1
|
Bidula S, Piyasirananda W, Bielecka H, Bibič L, Beekman A, Stokes L. Screening herbal and natural product libraries to aid discovery of novel allosteric modulators of human P2X7. Purinergic Signal 2024:10.1007/s11302-024-10055-6. [PMID: 39436616 DOI: 10.1007/s11302-024-10055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
P2X7 is an emerging therapeutic target for several disorders and diseases due to its role in inflammatory signalling. This study aimed to exploit the unique chemical libraries of plants used in traditional medicinal practices to discover novel allosteric modulators from natural sources. We identified several compounds from the NCI Natural Product library as P2X7 antagonists including confertifolin and digallic acid (IC50 values 3.86 µM and 4.05 µM). We also identified scopafungin as a novel positive allosteric modulator of hP2X7. Screening a traditional medicinal plant extract library revealed 39 plant species with inhibitory action at hP2X7 and 17 plant species with positive allosteric modulator activity. Using computational docking to filter identified components from these plant species and determine potential antagonists, we investigated nine purified chemicals including flavonoids quercetin, kaempferol, ECG, and EGCG. These were shown to inhibit ATP-induced YO-PRO-1 uptake into HEK-hP2X7 cells; however, we also showed that all four flavonoids demonstrated significant assay interference using a cell-free DNA YO-PRO-1 fluorescence test. One plant extract, Dioscorea nipponica, demonstrating positive modulator activity was investigated, and dioscin was identified as a glycoside with PAM activity in ATP-induced YO-PRO-1 uptake assay and whole-cell patch-clamp recordings. However, membrane permeabilisation was observed following application > 10 min limiting the use of dioscin as a pharmacological tool. This work describes a useful workflow with multiple assays for the identification of novel allosteric modulators for human P2X7.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Waraporn Piyasirananda
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Hanna Bielecka
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
2
|
Togre NS, Mekala N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom S, Sriram U, Persidsky Y. Neuroinflammatory responses and blood-brain barrier injury in chronic alcohol exposure: role of purinergic P2 × 7 Receptor signaling. J Neuroinflammation 2024; 21:244. [PMID: 39342243 PMCID: PMC11439317 DOI: 10.1186/s12974-024-03230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Alcohol consumption leads to neuroinflammation and blood‒brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2 × 7R activation. Therefore, we aimed to evaluate the effect of P2 × 7R blockade on peripheral and neuro-inflammation in ethanol-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2 × 7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), brain microvessel gene expression by using RT2 PCR array, plasma P2 × 7R and P-gp, serum ATP, EV-ATP, number of EVs, and EV mtDNA copy numbers. An RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed wild-type animals, which were decreased 15-50-fold in BBG-treated-CIE-exposed animals. Plasma P-gp levels and serum P2 × 7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2 × 7R decreased receptor shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2 × 7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2 × 7R inhibition or receptor knockout. These observations suggested that P2 × 7R signaling plays a critical role in ethanol-induced brain injury. Increased extracellular ATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2 × 7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2 × 7R signaling in CIE-induced brain injury.
Collapse
Affiliation(s)
- Namdev S Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka S Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nikhita Mogadala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Deborah Grove
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Kotnala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Dadario NB, Boyett DM, Teasley DE, Chabot PJ, Winans NJ, Argenziano MG, Sperring CP, Canoll P, Bruce JN. Unveiling the Inflammatory Landscape of Recurrent Glioblastoma through Histological-Based Assessments. Cancers (Basel) 2024; 16:3283. [PMID: 39409905 PMCID: PMC11476027 DOI: 10.3390/cancers16193283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The glioblastoma (GBM) tumor microenvironment consists of a heterogeneous mixture of neoplastic and non-neoplastic cells, including immune cells. Tumor recurrence following standard-of-care therapy results in a rich landscape of inflammatory cells throughout the glioma-infiltrated cortex. Immune cells consisting of glioma-associated macrophages and microglia (GAMMs) overwhelmingly constitute the bulk of the recurrent glioblastoma (rGBM) microenvironment, in comparison to the highly cellular and proliferative tumor microenvironment characteristic of primary GBM. These immune cells dynamically interact within the tumor microenvironment and can contribute to disease progression and therapy resistance while also providing novel targets for emerging immunotherapies. Within these varying contexts, histological-based assessments of immune cells in rGBM, including immunohistochemistry (IHC) and immunofluorescence (IF), offer a critical way to visualize and examine the inflammatory landscape. Here, we exhaustively review the available body of literature on the inflammatory landscape in rGBM as identified through histological-based assessments. We highlight the heterogeneity of immune cells throughout the glioma-infiltrated cortex with a focus on microglia and macrophages, drawing insights from canonical and novel immune-cell histological markers to estimate cell phenotypes and function. Lastly, we discuss opportunities for immunomodulatory treatments aiming to harness the inflammatory landscape in rGBM.
