1
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
2
|
Chamakioti M, Chrousos GP, Kassi E, Vlachakis D, Yapijakis C. Stress-Related Roles of Exosomes and Exosomal miRNAs in Common Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:8256. [PMID: 39125827 PMCID: PMC11311345 DOI: 10.3390/ijms25158256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes, natural nanovesicles that contain a cargo of biologically active molecules such as lipids, proteins, and nucleic acids, are released from cells to the extracellular environment. They then act as autocrine, paracrine, or endocrine mediators of communication between cells by delivering their cargo into recipient cells and causing downstream effects. Exosomes are greatly enriched in miRNAs, which are small non-coding RNAs that act both as cytoplasmic post-transcriptional repression agents, modulating the translation of mRNAs into proteins, as well as nuclear transcriptional gene activators. Neuronal exosomal miRNAs have important physiologic functions in the central nervous system (CNS), including cell-to-cell communication, synaptic plasticity, and neurogenesis, as well as modulating stress and inflammatory responses. Stress-induced changes in exosomal functions include effects on neurogenesis and neuroinflammation, which can lead to the appearance of various neuropsychiatric disorders such as schizophrenia, major depression, bipolar disorder, and Alzheimer's and Huntington's diseases. The current knowledge regarding the roles of exosomes in the pathophysiology of common mental disorders is discussed in this review.
Collapse
Affiliation(s)
- Myrsini Chamakioti
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Eva Kassi
- 1st Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, Laikon Hospital, 115 27 Athens, Greece;
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
3
|
Li J, Xu H, Zhang K, Liu Y, Zeng C, Fu Y, Li Y. Astrocyte-derived exosomes-transported miRNA-26a-5p ameliorates sevoflurane-induced cognitive dysfunction in aged mice. Transl Res 2024; 268:79-96. [PMID: 38246343 DOI: 10.1016/j.trsl.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Prolonged sevoflurane anesthesia is the primary factor contributing to the development of perioperative neurocognitive disorders (PND). Recent studies have highlighted neuronal apoptosis and abnormal dendritic structures as crucial features of PND. Astrocytes-derived exosomes (ADEs) have been identified as carriers of microRNAs (miRNAs), playing a vital role in cell-to-cell communication through transmitting genetic material. Nevertheless, the specific mechanisms by which miRNAs in ADEs contribute to sevoflurane-induced cognitive deficit are currently unknown. Through a series of in vivo and in vitro experiments, we demonstrated that ADEs contributed to improved neurocognitive outcomes by reducing neuronal apoptosis and promoting dendritic development. Our miRNA microarray analysis revealed a significant increase in the expression level of miR-26a-5p within ADEs. Furthermore, we identified NCAM as the downstream target gene of miR-26a-5p. Subsequent gain- and loss-of-function experiments were conducted to validate the role of the miR-26a-5p/NCAM axis. Finally, we found that the AKT/GSK3-β/CRMP2 signaling pathway was involved in regulating neurons through exosomal miR-26a-5p. Taken together, our findings suggest that the treatment with miR-26a-5p in ADEs can improve neurocognitive outcomes induced by long-term sevoflurane anesthesia, suggesting a promising approach for retarding the progress of PND.
Collapse
Affiliation(s)
- Junhua Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Brain research center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
| | - Hui Xu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yafang Liu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Cong Zeng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yanni Fu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Brain research center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Kyriatzis G, Bernard A, Bôle A, Khrestchatisky M, Ferhat L. In the Rat Hippocampus, Pilocarpine-Induced Status Epilepticus Is Associated with Reactive Glia and Concomitant Increased Expression of CD31, PDGFRβ, and Collagen IV in Endothelial Cells and Pericytes of the Blood-Brain Barrier. Int J Mol Sci 2024; 25:1693. [PMID: 38338969 PMCID: PMC10855308 DOI: 10.3390/ijms25031693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRβ, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.
Collapse
Affiliation(s)
| | | | | | - Michel Khrestchatisky
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France, Institut de Neurophysiopathologie, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France; (G.K.); (A.B.); (A.B.)
| | - Lotfi Ferhat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France, Institut de Neurophysiopathologie, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France; (G.K.); (A.B.); (A.B.)
| |
Collapse
|
5
|
Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Serum Proteins Associated with Blood-Brain Barrier as Potential Biomarkers for Seizure Prediction. Int J Mol Sci 2022; 23:ijms232314712. [PMID: 36499038 PMCID: PMC9740683 DOI: 10.3390/ijms232314712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
As 30% of epileptic patients remain drug-resistant, seizure prediction is vital. Induction of epileptic seizure is a complex process that can depend on factors such as intrinsic neuronal excitability, changes in extracellular ion concentration, glial cell activity, presence of inflammation and activation of the blood−brain barrier (BBB). In this study, we aimed to assess if levels of serum proteins associated with BBB can predict seizures. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2, S100B, CCL-2, ICAM-1, P-selectin, and TSP-2 were examined in a group of 49 patients with epilepsy who were seizure-free for a minimum of seven days and measured by ELISA. The examination was repeated after 12 months. An extensive medical history was taken, and patients were subjected to a follow-up, including a detailed history of seizures. Serum levels of MMP-2, MMP-9, TIMP-1, CCL-2, and P-selectin differed between the two time points (p < 0.0001, p < 0.0001, p < 0.0001, p < 0.0001, p = 0.0035, respectively). General linear model analyses determined the predictors of seizures. Levels of MMP-2, MMP-9, and CCL-2 were found to influence seizure count in 1, 3, 6, and 12 months of observation. Serum levels of MMP-2, MMP-9, and CCL-2 may be considered potential biomarkers for seizure prediction and may indicate BBB activation.
Collapse
Affiliation(s)
- Elżbieta Bronisz
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Correspondence:
| | - Agnieszka Cudna
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Aleksandra Wierzbicka
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | |
Collapse
|
6
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314622. [PMID: 36498959 PMCID: PMC9739182 DOI: 10.3390/ijms232314622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
A central aspect of nervous system development and function is the post-transcriptional regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP), responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences, base modifications, or secondary/tertiary structures, are able to control maturation, localization, stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably due to liquid-liquid phase separation (LLPS). Such structures are evidenced as a variety of granules that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is, however, that, under altered cellular conditions, they are also prone to form aggregates, as observed in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those that produced them.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-238-97 (ext. 415/446)
| |
Collapse
|
7
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
8
|
Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3201644. [PMID: 36046684 PMCID: PMC9423989 DOI: 10.1155/2022/3201644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse physiological influence, the impact of glial cells has become much more evident on neurological illnesses, resulting in the origins of many diseases appearing to be more convoluted than previously happened. Since neurological disorders are often random and unknown, hence the construction of animal models is difficult to build, representing a small fraction of people with a gene mutation. As a result, an immediate necessity is grown to work within in vitro techniques for examining these illnesses. As the scientific community recognizes cell-autonomous contributions to a variety of central nervous system illnesses, therapeutic techniques involving stem cells for treating neurological diseases are gaining traction. The use of stem cells derived from a variety of sources is increasingly being used to replace both neuronal and glial tissue. The brain's energy demands necessitate the reliance of neurons on glial cells in order for it to function properly. Furthermore, glial cells have diverse functions in terms of regulating their own metabolic activities, as well as collaborating with neurons via secreted signaling or guidance molecules, forming a complex network of neuron-glial connections in health and sickness. Emerging data reveals that metabolic changes in glial cells can cause morphological and functional changes in conjunction with neuronal dysfunction under disease situations, highlighting the importance of neuron-glia interactions in the pathophysiology of neurological illnesses. In this context, it is required to improve our understanding of disease mechanisms and create potential novel therapeutics. According to research, synaptic malfunction is one of the features of various mental diseases, and glial cells are acting as key ingredients not only in synapse formation, growth, and plasticity but also in neuroinflammation and synaptic homeostasis which creates critical physiological capacity in the focused sensory system. The goal of this review article is to elaborate state-of-the-art information on a few glial cell types situated in the central nervous system (CNS) and highlight their role in the onset and progression of neurological disorders.
