857, 50115 Borås, Sweden
| | - Jennifer Rosendahl
- RISE Methodology, Textile and Medical Device, Biological Function Unit, Box 857, 50115 Borås, Sweden
| | - Jenny Johansson
- RISE Methodology, Textile and Medical Device, Biological Function Unit, Box 857, 50115 Borås, Sweden
| | - Alberto Garcia-Martin
- FQPIMA Group. Chemical Engineering and Materials Department, Universidad Complutense de Madrid. 28040 Madrid, Spain
| | - Miguel Ladero Galan
- FQPIMA Group. Chemical Engineering and Materials Department, Universidad Complutense de Madrid. 28040 Madrid, Spain
| | - José Kovensky
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources UR 7378, Université de Picardie Jules Verne, 80025 Amiens, France
| | | |
Collapse
|
10
|
Kovsari E, Shavali Gilani P, Shokri S, Mircholi Borazgh A, Rezagholizade-Shirvan A, Pedram Nia A. Influence of green pepper extract on the physicochemical, antioxidant, and sensory properties of stirred yogurt. Food Chem X 2024; 21:101070. [PMID: 38162041 PMCID: PMC10753053 DOI: 10.1016/j.fochx.2023.101070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
The green pepper has garnered interest in different societies as a functional food and food additive. Numerous studies have indicated that the phytochemicals found in pepper possess antioxidant, anti-cancer, anti-inflammatory, anti-obesity, and anti-arteriosclerotic properties. In this study, green pepper extract was used in yogurt to increase the acceptability of consumption and improve its health properties. For this purpose, green pepper extract was added in concentrations 100, 200, and 300 ppm in the preparation of yogurt. And pH, acidity, total content of phenolic compounds, DPPH inhibition percentage, viscosity, syneresis, and sensory properties were evaluated in 1, 7, 14, and 21 days after production. The results showed that by increasing the amount of extract, the percentage of antioxidant activity and phenolic compounds increased significantly. The effect of storage time on these indicators was also significant (p < 0.05). in such a way that over time, there was a decrease in antioxidant activity. But, there was a slight increase in antioxidant activity on the 14th day of storage. Also, the effect of treatment type on some physicochemical characteristics of yogurt containing green pepper extract including pH, acidity, viscosity, and syneresis was significant (p < 0.05). During storage, acidity, syneresis, and viscosity increased and pH decreased significantly in all yogurt samples. Regarding the tested sensory attributes, the 200 ppm sample received the highest score among the evaluators, and in terms of overall acceptance, the samples containing the extract were more favorable than the control sample.
Collapse
Affiliation(s)
- Elham Kovsari
- Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Parisa Shavali Gilani
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shokri
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ahmad Pedram Nia
- Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| |
Collapse
|
11
|
Sana S, Ramzan M, Ejaz S, Danish S, Salmen SH, Ansari MJ. Differential responses of chili varieties grown under cadmium stress. BMC PLANT BIOLOGY 2024; 24:7. [PMID: 38163887 PMCID: PMC10759427 DOI: 10.1186/s12870-023-04678-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Heavy metal cadmium (Cd) naturally occurs in soil and is a hazardous trace contaminant for humans, animals, and plants. The main sources of Cd pollution in soil include overuse of phosphatic fertilizers, manure, sewage sludge, and aerial deposition. That's why an experiment was conducted to analyze the effect of Cd toxicity in Capsicum annuum L. by selecting its seven varieties: Hybrid, Desi, Sathra, G-916, BR-763, BG-912, and F1-9226. Cadmium was spiked in soil with four levels, i.e., (0, 3, 4, and 5 mg Cd kg- 1 of soil) for a week for homogeneous dispersion of heavy metal. Chili seeds were sown in compost-filled loamy soil, and 25-day-old seedlings were transplanted into Cd-spiked soil. Cadmium increasing concentration in soil decreased chili growth characteristics, total soluble sugars, total proteins, and amino acids. On the other hand, the activities of antioxidant enzymes were increased with the increasing concentration of Cd in almost all the varieties. Treatment 5 mg Cd/kg application caused - 197.39%, -138.78%, -60.77%, -17.84%, -16.34%, -11.82% and - 10.37% decrease of carotenoids level in chili V2 (Desi) followed by V4 (G-916), V1 (Hy7brid), V7 (F1-9226), V6 (BG-912), V5 (BR-763) and V3 (Sathra) as compared to their controls. The maximum flavonoids among varieties were in V5 (BR-763), followed by V6 (BG-912), V7 (F1-9226), V3 (Sathra) and V1 (Hybrid). Flavonoids content was decreased with - 37.63% (Sathra), -34.78% (Hybrid), -33.85% (G-916), -31.96% (F1-9226), -31.44% (Desi), -30.58% (BR-763), -22.88% (BG-912) as compared to their control at 5 mg Cd/kg soil stress. The maximum decrease in POD, SOD, and CAT was - 31.81%, -25.98%, -16.39% in chili variety V7 (F1-9226) at 5 mg Cd/kg stress compared to its control. At the same time, maximum APX content decrease was - 82.91%, followed by -80.16%, -65.19%, -40.31%, -30.14%, -10.34% and - 6.45% in V4 (G-916), V2 (Desi), V3 (Sathra), V6 (BG-912), V1 (Hybrid), V7 (F1-9226) and V5 (BR-763) at 5 mg Cd/kg treatment as compared to control chili plants. The highest CAT was found in 5 chili varieties except Desi and G-916. Desi and G-916 varieties. V5 (BR-763) and V6 (BG-912) were susceptible, while V1 (Hybrid), V3 (Sathra), and V7 (F1-9226) were with intermediate growth attributes against Cd stress. Our results suggest that Desi and G-916 chili varieties are Cd tolerant and can be grown on a large scale to mitigate Cd stress naturally.
Collapse
Affiliation(s)
- Sundas Sana
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
- Al-Waili foundation of Science, New York, USA
| |
Collapse
|
12
|
Poudyal D, Joshi BK, Zhou R, Ottosen CO, Dahal KC. Evaluating the physiological responses and identifying stress tolerance of Akabare chili landraces to individual and combined drought and heat stresses. AOB PLANTS 2023; 15:plad083. [PMID: 38106642 PMCID: PMC10721449 DOI: 10.1093/aobpla/plad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Abstract. Akabare chili (Capsicum annuum) contributes to Nepalese rural livelihoods but suffers from low productivity due to various abiotic stresses including drought and heat. This study aimed to assess the physiological responses of Akabare chili landraces to heat and drought stress, individually and together, and to identify stress-tolerant genotypes in the early vegetative stage. Selected eight Akabare chili landraces and chili variety 'Jwala' were subjected to control (30/22 °C day/night) and heat stress (40/32 °C) conditions with irrigation, and drought stress (30/22 °C) and combined drought-heat stress conditions without irrigation for 7 days, followed by a 5-day recovery under control condition. Stress-tolerant landraces showed better performance compared to sensitive ones in terms of efficacy of PS II (Fv/Fm), transpiration rate (E), net photosynthetic rate (PN), stomatal conductance (gs), leaf temperature depression, water use efficiency (WUE) and the ratio of stomata pore area to stomata area under stress conditions, resulting in improved biomass. Although all genotypes performed statistically similar under control conditions, their responses Fv/Fm, PN, E, gs and WUE were significantly reduced under thermal stress, further reduced under drought stress, and severely declined under the combination of both. Total biomass exhibited a 57.48 % reduction due to combined stress, followed by drought (37.8 %) and heat (21.4 %) compared to the control. Among the landraces, C44 showed the most significant gain in biomass (35 %), followed by DKT77 (33.48 %), while the lowest gain percentage was observed for C64C and PPR77 during the recovery phase (29 %). The tolerant landraces also showed a higher percentage of leaf cooling, chlorophyll content and leaf relative water content with fewer stomata but broader openings of pores. The study identifies potential stress-tolerant Akabare chili landraces and discusses the stress-tolerant physiological mechanisms to develop resilient crop varieties in changing climates.
Collapse
Affiliation(s)
- Damodar Poudyal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618 Kathmandu, Nepal
| | - Bal Krishna Joshi
- National Agriculture Genetic Resource Center, Nepal Agriculture Research Council, Khumaltar, 44700 Lalitpur, Nepal
| | - Rong Zhou
- College of Horticulture, Nanjing Agriculture University, Weigang No.1, 210095 Nanjing, China
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Kishor Chandra Dahal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618 Kathmandu, Nepal
| |
Collapse
|
13
|
Sadef Y, Shakil S, Majeed D, Zahra N, Ben Abdallah F, Ben Ali M. Evaluating aflatoxins and Sudan dyes contamination in red chili and turmeric and its health impacts on consumer safety of Lahore, Pakistan. Food Chem Toxicol 2023; 182:114116. [PMID: 37923193 DOI: 10.1016/j.fct.2023.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Spices are contaminated with aflatoxins (AFs) and Sudan dyes which are classified as class Group 1 and Group 3 human carcinogens by the International Agency for Research on Cancer (IARC) respectively and their prolonged exposure may raise a human health concern. A total of 474 samples of red chili and turmeric were collected from Lahore city and were subjected to quantitative and qualitative AFs and Sudan dyes analysis by thin layer chromatography (TLC) respectively. The number of red chili and turmeric samples with ≥10 μg/kg of total AFs (European Union standard limit) were 70% and 33% respectively and considered unfit for human consumption. The presence of Sudan dyes in red chili and turmeric samples was 67% and 27% respectively. The mean estimated daily intake (EDI) among females and males was 0.0019 μg/kg bw/day, 0.0012 μg/kg bw/day for red chili, and 0.0008 μg/kg bw/day, 0.0006 μg/kg bw/day for turmeric respectively. The mean value of margin of exposure (MOE) among females and males for ingestion of AFs-contaminated red chili and turmeric was 210.25, 332.13, 501.02, and 699.31 respectively. Therefore, the current study demands a continuous monitoring plan and the implementation of novel techniques to enhance the product's quality and protect public health.