Collapse
Affiliation(s)
- Nicholas B. Dadario
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Deborah M. Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Damian E. Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Peter J. Chabot
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Nathan J. Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Colin P. Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Peter Canoll
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| |
Collapse
|
4
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
5
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2024:10.1038/s41380-024-02656-9. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
6
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Stanton E, Won P, Manasyan A, Gurram S, Gilllenwater TJ, Yenikomshian HA. Neuropathic pain in burn patients - A common problem with little literature: A systematic review. Burns 2024; 50:1053-1061. [PMID: 38472004 PMCID: PMC11216128 DOI: 10.1016/j.burns.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The prevalence of neuropathic pain (NP) in burn patients is reported in the literature to be as high as 80%1. Given the complexity of NP in burn patients and the wide range of treatments available, a systematic review of the literature is warranted to summarize our current understanding of management and treatment of NP in this population. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The following databases were queried to identify relevant articles: PubMed, Cochrane, Embase, Scopus, Ovid, and Web of Science. The main outcome measures were incidence and management of NP. Secondary outcomes included risk factors for NP. RESULTS Included articles presented findings from 11 different countries, capturing outcomes for 4366 patients. Risk factors for neuropathic pain in burn patients were identified, including older age, alcohol and substance abuse, current daily smoking, greater % total body surface area burns (TBSA), and longer hospitalizations. Pharmacologic treatments included gabapentin/pregabalin (n = 7), ascorbic acid (n = 1), and lidocaine (n = 1). Overall, the studies showed varied results regarding the efficacy of pharmacological treatments. While certain studies demonstrated gabapentanoids to be effective in reducing neuropathic symptoms, others found conflicting results. With regards to non-pharmacologic treatments, electroconvulsive therapy (n = 1), electropuncture (n = 1), nerve release/reconstruction (n = 2), and somatosensory feedback rehabilitation (n = 1) were used and demonstrated promise in reducing pain intensity and improving functionality. CONCLUSIONS Despite NP afflicting the majority of burn patients long after their injury, this systematic review demonstrates insufficient evidence on the pathophysiology, outcomes, and risk factors in NP, as well as the efficacy of various therapies. Future prospective and randomized studies evaluating the etiology of these factors can substantially improve our treatment strategies. This can allow for the development of well-delineated and evidence-based protocols in NP management in hopes of improving quality of life and both psychological and physical function in burn patients.
Collapse
Affiliation(s)
- Eloise Stanton
- Keck School of Medicine of USC, Los Angeles, CA, USA; Division of Plastic and Reconstructive Surgery, Keck Medicine of USC, Los Angeles, CA, USA
| | - Paul Won
- Keck School of Medicine of USC, Los Angeles, CA, USA; Division of Plastic and Reconstructive Surgery, Keck Medicine of USC, Los Angeles, CA, USA
| | | | | | - T Justin Gilllenwater
- Keck School of Medicine of USC, Los Angeles, CA, USA; Division of Plastic and Reconstructive Surgery, Keck Medicine of USC, Los Angeles, CA, USA
| | - Haig A Yenikomshian
- Keck School of Medicine of USC, Los Angeles, CA, USA; Division of Plastic and Reconstructive Surgery, Keck Medicine of USC, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Togre NS, Melaka N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom SS, Sriram U, Persidsky Y. Neuroinflammatory Responses and Blood-Brain Barrier Injury in Chronic Alcohol Exposure: Role of Purinergic P2X7 Receptor Signaling. RESEARCH SQUARE 2024:rs.3.rs-4350949. [PMID: 38766082 PMCID: PMC11100971 DOI: 10.21203/rs.3.rs-4350949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alcohol consumption leads to neuroinflammation and blood-brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2X7R activation. Therefore, we aimed to evaluate the effect of P2X7r blockade on peripheral and neuro-inflammation in EtOH-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2X7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), plasma P2X7R and P-gp, number of extra-cellular vesicles (EV), serum ATP and EV-ATP levels. Brain microvessel gene expression and EV mtDNA copy numbers were measured by RT2 PCR array and digital PCR, respectively. A RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed animals, which were decreased 15-50-fold in BBG-treated CIE-exposed animals. Plasma P-gp levels and serum P2X7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2X7R decreased P2X7R shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2X7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2X7R inhibition or receptor knockout. These observations suggested that P2X7R signaling plays a critical role in ethanol-induced brain injury. Increased eATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2X7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2X7R signaling in CIE-induced brain injury.