Collapse
|
9
|
Zou Y, Mu D, Ma X, Wang D, Zhong J, Gao J, Yu S, Qiu L. Review on the roles of specific cell-derived exosomes in Alzheimer's disease. Front Neurosci 2022; 16:936760. [PMID: 35968378 PMCID: PMC9366882 DOI: 10.3389/fnins.2022.936760] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death worldwide and cannot be effectively cured or prevented; thus, early diagnosis, and intervention are important. The importance of exosomes, membrane-bound extracellular vesicles produced in the endosome of eukaryotic cells, in the development, diagnosis, and treatment of AD has been recognized; however, their specific functions remain controversial and even unclear. With the development of exosome extraction, isolation, and characterization, many studies have focused on exosomes derived from different cells and body fluids. In this study, we summarized the roles of exosomes derived from different body fluids and cells, such as neuron, glial, stem, and endothelial cells, in the development, diagnosis, monitoring, and treatment of AD. We also emphasize the necessity to focus on exosomes from biological fluids and specific cells that are less invasive to target. Moreover, aside from the concentrations of classic and novel biomarkers in exosomes, the size and number of exosomes may also influence early and differential diagnosis of AD.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
- Medical Science Research Center (MRC), Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jian Zhong
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
- Songlin Yu
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Ling Qiu
| |
Collapse
|
10
|
Kyriatzis G, Bernard A, Bôle A, Pflieger G, Chalas P, Masse M, Lécorché P, Jacquot G, Ferhat L, Khrestchatisky M. Neurotensin receptor 2 is induced in astrocytes and brain endothelial cells in relation to neuroinflammation following pilocarpine-induced seizures in rats. Glia 2021; 69:2618-2643. [PMID: 34310753 DOI: 10.1002/glia.24062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Neurotensin (NT) acts as a primary neurotransmitter and neuromodulator in the CNS and has been involved in a number of CNS pathologies including epilepsy. NT mediates its central and peripheral effects by interacting with the NTSR1, NTSR2, and Sort1/NTSR3 receptor subtypes. To date, little is known about the precise expression of the NT receptors in brain neural cells and their regulation in pathology. In the present work, we studied the cellular distribution of the NTSR2 protein in the rat hippocampus and questioned whether its expression was modulated in conditions of neuroinflammation using a model of temporal lobe epilepsy induced by pilocarpine. This model is characterized by a rapid and intense inflammatory reaction with reactive gliosis in the hippocampus. We show that NTSR2 protein is expressed in hippocampal astrocytes and its expression increases together with astrocyte reactivity following induction of status epilepticus. NTSR2 immunoreactivity is also increased in astrocytes proximal to blood vessels and their end-feet, and in endothelial cells. Proinflammatory factors such as IL1β and LPS induced NTSR2 mRNA and protein in cultured astroglial cells. Antagonizing NTSR2 with SR142948A decreased NTSR2 expression as well as astroglial reactivity. Together, our results suggest that NTSR2 is implicated in astroglial and gliovascular inflammation and that targeting the NTSR2 receptor may open new avenues in the regulation of neuroinflammation in CNS diseases.
Collapse
Affiliation(s)
- Grigorios Kyriatzis
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Anne Bernard
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Angélique Bôle
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Guillaume Pflieger
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Petros Chalas
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Maxime Masse
- VECT-HORUS, Faculté de Médecine, Marseille Cedex, France
| | | | | | - Lotfi Ferhat
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| | - Michel Khrestchatisky
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille Cedex, France
| |
Collapse
|
11
|
Lee EJ, Zheng M, Craft CM, Jeong S. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) are localized in the nucleus of retinal Müller glial cells and modulated by cytokines and oxidative stress. PLoS One 2021; 16:e0253915. [PMID: 34270579 PMCID: PMC8284794 DOI: 10.1371/journal.pone.0253915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the pathology of numerous inflammatory retinal degenerations, including retinitis pigmentosa (RP). Our previous work revealed that intravitreal injections with tissue inhibitor of metalloproteinases 1 (TIMP-1) reduce the progression of rod cell death and inhibit cone cell remodeling that involves reactive gliosis in retinal Müller glial cells (MGCs) in rodent models. The underlying cellular and molecular mechanisms of how TIMP-1 functions in the retina remain to be resolved; however, MGCs are involved in structural homeostasis, neuronal cell survival and death. In the present study, MMP-9 and TIMP-1 expression patterns were investigated in a human MGC line (MIO-M1) under inflammatory cytokine (IL-1β and TNF-α) and oxidative stress (H2O2) conditions. First, both IL-1β and TNF-α, but not H2O2, have a mild in vitro pro-survival effect on MIO-M1 cells. Treatment with either cytokine results in the imbalanced secretion of MMP-9 and TIMP-1. H2O2 treatment has little effect on their secretion. The investigation of their intracellular expression led to interesting observations. MMP-9 and TIMP-1 are both expressed, not only in the cytoplasm, but also inside the nucleus. None of the treatments alters the MMP-9 intracellular distribution pattern. In contrast to MMP-9, TIMP-1 is detected as speckles. Intracellular TIMP-1 aggregation forms in the cytoplasmic area with IL-1β treatment. With H2O2 treatments, the cell morphology changes from cobbles to spindle shapes and the nuclei become larger with increases in TIMP-1 speckles in an H2O2 dose-dependent manner. Two TIMP-1 cell surface receptors, low density lipoprotein receptor-related protein-1 (LRP-1) and cluster of differentiation 82 (CD82), are expressed within the nucleus of MIO-M1 cells. Overall, these observations suggest that intracellular TIMP-1 is a target of proinflammatory and oxidative insults in the MGCs. Given the importance of the roles for MGCs in the retina, the functional implication of nuclear TIMP-1 and MMP-9 in MGCs is discussed.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States of America
| | - Mengmei Zheng
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Shinwu Jeong
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
12
|
García-González L, Paumier JM, Louis L, Pilat D, Bernard A, Stephan D, Jullien N, Checler F, Nivet E, Khrestchatisky M, Baranger K, Rivera S. MT5-MMP controls APP and β-CTF/C99 metabolism through proteolytic-dependent and -independent mechanisms relevant for Alzheimer's disease. FASEB J 2021; 35:e21727. [PMID: 34117802 DOI: 10.1096/fj.202100593r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
We previously discovered the implication of membrane-type 5-matrix metalloproteinase (MT5-MMP) in Alzheimer's disease (AD) pathogenesis. Here, we shed new light on pathogenic mechanisms by which MT5-MMP controls the processing of amyloid precursor protein (APP) and the fate of amyloid beta peptide (Aβ) as well as its precursor C99, and C83. We found in human embryonic kidney cells (HEK) carrying the APP Swedish familial mutation (HEKswe) that deleting the C-terminal non-catalytic domains of MT5-MMP hampered its ability to process APP and release the soluble 95 kDa form (sAPP95). Catalytically inactive MT5-MMP variants increased the levels of Aβ and promoted APP/C99 sorting in the endolysosomal system, likely through interactions of the proteinase C-terminal portion with C99. Most interestingly, the deletion of the C-terminal domain of MT5-MMP caused a strong degradation of C99 by the proteasome and prevented Aβ accumulation. These discoveries reveal new control of MT5-MMP over APP by proteolytic and non-proteolytic mechanisms driven by the C-terminal domains of the proteinase. The targeting of these non-catalytic domains of MT5-MMP could, therefore, provide new insights into the therapeutic regulation of APP-related pathology in AD.
Collapse
Affiliation(s)
| | | | - Laurence Louis
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Dominika Pilat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Anne Bernard
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Delphine Stephan
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Nicolas Jullien
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Emmanuel Nivet
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
13
|
Gassama Y, Favereaux A. Emerging Roles of Extracellular Vesicles in the Central Nervous System: Physiology, Pathology, and Therapeutic Perspectives. Front Cell Neurosci 2021; 15:626043. [PMID: 33708073 PMCID: PMC7940515 DOI: 10.3389/fncel.2021.626043] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles or EVs are secreted by most, if not all, eukaryote cell types and recaptured by neighboring or distant cells. Their cargo, composed of a vast diversity of proteins, lipids, and nucleic acids, supports the EVs' inter-cellular communication. The role of EVs in many cellular processes is now well documented both in physiological and pathological conditions. In this review, we focus on the role of EVs in the central nervous system (CNS) in physiological as well as pathological conditions such as neurodegenerative diseases or brain cancers. We also discuss the future of EVs in clinical research, in particular, their value as biomarkers as well as innovative therapeutic agents. While an increasing number of studies reveal EV research as a promising field, progress in the standardization of protocols and innovation in analysis as well as in research tools is needed to make a breakthrough in our understanding of their impact in the pathophysiology of the brain.