Collapse
Affiliation(s)
- Yumna Sadef
- College of Earth and Environmental Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54000, Pakistan
| | - Sidra Shakil
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| | - Dania Majeed
- College of Earth and Environmental Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54000, Pakistan
| | - Naseem Zahra
- Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore, 54600, Pakistan
| | - Fethi Ben Abdallah
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Manel Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
14
|
Moghadam S, Azari B, Rashidi R, Bafghi MH, Rakhshandeh H, Selman SM, Zarrinfar H. Antifungal activity of three different varieties of Capsicum annuum against clinical isolates of Candida species. Trop Dis Travel Med Vaccines 2023; 9:9. [PMID: 37468970 DOI: 10.1186/s40794-023-00194-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 07/21/2023] Open
Abstract
OBJECTIVE Acquired resistance to antifungal agents is rising among Candida species. Herbal extracts including Capsicum annum extracts have biological profits, which can be employed to overcome drug resistance in fungal species. The present study investigated the efficacy of different varieties of C. annum extracts against Candida species. METHODS Aqueous and alcoholic extracts of three different varieties of C. annum were prepared using the succulent method. Total values for compound extracts of C. annum var. cayenne, C. annum var. cayenne cultivar sabzevari, and C. annum var. cerasiforme were 43, 42, and 38 g, respectively. The clinical Candida isolates including C. albicans (n = 13), C. dubliniensis (n = 2), C. parapsilosis (n = 2), and C. tropicalis (n = 1); and reference strains of C. albicans (TIMML 1292 and TIMML 183), C. krusei (TIMML 1321), C. parapsilosis (TIMML 2201), and C. tropicalis (TIMML 731) were examined based on the M27-A3 guideline. RESULTS Aqueous and alcoholic extracts of Capsicum annum showed a minimum inhibitory concentration (MIC) range of more than 512 µg/ml against clinical and reference strains of Candida. There was no justifiable difference between the effects of these extracts on Candida species. CONCLUSION Both aqueous and alcoholic extracts of Capsicum annum could not exert a significant effective impact on clinical and reference strains of Candida. The difference in pepper spiciness did not show a significant role against Candida isolates. However, their possible effects might be different among other yeasts or filamentous fungi.
Collapse
Affiliation(s)
- Shaghayegh Moghadam
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behnam Azari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Roghayeh Rashidi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hosseini Bafghi
- Department of Laboratory Science, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Cheng Y, Gao C, Luo S, Yao Z, Ye Q, Wan H, Zhou G, Liu C. Effects of Storage Temperature at the Early Postharvest Stage on the Firmness, Bioactive Substances, and Amino Acid Compositions of Chili Pepper ( Capsicum annuum L.). Metabolites 2023; 13:820. [PMID: 37512527 PMCID: PMC10385654 DOI: 10.3390/metabo13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The commercial and nutritional quality of chili peppers deteriorates rapidly after harvest. So far, little is known about the effect of temperature on postharvest chili pepper quality. This study elucidated the effects of two temperatures (20 °C and 30 °C) on chili peppers' postharvest firmness, flavor, and nutritional attributes. We found that compared to 20 °C, 30 °C escalated the decline in fruit firmness, capsaicin content, and dihydrocapsaicin content, while enhancing the increment in water loss and electrical conductivity, as well as total carotenoids and ascorbic acid content. The contents of most amino acids (AAs) decreased significantly during postharvest storage compared to their initial values, whether stored at 20 °C or 30 °C; however, 30 °C had a more substantial impact than 20 °C. Meanwhile, as for soluble protein and amino acid compositions, the effect of storage temperature was genotype-dependent, as reflected by differential changes in total AA contents, single AA contents, essential AA ratio, delicious AA ratio, etc., under the 20 °C or 30 °C treatments. In conclusion, our findings reveal the influence of temperature on pepper quality, showing that the storage temperature of 20 °C was better for maintaining chili quality than 30 °C from the perspective of overall commercial attributes.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chengan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shaodan Luo
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| |
Collapse
|
16
|
Hur SH, Kim S, Kim H, Jeong S, Chung H, Kim YK, Kim HJ. Geographical discrimination of dried chili peppers using femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fsLA-ICP-MS). Curr Res Food Sci 2023; 6:100532. [PMID: 37377492 PMCID: PMC10290993 DOI: 10.1016/j.crfs.2023.100532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
This study presents a method for discriminating the geographical origin of dried chili peppers using femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fsLA-ICP-MS) and multivariate analysis, such as orthogonal partial least squares discriminant analysis (OPLS-DA), heatmap analysis, and canonical discriminant analysis (CDA). Herein, 102 samples were analyzed for the content of 33 elements using optimized conditions of 200 Hz (repetition rate), 50 μm (spot size), and 90% (energy). Significant differences in count per second (cps) values of the elements were observed between domestic and imported peppers, with variations of up to 5.66 times (133Cs). The OPLS-DA model accuracy achieved an R2 of 0.811 and a Q2 of 0.733 for distinguishing dried chili peppers of different geographical origins. The variable importance in projection (VIP) and s-plot identified elements 10 and 3 as key to the OPLS-DA model, and in the heatmap, six elements were estimated to be significant in discriminating between domestic and imported samples. Furthermore, CDA showed a high accuracy of 99.02%. This method can ensure food safety for consumers, and accurately determine the geographic origin of agricultural products.
Collapse
Affiliation(s)
- Suel Hye Hur
- National Agricultural Products Quality Management Service, Gimcheon, 39660, Republic of Korea
| | - Seyeon Kim
- National Agricultural Products Quality Management Service, Gimcheon, 39660, Republic of Korea
| | - Hyoyoung Kim
- National Agricultural Products Quality Management Service, Gimcheon, 39660, Republic of Korea
| | - Seongsoo Jeong
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hoeil Chung
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yong-Kyoung Kim
- National Agricultural Products Quality Management Service, Gimcheon, 39660, Republic of Korea
| | - Ho Jin Kim
- National Agricultural Products Quality Management Service, Gimcheon, 39660, Republic of Korea
| |
Collapse
|
17
|
Alonso-Villegas R, González-Amaro RM, Figueroa-Hernández CY, Rodríguez-Buenfil IM. The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition. Molecules 2023; 28:molecules28104239. [PMID: 37241977 DOI: 10.3390/molecules28104239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Chili is one of the world's most widely used horticultural products. Many dishes around the world are prepared using this fruit. The chili belongs to the genus Capsicum and is part of the Solanaceae family. This fruit has essential biomolecules such as carbohydrates, dietary fiber, proteins, and lipids. In addition, chili has other compounds that may exert some biological activity (bioactivities). Recently, many studies have demonstrated the biological activity of phenolic compounds, carotenoids, and capsaicinoids in different varieties of chili. Among all these bioactive compounds, polyphenols are one of the most studied. The main bioactivities attributed to polyphenols are antioxidant, antimicrobial, antihyperglycemic, anti-inflammatory, and antihypertensive. This review describes the data from in vivo and in vitro bioactivities attributed to polyphenols and capsaicinoids of the different chili products. Such data help formulate functional foods or food ingredients.
Collapse
Affiliation(s)
- Rodrigo Alonso-Villegas
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Av. Pascual Orozco s/n, Campus 1, Santo Niño, Chihuahua 31350, Chihuahua, Mexico
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa 91073, Veracruz, Mexico
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Veracruz, Mexico
| | - Ingrid Mayanin Rodríguez-Buenfil
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. Subsede Sureste, Tablaje Catastral, 31264, Carretera Sierra Papacal-Chuburna Puerto km 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico
| |
Collapse
|
18
|
Karaman K, Pinar H, Ciftci B, Kaplan M. Characterization of phenolics and tocopherol profile, capsaicinoid composition and bioactive properties of fruits in interspecies (Capsicum annuum X Capsicum frutescens) recombinant inbred pepper lines (RIL). Food Chem 2023; 423:136173. [PMID: 37209546 DOI: 10.1016/j.foodchem.2023.136173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/22/2023]
Abstract
In this study, 104 RIL (Recombinant Inbred Pepper Lines: F6) populations which generated by selfing Capsicum annuum (Long pepper) × Capsicum frutescens (PI281420) F6 population were characterized in terms of detailed bioactive properties, major phenolic composition, tocopherol and capsaicinoid profile. Total phenolics, flavonoid and total anthocyanin contents of the red pepper lines were in the range of 7.06-17.15 mg gallic acid equivalent (GAE)/g dw, 1.10-5.46 mg catechin equivalent (CE)/g dw and 7.9-516.6 mg/kg dw extract, respectively. Antiradical activity and antioxidant capacity values also ranged between 18.99 and 49.73% and 6.97-16.47 mg ascorbic acid equivalent (AAE)/kg dw, respectively. Capsaicin and dihydrocapsaicin levels showed a wide variance with the range of 27.9-1405.9 and 12.3-640.4 mg/100 g dw, respectively. Scoville heat unit revealed that the 95% of the peppers were highly pungent. The major tocopherol was alpha tocopherol for the pepper samples with the highest level of 1078.4 µg/g dw. The major phenolics were detected as p-coumaric acid, ferulic acid, myricetin, luteolin and quercetin. Pepper genotypes showed significant differences in terms of the characterized properties and principal component analysis was applied successfully to reveal the similar genotypes.