Collapse
|
9
|
Stanton E, McMullen K, Won P, Schneider JC, Ryan C, Carrougher G, Kowalske K, Yenikomshian HA. Neuropathic Pain After Burn Injury: A Severe and Common Problem in Recovery. Ann Surg 2024; 279:874-879. [PMID: 37916448 PMCID: PMC10997473 DOI: 10.1097/sla.0000000000006146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE The aim of this study was to address the limited understanding of neuropathic pain (NP) among burn survivors by comprehensively examining its prevalence and related factors on a national scale using the Burn Model System (BMS) National Database. BACKGROUND NP is a common but underexplored complaint among burn survivors, greatly affecting their quality of life and functionality well beyond the initial injury. Existing data on NP and its consequences in burn survivors are limited to select single-institution studies, lacking a comprehensive national perspective. METHODS The BMS National Database was queried to identify burn patients responding to NP-related questions at enrollment, 6 months, 12 months, 2 years, and 5 years postinjury. Descriptive statistics and regression analyses were used to explore associations between demographic/clinical characteristics and self-reported NP at different time points. RESULTS There were 915 patients included for analysis. At discharge, 66.5% of patients experienced NP in their burn scars. Those with NP had significantly higher Patient-Reported Outcomes Measurement Information System 29 (PROMIS-29) pain inference, itch, anxiety, depression, and sleep disturbance scores and were less able to partake in social roles. Multiple logistic regression revealed male sex, % total body surface area, and moderate-to-severe pain as predictors of NP at 6 months. At 12 months, % total body surface area and moderate-to-severe pain remained significant predictors, while ethnicity and employment status emerged as significant predictors at 24 months. CONCLUSIONS This study highlights the significant prevalence of NP in burn patients and its adverse impacts on their physical, psychological, and social well-being. The findings underscore the necessity of a comprehensive approach to NP treatment, addressing both physical symptoms and psychosocial factors.
Collapse
Affiliation(s)
- Eloise Stanton
- Division of Plastic and Reconstructive Surgery, Keck Medicine of USC, Los Angeles, CA
| | - Kara McMullen
- Burn Model Systems National Data and Statistical Center, University of Washington, Seattle, WA
| | - Paul Won
- Division of Plastic and Reconstructive Surgery, Keck Medicine of USC, Los Angeles, CA
| | - Jeffrey C Schneider
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - Colleen Ryan
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, Boston, MA
| | - Gretchen Carrougher
- Department of Surgery, UW Medicine Regional Burn Center, University of Washington, Seattle, WA
| | - Karen Kowalske
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX
| | - Haig A Yenikomshian
- Division of Plastic and Reconstructive Surgery, Keck Medicine of USC, Los Angeles, CA
| |
Collapse
|
10
|
Liu J, Liu TT, Mou L, Zhang Y, Chen X, Wang Q, Deng BL, Liu J. P2X7 receptor: a potential target for treating comorbid anxiety and depression. Purinergic Signal 2024:10.1007/s11302-024-10007-0. [PMID: 38642324 DOI: 10.1007/s11302-024-10007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024] Open
Abstract
In clinical practice, depression and anxiety frequently coexist, and they are both comorbid with somatic diseases. The P2X7R is an adenosine 5'-triphosphate (ATP)-gated non-selective cation channel that is widely expressed in immune-related cells. Under conditions of stress, chronic pain, and comorbid chronic physical illness, P2X7R activation in glial cells leads to neuroinflammation. This could contribute to the development of anxiety and depression-related emotional disturbances. Previous studies have shown that the P2X7 receptor (P2X7R) plays an important role in the pathogenesis of both anxiety and depression. Thus, the P2X7R may play a role in the comorbidity of anxiety and depression. Positron emission tomography can be used to assess the degree and location