Collapse
Affiliation(s)
- Yadaly Gassama
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Alexandre Favereaux
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
14
|
Grochecki P, Smaga I, Lopatynska-Mazurek M, Gibula-Tarlowska E, Kedzierska E, Listos J, Talarek S, Marszalek-Grabska M, Hubalewska-Mazgaj M, Korga-Plewko A, Dudka J, Marzec Z, Filip M, Kotlinska JH. Effects of Mephedrone and Amphetamine Exposure during Adolescence on Spatial Memory in Adulthood: Behavioral and Neurochemical Analysis. Int J Mol Sci 2021; 22:E589. [PMID: 33435576 PMCID: PMC7827725 DOI: 10.3390/ijms22020589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
A synthetic cathinone, mephedrone is widely abused by adolescents and young adults. Despite its widespread use, little is known regarding its long-term effects on cognitive function. Therefore, we assessed, for the first time, whether (A) repeated mephedrone (30 mg/kg, i.p., 10 days, once a day) exposure during adolescence (PND 40) induces deleterious effects on spatial memory and reversal learning (Barnes maze task) in adult (PND 71-84) rats and whether (B) these effects were comparable to amphetamine (2.5 mg/kg, i.p.). Furthermore, the influence of these drugs on MMP-9, NMDA receptor subunits (GluN1, GluN2A/2B) and PSD-95 protein expression were assessed in adult rats. The drug effects were evaluated at doses that per se induce rewarding/reinforcing effects in rats. Our results showed deficits in spatial memory (delayed effect of amphetamine) and reversal learning in adult rats that received mephedrone/amphetamine in adolescence. However, the reversal learning impairment may actually have been due to spatial learning rather than cognitive flexibility impairments. Furthermore, mephedrone, but not amphetamine, enhanced with delayed onset, MMP-9 levels in the prefrontal cortex and the hippocampus. Mephedrone given during adolescence induced changes in MMP-9 level and up-regulation of the GluN2B-containing NMDA receptor (prefrontal cortex and hippocampus) in young adult (PND 63) and adult (PND 87) rats. Finally, in adult rats, PSD-95 expression was increased in the prefrontal cortex and decreased in the hippocampus. In contrast, in adult rats exposed to amphetamine in adolescence, GluN2A subunit and PSD-95 expression were decreased (down-regulated) in the hippocampus. Thus, in mephedrone-but not amphetamine-treated rats, the deleterious effects on spatial memory were associated with changes in MMP-9 level. Because the GluN2B-containing NMDA receptor dominates in adolescence, mephedrone seems to induce more harmful effects on cognition than amphetamine does during this period of life.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | - Malgorzata Lopatynska-Mazurek
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Ewa Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, 20-090 Lublin, Poland;
| | - Magdalena Hubalewska-Mazgaj
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | | | - Jaroslaw Dudka
- Department of Toxicology, Medical University, 20-090 Lublin, Poland;
| | - Zbigniew Marzec
- Department of Food and Nutrition, Medical University, 20-093 Lublin, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| |
Collapse
|
15
|
Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J 2021; 288:7162-7182. [PMID: 33405316 DOI: 10.1111/febs.15701] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mohammad A M Ali
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, State University of New York-Binghamton, NY, USA
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Pacheco-Fernandez N, Pakdel M, Blank B, Sanchez-Gonzalez I, Weber K, Tran ML, Hecht TKH, Gautsch R, Beck G, Perez F, Hausser A, Linder S, von Blume J. Nucleobindin-1 regulates ECM degradation by promoting intra-Golgi trafficking of MMPs. J Cell Biol 2020; 219:e201907058. [PMID: 32479594 PMCID: PMC7401813 DOI: 10.1083/jcb.201907058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/29/2019] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) degrade several ECM components and are crucial modulators of cell invasion and tissue organization. Although much has been reported about their function in remodeling ECM in health and disease, their trafficking across the Golgi apparatus remains poorly understood. Here we report that the cis-Golgi protein nucleobindin-1 (NUCB1) is critical for MMP2 and MT1-MMP trafficking along the Golgi apparatus. This process is Ca2+-dependent and is required for invasive MDA-MB-231 cell migration as well as for gelatin degradation in primary human macrophages. Our findings emphasize the importance of NUCB1 as an essential component of MMP transport and its overall impact on ECM remodeling.
Collapse
Affiliation(s)
| | | | - Birgit Blank
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | | | - Kathrin Weber
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Mai Ly Tran
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Tobias Karl-Heinz Hecht
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Renate Gautsch
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gisela Beck
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franck Perez
- Institute Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
17
|
Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles. Int J Mol Sci 2019; 21:ijms21010266. [PMID: 31906013 PMCID: PMC6982255 DOI: 10.3390/ijms21010266] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 02/06/2023] Open
Abstract
Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now clear that glial cells, and in particular astrocytes, also play critical roles in both modes by releasing different kinds of molecules (e.g., D-serine secreted by astrocytes). On the other hand, neurons produce factors that can regulate the activity of glial cells, including their ability to release regulatory molecules. In the last fifteen years it has been demonstrated that both neurons and glial cells release extracellular vesicles (EVs) of different kinds, both in physiologic and pathological conditions. Here we discuss the possible involvement of EVs in the events underlying learning and memory, in both physiologic and pathological conditions.
Collapse
|
18
|
Vardjan N, Parpura V, Verkhratsky A, Zorec R. Gliocrine System: Astroglia as Secretory Cells of the CNS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:93-115. [PMID: 31583585 DOI: 10.1007/978-981-13-9913-8_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Astrocytes are secretory cells, actively participating in cell-to-cell communication in the central nervous system (CNS). They sense signaling molecules in the extracellular space, around the nearby synapses and also those released at much farther locations in the CNS, by their cell surface receptors, get excited to then release their own signaling molecules. This contributes to the brain information processing, based on diffusion within the extracellular space around the synapses and on convection when locales relatively far away from the release sites are involved. These functions resemble secretion from endocrine cells, therefore astrocytes were termed to be a part of the gliocrine system in 2015. An important mechanism, by which astrocytes release signaling molecules is the merger of the vesicle membrane with the plasmalemma, i.e., exocytosis. Signaling molecules stored in astroglial secretory vesicles can be discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This leads to a fusion pore formation, a channel that must widen to allow the exit of the Vesiclal cargo. Upon complete vesicle membrane fusion, this process also integrates other proteins, such as receptors, transporters and channels into the plasma membrane, determining astroglial surface signaling landscape. Vesiclal cargo, together with the whole vesicle can also exit astrocytes by the fusion of multivesicular bodies with the plasma membrane (exosomes) or by budding of vesicles (ectosomes) from the plasma membrane into the extracellular space. These astroglia-derived extracellular vesicles can later interact with various target cells. Here, the characteristics of four types of astroglial secretory vesicles: synaptic-like microvesicles, dense-core vesicles, secretory lysosomes, and extracellular vesicles, are discussed. Then machinery for vesicle-based exocytosis, second messenger regulation and the kinetics of exocytotic vesicle content discharge or release of extracellular vesicles are considered. In comparison to rapidly responsive, electrically excitable neurons, the receptor-mediated cytosolic excitability-mediated astroglial exocytotic vesicle-based transmitter release is a relatively slow process.
Collapse
Affiliation(s)
- Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Datta Chaudhuri A, Dasgheyb RM, DeVine LR, Bi H, Cole RN, Haughey NJ. Stimulus‐dependent modifications in astrocyte‐derived extracellular vesicle cargo regulate neuronal excitability. Glia 2019; 68:128-144. [DOI: 10.1002/glia.23708] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Amrita Datta Chaudhuri
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of Medicine Baltimore Maryland
| | - Raha M. Dasgheyb
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of Medicine Baltimore Maryland
| | - Lauren R. DeVine
- Department of Biological Chemistry, Mass Spectrometry and Proteomics FacilityJohns Hopkins University School of Medicine Baltimore Maryland
| | - Honghao Bi
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of Medicine Baltimore Maryland
| | - Robert N. Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics FacilityJohns Hopkins University School of Medicine Baltimore Maryland
| | - Norman J. Haughey
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of Medicine Baltimore Maryland
| |
Collapse
|
20
|
Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L. MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci 2019; 76:3207-3228. [PMID: 31172215 PMCID: PMC6647627 DOI: 10.1007/s00018-019-03180-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of over twenty proteases, operating chiefly extracellularly to cleave components of the extracellular matrix, cell adhesion molecules as well as cytokines and growth factors. By virtue of their expression and activity patterns in animal models and clinical investigations, as well as functional studies with gene knockouts and enzyme inhibitors, MMPs have been demonstrated to play a paramount role in many physiological and pathological processes in the brain. In particular, they have been shown to influence learning and memory processes, as well as major neuropsychiatric disorders such as schizophrenia, various kinds of addiction, epilepsy, fragile X syndrome, and depression. A possible link connecting all those conditions is either physiological or aberrant synaptic plasticity where some MMPs, e.g., MMP-9, have been demonstrated to contribute to the structural and functional reorganization of excitatory synapses that are located on dendritic spines. Another common theme linking the aforementioned pathological conditions is neuroinflammation and MMPs have also been shown to be important mediators of immune responses.