Collapse
Affiliation(s)
- Kevser Karaman
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye.
| | - Hasan Pinar
- Department of Horticulture, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| | - Beyza Ciftci
- Department of Field Crops, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| | - Mahmut Kaplan
- Department of Field Crops, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| |
Collapse
|
19
|
Eating Spicy Food, Dietary Approaches to Stop Hypertension (DASH) Score, and Their Interaction on Incident Stroke in Southwestern Chinese Aged 30-79: A Prospective Cohort Study. Nutrients 2023; 15:nu15051222. [PMID: 36904221 PMCID: PMC10005455 DOI: 10.3390/nu15051222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Little is known about the association between spicy food intake, dietary approaches to stop hypertension (DASH) score, and incident stroke. This study aimed to explore the association of eating spicy food, DASH score, and their interaction with stroke incidence. We included 22,160 Han residents aged 30-79 in southwest China from the China Multi-Ethnic Cohort. Three hundred and twelve cases were newly diagnosed with stroke by October 8, 2022, during a mean of 45.5 months of follow-up. Cox regression analyses showed that eating spicy food reduced stroke risk by 34% among people with low DASH scores (HR 0.66, 95%CI 0.45-0.97), while individuals with high DASH scores versus low DASH scores had a 46% lower stroke incidence among spicy food nonconsumers (HR 0.54, 95%CI 0.36-0.82). The HR of the multiplicative interactive term was 2.02 (95%CI 1.24-3.30) and the overall estimates of relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and the synergy index (S) were 0.54 (95%CI 0.24-0.83), 0.68 (95%CI 0.23-1.14), and 0.29 (95%CI 0.12-0.70), respectively. Consuming spicy food seems to be associated with lower stroke risk only in people who have a lower DASH score, while the beneficial effect of higher DASH scores seems to be found only among nonconsumers of spicy food, and a negative interaction may exist between them in southwestern Chinese aged 30-79. This study could provide scientific evidence for dietary guidance to reduce stroke risk.
Collapse
|
20
|
Widely Targeted Metabolomics Reveals Metabolite Diversity in Jalapeño and Serrano Chile Peppers ( Capsicum annuum L.). Metabolites 2023; 13:metabo13020288. [PMID: 36837906 PMCID: PMC9967468 DOI: 10.3390/metabo13020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Chile peppers (Capsicum annuum L.) are good sources of vitamins and minerals that can be included in the diet to mitigate nutritional deficiencies. Metabolomics examines the metabolites involved in biological pathways to understand the genes related to complex phenotypes such as the nutritional quality traits. The current study surveys the different metabolites present in jalapeño ('NuMex Pumpkin Spice') and serrano ('NuMex LotaLutein') type chile peppers grown in New Mexico using a widely targeted metabolomics approach, with the 'NuMex LotaLutein' as control. A total of 1088 different metabolites were detected, where 345 metabolites were differentially expressed; 203 (59%) were downregulated and 142 (41%) were upregulated (i.e., relative metabolite content is higher in 'NuMex Pumpkin Spice'). The upregulated metabolites comprised mostly of phenolic acids (42), flavonoids (22), and organic acids (13). Analyses of principal component (PC) and orthogonal partial least squares demonstrated clustering based on cultivars, where at least 60% of variation was attributed to the first two PCs. Pathway annotation identified 89 metabolites which are involved in metabolic pathways and the biosynthesis of secondary metabolites. Altogether, metabolomics provided insights into the different metabolites present which can be targeted for breeding and selection towards the improvement of nutritional quality traits in Capsicum.
Collapse
|
21
|
Abdelaziz AM, Elshaer MA, Abd-Elraheem MA, Ali OMOM, Haggag MI, El-Sayyad GS, Attia MS. Ziziphus spina-christi extract-stabilized novel silver nanoparticle synthesis for combating Fusarium oxysporum-causing pepper wilt disease: in vitro and in vivo studies. Arch Microbiol 2023; 205:69. [PMID: 36670250 DOI: 10.1007/s00203-023-03400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/09/2022] [Accepted: 01/01/2023] [Indexed: 01/22/2023]
Abstract
The novelty of the present study is studying the ability of aqueous Ziziphus spina-christi leaves' extract (ZSCE) to produce eco-friendly and cost-effective silver nanoparticles (Ag NPs) against Fusarium wilt disease. Phytochemical screening of ZSCE by HPLC showed that they contain important antimicrobial substances such as Rutin, Naringin, Myricetin, Quercetin, Kaempferol, Hesperidin, Syringeic, Eugenol, Pyrogallol, Gallic and Ferulic. Characterization methods reveal a stable Ag NPs with a crystalline structure, spherical in shape with average particle size about 11.25 nm. ZSCE and Ag NPs showed antifungal potential against F. oxysporum at different concentrations with MIC of Ag NPs as 0.125 mM. Ag NPs treatment was the most effective, as it gave the least disease severity (20.8%) and the highest protection rate (75%). The application of ZSCE or Ag NPs showed a clear recovery, and its effectiveness was not limited for improving growth and metabolic characteristics only, but also inducing substances responsible for defense against pathogens and activating plant immunity (such as increasing phenols and strong expression of peroxidase and polyphenol oxidase as well as isozymes). Owing to beneficial properties such as antifungal activity, and the eco-friendly approach of cost and safety, they can be applied in agricultural field as novel therapeutic nutrients.
Collapse
Affiliation(s)
- Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 13759, Egypt
| | - Mohammed A Elshaer
- Agricultural Biochemistry Department, Faculty of Agriculture, Al-Azhar University, Cairo, 13759, Egypt
| | - Mohamed A Abd-Elraheem
- Agricultural Biochemistry Department, Faculty of Agriculture, Al-Azhar University, Cairo, 13759, Egypt
| | - Omar M Omar M Ali
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Muhammad I Haggag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 13759, Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt. .,Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 13759, Egypt
| |
Collapse
|
22
|
Johnson JB, Mani JS, Walsh KB, Naiker M. Infrared spectroscopy for the quality assessment of Habanero chilli: a proof-of-concept study. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Abdelaziz AM, Kalaba MH, Hashem AH, Sharaf MH, Attia MS. Biostimulation of tomato growth and biocontrol of Fusarium wilt disease using certain endophytic fungi. BOTANICAL STUDIES 2022; 63:34. [PMID: 36484866 PMCID: PMC9733755 DOI: 10.1186/s40529-022-00364-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/15/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Tomato plant (Solanum lycopersicum L.) suffers from numerous fungal pathogens that cause damage to yeild production qualitatively and quantitatively. One of the most destructive disease of tomato is Fusarium wilt that caused by soil borne fungus called F. oxysporum. METHODS In this study, the anti-Fusarium capabilities of the foliar application of fungal endophytes extracts have been investigated on tomato under Fusarium challenges. Antifungal assay, inhibition of conidial germination, disease severity, photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress, peroxidase (POD) and polyphenol oxidases (PPO) isozymes were tested for potential resistance of tomato growing under Fusarium infection. RESULTS Ethyl acetate extracts of A. flavus MZ045563, A. fumigatus MZ045562 and A. nidulans MZ045561 exhibited antifungal activity toward F. oxysporum where inhibition zone diameters were 15, 12 and 20 mm, respectively. Moreover, extracts of all fungal isolates at concentration 7.5 mg/mL reduced conidia germination from 94.4 to 100%. Fusarium infection caused a destructive effects on tomato plant, high severity desiese index 84.37%, reduction in growth parameters, photosynthetic pigments, and soluble protein. However, contents of proline, total phenol, malondialdehyde (MDA), hydrogen peroxide (H2O2) and antioxidant enzymes activity were increased in tomato plants grown under Fusarium wilt. Treatment of healthy or infected tomato plants by ethyl acetate fungal extracts showed improvements in morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activity. Besides, the harmful impacts of Fusarium wilt disease on tomato plants have also been reduced by lowering MDA and H2O2 levels. Also, treated tomato plants showed different responses in number and density of POD and PPO isozymes. CONCLUSION It could be suggested that application of ethyl acetate extracts of tested fungal endophytes especially combination of A. flavus, A. nidulans and A. fumigatus could be commercially used as safe biostimulation of tomato plants as well as biofungicide against tomato Fusarium wilt disease.
Collapse
Affiliation(s)
- Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed H Sharaf
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
24
|
Oh J, Kwak HS, Kim MK. The influence of a carrier food on the perceived spiciness of chili pepper sauce. J SENS STUD 2022. [DOI: 10.1111/joss.12794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jungmin Oh
- SME solution Research Center, Korea Food Research Institute Wanju‐gun Jeollabuk‐do Republic of Korea
- Department of Food Science and Human Nutrition and K‐Food Research Center Jeonbuk National University Jeonju‐si Jeollabuk‐do Republic of Korea
| | - Han Sub Kwak
- Research Group of Food Processing Korea Food Research Institute Wanju‐gun Jeollabuk‐do Republic of Korea
- KFRI School University of Science and Technology Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Mina K. Kim
- Department of Food Science and Human Nutrition and K‐Food Research Center Jeonbuk National University Jeonju‐si Jeollabuk‐do Republic of Korea
| |
Collapse
|
25
|
Tang B, Li X, Zhang X, Yin Q, Xie L, Zou X, Liu F, Dai X. Transcriptome data reveal gene clusters and key genes in pepper response to heat shock. FRONTIERS IN PLANT SCIENCE 2022; 13:946475. [PMID: 36212322 PMCID: PMC9532576 DOI: 10.3389/fpls.2022.946475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Climate change and global warming pose a great threat to plant growth and development as well as crop productivity. To better study the genome-wide gene expression under heat, we performed a time-course (0.5 to 24 h) transcriptome analysis in the leaf and root of 40-day-old pepper plants under 40°C as well as in control plants. Clustering analysis (K-means) showed that the expression of 29,249 genes can be grouped into 12 clusters with distinct expression dynamics under stress. Gene ontology (GO) enrichment analysis and transcription factor (TF) identification were performed on the clusters with certain expression patterns. Comparative analysis between the heat-treated and control plants also identified differentially expressed genes (DEGs), which showed the largest degree of change at 24 h. Interestingly, more DEGs were identified in the root than in the leaf. Moreover, we analyzed the gene expression of 25 heat shock factor genes (HSFs) in pepper after heat stress, identified five of these HSFs that responded to heat stress, and characterized the role of these genes in heat-tolerant (17CL30) and heat-susceptible (05S180) pepper lines. The findings of this study improve our understanding of the genome-wide heat stress response in pepper.