of neuroinflammation by monitoring functional and expression-related changes in P2X7R, which can facilitate clinical diagnoses and guide the treatment of patients with anxiety and depression. Moreover, single nucleotide polymorphisms (SNPs) in the P2X7R gene are associated with susceptibility to different types of psychiatric disorders. Thus, evaluating the SNPs of the P2X7R gene could enable personalized mood disorder diagnoses and treatments. If the P2X7R were set as a therapeutic target, selective P2X7R antagonists may modulate P2X7R function, thereby altering the balance of intra- and extra-cellular ATP. This could have therapeutic implications for treating anxiety and depression, as well as for pain management. According to in vitro and in vivo studies, the P2X7R plays an important role in anxiety and depression. In this review, we consider the potential of the P2X7R as a therapeutic target for comorbid anxiety and depression, and discuss the potential diagnostic and therapeutic value of this receptor.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People's Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Mou
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuwen Zhang
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Bin-Lu Deng
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China.
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China.
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
11
|
Fan Z, Wang K, Zhao X, Sun X. P2X7 receptor: A receptor closely linked with sepsis-associated encephalopathy. Open Life Sci 2024; 19:20220775. [PMID: 38585633 PMCID: PMC10998679 DOI: 10.1515/biol-2022-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 04/09/2024] Open
Abstract
Sepsis is defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis-associated encephalopathy (SAE) is the main manifestation of sepsis. Inflammation, peroxidation stress injury, and apoptosis are the main factors involved in the pathogenesis of SAE. A growing body of evidence has proved that P2X7 receptor (P2X7R), a cationic channel receptor that is widely distributed in the body, plays a major role in the occurrence and development of inflammatory injury. Therefore, this review mainly describes the activation of P2X7R in sepsis, which leads to the recruitment of inflammatory cells to the cerebral vasculature, the destruction of the blood-brain barrier, the activation of microglial cells in the brain, the apoptosis of brain cells, and other damage processes. This review also illustrates the potential therapeutic value of P2X7R inhibition in SAE.
Collapse
Affiliation(s)
- Zhao Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
| | - Xiaoyong Zhao
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
- The Affiliated Hospital of Weifang Medical University, Weifang261021, Shandong, China
| | - Xude Sun
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
- Department of Anesthesiology, Tangdu Hospital, Air Force Military Medical University, Xian710038, Shanxi, China
| |
Collapse
|
12
|
Alzghool OM, Aarnio R, Helin JS, Wahlroos S, Keller T, Matilainen M, Solis J, Danon JJ, Kassiou M, Snellman A, Solin O, Rinne JO, Haaparanta-Solin M. Glial reactivity in a mouse model of beta-amyloid deposition assessed by PET imaging of P2X7 receptor and TSPO using [ 11C]SMW139 and [ 18F]F-DPA. EJNMMI Res 2024; 14:25. [PMID: 38446249 PMCID: PMC10917722 DOI: 10.1186/s13550-024-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND P2X7 receptor has emerged as a potentially superior PET imaging marker to TSPO, the gold standard for imaging glial reactivity. [11C]SMW139 is the most recently developed radiotracer to image P2X7 receptor. The aim of this study was to image reactive glia in the APP/PS1-21 transgenic (TG) mouse model of Aβ deposition longitudinally using [11C]SMW139 targeting P2X7 receptor and to compare tracer uptake to that of [18F]F-DPA targeting TSPO at the final imaging time point. TG and wild type (WT) mice underwent longitudinal in vivo PET imaging using [11C]SMW139 at 5, 8, 11, and 14 months, followed by [18F]F-DPA PET scan only at 14 months. In vivo imaging results were verified by ex