Collapse
Affiliation(s)
- Anna Beroun
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | | | - Piotr Michaluk
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | - Barbara Pijet
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | | | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
21
|
Abe H, Kajitani N, Okada-Tsuchioka M, Omori W, Yatsumoto M, Takebayashi M. Antidepressant amitriptyline-induced matrix metalloproteinase-9 activation is mediated by Src family tyrosine kinase, which leads to glial cell line-derived neurotrophic factor mRNA expression in rat astroglial cells. Neuropsychopharmacol Rep 2019; 39:156-163. [PMID: 31025529 PMCID: PMC7292280 DOI: 10.1002/npr2.12055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Background Astrocytes have been implicated in the pathophysiology of mood disorders and in the mechanism of the pharmacological effects of antidepressant drugs by the production of neurotrophic/growth factors. Previous studies have identified astrocyte‐expressed Gαi/o‐coupled lysophosphatidic acid receptor 1 (LPAR1), as being involved in antidepressant‐induced production of glial cell line‐derived neurotrophic factor (GDNF) and matrix metalloproteinase‐9 (MMP‐9) activation, an important step in the production of GNDF. However, the precise mechanism of MMP‐9 activation by antidepressants has yet to be identified, in particular the intracellular signaling pathway between LPAR1/Gαi/o and MMP‐9. Methods and Results Treatment of rat C6 astroglial cells (C6 cells) with amitriptyline increased Src family tyrosine kinase phosphorylation in a time and concentration‐dependent manner. Amitriptyline‐induced GDNF mRNA expression was blocked by Src family tyrosine kinase inhibitors. In addition, inhibiting Src family tyrosine kinase blocked amitriptyline‐induced zymographic MMP‐9 activation in C6 cells. The amitriptyline‐induced zymographic MMP‐9 activity was completely blocked by selective inhibition of Gαi/o protein and LPAR1. Furthermore, the amitriptyline‐induced Src family tyrosine kinase phosphorylation was blocked by LPAR1, but not MMP‐9 inhibition, indicating that Src family tyrosine kinase involvement is downstream of LPAR1. Conclusions The current findings suggest that the pharmacological effect of antidepressant such as amitriptyline is mediated through an intracellular signaling pathway via the LPAR1/Gαi/o/Src family tyrosine kinase, which leads to MMP‐9 activation and GDNF production. Treatment of rat C6 astroglial cells (C6 cells) with amitriptyline increased Src family tyrosine kinase phosphorylation in a time‐ and concentration‐dependent manner. The current findings suggest that the pharmacological effect of antidepressant such as amitriptyline is mediated through an intracellular signaling pathway via the LPAR1/Gαi/o/Src family tyrosine kinase, which leads to MMP‐9 activation and glial cell line‐derived neurotrophic factor production.![]()
Collapse
Affiliation(s)
- Hiromi Abe
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Japan.,Department of Pharmacy, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Naoto Kajitani
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Wataru Omori
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Masahide Yatsumoto
- Department of Pharmacy, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Minoru Takebayashi
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Japan.,Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
22
|
Brandao M, Simon T, Critchley G, Giamas G. Astrocytes, the rising stars of the glioblastoma microenvironment. Glia 2018; 67:779-790. [PMID: 30240060 DOI: 10.1002/glia.23520] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022]
Abstract
Glioblastoma (GBM) is an aggressive primary tumor, causing thousands of deaths worldwide every year. The mean survival of patients with GBM remains below 20 months despite current available therapies. GBM cells' interactions with their stromal counterparts are crucial for tumor development. Astrocytes are glial cells that comprise ~50% of all brain cells and are therefore likely to establish direct contact with GBM cells. As other tumor cell types can hijack fibroblasts or immune cells to facilitate tumor growth, GBM cells can actually activate astrocytes, namely, the tumor associated astrocytes (TAAs), to promote GBM invasion in the healthy tissue. TAAs have thus been shown to be involved in GBM cells growth and limited response to radiation or chemotherapy (i.e., Temozolomide). Nevertheless, even though the interest in the cancer research community is increasing, the role of TAAs during GBM development is still overlooked. Yet, obtaining an in-depth understanding of the mechanisms by which TAAs influence GBM progression might lead to the development of new therapeutic strategies. This article therefore reports the different levels of GBM progression at which TAAs have been recently described to be involved in, including tumor cells' proliferation/invasion and resistance to therapies, especially through the activity of extracellular vesicles.
Collapse
Affiliation(s)
- Mayra Brandao
- Department of Biochemistry and Biomedicine, University of Sussex, School of Life Sciences, Brighton, United Kingdom
| | - Thomas Simon
- Department of Biochemistry and Biomedicine, University of Sussex, School of Life Sciences, Brighton, United Kingdom
| | - Giles Critchley
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, University of Sussex, School of Life Sciences, Brighton, United Kingdom
| |
Collapse
|
23
|
Norwood Toro LE, Wang Y, Condeelis JS, Jones JG, Backer JM, Bresnick AR. Myosin-IIA heavy chain phosphorylation on S1943 regulates tumor metastasis. Exp Cell Res 2018; 370:273-282. [PMID: 29953877 PMCID: PMC6117828 DOI: 10.1016/j.yexcr.2018.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022]
Abstract
Nonmuscle myosin-IIA (NMHC-IIA) heavy chain phosphorylation has gained recognition as an important feature of myosin-II regulation. In previous work, we showed that phosphorylation on S1943 promotes myosin-IIA filament disassembly in vitro and enhances EGF-stimulated lamellipod extension of breast tumor cells. However, the contribution of NMHC-IIA S1943 phosphorylation to the modulation of invasive cellular behavior and metastasis has not been examined. Stable expression of phosphomimetic (S1943E) or non-phosphorylatable (S1943A) NMHC-IIA in breast cancer cells revealed that S1943 phosphorylation enhances invadopodia function, and is critical for matrix degradation in vitro and experimental metastasis in vivo. These studies demonstrate a novel link between NMHC-IIA S1943 phosphorylation, the regulation of extracellular matrix degradation and tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Laura E Norwood Toro
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
24
|
Cerebellum Susceptibility to Neonatal Asphyxia: Possible Protective Effects of N-Acetylcysteine Amide. DISEASE MARKERS 2018; 2018:5046372. [PMID: 29651324 PMCID: PMC5831588 DOI: 10.1155/2018/5046372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022]
Abstract
Background After perinatal asphyxia, the cerebellum presents more damage than previously suggested. Objectives To explore if the antioxidant N-acetylcysteine amide (NACA) could reduce cerebellar injury after hypoxia-reoxygenation in a neonatal pig model. Methods Twenty-four newborn pigs in two intervention groups were exposed to 8% oxygen and hypercapnia, until base excess fell to -20 mmol/l or the mean arterial blood pressure declined to <20 mmHg. After hypoxia, they received either NACA (NACA group, n = 12) or saline (vehicle-treated group, n = 12). One sham-operated group (n = 5) served as a control and was not subjected to hypoxia. Observation time after the end of hypoxia was 9.5 hours. Results The intranuclear proteolytic activity in Purkinje cells of asphyxiated vehicle-treated pigs was significantly higher than that in sham controls (p = 0.03). Treatment with NACA was associated with a trend to decreased intranuclear proteolytic activity (p = 0.08), There were significantly less mutations in the mtDNA of the NACA group compared with the vehicle-treated group, 2.0 × 10-4 (±2.0 × 10-4) versus 4.8 × 10-5(±3.6 × 10-4, p < 0.05). Conclusion We found a trend to lower proteolytic activity in the core of Purkinje cells and significantly reduced mutation rate of mtDNA in the NACA group, which may indicate a positive effect of NACA after neonatal hypoxia. Measuring the proteolytic activity in the nucleus of Purkinje cells could be used to assess the effect of different neuroprotective substances after perinatal asphyxia.
Collapse
|
25
|
van Gijsel-Bonnello M, Baranger K, Benech P, Rivera S, Khrestchatisky M, de Reggi M, Gharib B. Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer's disease: Alleviation by pantethine. PLoS One 2017; 12:e0175369. [PMID: 28410378 PMCID: PMC5391924 DOI: 10.1371/journal.pone.0175369] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/26/2017] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play critical roles in central nervous system homeostasis and support of neuronal function. A better knowledge of their response may both help understand the pathophysiology of Alzheimer's disease (AD) and implement new therapeutic strategies. We used the 5xFAD transgenic mouse model of AD (Tg thereafter) to generate astrocyte cultures and investigate the impact of the genotype on metabolic changes and astrocytes activation. Metabolomic analysis showed that Tg astrocytes exhibited changes in the glycolytic pathway and tricarboxylic acid (TCA) cycle, compared to wild type (WT) cells. Tg astrocytes displayed also a prominent basal inflammatory status, with accentuated reactivity and increased expression of the inflammatory cytokine interleukin-1 beta (IL-1β). Compensatory mechanisms were activated in Tg astrocytes, including: i) the hexose monophosphate shunt with the consequent production of reducing species; ii) the induction of hypoxia inducible factor-1 alpha (HIF-1α), known to protect against amyloid-β (Aβ) toxicity. Such events were associated with the expression by Tg astrocytes of human isoforms of both amyloid precursor protein (APP) and presenilin-1 (PS1). Similar metabolic and inflammatory changes were induced in WT astrocytes by exogenous Aβ peptide. Pantethine, the vitamin B5 precursor, known to be neuroprotective and anti-inflammatory, alleviated the pathological pattern in Tg astrocytes as well as WT astrocytes treated with Aß. In conclusion, our data enlighten the dual pathogenic/protective role of astrocytes in AD pathology and the potential protective role of pantethine.