Collapse
Affiliation(s)
- Bingqian Tang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Longping Branch, Graduate School of Hunan University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xiumin Li
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Xinhao Zhang
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Qinbiao Yin
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - LingLing Xie
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xuexiao Zou
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Longping Branch, Graduate School of Hunan University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Longping Branch, Graduate School of Hunan University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xiongze Dai
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
26
|
Viromes of 15 Pepper ( Capsicum annuum L.) Cultivars. Int J Mol Sci 2022; 23:ijms231810507. [PMID: 36142418 PMCID: PMC9504177 DOI: 10.3390/ijms231810507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Pepper (Capsicum annuum L.) plants produce berry fruits that are used as spices. Here, we examined the viromes of 15 pepper cultivars through RNA sequencing. We obtained 1,325 virus-associated contigs derived from 8 virus species. Bean broad wilt virus 2 (BBWV2) and cucumber mosaic virus (CMV) were identified as the major viruses infecting pepper plants, followed by potato virus Y, bell pepper endornavirus, and hot pepper endornavirus. The proportion of viral reads in each transcriptome ranged from 0.04% to 24.5%. BBWV2 was the dominant virus in seven cultivars, whereas CMV was dominant in five cultivars. All the bell pepper cultivars showed severe viral disease symptoms, whereas the commercially developed hot pepper cultivars were asymptomatic or had mild symptoms. In addition, 111 complete viral segments were obtained from 7 viruses. Based on the obtained viral genomes, the genetic relationship between the identified viruses and quasispecies of BBWV2 and CMV in each pepper plant was determined. Newly designed primers for nine viruses confirmed the results of RNA sequencing. Taken together, this study, for the first time, provides a comprehensive overview of viromes in 15 major pepper cultivars through RNA sequencing.
Collapse
|
27
|
Post-Harvest LED Light Irradiation Affects Firmness, Bioactive Substances, and Amino Acid Compositions in Chili Pepper ( Capsicum annum L.). Foods 2022; 11:foods11172712. [PMID: 36076894 PMCID: PMC9455159 DOI: 10.3390/foods11172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chili pepper is an important vegetable and spice crop with high post-harvest deteriorations in terms of commercial and nutritional quality. Light-emitting diodes (LEDs) are eco-friendly light sources with various light spectra that have been demonstrated to improve the shelf-life of various vegetables by manipulating light quality; however, little is known about their effects on the post-harvest nutritional quality of chili peppers. This study investigated the effects of different LED lightings on the post-harvest firmness and nutritional quality of chili peppers. We found that red and blue light could increase the content of capsaicinoids, whereas white and red light could increase the essential and aromatic amino acid (AA) content in pepper. Nonetheless, the influence of light treatments on AA contents and compositions depends strongly on the pepper genotype, which was reflected by total AA content, single AA content, essential AA ratio, delicious AA ratio, etc., that change under different light treatments. Additionally, light affected fruit firmness and the content of nutrients such as chlorophyll, vitamin C, and total carotenoids, to varying degrees, depending on pepper genotypes. Thus, our findings indicate that LED-light irradiation is an efficient and promising strategy for preserving or improving the post-harvest commercial and nutritional quality of pepper fruit.
Collapse
|
28
|
A Pan-Global Study of Bacterial Leaf Spot of Chilli Caused by Xanthomonas spp. PLANTS 2022; 11:plants11172291. [PMID: 36079673 PMCID: PMC9460788 DOI: 10.3390/plants11172291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Bacterial Leaf Spot (BLS) is a serious bacterial disease of chilli (Capsicum spp.) caused by at least four different Xanthomonas biotypes: X. euvesicatoria pv. euvesicatoria, X. euvesicatoria pv. perforans, X. hortorum pv. gardneri, and X. vesicatoria. Symptoms include black lesions and yellow halos on the leaves and fruits, resulting in reports of up to 66% losses due to unsalable and damaged fruits. BLS pathogens are widely distributed in tropical and subtropical regions. Xanthomonas is able to survive in seeds and crop residues for short periods, leading to the infections in subsequent crops. The pathogen can be detected using several techniques, but largely via a combination of traditional and molecular approaches. Conventional detection is based on microscopic and culture observations, while a suite of Polymerase Chain Reaction (PCR) and Loop-Mediated Isothermal Amplification (LAMP) assays are available. Management of BLS is challenging due to the broad genetic diversity of the pathogens, a lack of resilient host resistance, and poor efficacy of chemical control. Some biological control agents have been reported, including bacteriophage deployment. Incorporating stable host resistance is a critical component in ongoing integrated management for BLS. This paper reviews the current status of BLS of chilli, including its distribution, pathogen profiles, diagnostic options, disease management, and the pursuit of plant resistance.
Collapse
|
29
|
Fernando AJ, Amaratunga S. Application of far-infrared radiation for sun-dried chili pepper (Capsicum annum L.): drying characteristics and color during roasting. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3781-3787. [PMID: 34921411 DOI: 10.1002/jsfa.11726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/30/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chili is hygroscopic and needs a fast-drying method before feeding into pulverizers. The far-infrared radiation (FIR) roasting technique provides various benefits, such as higher drying rates within a short duration, reduction of mycotoxins, and improvement in the textural quality of agricultural produce. In addition, thin-layer modeling supports understanding the drying kinetics of agricultural produce. Therefore, the objective of this research was to study the thin-layer drying characteristics and color of whole chili pod and its components (i.e. seeds, pedicel, and placenta) of sun-dried chili during FIR roasting. The samples were dried at 7.76 μm (100 °C), 6.12 μm (200 °C), 5.056 μm (300 °C), and 4.30 μm (400 °C) by exposing them to FIR in a single layer and the drying kinetics were studied using the Midilli model. Further, the color variation during FIR roasting was studied. RESULTS FIR roasting of chili pods and their components (i.e. seeds, pedicel, and placenta) shows a falling rate drying period at each wavelength. The moisture content decreased with decreasing FIR wavelength. The ∆E values for pods, pedicel, and placenta were increased during FIR roasting. The Midilli model results in R2 and root-mean-square error value ranges of 0.7563-1.000 and 5 × 10-8 -0.1238 respectively for the current study. The Midilli model at 300 °C shows that the FIR has minor variation compared with other FIR temperatures. CONCLUSION FIR technology can be implemented to roast chili pods and their components (i.e. seeds, pedicel, and placenta) within a short period. Further, the application of FIR for roasting purposes desirably increases the color variation. The Midilli model can effectively describe the drying kinetics of the chili pods and their components during FIR roasting. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- A Jayaruwani Fernando
- Department of Agricultural Engineering and Soil Science, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Sri Lanka
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sanath Amaratunga
- Department of Agricultural Engineering, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
30
|
Capsicum Leaves under Stress: Using Multi-Omics Analysis to Detect Abiotic Stress Network of Secondary Metabolism in Two Species. Antioxidants (Basel) 2022; 11:antiox11040671. [PMID: 35453356 PMCID: PMC9029244 DOI: 10.3390/antiox11040671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The plant kingdom contains an enormous diversity of bioactive compounds which regulate plant growth and defends against biotic and abiotic stress. Some of these compounds, like flavonoids, have properties which are health supporting and relevant for industrial use. Many of these valuable compounds are synthesized in various pepper (Capsicum sp.) tissues. Further, a huge amount of biomass residual remains from pepper production after harvest, which provides an important opportunity to extract these metabolites and optimize the utilization of crops. Moreover, abiotic stresses induce the synthesis of such metabolites as a defense mechanism. Two different Capsicum species were therefore exposed to chilling temperature (24/18 ℃ vs. 18/12 ℃), to salinity (200 mM NaCl), or a combination thereof for 1, 7 and 14 days to investigate the effect of these stresses on the metabolome and transcriptome profiles of their leaves. Both profiles in both species responded to all stresses with an increase over time. All stresses resulted in repression of photosynthesis genes. Stress involving chilling temperature induced secondary metabolism whereas stresses involving salt repressed cell wall modification and solute transport. The metabolome analysis annotated putatively many health stimulating flavonoids (apigetrin, rutin, kaempferol, luteolin and quercetin) in the Capsicum biomass residuals, which were induced in response to salinity, chilling temperature or a combination thereof, and supported by related structural genes of the secondary metabolism in the network analysis.