vivo brain autoradiography, immunohistochemical staining, and analysis of [11C]SMW139 unmetabolized fraction in TG and WT mice. RESULTS Longitudinal change in [11C]SMW139 standardized uptake values (SUVs) showed no statistically significant increase in the neocortex and hippocampus of TG or WT mice, which was consistent with findings from ex vivo brain autoradiography. Significantly higher [18F]F-DPA SUVs were observed in brain regions of TG compared to WT mice. Quantified P2X7-positive staining in the cortex and thalamus of TG mice showed a minor increase in receptor expression with ageing, while TSPO-positive staining in the same regions showed a more robust increase in expression in TG mice as they aged. [11C]SMW139 was rapidly metabolized in mice, with 33% of unmetabolized fraction in plasma and 29% in brain homogenates 30 min after injection. CONCLUSIONS [11C]SMW139, which has a lower affinity for the rodent P2X7 receptor than the human version of the receptor, was unable to image the low expression of P2X7 receptor in the APP/PS1-21 mouse model. Additionally, the rapid metabolism of [11C]SMW139 in mice and the presence of several brain-penetrating radiometabolites significantly impacted the analysis of in vivo PET signal of the tracer. Finally, [18F]F-DPA targeting TSPO was more suitable for imaging reactive glia and neuroinflammatory processes in the APP/PS1-21 mouse model, based on the findings presented in this study and previous studies with this mouse model.
Collapse
Affiliation(s)
- Obada M Alzghool
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland.
- Medicity Research Laboratory, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland.
- Drug Research Doctoral Programme, University of Turku, Turku, Finland.
- Turku University Hospital, Turku PET Centre, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
| | - Richard Aarnio
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
- Medicity Research Laboratory, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
- Drug Research Doctoral Programme, University of Turku, Turku, Finland
| | - Jatta S Helin
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
- Medicity Research Laboratory, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
| | - Saara Wahlroos
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Thomas Keller
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Markus Matilainen
- Turku University Hospital, Turku PET Centre, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Junel Solis
- Turku BioImaging, Åbo Akademi University and University of Turku, Turku, Finland
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anniina Snellman
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Juha O Rinne
- Turku University Hospital, Turku PET Centre, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Department of Neurology, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Merja Haaparanta-Solin
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
- Medicity Research Laboratory, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland
| |
Collapse
|
13
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
McAllister BB, Stokes-Heck S, Harding EK, van den Hoogen NJ, Trang T. Targeting Pannexin-1 Channels: Addressing the 'Gap' in Chronic Pain. CNS Drugs 2024; 38:77-91. [PMID: 38353876 DOI: 10.1007/s40263-024-01061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/22/2024]
Abstract
Chronic pain complicates many diseases and is notoriously difficult to treat. In search of new therapeutic targets, pannexin-1 (Panx1) channels have sparked intense interest as a key mechanism involved in a variety of chronic pain conditions. Panx1 channels are transmembrane proteins that release ions and small molecules, such as adenosine triphosphate (ATP). They are expressed along important nodes of the pain pathway, modulating activity of diverse cell types implicated in the development and progression of chronic pain caused by injury or pathology. This review highlights advances that have unlocked the core structure and machinery controlling Panx1 function with a focus on understanding and treating chronic pain.