Collapse
Affiliation(s)
| | | | | | | | | | - Max de Reggi
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | |
Collapse
|
26
|
Okada M, Murata N, Yamawaki H. Canstatin stimulates migration of rat cardiac fibroblasts via secretion of matrix metalloproteinase-2. Am J Physiol Cell Physiol 2017; 312:C199-C208. [DOI: 10.1152/ajpcell.00329.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 11/22/2022]
Abstract
Type IV collagen, a nonfibrillar type, is ubiquitously expressed in the basement membrane around cardiomyocytes. Canstatin, a cleaved product of α2 chain of type IV collagen, is an antiangiogenic factor. Because it has not been clarified whether canstatin exerts other biological activities in heart, we investigated the effects of canstatin on adult rat cardiac fibroblasts. Cell migration was determined by Boyden chamber assay. Western blotting was performed to detect secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9 and phosphorylation of extracellular signal-regulated kinase (ERK). Localization of MMP-2 was detected by immunofluorescence staining. Canstatin (250 ng/ml) significantly increased migration, secretion, and activity of MMP-2 but not MMP-9. CTTHWGFTLC peptide, an MMP inhibitor and small interfering RNA (siRNA) against MMP-2 suppressed the canstatin-induced (250 ng/ml, 24 h) migration. Canstatin (250 ng/ml, 30 min) significantly increased phosphorylation of ERK. PD98059, a MEK inhibitor, significantly suppressed the canstatin-induced (250 ng/ml, 24 h) migration but not secretion of MMP-2. An increase in MMP-2 expression was observed in cytoplasm of the canstatin-treated (250 ng/ml) cardiac fibroblasts (within 30 min). Canstatin induced actin stress fiber formation, which was inhibited by Y-27632, a Rho-associated kinase inhibitor. Y-27632 also suppressed the canstatin-induced (250 ng/ml, 24 h) MMP-2 secretion. Canstatin (250 ng/ml, 30 min) failed to induce ERK phosphorylation in MMP-2 siRNA-treated cardiac fibroblasts. In conclusion, this study revealed a novel function of canstatin for inducing cell migration of adult rat cardiac fibroblasts at least in part by ERK phosphorylation through MMP-2 secretion, possibly via actin cytoskeletal change.
Collapse
Affiliation(s)
- Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Naoki Murata
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
27
|
Ulivieri C, Baldari CT. Regulation of T Cell Activation and Differentiation by Extracellular Vesicles and Their Pathogenic Role in Systemic Lupus Erythematosus and Multiple Sclerosis. Molecules 2017; 22:molecules22020225. [PMID: 28157168 PMCID: PMC6155914 DOI: 10.3390/molecules22020225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
How autoreactive tissue-infiltrated effector T cells are induced and sustained in autoimmune disease, usually dominated by the Th1 and Th17 subsets, is still largely unknown. In organ-specific autoimmunity, self-reactive T cells initially activated by dendritic cells (DCs) in the lymph nodes migrate and infiltrate into the target tissues where their reactivation by peripheral tissue antigen is a prerequisite for effector cytokine production and tissue destruction. The target tissue microenvironment, as well as the local microenvironment at the immune synapse formed by T cells that encounter cognate antigen presenting cells (APCs) shave recently emerged as critical factors in shaping the differentiation and function of self-reactive effector T cells, providing the signals required for their activation in the form of the self-antigen and cytokine milieu. Moreover, depending on the specific microenvironment, self-reactive effector T cells have the ability to change their phenotype, especially Th17 and regulatory T (Treg) cells, which are characterized by the highest instability. In this context, cell-derived extracellular vesicles, i.e., vesicles carrying cytosolic proteins and nucleic acids protected by a phospholipid bilayer, as well as membrane-associated proteins, with the ability to spread throughout the body by means of biological fluids, are emerging as key mediators in intercellular communications and in the modulation of the microenvironment. In this review, we will discuss recent findings implicating extracellular vesicles (EVs) at different steps of CD4+ T cell differentiation to specific effectors, with a focus on the Th17/Treg balance and its alterations in systemic lupus erythematosus and multiple sclerosis.
Collapse
Affiliation(s)
- Cristina Ulivieri
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2 53100, Siena, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2 53100, Siena, Italy.
| |
Collapse
|
28
|
Baranger K, Bonnet AE, Girard SD, Paumier JM, García-González L, Elmanaa W, Bernard A, Charrat E, Stephan D, Bauer C, Moschke K, Lichtenthaler SF, Roman FS, Checler F, Khrestchatisky M, Rivera S. MT5-MMP Promotes Alzheimer's Pathogenesis in the Frontal Cortex of 5xFAD Mice and APP Trafficking in vitro. Front Mol Neurosci 2017; 9:163. [PMID: 28119565 PMCID: PMC5223243 DOI: 10.3389/fnmol.2016.00163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
We previously reported that deficiency of membrane-type five matrix metalloproteinase (MT5-MMP) prevents amyloid pathology in the cortex and hippocampus of 5xFAD mice, and ameliorates the functional outcome. We have now investigated whether the integrity of another important area affected in Alzheimer's disease (AD), the frontal cortex, was also preserved upon MT5-MMP deficiency in 4-month old mice at prodromal stages of the pathology. We used the olfactory H-maze (OHM) to show that learning impairment associated with dysfunctions of the frontal cortex in 5xFAD was prevented in bigenic 5xFAD/MT5-MMP-/- mice. The latter exhibited concomitant drastic reductions of amyloid beta peptide (Aβ) assemblies (soluble, oligomeric and fibrillary) and its immediate precursor, C99. Simultaneously, astrocyte reactivity and tumor necrosis factor alpha (TNF-α) levels were also lowered. Moreover, MT5-MMP deficiency induced a decrease in N-terminal soluble fragments of amyloid precursor protein (APP), including soluble APPα (sAPPα), sAPPβ and the MT5-MMP-linked fragment of 95 kDa, sAPP95. However, the lack of MT5-MMP did not affect the activity of β- and γ-secretases. In cultured HEKswe cells, transiently expressed MT5-MMP localized to early endosomes and increased the content of APP and Aβ40 in these organelles, as well as Aβ levels in cell supernatants. This is the first evidence that the pro-amyloidogenic features of MT5-MMP lie, at least in part, on the ability of the proteinase to promote trafficking into one of the amyloidogenic subcellular loci. Together, our data further support the pathogenic role of MT5-MMP in AD and that its inhibition improves the functional and pathological outcomes, in this case in the frontal cortex. These data also support the idea that MT5-MMP could become a novel therapeutic target in AD.
Collapse
Affiliation(s)
- Kévin Baranger
- Aix Marseille Université, CNRS, NICN UMR 7259 Marseille, France
| | | | | | | | | | - Wejdane Elmanaa
- Université Côte d'Azur, INSERM, CNRS, IPMC, Laboratory of excellence DistALZ, Sophia-Antipolis Valbonne, France
| | - Anne Bernard
- Aix Marseille Université, CNRS, NICN UMR 7259 Marseille, France
| | - Eliane Charrat
- Aix Marseille Université, CNRS, NICN UMR 7259 Marseille, France
| | | | - Charlotte Bauer
- Université Côte d'Azur, INSERM, CNRS, IPMC, Laboratory of excellence DistALZ, Sophia-Antipolis Valbonne, France
| | - Katrin Moschke
- German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE)Munich, Germany; Neuroproteomics, Klinikum rechts der Isar, and Institute for Advanced Study, Technische Universität München (TUM)Munich, Germany; Munich Cluster for Systems Neurology (SyNergy)Munich, Germany
| | | | - Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, Laboratory of excellence DistALZ, Sophia-Antipolis Valbonne, France
| | | | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN UMR 7259 Marseille, France
| |
Collapse
|
29
|
Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development. Mediators Inflamm 2016; 2016:7369020. [PMID: 28104930 PMCID: PMC5220508 DOI: 10.1155/2016/7369020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/27/2016] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase 9 is a proteolytic enzyme which is recently one of the more often studied biomarkers. Its possible use as a biomarker of neuronal damage in stroke, heart diseases, tumors, multiple sclerosis, and epilepsy is being widely indicated. In epilepsy, MMP-9 is suggested to play a role in epileptic focus formation and in the stimulation of seizures. The increase of MMP-9 activity in the epileptic focus was observed both in animal models and in clinical studies. MMP-9 contributes to formation of epileptic focus, for example, by remodeling of synapses. Its proteolytic action on the elements of blood-brain barrier and activation of chemotactic processes facilitates accumulation of inflammatory cells and induces seizures. Also modification of glutamatergic transmission by MMP-9 is associated with seizures. In this review we will try to recapitulate the results of previous studies about MMP-9 in terms of its association with epilepsy. We will discuss the mechanisms of its actions and present the results revealed in animal models and clinical studies. We will also provide a comparison of the results of various studies on MMP-9 levels in the context of its possible use as a biomarker of the activity of epilepsy.
Collapse
|
30
|
Basso M, Bonetto V. Extracellular Vesicles and a Novel Form of Communication in the Brain. Front Neurosci 2016; 10:127. [PMID: 27065789 PMCID: PMC4814526 DOI: 10.3389/fnins.2016.00127] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derived extracellular vesicles and observed to fuse with neurons and trigger pathology in vitro. Here we review the structural and functional characterization of such extracellular vesicles in neuron-glia interactions. Furthermore, we discuss possible mechanisms of extracellular vesicle biogenesis and release from activated glia and microglia, and their effects on neurons. Given that exosomes, the smallest type of extracellular vesicles, have been reported to recognize specific cellular populations and act as carriers of very specialized cargo, a thorough analysis of these vesicles may aid in their engineering in vitro and targeted delivery in vivo, opening opportunities for therapeutics.