Collapse
|
31
|
Zellama MS, Chahdoura H, Zairi A, Ziani BEC, Boujbiha MA, Snoussi M, Ismail S, Flamini G, Mosbah H, Selmi B, El-Bok S, Chaouachi M. Chemical characterization and nutritional quality investigations of healthy extra virgin olive oil flavored with chili pepper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16392-16403. [PMID: 34651266 DOI: 10.1007/s11356-021-16645-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The production of extra virgin olive oil (EVOO) flavored with diverse spices, herbs, fruits, and vegetables or natural aromas is believed to provide advantageous properties considering either the high nutritional value or biological activity in addition to the flavoring and industrial aspects. The biological activities including antioxidant and antimicrobial properties of Tunisian EVOO obtained from "Chemlali" variety and mixed with chili pepper were investigated. Molecular analyses, including the detection of twelve olive-infecting viruses and Pseudomonas savastanoi pv savastanoi, were performed to ensure that the samples were obtained from healthy olive trees and EVOO quality was not affected. Quality parameters like free acidity, peroxide number, oxidative stability, and specific absorption at K232 nm and K270 nm were also investigated and no significant variation was revealed. The content of minor compounds such as chlorophylls, carotenoids, and total phenols showed minor changes. However, the profiles of the volatile compounds showed remarkable differences, which appeared to be the main factor for the observed variability in consumer acceptance. The results showed for the first time high quantities of polyphenols and ortho-diphenols. Four colorimetric methods were used for the determination of the antioxidant activity, namely DPPH, ABTS, FRAP, and β-carotene test. Compared to the control, a higher level of antioxidant activity was observed for the flavored EVOO. Furthermore, significant results were obtained in the antimicrobial tests. The quality parameters of the mixture showed no alteration compared to the control. Finally, all the measurements and the chemical characterization gave a scientific basis for food technology innovation of new food products.
Collapse
Affiliation(s)
- Mohamed Salem Zellama
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, 5000, Monastir, Tunisia
| | - Hassiba Chahdoura
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| | - Amira Zairi
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, 5000, Monastir, Tunisia
| | | | - Mohamed Ali Boujbiha
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, 5000, Monastir, Tunisia
| | - Mejdi Snoussi
- Department of Biology, University of Hail, P.O. 81451, Ha'il, Saudi Arabia
| | - Sara Ismail
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, 5000, Monastir, Tunisia
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Habib Mosbah
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| | - Boulbaba Selmi
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| | - Safia El-Bok
- Laboratoire de Biodiversité, Biotechnologies & Changements Climatiques (LR11ES09), Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El-Manar, Campus Universitaire, 2092, Tunis, Tunisia
| | - Maher Chaouachi
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia.
| |
Collapse
|
32
|
Ferdowsi PV, Ahuja KDK, Beckett JM, Myers S. Capsaicin and Zinc Promote Glucose Uptake in C2C12 Skeletal Muscle Cells through a Common Calcium Signalling Pathway. Int J Mol Sci 2022; 23:ijms23042207. [PMID: 35216322 PMCID: PMC8879034 DOI: 10.3390/ijms23042207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Capsaicin and zinc have recently been highlighted as potential treatments for glucose metabolism disorders; however, the effect of these two natural compounds on signalling pathways involved in glucose metabolism is still uncertain. In this study, we assessed the capsaicin- or zinc- induced activation of signalling molecules including calcium/calmodulin-dependent protein kinase 2 (CAMKK2), cAMP-response element-binding protein (CREB), and target of rapamycin kinase complex 1 (TORC1). Moreover, the expression status of genes associated with the control of glucose metabolism was measured in treated cells. The activation of cell signalling proteins was then evaluated in capsaicin- or zinc treated cells in the presence or absence of cell-permeant calcium chelator (BAPTA-AM) and the CAMKK inhibitor (STO-609). Finally, capsaicin- and zinc-induced glucose uptake was measured in the cells pre-treated with or without BAPTA-AM. Our results indicate that calcium flux induced by capsaicin or zinc led to activation of calcium signalling molecules and promoting glucose uptake in skeletal muscle cells. Pharmacological inhibition of CAMKK diminished activation of signalling molecules. Moreover, we observed an increase in intracellular cAMP levels in the cells after treatment with capsaicin and zinc. Our data show that capsaicin and zinc mediate glucose uptake in C2C12 skeletal muscle cells through the activation of calcium signalling.
Collapse
|
33
|
Hwang J, Choi E, Lee S, Chun HS, Ahn S, Kim BH. Combined analysis of inorganic elements and sugars for the identification of red pepper powder containing undeclared ingredients. J Food Sci 2022; 87:1047-1057. [PMID: 35150135 DOI: 10.1111/1750-3841.16066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Abstract
This study sought to identify adulterated red pepper powder (RPP) containing undeclared ingredients, such as salts, glucose, Monascus red pigments, and other plant ingredients (e.g., wheat flour, garlic powder, onion powder) using element and sugar analysis methods. Analytical data were obtained for 66 samples of authentic RPP and 12 samples of adulterated RPP. The variables selected to identify the authenticity of RPP include Na, Cl, K, maltohexaose, and maltoheptaose, which partly or totally originate from RPP, salts, or Monascus red pigments. All the 12 samples of commercial seasoned RPP used as models of adulterated RPP and all the 20 blind samples containing ≥10% (w/w) of commercial seasoned RPP were correctly identified by applying the range of the five variables found for the authentic RPP samples. Our findings suggest that combined analyses of the above five constituents could be used to identify adulterated RPP containing undeclared ingredients. PRACTICAL APPLICATION: Adulteration of high-priced spice products, including red pepper powder (RPP), has increasingly become a public concern worldwide as it endangers consumer health and represents economic fraud. This study provides analytical methods that can accurately determine the authenticity of RPP. They would become effective means for protecting producers and suppliers against unfair competition and consumers against health threats.
Collapse
Affiliation(s)
- Jihyun Hwang
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, South Korea
| | - Eunji Choi
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, South Korea
| | - Sohee Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, South Korea
| | - Hyang Sook Chun
- Department of Food Science & Technology, Chung-Ang University, Anseong, South Korea
| | - Sangdoo Ahn
- Department of Chemistry, Chung-Ang University, Seoul, South Korea
| | - Byung Hee Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
34
|
Jamaluddin F, Noranizan MA, Mohamad Azman E, Mohamad A, Yusof NL, Sulaiman A. A Review of Clean‐Label Approaches to Chilli Paste Processing. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Faathirah Jamaluddin
- Faculty of Economics and Muamalat (FEM) Universiti Sains Islam Malaysia (USIM) Nilai Negeri Sembilan 71800 Malaysia
| | - Mohd Adzahan Noranizan
- Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Ezzat Mohamad Azman
- Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Azizah Mohamad
- Food Biotechnology Research Centre Agro‐Biotechnology Institute (ABI) National Institutes of Biotechnology Malaysia (NIBM) CO MARDI Headquarters Serdang Selangor 43400 Malaysia
| | - Noor Liyana Yusof
- Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Alifdalino Sulaiman
- Department of Process and Food Engineering Faculty of Engineering Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| |
Collapse
|
35
|
Olasupo IO, Liang Q, Zhang C, Islam MS, Li Y, Yu X, He C. Agronomic Biofortification of Cayenne Pepper Cultivars with Plant Growth-Promoting Rhizobacteria and Chili Residue in a Chinese Solar Greenhouse. Microorganisms 2021; 9:microorganisms9112398. [PMID: 34835523 PMCID: PMC8623771 DOI: 10.3390/microorganisms9112398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Agronomic biofortification of horticultural crops using plant growth-promoting rhizobacteria (PGPR) under crop residue incorporation systems remains largely underexploited. Bacillus subtilis (B1), Bacillus laterosporus (B2), or Bacillus amyloliquefaciens (B3) was inoculated on soil containing chili residue, while chili residue without PGPR (NP) served as the control. Two hybrid long cayenne peppers, succeeding a leaf mustard crop were used in the intensive cultivation study. Net photosynthesis, leaf stomatal conductance, transpiration rate, photosynthetic water use efficiency, shoot and root biomass, and fruit yield were evaluated. Derivatives of folate, minerals, and nitrate contents in the pepper fruits were also assessed. B1 elicited higher net photosynthesis and photosynthetic water use efficiency, while B2 and B3 had higher transpiration rates than B1 and NP. B1 and B3 resulted in 27–36% increase in pepper fruit yield compared to other treatments, whereas B3 produced 24–27.5% and 21.9–27.2% higher 5-methyltetrahydrofolate and total folate contents, respectively, compared to B1 and NP. However, chili residue without PGPR inoculation improved fruit calcium, magnesium, and potassium contents than the inoculated treatments. ‘Xin Xian La 8 F1’ cultivar had higher yield and plant biomass, fruit potassium, total soluble solids, and total folate contents compared to ‘La Gao F1.’ Agronomic biofortification through the synergy of Bacillus amyloliquefaciens and chili residue produced better yield and folate contents with a trade-off in the mineral contents of the greenhouse-grown long cayenne pepper.
Collapse
Affiliation(s)
- Ibraheem Olamide Olasupo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (I.O.O.); (Y.L.); (X.Y.)
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.L.); (C.Z.); (M.S.I.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.L.); (C.Z.); (M.S.I.)
| | - Md Shariful Islam
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.L.); (C.Z.); (M.S.I.)
| | - Yansu Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (I.O.O.); (Y.L.); (X.Y.)
| | - Xianchang Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (I.O.O.); (Y.L.); (X.Y.)
| | - Chaoxing He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (I.O.O.); (Y.L.); (X.Y.)