Collapse
Affiliation(s)
- Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
15
|
Kristof Z, Gal Z, Torok D, Eszlari N, Sutori S, Sperlagh B, Anderson IM, Deakin B, Bagdy G, Juhasz G, Gonda X. Embers of the Past: Early Childhood Traumas Interact with Variation in P2RX7 Gene Implicated in Neuroinflammation on Markers of Current Suicide Risk. Int J Mol Sci 2024; 25:865. [PMID: 38255938 PMCID: PMC10815854 DOI: 10.3390/ijms25020865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Both early childhood traumatic experiences and current stress increase the risk of suicidal behaviour, in which immune activation might play a role. Previous research suggests an association between mood disorders and P2RX7 gene encoding P2X7 receptors, which stimulate neuroinflammation. We investigated the effect of P2RX7 variation in interaction with early childhood adversities and traumas and recent stressors on lifetime suicide attempts and current suicide risk markers. Overall, 1644 participants completed questionnaires assessing childhood adversities, recent negative life events, and provided information about previous suicide attempts and current suicide risk-related markers, including thoughts of ending their life, death, and hopelessness. Subjects were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into logistic and linear regression models, followed by a clumping procedure to identify clumps of SNPs with a significant main and interaction effect. We identified two significant clumps with a main effect on current suicidal ideation with top SNPs rs641940 and rs1653613. In interaction with childhood trauma, we identified a clump with top SNP psy_rs11615992 and another clump on hopelessness containing rs78473339 as index SNP. Our results suggest that P2RX7 variation may mediate the effect of early childhood adversities and traumas on later emergence of suicide risk.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1082 Budapest, Hungary;
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083 Budapest, Hungary;
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Sara Sutori
- National Centre for Suicide Research and Prevention (NASP), Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Granits väg 4, 17165 Solna, Sweden;
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083 Budapest, Hungary;
| | - Ian M. Anderson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1082 Budapest, Hungary;
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| |
Collapse
|
16
|
Widjaya MA, Lee SD, Cheng WC, Wu BT. Effects of Exercise Training on Immune-Related Genes and Pathways in the Cortex of Animal Models of Alzheimer's Disease: A Systematic Review. J Alzheimers Dis 2024; 98:1219-1234. [PMID: 38578886 DOI: 10.3233/jad-230803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Alzheimer's disease (AD) is a chronic neurodegenerative disease that affects the immune system due to the accumulation of amyloid-β (Aβ) and tau associated molecular pathology and other pathogenic processes. To address AD pathogenesis, various approaches had been conducted from drug development to lifestyle modification to reduce the prevalence of AD. Exercise is considered a prominent lifestyle modification to combat AD. Objective This observation prompted us to review the literature on exercise related to immune genes in the cortex of animal models of AD. We focused on animal model studies due to their prevalence in this domain. Methods The systematic review was conducted according to PRISMA standards using Web of Science (WoS) and PubMed databases. Any kind of genes, proteins, and molecular molecules were included in this systematic review. The list of these immune-related molecules was analyzed in the STRING database for functional enrichment analysis. Results We found that 17 research studies discussed immune-related molecules and 30 immune proteins. These studies showed that exercise had the ability to ameliorate dysfunction in AD-related pathways, which led to decreasing the expression of microglia-related pathways and Th17-related immune pathways. As a result of decreasing the expression of immune-related pathways, the expression of apoptosis-related pathways was also decreasing, and neuronal survival was increased by exercise activity. Conclusions Based on functional enrichment analysis, exercise not only could reduce apoptotic factors and immune components but also could increase cell survival and Aβ clearance in cortex samples. PROSPERO ID: CRD42022326093.
Collapse
Affiliation(s)
- Michael Anekson Widjaya
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Bor-Tsang Wu
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
17
|
Ottoy J, De Picker L, Kang MS. Microglial Positron Emission Tomography Imaging In Vivo : Positron Emission Tomography Radioligands: Utility in Research and Clinical Practice. ADVANCES IN NEUROBIOLOGY 2024; 37:579-589. [PMID: 39207714 DOI: 10.1007/978-3-031-55529-9_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS) play a key role in regulating and maintaining homeostasis in the brain. However, the CNS is also vulnerable to infections and inflammatory processes. In response to CNS perturbations, microglia become reactive, notably with expression of the translocator protein (TSPO), primarily on their outer mitochondrial membrane. Despite TSPO being commonly used as a marker for microglia, it is also present in other cell types such as astrocytes. Positron emission tomography (PET) ligands that target the TSPO enable the noninvasive detection and quantification of glial reactivity. While some limitations were raised, TSPO PET remains an attractive biomarker of CNS infection and inflammation. This book chapter delves into the development and application of microglial PET imaging with a focus on the TSPO PET. First, we provide an overview of the evolution of TSPO PET radioligands from first-generation to second-generation ligands and their applications in studying neuroinflammation (or CNS inflammation). Subsequently, we discuss the limitations and challenges associated with TSPO PET. Then we go on to explore non-TSPO targets for microglial PET imaging. Finally, we conclude with future directions for research and clinical practice in this field.