Collapse
Affiliation(s)
- Manuela Basso
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Valentina Bonetto
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milano, Italy
| |
Collapse
|
31
|
Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. Int J Mol Sci 2016; 17:171. [PMID: 26861302 PMCID: PMC4783905 DOI: 10.3390/ijms17020171] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.
Collapse
Affiliation(s)
- Nunzio Iraci
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Tommaso Leonardi
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK.
| | - Florian Gessler
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Beatriz Vega
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Stefano Pluchino
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| |
Collapse
|
32
|
Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6927328. [PMID: 26925194 PMCID: PMC4748094 DOI: 10.1155/2016/6927328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/26/2015] [Accepted: 12/31/2015] [Indexed: 11/18/2022]
Abstract
Evidence of the pathological roles of matrix metalloproteinases (MMPs) in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.
Collapse
|
33
|
Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R. Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 2016; 35:239-57. [PMID: 26758544 DOI: 10.15252/embj.201592705] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Astrocytes are housekeepers of the central nervous system (CNS) and are important for CNS development, homeostasis and defence. They communicate with neurones and other glial cells through the release of signalling molecules. Astrocytes secrete a wide array of classic neurotransmitters, neuromodulators and hormones, as well as metabolic, trophic and plastic factors, all of which contribute to the gliocrine system. The release of neuroactive substances from astrocytes occurs through several distinct pathways that include diffusion through plasmalemmal channels, translocation by multiple transporters and regulated exocytosis. As in other eukaryotic cells, exocytotic secretion from astrocytes involves divergent secretory organelles (synaptic-like microvesicles, dense-core vesicles, lysosomes, exosomes and ectosomes), which differ in size, origin, cargo, membrane composition, dynamics and functions. In this review, we summarize the features and functions of secretory organelles in astrocytes. We focus on the biogenesis and trafficking of secretory organelles and on the regulation of the exocytotic secretory system in the context of healthy and diseased astrocytes.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod, Russia Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Michela Matteoli
- CNR Institute of Neuroscience, Milano, Italy Humanitas Research Hospital, Rozzano, Italy
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jean-Pierre Mothet
- Team Gliotransmission & Synaptopathies, Aix-Marseille University CNRS, CRN2M UMR7286, Marseille, France
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
34
|
Baranger K, Marchalant Y, Bonnet AE, Crouzin N, Carrete A, Paumier JM, Py NA, Bernard A, Bauer C, Charrat E, Moschke K, Seiki M, Vignes M, Lichtenthaler SF, Checler F, Khrestchatisky M, Rivera S. MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer's disease. Cell Mol Life Sci 2016; 73:217-36. [PMID: 26202697 PMCID: PMC4700096 DOI: 10.1007/s00018-015-1992-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 01/22/2023]
Abstract
Membrane-type 5-matrix metalloproteinase (MT5-MMP) is a proteinase mainly expressed in the nervous system with emerging roles in brain pathophysiology. The implication of MT5-MMP in Alzheimer's disease (AD), notably its interplay with the amyloidogenic process, remains elusive. Accordingly, we crossed the genetically engineered 5xFAD mouse model of AD with MT5-MMP-deficient mice and examined the impact of MT5-MMP deficiency in bigenic 5xFAD/MT5-MMP(-/-) mice. At early stages (4 months) of the pathology, the levels of amyloid beta peptide (Aβ) and its amyloid precursor protein (APP) C-terminal fragment C99 were largely reduced in the cortex and hippocampus of 5xFAD/MT5-MMP(-/-), compared to 5xFAD mice. Reduced amyloidosis in bigenic mice was concomitant with decreased glial reactivity and interleukin-1β (IL-1β) levels, and the preservation of long-term potentiation (LTP) and spatial learning, without changes in the activity of α-, β- and γ-secretases. The positive impact of MT5-MMP deficiency was still noticeable at 16 months of age, as illustrated by reduced amyloid burden and gliosis, and a better preservation of the cortical neuronal network and synaptophysin levels in bigenic mice. MT5-MMP expressed in HEKswe cells colocalized and co-immunoprecipitated with APP and significantly increased the levels of Aβ and C99. MT5-MMP also promoted the release of a soluble APP fragment of 95 kDa (sAPP95) in HEKswe cells. sAPP95 levels were significantly reduced in brain homogenates of 5xFAD/MT5-MMP(-/-) mice, supporting altogether the idea that MT5-MMP influences APP processing. MT5-MMP emerges as a new pro-amyloidogenic regulator of APP metabolism, whose deficiency alleviates amyloid pathology, neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Kévin Baranger
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Yannick Marchalant
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
- Psychology Department, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Amandine E Bonnet
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Nadine Crouzin
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Alex Carrete
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | | | - Nathalie A Py
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Anne Bernard
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Charlotte Bauer
- Labex DistAlz, IPMC UMR 7275 CNRS-UNS, 06560, Valbonne, France
| | - Eliane Charrat
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France
| | - Katrin Moschke
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, Munich, Germany
- Klinikum rechts der Isar, and Institute for Advanced Study, Technische Universität München (TUM), 81675, Munich, Germany
| | - Mothoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Michel Vignes
- UMR5247 IBMM CNRS University of Montpellier 1 and University of Montpellier 2, 34095, Montepellier, France
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, Munich, Germany
- Klinikum rechts der Isar, and Institute for Advanced Study, Technische Universität München (TUM), 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | | | | | - Santiago Rivera
- Aix-Marseille Université, CNRS, NICN UMR 7259, 13344, Marseille, France.
| |
Collapse
|
35
|
Brites D, Fernandes A. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation. Front Cell Neurosci 2015; 9:476. [PMID: 26733805 PMCID: PMC4681811 DOI: 10.3389/fncel.2015.00476] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
Abstract
Patients with chronic inflammation are often associated with the emergence of depression symptoms, while diagnosed depressed patients show increased levels of circulating cytokines. Further studies revealed the activation of the brain immune cell microglia in depressed patients with a greater magnitude in individuals that committed suicide, indicating a crucial role for neuroinflammation in depression brain pathogenesis. Rapid advances in the understanding of microglial and astrocytic neurobiology were obtained in the past 15–20 years. Indeed, recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis, and synaptic interactions, besides their involvement in immune-response generating cytokines. The communication between microglia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs), comprising ectosomes and exosomes with a size ranging from 0.1–1 μm, are key players in intercellular signaling. These EVs may carry specific proteins, mRNAs and microRNAs (miRNAs). Transfer of exosomes to neurons was shown to be mediated by oligodendrocytes, microglia and astrocytes that may either be supportive to neurons, or instead disseminate the disease. Interestingly, several recent reports have identified changes in miRNAs in depressed patients, which target not only crucial pathways associated with synaptic plasticity, learning and memory but also the production of neurotrophic factors and immune cell modulation. In this article, we discuss the role of neuroinflammation in the emergence of depression, namely dynamic alterations in the status of microglia response to stimulation, and how their activation phenotypes may have an etiological role in neurodegeneneration, in particular in depressive-like behavior. We will overview the involvement of miRNAs, exosomes, ectosomes and microglia in regulating critical pathways associated with depression and how they may contribute to other brain disorders including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and Parkinson’s disease (PD), which share several neuroinflammatory-associated processes. Specific reference will be made to EVs as potential biomarkers and disease monitoring approaches, focusing on their potentialities as drug delivery vehicles, and on putative therapeutic strategies using autologous exosome-based delivery systems to treat neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
36
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
37
|
Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:152926. [PMID: 26583089 PMCID: PMC4637152 DOI: 10.1155/2015/152926] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EVs can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours can use EVs to secrete factors, which allow escaping from immune surveillance, and to transfer molecules into the surrounding cells, thus transforming their phenotype. Moreover, EVs can function as a way to discard material dangerous to cancer cells, such as differentiation-inducing proteins, and even drugs. Intriguingly, EVs seem to be also involved in spreading through the brain of aggregated proteins, such as prions and aggregated tau protein. Finally, EVs can carry useful biomarkers for the early diagnosis of diseases. Herein we summarize possible roles of EVs in brain physiological functions and discuss their involvement in the horizontal spreading, from cell to cell, of both cancer and neurodegenerative pathologies.
Collapse
|
38
|
Bramwell KKC, Mock K, Ma Y, Weis JH, Teuscher C, Weis JJ. β-Glucuronidase, a Regulator of Lyme Arthritis Severity, Modulates Lysosomal Trafficking and MMP-9 Secretion in Response to Inflammatory Stimuli. THE JOURNAL OF IMMUNOLOGY 2015; 195:1647-56. [PMID: 26170381 DOI: 10.4049/jimmunol.1500212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/17/2015] [Indexed: 11/19/2022]
Abstract
The lysosomal enzyme β-glucuronidase (Gusb) is a key regulator of Lyme-associated and K/B×N-induced arthritis severity. The luminal enzymes present in lysosomes provide essential catabolic functions for the homeostatic degradation of a variety of macromolecules. In addition to this essential catabolic function, lysosomes play important roles in the inflammatory response following infection. Secretory lysosomes and related vesicles can participate in the inflammatory response through fusion with the plasma membrane and release of bioactive contents into the extracellular milieu. In this study, we show that GUSB hypomorphism potentiates lysosomal exocytosis following inflammatory stimulation. This leads to elevated secretion of lysosomal contents, including glycosaminoglycans, lysosomal hydrolases, and matrix metalloproteinase 9, a known modulator of Lyme arthritis severity. This mechanistic insight led us to test the efficacy of rapamycin, a drug known to suppress lysosomal exocytosis. Both Lyme and K/B×N-associated arthritis were suppressed by this treatment concurrent with reduced lysosomal release.