- Correspondence:
| |
Collapse
|
36
|
Pappalardo I, Santarsiero A, De Luca M, Acquavia MA, Todisco S, Caddeo C, Bianco G, Infantino V, Martelli G, Vassallo A. Exploiting the Anti-Inflammatory Potential of White Capsicum Extract by the Nanoformulation in Phospholipid Vesicles. Antioxidants (Basel) 2021; 10:antiox10111683. [PMID: 34829554 PMCID: PMC8614711 DOI: 10.3390/antiox10111683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022] Open
Abstract
The peppers of the Capsicum species are exploited in many fields, as flavoring agents in food industry, or as decorative and therapeutic plants. Peppers show a diversified phytochemical content responsible for different biological activities. Synergic activity exerted by high levels of antioxidant compounds is responsible for their important anti-inflammatory property. A methanolic extract was obtained from a new pepper genotype and tested for anti-inflammatory activity. The extract was incorporated into phospholipid vesicles to increase the bioavailability of its bioactive components. Two types of phospholipid vesicles were produced, conventional liposomes and Penetration Enhancer containing Vesicles (PEVs). They were tested in human monoblastic leukemia U937 cell line, showing no cytotoxic effect. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were measured to value the in vitro efficacy of the vesicles in regulating inflammatory responses. Liposomal incorporation significantly reduced ROS levels in extract-treated LPS-activated cells. Furthermore, LC-MS/MS analyses demonstrated that liposomes facilitated the transport of the extract components across the cell membrane and their accumulation into the cytoplasm.
Collapse
Affiliation(s)
- Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- ALMACABIO Srl, C/so Italia 27, 39100 Bolzano, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Maria De Luca
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- KAMABIO Srl, Via Al Boschetto 4/B, 39100 Bolzano, Italy
| | - Maria Assunta Acquavia
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- Thema Informatik Srl, Via Ressel 2/F, 39100 Bolzano, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Carla Caddeo
- Department of Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
- Correspondence: ; Tel.: +39-0706-758-462
| | - Giuliana Bianco
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (M.D.L.); (M.A.A.); (S.T.); (G.B.); (V.I.); (G.M.); (A.V.)
- Spinoff TNcKILLERS s.r.l., Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
37
|
Sankom A, Mahakarnchanakul W, Rittiron R, Sajjaanantakul T, Thongket T. Detection of Profenofos in Chinese Kale, Cabbage, and Chili Spur Pepper Using Fourier Transform Near-Infrared and Fourier Transform Mid-Infrared Spectroscopies. ACS OMEGA 2021; 6:26404-26415. [PMID: 34660998 PMCID: PMC8515571 DOI: 10.1021/acsomega.1c03674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 06/12/2023]
Abstract
Different types of quantitative technology based on infrared spectroscopy to detect profenofos were compared based on Fourier transform near-infrared (FT-NIR; 12,500-4000 cm-1) and Fourier transform mid-infrared (FT-MIR; 4000-400 cm-1) spectroscopies. Standard solutions in the range of 0.1-100 mg/L combined with the dry-extract system for infrared (DESIR) technique were analyzed. Based on partial least-squares regression (PLSR) to develop a calibration equation, FT-NIR-PLSR produced the best prediction of profenofos residues based on the values for R 2 (0.87), standard error of prediction or SEP (11.68 mg/L), root-mean-square error of prediction or RMSEP (11.50 mg/L), bias (-0.81 mg/L), and ratio performance to deviation or RPD (2.81). In addition, FT-MIR-PLSR produced the best prediction of profenofos residues based on the values for R 2 (0.83), SEP (13.10 mg/L), RMSEP (13.00 mg/L), bias (1.46 mg/L), and RPD (2.49). Based on the ease of use and appropriate sample preparation, FT-NIR-PLSR combined with DESIR was chosen to detect profenofos in Chinese kale, cabbage, and chili spur pepper at concentrations of 0.53-106.28 mg/kg. The quick, easy, cheap, effective, rugged, and safe technique coupled with gas chromatography-mass spectrometry was used to obtain the actual values. The best FT-NIR-PLSR equation provided good profenofos detection in all vegetables based on values for R 2 (0.88-0.97), SEP (5.27-11.07 mg/kg), RMSEP (5.25-11.00 mg/kg), bias (-1.39 to 1.30 mg/kg), and RPD (2.91-5.22). These statistics revealed no significant differences between the FT-NIR predicted values and actual values at a confidence interval of 95%, with agreeable results presented at pesticide residue levels over 30 mg/kg. FT-NIR spectroscopy combined with DESIR and PLSR should be considered as a promising screening method for pesticide detection in vegetables.
Collapse
Affiliation(s)
- Atchara Sankom
- Department
of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
- Center
for Advanced Studies for Agriculture and Food, Kasetsart University
Institute for Advanced Studies, Kasetsart
University, Bangkok 10900, Thailand
| | - Warapa Mahakarnchanakul
- Department
of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
- Center
for Advanced Studies for Agriculture and Food, Kasetsart University
Institute for Advanced Studies, Kasetsart
University, Bangkok 10900, Thailand
| | - Ronnarit Rittiron
- Department
of Food Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Tanaboon Sajjaanantakul
- Department
of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Thammasak Thongket
- Department
of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
38
|
Screening and Biocontrol Potential of Rhizobacteria Native to Gangetic Plains and Hilly Regions to Induce Systemic Resistance and Promote Plant Growth in Chilli against Bacterial Wilt Disease. PLANTS 2021; 10:plants10102125. [PMID: 34685934 PMCID: PMC8541367 DOI: 10.3390/plants10102125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) is a microbial population found in the rhizosphere of plants that can stimulate plant development and restrict the growth of plant diseases directly or indirectly. In this study, 90 rhizospheric soil samples from five agro climatic zones of chilli (Capsicum annuum L.) were collected and rhizobacteria were isolated, screened and characterized at morphological, biochemical and molecular levels. In total, 38% of rhizobacteria exhibited the antagonistic capacity to suppress Ralstonia solanacearum growth and showed PGPR activities such as indole acetic acid production by 67.64% from total screened rhizobacteria isolates, phosphorus solubilization by 79.41%, ammonia by 67.75%, HCN by 58.82% and siderophore by 55.88%. We performed a principal component analysis depicting correlation and significance among plant growth-promoting activities, growth parameters of chilli and rhizobacterial strains. Plant inoculation studies indicated a significant increase in growth parameters and PDS1 strain showed maximum 71.11% biocontrol efficiency against wilt disease. The best five rhizobacterial isolates demonstrating both plant growth-promotion traits and biocontrol potential were characterized and identified as PDS1—Pseudomonas fluorescens (MN368159), BDS1—Bacillus subtilis (MN395039), UK4—Bacillus cereus (MT491099), UK2—Bacillus amyloliquefaciens (MT491100) and KA9—Bacillus subtilis (MT491101). These rhizobacteria have the potential natural elicitors to be used as biopesticides and biofertilizers to improve crop health while warding off soil-borne pathogens. The chilli cv. Pusa Jwala treated with Bacillus subtilis KA9 and Pseudomonas fluorescens PDS1 showed enhancement in the defensive enzymes PO, PPO, SOD and PAL activities in chilli leaf and root tissues, which collectively contributed to induced resistance in chilli plants against Ralstonia solanacearum. The induction of these defense enzymes was found higher in leave tissues (PO—4.87-fold, PP0—9.30-fold, SOD—9.49-fold and PAL—1.04-fold, respectively) in comparison to roots tissue at 48 h after pathogen inoculation. The findings support the view that plant growth-promoting rhizobacteria boost defense-related enzymes and limit pathogen growth in chilli plants, respectively, hence managing the chilli bacterial wilt.
Collapse
|
39
|
Vidak M, Lazarević B, Petek M, Gunjača J, Šatović Z, Budor I, Carović-Stanko K. Multispectral Assessment of Sweet Pepper ( Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules 2021; 11:biom11060832. [PMID: 34204908 PMCID: PMC8227421 DOI: 10.3390/biom11060832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Sweet pepper (Capsicum annuum L.) is one of the most important vegetable crops in the world because of the nutritional value of its fruits and its economic importance. Calcium (Ca) improves the quality of sweet pepper fruits, and the application of calcite nanoparticles in agricultural practice has a positive effect on the morphological, physiological, and physicochemical properties of the whole plant. The objectives of this study were to investigate the effect of commercial calcite nanoparticles on yield, chemical, physical, morphological, and multispectral properties of sweet pepper fruits using a combination of conventional and novel image-based nondestructive methods of fruit quality analysis. In the field trial, two sweet pepper cultivars, i.e., Šorokšari and Kurtovska kapija, were treated with commercial calcite nanoparticles (at a concentration of 3% and 5%, calcite-based foliar fertilizer (positive control), and water (negative control) three times during vegetation). Sweet pepper fruits were harvested at the time of technological and physiological maturity. Significant differences were observed between pepper cultivars as well as between harvests times. In general, application of calcite nanoparticles reduced yield and increased fruit firmness. However, different effects of calcite nanoparticles were observed on almost all properties depending on the cultivar. In Šorokšari, calcite nanoparticles and calcite-based foliar fertilizers significantly increased N, P, K, Mg, Fe, Zn, Mn, and Cu at technological maturity, as well as P, Ca, Mg, Fe, Zn, Mn, Cu, and N at physiological maturity. However, in Kurtovska kapija, the treatments increased only Ca at technological maturity and only P at physiological maturity. The effect of treatments on fruit morphological properties was observed only at the second harvest. In Šorokšari, calcite nanoparticles (3% and 5%) increased the fruit length, minimal circle area, and minimal circle radius, and it decreased the fruit width and convex hull compared to the positive and negative controls, respectively. In Kurtovska kapija, calcite nanoparticles increased the fruit width and convex hull compared to the controls. At physiological maturity, lower anthocyanin and chlorophyll indices were found in Kurtovska kapija in both treatments with calcite nanoparticles, while in Šorokšari, the opposite effects were observed.