Collapse
Affiliation(s)
- Julie Ottoy
- Dr. Sandra E. Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Hospital Campus Duffel, Duffel, Belgium
| | - Min Su Kang
- Dr. Sandra E. Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Biltz RG, Swanson SP, Draime N, Davis AC, Yin W, Goodman EJ, Gallagher NR, Bhattacharya A, Sheridan JF, Godbout JP. Antagonism of the brain P2X7 ion channel attenuates repeated social defeat induced microglia reactivity, monocyte recruitment and anxiety-like behavior in male mice. Brain Behav Immun 2024; 115:356-373. [PMID: 37914101 PMCID: PMC10807695 DOI: 10.1016/j.bbi.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023] Open
Abstract
Chronic stress is linked to increased anxiety. Repeated social defeat (RSD) in mice causes anxiety that is dependent on activated neurons, reactive microglia, and accumulation of monocytes in the brain. This response requires interactions between the immune system and central nervous system (CNS). Neuronal activation within threat appraisal regions is a key response to RSD, however, it is unclear how microglia become activated. One potential explanation is that microglia express a purinergic non-selective ligand gated adenosine-triphosphate (ATP) receptor 7 (P2X7). Activation of P2X7 promotes the release of chemokines and cytokines, and recruitment of monocytes to the brain. Thus, the purpose of this study was to determine if a novel P2X7 antagonist blocked neuronal and microglia interactions and the corresponding anxiety following RSD. Male mice were administered (i.p.) a P2X7 antagonist, JNJ-54471300, prior to each cycle of RSD. Fourteen hours after RSD, behavioral deficits including social avoidance and anxiety-like were determined. Moreover, several immune parameters were assessed. RSD caused neuronal activation in stress-responsive regions, monocyte production and release, splenomegaly, and social avoidance. These parameters were unaffected by P2X7 antagonism. RSD-associated proportional area of Iba-1+ microglia, monocyte accumulation in the brain, IL-1β mRNA expression in enriched myeloid cells, plasma IL-6, and anxiety-like behavior were ameliorated by P2X7 antagonism. Gene expression analysis in the hippocampus and amygdala showed regional specific responses to RSD and some were reversed with P2X7 antagonism. Overall, blocking P2X7 activation attenuated RSD-induced microglia reactivity with corresponding reduction in neuroinflammation, monocyte accumulation, and anxiety-like behavior in male mice.
Collapse
Affiliation(s)
- Rebecca G Biltz
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Samuel P Swanson
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Natalie Draime
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Amara C Davis
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Wenyuan Yin
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Ethan J Goodman
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Natalie R Gallagher
- Division of Biosciences, The Ohio State University College of Dentistry, United States; Institute for Behavioral Medicine Research, The Ohio State University, Wexner Medical Center, United States
| | - Anindya Bhattacharya
- Neuroscience, Janssen Research and Development, LLC, San Diego, CA, United States
| | - John F Sheridan
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States; Division of Biosciences, The Ohio State University College of Dentistry, United States; Chronic Brain Injury Program, The Ohio State University, United States; Institute for Behavioral Medicine Research, The Ohio State University, Wexner Medical Center, United States.
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States; Chronic Brain Injury Program, The Ohio State University, United States; Institute for Behavioral Medicine Research, The Ohio State University, Wexner Medical Center, United States.
| |
Collapse
|
19
|
Uzuegbunam BC, Rummel C, Librizzi D, Culmsee C, Hooshyar Yousefi B. Radiotracers for Imaging of Inflammatory Biomarkers TSPO and COX-2 in the Brain and in the Periphery. Int J Mol Sci 2023; 24:17419. [PMID: 38139248 PMCID: PMC10743508 DOI: 10.3390/ijms242417419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.