Collapse
Affiliation(s)
- Kenneth K C Bramwell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Kelton Mock
- University of Puget Sound, Tacoma, WA 98416; and
| | - Ying Ma
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - John H Weis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Janis J Weis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112;
| |
Collapse
|
39
|
Carandini T, Colombo F, Finardi A, Casella G, Garzetti L, Verderio C, Furlan R. Microvesicles: What is the Role in Multiple Sclerosis? Front Neurol 2015; 6:111. [PMID: 26074867 PMCID: PMC4443736 DOI: 10.3389/fneur.2015.00111] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022] Open
Abstract
Microvesicles are a recently described way of cell communication that has been implicated in a number of biological processes, including neuroinflammation. Widely investigated as biomarkers in oncology and neurological disorders, little is known of the role of microvesicles in the pathogenesis of diseases such as multiple sclerosis (MS). Several evidences suggest that pro-inflammatory microglia and infiltrating macrophages release microvesicles that spread inflammatory signals and alter neuronal functions. We review here available information on microvesicles, with a special focus on microglia and macrophage microvesicles, in the pathogenesis of MS, and as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tiziana Carandini
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute , Milan , Italy
| | - Federico Colombo
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute , Milan , Italy
| | - Annamaria Finardi
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute , Milan , Italy
| | - Giacomo Casella
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute , Milan , Italy
| | - Livia Garzetti
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute , Milan , Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience , Milan , Italy ; IRCCS Humanitas , Rozzano , Italy
| | - Roberto Furlan
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
40
|
Agnati LF, Fuxe K. Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0505. [PMID: 25135966 DOI: 10.1098/rstb.2013.0505] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (WT; point-to-point communication via private channels, e.g. synaptic transmission) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid). Volume and synaptic transmission become integrated because their chemical signals activate different types of interacting receptors in heteroreceptor complexes located synaptically and extrasynaptically in the plasma membrane. In VT, we focus on the role of the extracellular-vesicle type of VT, and in WT, on the potential role of the tunnelling-nanotube (TNT) type of WT. The so-called exosomes appear to be the major vesicular carrier for intercellular communication but the larger microvesicles also participate. Extracellular vesicles are released from cultured cortical neurons and different types of glial cells and modulate the signalling of the neuronal-glial networks of the CNS. This type of VT has pathological relevance, and epigenetic mechanisms may participate in the modulation of extracellular-vesicle-mediated VT. Gerdes and co-workers proposed the existence of a novel type of WT based on TNTs, which are straight transcellular channels leading to the formation in vitro of syncytial cellular networks found also in neuronal and glial cultures.
Collapse
Affiliation(s)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden
| |
Collapse
|
41
|
Aryani A, Denecke B. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine? Mol Neurobiol 2014; 53:818-834. [PMID: 25502465 PMCID: PMC4752585 DOI: 10.1007/s12035-014-9054-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/05/2014] [Indexed: 01/04/2023]
Abstract
Since the beginning of the last decade, exosomes have been of increased interest in the science community. Exosomes represent a new kind of long distance transfer of biological molecules among cells. This review provides a comprehensive overview about the construction of exosomes, their targeting and their fusion mechanisms to the recipient cells. Complementarily, the current state of research regarding the cargo of exosomes is discussed. A particular focus was placed on the role of exosomes in the central nervous system. An increasing number of physiological processes in the brain could be associated with exosomes. In this context, it is becoming more apparent that exosomes are involved in several neurological and specifically neurodegenerative diseases. The treatment of these kinds of diseases is often difficult not least because of the blood-brain barrier. Exosomes are very stable, can pass the blood-brain barrier and, therefore, reveal bright perspectives towards diagnosis and therapeutic treatments. A prerequisite for clinical applications is a standardised approach. Features necessary for a standardised diagnosis using exosomes are discussed. In therapeutic terms, exosomes represent a promising drug delivery system able to pass the blood-brain barrier. One option to overcome the disadvantages potentially associated with the use of endogenous exosomes is the design of artificial exosomes. The artificial exosomes with a clearly defined therapeutic active cargo and surface marker ensuring the specific targeting to the recipient cells is proposed as a promising approach.
Collapse
Affiliation(s)
- Arian Aryani
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
42
|
Py NA, Bonnet AE, Bernard A, Marchalant Y, Charrat E, Checler F, Khrestchatisky M, Baranger K, Rivera S. Differential spatio-temporal regulation of MMPs in the 5xFAD mouse model of Alzheimer's disease: evidence for a pro-amyloidogenic role of MT1-MMP. Front Aging Neurosci 2014; 6:247. [PMID: 25278878 PMCID: PMC4166961 DOI: 10.3389/fnagi.2014.00247] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/02/2014] [Indexed: 12/03/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are pleiotropic endopeptidases involved in a variety of neurodegenerative/neuroinflammatory processes through their interactions with a large number of substrates. Among those, the amyloid precursor protein (APP) and the beta amyloid peptide (Aβ) are largely associated with the development of Alzheimer’s disease (AD). However, the regulation and potential contribution of MMPs to AD remains unclear. In this study, we investigated the evolution of the expression of MMP-2, MMP-9, and membrane-type 1-MMP (MT1-MMP) in the hippocampus at different stages of the pathology (asymptomatic, prodromal-like and symptomatic) in the 5xFAD transgenic mouse AD model. In parallel we also followed the expression of functionally associated factors. Overall, the expression of MMP-2, MMP-9, and MT1-MMP was upregulated concomitantly with the tissue inhibitor of MMPs-1 (TIMP-1) and several markers of inflammatory/glial response. The three MMPs exhibited age- and cell-dependent upregulation of their expression, with MMP-2 and MMP-9 being primarily located to astrocytes, and MT1-MMP to neurons. MMP-9 and MT1-MMP were also prominently present in amyloid plaques. The levels of active MT1-MMP were highly upregulated in membrane-enriched fractions of hippocampus at 6 months of age (symptomatic phase), when the levels of APP, its metabolites APP C-terminal fragments (CTFs), and Aβ trimers were the highest. Overexpression of MT1-MMP in HEK cells carrying the human APP Swedish mutation (HEKswe) strongly increased β-secretase derived C-terminal APP fragment (C99) and Aβ levels, whereas MMP-2 overexpression nearly abolished Aβ production without affecting C99. Our data consolidate the emerging idea of a regulatory interplay between MMPs and the APP/Aβ system, and demonstrate for the first time the pro-amyloidogenic features of MT1-MMP. Further investigation will be justified to evaluate this MMP as a novel potential therapeutic target in AD.
Collapse
Affiliation(s)
- Nathalie A Py
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Amandine E Bonnet
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Anne Bernard
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Yannick Marchalant
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Eliane Charrat
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | | | - Michel Khrestchatisky
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Kévin Baranger
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France ; Department of Neurology and Neuropsychology, APHM, CHU La Timone Marseille, France
| | - Santiago Rivera
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| |
Collapse
|
43
|
Stawarski M, Stefaniuk M, Wlodarczyk J. Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines. Front Neuroanat 2014; 8:68. [PMID: 25071472 PMCID: PMC4091410 DOI: 10.3389/fnana.2014.00068] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/25/2014] [Indexed: 01/01/2023] Open
Abstract
Dendritic spines are the locus for excitatory synaptic transmission in the brain and thus play a major role in neuronal plasticity. The ability to alter synaptic connections includes volumetric changes in dendritic spines that are driven by scaffolds created by the extracellular matrix (ECM). Here, we review the effects of the proteolytic activity of ECM proteases in physiological and pathological structural plasticity. We use matrix metalloproteinase-9 (MMP-9) as an example of an ECM modifier that has recently emerged as a key molecule in regulating the morphology and dysmorphology of dendritic spines that underlie synaptic plasticity and neurological disorders, respectively. We summarize the influence of MMP-9 on the dynamic remodeling of the ECM via the cleavage of extracellular substrates. We discuss its role in the formation, modification, and maintenance of dendritic spines in learning and memory. Finally, we review research that implicates MMP-9 in aberrant synaptic plasticity and spine dysmorphology in neurological disorders, with a focus on morphological abnormalities of dendritic protrusions that are associated with epilepsy.