Collapse
Affiliation(s)
- Monika Vidak
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia; (M.V.); (B.L.); (Z.Š.); (K.C.-S.)
| | - Boris Lazarević
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia; (M.V.); (B.L.); (Z.Š.); (K.C.-S.)
- University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia;
| | - Marko Petek
- University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia;
| | - Jerko Gunjača
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia; (M.V.); (B.L.); (Z.Š.); (K.C.-S.)
- University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia;
- Correspondence:
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia; (M.V.); (B.L.); (Z.Š.); (K.C.-S.)
- University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia;
| | - Ivica Budor
- Agroledina j.d.o.o., Prigorska 32, Moravče, HR-10363 Belovar, Croatia;
| | - Klaudija Carović-Stanko
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia; (M.V.); (B.L.); (Z.Š.); (K.C.-S.)
- University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia;
| |
Collapse
|
40
|
Méndez-Flores OG, Ochoa-Díaz López H, Castro-Quezada I, Olivo-Vidal ZE, García-Miranda R, Rodríguez-Robles U, Irecta-Nájera CA, López-Ramírez G, Sánchez-Chino XM. The Milpa as A Supplier of Bioactive Compounds: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- OG Méndez-Flores
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - H Ochoa-Díaz López
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - I Castro-Quezada
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - ZE Olivo-Vidal
- Health Department, El Colegio De La Frontera Sur, Villahermosa, Tabasco, México
| | - R García-Miranda
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
- Escuela De Lenguas-Campus III San Cristóbal, Universidad Autónoma De Chiapas, San Cristóbal De Las Casas, Chiapas, México
| | - U Rodríguez-Robles
- Departamento De Ecología Y Recursos Naturales. Centro Universitario De La Costa Sur. Universidad De Guadalajara, Autlán De Navarro, Jalisco, México
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, México
| | - CA Irecta-Nájera
- Health Department, El Colegio De La Frontera Sur, Villahermosa, Tabasco, México
| | - G López-Ramírez
- Departamento De Fisiología, Biofísica Y Neurociencias, Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad De México, México
| | - XM Sánchez-Chino
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, México
| |
Collapse
|
41
|
Arora H, Sharma A, Sharma S, Haron FF, Gafur A, Sayyed RZ, Datta R. Pythium Damping-Off and Root Rot of Capsicum annuum L.: Impacts, Diagnosis, and Management. Microorganisms 2021; 9:microorganisms9040823. [PMID: 33924471 PMCID: PMC8069622 DOI: 10.3390/microorganisms9040823] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Capsicum annuum L. is a significant horticulture crop known for its pungent varieties and used as a spice. The pungent character in the plant, known as capsaicinoid, has been discovered to have various health benefits. However, its production has been affected due to various exogenous stresses, including diseases caused by a soil-borne pathogen, Pythium spp. predominantly affecting the Capsicum plant in younger stages and causing damping-off, this pathogen can incite root rot in later plant growth stages. Due to the involvement of multiple Pythium spp. and their capability to disperse through various routes, their detection and diagnosis have become crucial. However, the quest for a point-of-care technology is still far from over. The use of an integrated approach with cultural and biological techniques for the management of Pythium spp. can be the best and most sustainable alternative to the traditionally used and hazardous chemical approach. The lack of race-specific resistance genes against Pythium spp. can be compensated with the candidate quantitative trait loci (QTL) genes in C. annuum L. This review will focus on the epidemiological factors playing a major role in disease spread, the currently available diagnostics in species identification, and the management strategies with a special emphasis on Pythium spp. causing damping-off and root rot in different cultivars of C. annuum L.
Collapse
Affiliation(s)
- Himanshu Arora
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi 110016, India; (H.A.); (S.S.)
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University, Noida 201313, Uttar Pradesh, India
- Correspondence: (A.S.); (R.Z.S.); (R.D.)
| | - Satyawati Sharma
- Amity Food and Agriculture Foundation, Amity University, Noida 201313, Uttar Pradesh, India
| | - Farah Farhanah Haron
- Pest and Disease Management Program, Horticulture Research Center, Malaysian Agriculture Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang 43400, Selangor, Malaysia;
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang 28772, Indonesia;
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, Commerce College, Shahada 425409, Maharashtra, India
- Correspondence: (A.S.); (R.Z.S.); (R.D.)
| | - Rahul Datta
- Department of Geology and Pedology, Mendel University in Brno, 613 00 Brno-sever-Černá Pole, Czech Republic
- Correspondence: (A.S.); (R.Z.S.); (R.D.)
| |
Collapse
|
42
|
Olatunji TL, Odebunmi CA, Adetunji AE. Biological activities of limonoids in the Genus Khaya (Meliaceae): a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00197-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Limonoids are a class of highly oxygenated modified triterpenoids with a diverse range of biological activities. Although with restricted occurrence in the plant kingdom, these compounds are found extensively in the Meliaceae and Rutaceae families. Limonoids are of great interest in science given that the small number of plant families where they occur exhibit a broad range of medicinal properties that promote health and prevent disease.
Main text
The Meliaceae family includes the genus Khaya and comprises tree species that have been used in traditional medicine to treat several ailments. In recent years, the genus Khaya has attracted much research interest owing to the presence of limonoids in different plant parts of a few species that can serve as therapeutic molecules in the pharmaceutical industry. In this study, a literature search over the past two decades (2000–2020) was conducted on the biological activities of limonoids in the genus Khaya using different databases such as Google Scholar, PubMed, Scopus and ISI Web of Science. The taxonomy, geographical distribution and the various traditional uses of the genus are presented in detail. This study reveals that the currently documented biological activities of limonoids both in vivo and in vitro are limited to four species (K. anthotheca, K. grandifoliola, K. ivorensis and K. senegalensis) in the genus Khaya, and include anticancer, antimalarial, hepatoprotection, anti-inflammatory, neuroprotection, antimicrobial, antifungal and antifeedant. The most well-researched species, K. senegalensis, has the most notable biological activities and traditional uses in the genus Khaya.
Conclusion
The present detailed and up-to-date review of recent literature on the biological activities in the genus Khaya reveals the potentials of limonoids for drug development in managing several ailments.
Collapse
|
43
|
Ofori-Asenso R, Mohsenpour MA, Nouri M, Faghih S, Liew D, Mazidi M. Association of Spicy Chilli Food Consumption With Cardiovascular and All-Cause Mortality: A Meta-Analysis of Prospective Cohort Studies. Angiology 2021; 72:625-632. [PMID: 33657876 DOI: 10.1177/0003319721995666] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This systematic review and meta-analysis examined the association between spicy food (chilli pepper, chilli sauce, or chilli oil) consumption with cardiovascular and all-cause mortality. Medline and EMBASE were searched from their inception until February 2020 to identify relevant prospective cohort studies. Hazard ratios (HRs)/relative risk (RRs) were pooled via random-effect meta-analysis. Of the 4387 citations identified, 4 studies (from the United States, China, Italy, and Iran) were included in the meta-analysis. The included studies involved a total of 564 748 adults (aged ≥18 years; 51.2% female) followed over a median duration of 9.7 years. The pooled data suggested that compared with people who did not regularly consume spicy food (none/<1 d/wk), regular consumers of spicy food experienced a 12% (HR/RRpooled 0.88, 95% CI, 0.86-0.90; I 2 = 0%) lower risk of all-cause mortality. Moreover, spicy food consumption was associated with significant reduction in the risk of death from cardiac diseases (HR/RRpooled 0.82, 0.73-0.91; I 2 = 0%), but not from cerebrovascular disorders (HR/RRpooled 0.79, 0.53-1.17; I 2 = 72.2%). In conclusion, available epidemiological studies suggest that the consumption of spicy chilli food is associated with reduced risk of all-cause as well as heart disease-related mortality. Further studies in different populations are needed to confirm this association.