Collapse
Affiliation(s)
- Michal Stawarski
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Mazowieckie, Poland
| | - Marzena Stefaniuk
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Mzowieckie, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology Warsaw, Mazowieckie, Poland
| |
Collapse
|
44
|
Microparticles: a new perspective in central nervous system disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:756327. [PMID: 24860829 PMCID: PMC4000927 DOI: 10.1155/2014/756327] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022]
Abstract
Microparticles (MPs) are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS) have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer's disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.
Collapse
|
45
|
Sáenz-Cuesta M, Osorio-Querejeta I, Otaegui D. Extracellular Vesicles in Multiple Sclerosis: What are They Telling Us? Front Cell Neurosci 2014; 8:100. [PMID: 24734004 PMCID: PMC3975116 DOI: 10.3389/fncel.2014.00100] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles secreted by almost all cell types. They are classified depending on their biogenesis and size into exosomes and microvesicles or according to their cell origin. EVs play a role in cell-to-cell communication, including contact-free cell synapsis, carrying active membrane proteins, lipids, and genetic material both inside the particle and on their surface. They have been related to several physiological and pathological conditions. In particular, increasing concentrations of EVs have been found in many autoimmune diseases including multiple sclerosis (MS). MS is a central nervous system (CNS) demyelinating disease characterized by relapsing of symptoms followed by periods of remission. Close interaction between endothelial cells, leukocytes, monocytes, and cells from CNS is crucial for the development of MS. This review summarizes the pathological role of EVs in MS and the relationship of EVs with clinical characteristics, therapy, and biomarkers of the disease.
Collapse
Affiliation(s)
- Matías Sáenz-Cuesta
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute , San Sebastián , Spain ; Spanish Network on Multiple Sclerosis , Madrid , Spain
| | - Iñaki Osorio-Querejeta
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute , San Sebastián , Spain ; Spanish Network on Multiple Sclerosis , Madrid , Spain
| | - David Otaegui
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute , San Sebastián , Spain ; Spanish Network on Multiple Sclerosis , Madrid , Spain
| |
Collapse
|
46
|
Ogden A, Rida PCG, Aneja R. Heading off with the herd: how cancer cells might maneuver supernumerary centrosomes for directional migration. Cancer Metastasis Rev 2013; 32:269-87. [PMID: 23114845 DOI: 10.1007/s10555-012-9413-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complicity of centrosomes in carcinogenesis is unmistakable. Mounting evidence clearly implicates a robust correlation between centrosome amplification (CA) and malignant transformation in diverse tissue types. Furthermore, CA has been suggested as a marker of cancer aggressiveness, in particular the invasive phenotype, in breast and prostate cancers. One means by which CA promotes malignancy is through induction of transient spindle multipolarity during mitosis, which predisposes the cell to karyotypic changes arising from low-grade chromosome mis-segregation. It is well recognized that during cell migration in interphase, centrosome-mediated nucleation of a radial microtubule array is crucial for establishing a polarized Golgi apparatus, without which directionality is precluded. The question of how cancer cells maneuver their supernumerary centrosomes to achieve directionality during cell migration is virtually uncharted territory. Given that CA is a hallmark of cancers and has been correlated with cancer aggressiveness, malignant cells are presumably competent in managing their centrosome surfeit during directional migration, although the cellular logistics of this process remain unexplored. Another key angle worth pondering is whether an overabundance of centrosomes confers some advantage on cancer cells in terms of their migratory and invasive capabilities. Recent studies have uncovered a remarkable strategy that cancer cells employ to deal with the problem of excess centrosomes and ensure bipolar mitoses, viz., centrosome clustering. This review aims to change the narrative by exploring how an increased centrosome complement may, via aneuploidy-independent modulation of the microtubule cytoskeleton, enhance directional migration and invasion of malignant cells. We postulate that CA imbues cancer cells with cytoskeletal advantages that enhance cell polarization, Golgi-dependent vesicular trafficking, stromal invasion, and other aspects of metastatic progression. We also propose that centrosome declustering may represent a novel, cancer cell-specific antimetastatic strategy, as cancer cells may rely on centrosome clustering during migration as they do in mitosis. Elucidation of these details offers an exciting avenue for future research, as does investigating how CA may promote metastasis through enhanced directional migration.
Collapse
Affiliation(s)
- Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
47
|
Wang L, Cossette SM, Rarick KR, Gershan J, Dwinell MB, Harder DR, Ramchandran R. Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS One 2013; 8:e80933. [PMID: 24324647 PMCID: PMC3851470 DOI: 10.1371/journal.pone.0080933] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/07/2013] [Indexed: 01/16/2023] Open
Abstract
Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among which, tumor invasion factors namely matrix metalloprotease-2 (MMP-2) and MMP-9 were partly responsible for the astrocyte media-induced tumor cell invasion. Inhibiting MMPs reduced the ability of tumor cell to migrate and invade in vitro. Further, injection of astrocyte media-conditioned breast cancer cells in mice showed increased invasive activity to the brain and other distant sites. More importantly, blocking the preconditioned tumor cells with broad spectrum MMP inhibitor decreased the invasion and metastasis of the tumor cells, in particular to the brain in vivo. Collectively, our data implicate astrocyte-derived MMP-2 and MMP-9 as critical players that facilitate tumor cell migration and invasion leading to brain metastasis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Stephanie M. Cossette
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kevin R. Rarick
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jill Gershan
- Translational and Biomedical Research Center, Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Michael B. Dwinell
- Department of Microbiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - David R. Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramani Ramchandran
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
48
|
Ou-Yang MH, Van Nostrand WE. The absence of myelin basic protein promotes neuroinflammation and reduces amyloid β-protein accumulation in Tg-5xFAD mice. J Neuroinflammation 2013; 10:134. [PMID: 24188129 PMCID: PMC4228351 DOI: 10.1186/1742-2094-10-134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/27/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Abnormal accumulation of amyloid β-protein (Aβ) in the brain plays an important role in the pathogenesis \of Alzheimer's disease (AD). Aβ monomers assemble into oligomers and fibrils that promote neuronal dysfunction. This assembly pathway is influenced by naturally occurring brain molecules, the Aβ chaperone proteins, which bind to Aβ and modulate its aggregation. Myelin basic protein (MBP) was previously identified as a novel Aβ chaperone protein and a potent inhibitor for Aβ fibril assembly in vitro. METHODS In this study, we determined whether the absence of MBP would influence Aβ pathology in vivo by breeding MBP knockout mice (MBP-/-) with Tg-5xFAD mice, a model of AD-like parenchymal Aβ pathology. RESULTS Through biochemical and immunohistochemical experiments, we found that bigenic Tg-5xFAD/MBP-/- mice had a significant decrease of insoluble Aβ and parenchymal plaque deposition at an early age. The expression of transgene encoded human AβPP, the levels of C-terminal fragments generated during Aβ production and the intracellular Aβ were unaffected in the absence of MBP. Likewise, we did not find a significant difference in plasma Aβ or cerebrospinal fluid Aβ, suggesting these clearance routes were unaltered in bigenic Tg-5xFAD/MBP-/- mice. However, MBP-/- mice and bigenic Tg-5xFAD/MBP-/- mice exhibited elevated reactive astrocytes and activated microglia compared with Tg-5xFAD mice. The Aβ degrading enzyme matrix metalloproteinase 9 (MMP-9), which is expressed by activated glial cells, was significantly increased in the Tg-5xFAD/MBP-/- mice. CONCLUSIONS These findings indicate that the absence of MBP decreases Aβ deposition in transgenic mice and that this consequence may result from increased glial activation and expression of MMP-9, an Aβ degrading enzyme.
Collapse
Affiliation(s)
| | - William E Van Nostrand
- Departments of Neurosurgery & Medicine, Stony Brook University, Stony Brook, NY 11794-8122, USA.
| |
Collapse
|
49
|
Frühbeis C, Fröhlich D, Kuo WP, Krämer-Albers EM. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 2013; 7:182. [PMID: 24194697 PMCID: PMC3812991 DOI: 10.3389/fncel.2013.00182] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/01/2013] [Indexed: 01/15/2023] Open
Abstract
In the nervous system, glia cells maintain homeostasis, synthesize myelin, provide metabolic support, and participate in immune defense. The communication between glia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs), such as exosomes and shedding microvesicles, are key players in intercellular signaling. The cells of the nervous system secrete EVs, which potentially carry protein and RNA cargo from one cell to another. After delivery, the cargo has the ability to modify the target cell phenotype. Here, we review the recent advances in understanding the role of EV secretion by astrocytes, microglia, and oligodendrocytes in the central nervous system. Current work has demonstrated that oligodendrocytes transfer exosomes to neurons as a result of neurotransmitter signaling suggesting that these vesicles may mediate glial support of neurons.
Collapse
Affiliation(s)
- Carsten Frühbeis
- Department of Molecular Cell Biology, Johannes Gutenberg University Mainz Mainz, Germany
| | | | | | | |
Collapse
|
50
|
Myosin-Va contributes to manifestation of malignant-related properties in melanoma cells. J Invest Dermatol 2013; 133:2809-2812. [PMID: 23652798 PMCID: PMC3806899 DOI: 10.1038/jid.2013.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|