Collapse
Affiliation(s)
- Richard Ofori-Asenso
- Faculty of Health and Medical Sciences, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.,Department of Epidemiology and Preventive Medicine, 22457Monash University, Melbourne, Victoria, Australia
| | - Mohammad Ali Mohsenpour
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutrition and Food Sciences, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Faghih
- Department of Community Nutrition, School of Nutrition and Food Sciences, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Danny Liew
- Department of Epidemiology and Preventive Medicine, 22457Monash University, Melbourne, Victoria, Australia
| | - Mohsen Mazidi
- Department of Twin Research and Genetic Epidemiology, 4616Kings College London, London, UK
| |
Collapse
|
44
|
Lu M, Liu D, Shi Z, Gao X, Liang Y, Yao Z, Zhang W, Wang X, Chen X. Nutritional quality and health risk of pepper fruit as affected by magnesium fertilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:582-592. [PMID: 32673406 DOI: 10.1002/jsfa.10670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Magnesium (Mg) fertilization is a promising practice to improve vegetable yield. However, its impacts on vegetable quality and human health have not been examined. Thus, a field experiment was conducted to investigate the effects of varying Mg fertilization rates on yield and quality of pepper (Capsicum annuum L.) fruit. Furthermore, result of the field experiment was linked to pepper consumption data from the China Health and Nutrition Survey (CHNS) in the disability-adjusted life years (DALYs) framework to evaluate the potential health impact of Mg fertilization for the first time. RESULTS Compared to control, Mg fertilization increased the 2-year average pepper yield by 25.6%, whereas there was no significant yield improvement when Mg rates exceeded 112.5 kg MgO ha-1 . Magnesium application increased concentrations of Mg and capsaicinoids, decreased those of calcium (Ca), zinc (Zn) and vitamin C (Vc), and had no effect on potassium (K) and iron (Fe) in pepper fruit. As a result, Mg fertilization decreased the comprehensive nutrition level of pepper by 16.6%. Furthermore, the current health burden of the Chinese adult population associated with pepper consumption is estimated at 21.3 million DALYs per year, with the risk being increased by 5.40 DALYs for per megagram of Mg fertilizer application. Increasing health risk was mainly attributed to decreasing concentrations of Ca and Vc in pepper fruit, though the increased Mg intakes offset the impact of 1.74% to 14.4%. CONCLUSION Magnesium fertilization significantly improved the yield but reduced nutritional quality of pepper fruit, and increased human health risks associated with consumption of pepper fruit. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming Lu
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dunyi Liu
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Southwest University, Chongqing, China
| | - Zumin Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Xiaopeng Gao
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yi Liang
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhi Yao
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Zhang
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Xiaozhong Wang
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Xinping Chen
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Garra A, Alkalai‐Tuvia S, Telerman A, Paran I, Fallik E, Elmann A. Anti‐proliferative activities, phytochemical levels and fruit quality of pepper (
Capsicum
spp.) following prolonged storage. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ausaid Garra
- Institute of Postharvest and Food Sciences Agricultural Research Organization (ARO)The Volcani Center Rishon Lezion7505101Israel
- The Robert H Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Sharon Alkalai‐Tuvia
- Institute of Postharvest and Food Sciences Agricultural Research Organization (ARO)The Volcani Center Rishon Lezion7505101Israel
| | - Alona Telerman
- Institute of Postharvest and Food Sciences Agricultural Research Organization (ARO)The Volcani Center Rishon Lezion7505101Israel
| | - Ilan Paran
- Institute of Plant Sciences Agricultural Research Organization (ARO)The Volcani Center Rishon Lezion7505101Israel
| | - Elazar Fallik
- Institute of Postharvest and Food Sciences Agricultural Research Organization (ARO)The Volcani Center Rishon Lezion7505101Israel
| | - Anat Elmann
- Institute of Postharvest and Food Sciences Agricultural Research Organization (ARO)The Volcani Center Rishon Lezion7505101Israel
| |
Collapse
|
46
|
Guilherme R, Reboredo F, Guerra M, Ressurreição S, Alvarenga N. Elemental Composition and Some Nutritional Parameters of Sweet Pepper from Organic and Conventional Agriculture. PLANTS (BASEL, SWITZERLAND) 2020; 9:E863. [PMID: 32650463 PMCID: PMC7412200 DOI: 10.3390/plants9070863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/31/2023]
Abstract
The increasing demand of organic agriculture (OA) is based on the consumer's belief that organic agricultural products are healthier, tastier and more nutritious. The effect of OA and conventional agriculture (CA) methods on the elemental compositions of green and red sweet peppers were studied. The highest concentrations of Ca, Cu, K and P occur in peppers from OA in both states of ripeness, with emphasis on Ca and K contents. Furthermore, the principal component analysis (PCA), points out to a clear separation, regarding concentrations, between peppers from OA and CA. The average fruit weight is higher in OA, 141 g versus 112 g in CA. Regarding productivity, CA reaches a value of 30.1 t/ha, 7% higher than the value observed for OA, i.e., 28 t/ha. Peppers from CA, exhibited greater protein content than those which originated from OA, regardless of the ripening stage, but not more ashes. Regarding nutritional ratios, the ripening stage and the production mode, can be important for an adequate choice regarding a more balanced Ca/P ratio, and the studied variety contained high Ca values ranging between 1009 and 1930 mg.kg-1. The PCA analysis also revealed that Mn and Fe are inversely correlated, confirming the importance of the Mn/Fe ratio evaluation in nutritional studies.
Collapse
Affiliation(s)
- Rosa Guilherme
- CERNAS—Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Escola Superior Agrária de Coimbra, Instituto Politécnico de Coimbra, Bencanta, 3045-601 Coimbra, Portugal; (R.G.); (S.R.)
| | - Fernando Reboredo
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Mauro Guerra
- LIBPHYS, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Sandrine Ressurreição
- CERNAS—Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Escola Superior Agrária de Coimbra, Instituto Politécnico de Coimbra, Bencanta, 3045-601 Coimbra, Portugal; (R.G.); (S.R.)
| | - Nuno Alvarenga
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., UTI—Unidade de Tecnologia e Inovação. Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| |
Collapse
|
47
|
de Sá Mendes N, Coimbra PPS, Santos MCB, Cameron LC, Ferreira MSL, Buera MDP, Gonçalves ÉCBA. Capsicum pubescens as a functional ingredient: Microencapsulation and phenolic profilling by UPLC-MS E. Food Res Int 2020; 135:109292. [PMID: 32527483 DOI: 10.1016/j.foodres.2020.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/19/2022]
Abstract
The aim of the present investigation is to study the effect of inlet temperatures on the physicochemical properties of spray-dried jamun juice powder. The inlet temperatures varied from 140 to 160 °C, whereas other parameters like outlet temperature (80 °C), maltodextrin concentration (25%) and feed flow rate (10 mL/min) were kept constant. Moisture content, water activity, bulk density, solubility, hygroscopicity, colour, powder morphology, particle size and glass transition temperatures were analyzed for the powder samples. Higher inlet temperature increased the moisture content of the powder, and led to the formation of larger particles. Powder samples showed water activity values below 0.3, which is good for powder stability. The colour of the jamun juice powder was mainly affected by inlet temperature, leading to the formation of powders that were significantly brighter and less purple as the inlet temperature increased. Glass transition temperature ranged from 55.85 to 71.78 °C. Powders produced at lower inlet temperatures showed smoother particle surfaces, whereas higher inlet temperature showed spherical particles with some shrinkage as analyzed by scanning electron microscope.
Collapse
Affiliation(s)
- Nathânia de Sá Mendes
- Laboratory of Bioactives, Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 296, CEP 22290-240, Rio de Janeiro, RJ, Brazil; Food Science Department, Nutritiońs School - UNIRIO, Av. Pasteur, 296, CEP 22290-240, Rio de Janeiro, RJ, Brazil
| | - Pedro P S Coimbra
- Laboratory of Bioactives, Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 296, CEP 22290-240, Rio de Janeiro, RJ, Brazil; Food Science Department, Nutritiońs School - UNIRIO, Av. Pasteur, 296, CEP 22290-240, Rio de Janeiro, RJ, Brazil
| | - Millena C B Santos
- Laboratory of Bioactives, Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 296, CEP 22290-240, Rio de Janeiro, RJ, Brazil; Food Science Department, Nutritiońs School - UNIRIO, Av. Pasteur, 296, CEP 22290-240, Rio de Janeiro, RJ, Brazil; Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Brazil
| | - Luiz C Cameron
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Brazil
| | - Mariana S L Ferreira
- Laboratory of Bioactives, Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 296, CEP 22290-240, Rio de Janeiro, RJ, Brazil; Food Science Department, Nutritiońs School - UNIRIO, Av. Pasteur, 296, CEP 22290-240, Rio de Janeiro, RJ, Brazil; Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Brazil
| | - María Del P Buera
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias y Departamento de Química Orgánica, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Édira C B A Gonçalves
- Laboratory of Bioactives, Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 296, CEP 22290-240, Rio de Janeiro, RJ, Brazil; Food Science Department, Nutritiońs School - UNIRIO, Av. Pasteur, 296, CEP 22290-240, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
48
|
C. S. A, S V, I S, Kaushik P. Diallel Analysis of Chilli Pepper ( Capsicum annuum L.) Genotypes for Morphological and Fruit Biochemical Traits. PLANTS (BASEL, SWITZERLAND) 2019; 9:plants9010001. [PMID: 31861270 PMCID: PMC7020141 DOI: 10.3390/plants9010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 05/20/2023]
Abstract
Chilli pepper is commercially cultivated as a spice and is also used for the extraction of a colouring agent. Here, we performed a diallel genetic study involving five chilli pepper varieties. Parents and their hybrid were evaluated for fifteen morphological and five biochemical traits over two crop seasons under open field conditions. Variation was recorded for all of the studied traits. Similarly, significant values for general combining ability (GCA) and specific combining ability (SCA) variance were obtained for all of the traits. The ratio of σ2 SCA/σ2 GCA indicates that non-additive gene effects were predominant for all the studied traits except for fruits plant-1. Based on SCA effects, cross combinations P2 × P5, and P4 × P5 were determined excellent for flesh thickness, yield components and vitamin C. These hybrids are recommended for multilocation testing to assess their suitability for commercial cultivation. Overall, this work presents useful information regarding the genetics of important morphological and biochemical traits in chilli pepper.
Collapse
Affiliation(s)
- Aiswarya C. S.
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala 680656, India; (A.C.S.); (V.S.); (S.I.)
| | - Vijeth S
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala 680656, India; (A.C.S.); (V.S.); (S.I.)
| | - Sreelathakumary I
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala 680656, India; (A.C.S.); (V.S.); (S.I.)
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
- Nagano University, 1088 Komaki, Ueda, Nagano 386-0031, Japan
- Correspondence: ; Tel.: +34-963-877000
| |
Collapse
|
49
|
Wang Y, Wu D. Comments on the Editor Re: Shi, Zumin, et al. "High Chili Intake and Cognitive Function among 4582 Adults: An Open Cohort Study over 15 Years." Nutrients 2019, 11(5), 1183. Nutrients 2019; 11:nu11122877. [PMID: 31779278 PMCID: PMC6950707 DOI: 10.3390/nu11122877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023] Open
Abstract
We read with great interest the article [...].
Collapse
Affiliation(s)
- Yun Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MI 63110, USA
- Correspondence: (Y.W.); (D.W.)
| | - Dan Wu
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Correspondence: (Y.W.); (D.W.)
| |
Collapse
|