Collapse
Affiliation(s)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Gießen, Germany;
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps University of Marburg, 35043 Marburg, Germany;
| | - Carsten Culmsee
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
20
|
Mafra JCM, Boechat N, Teixeira GP, Faria RX. Synthetic molecules as P2X7 receptor antagonists: A medicinal chemistry update focusing the therapy of inflammatory diseases. Eur J Pharmacol 2023; 957:175999. [PMID: 37619787 DOI: 10.1016/j.ejphar.2023.175999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Stimulation of the P2X7 receptor by extracellular adenosine 5'-triphosphate induces a series of responses in the organism, exceptionally protein cascades related to the proinflammatory process. This has made P2X7 a target for research on inflammatory diseases such as rheumatoid arthritis. Thus, the incessant search for new prototypes that aim to antagonize the action of P2X7 has been remarkable in recent decades, a factor that has already led to numerous clinical studies in humans. In this review, we present the key molecules developed over the years with potential inhibition of P2X7 and inflammation. In addition, an update with newly developed chemical classes with promising activity and results in clinical studies for human pathologies focusing on P2X7 inhibition.
Collapse
Affiliation(s)
- João Carlos Martins Mafra
- Laboratório de Síntese de Fármacos (LASFAR) - Farmanguinhos - Fiocruz Brazil; Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro, Brazil.
| | - Nubia Boechat
- Laboratório de Síntese de Fármacos (LASFAR) - Farmanguinhos - Fiocruz Brazil.
| | - Guilherme Pegas Teixeira
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz (IOC), Rio de Janeiro Fiocruz Brazil.
| | - Robson Xavier Faria
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz (IOC), Rio de Janeiro Fiocruz Brazil.
| |
Collapse
|
21
|
Jiang S, Wang X, Cao T, Kang R, Huang L. Insights on therapeutic potential of clemastine in neurological disorders. Front Mol Neurosci 2023; 16:1279985. [PMID: 37840769 PMCID: PMC10568021 DOI: 10.3389/fnmol.2023.1279985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Clemastine, a Food and Drug Administration (FDA)-approved compound, is recognized as a first-generation, widely available antihistamine that reduces histamine-induced symptoms. Evidence has confirmed that clemastine can transport across the blood-brain barrier and act on specific neurons and neuroglia to exert its protective effect. In this review, we summarize the beneficial effects of clemastine in various central nervous system (CNS) disorders, including neurodegenerative disease, neurodevelopmental deficits, brain injury, and psychiatric disorders. Additionally, we highlight key cellular links between clemastine and different CNS cells, in particular in oligodendrocyte progenitor cells (OPCs), oligodendrocytes (OLs), microglia, and neurons.
Collapse
Affiliation(s)
- Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueji Wang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianyu Cao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rongtian Kang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Ministry of Education, Shijiazhuang, Hebei, China
| |
Collapse
|
22
|
Yin Y, Wei L, Caseley EA, Lopez‐Charcas O, Wei Y, Li D, Muench SP, Roger S, Wang L, Jiang L. Leveraging the ATP-P2X7 receptor signalling axis to alleviate traumatic CNS damage and related complications. Med Res Rev 2023; 43:1346-1373. [PMID: 36924449 PMCID: PMC10947395 DOI: 10.1002/med.21952] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The P2X7 receptor is an exceptional member of the P2X purinergic receptor family, with its activation requiring high concentrations of extracellular adenosine 5'-triphosphate (ATP) that are often associated with tissue damage and inflammation. In the central nervous system (CNS), it is highly expressed in glial cells, particularly in microglia. In this review, we discuss the role and mechanisms of the P2X7 receptor in mediating neuroinflammation and other pathogenic events in a variety of traumatic CNS damage conditions, which lead to loss of neurological and cognitive functions. We raise the perspective on the steady progress in developing CNS-penetrant P2X7 receptor-specific antagonists that leverage the ATP-P2X7 receptor signaling axis as a potential therapeutic strategy to alleviate traumatic CNS damage and related complications.
Collapse
Affiliation(s)
- Yaling Yin
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Linyu Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Emily A. Caseley
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Osbaldo Lopez‐Charcas
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Yingjuan Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Dongliang Li
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Sanquan College of Xinxiang Medical UniversityXinxiangChina
| | - Steve P. Muench
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Sebastian Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Lu Wang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Lin‐Hua Jiang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
23
|
Kristof Z, Gal Z, Torok D, Eszlari N, Sutori S, Erdelyi-Hamza B, Petschner P, Sperlagh B, Anderson IM, Deakin JFW, Bagdy G, Juhasz G, Gonda X. Variation along P2RX7 interacts with early traumas on severity of anxiety suggesting a role for neuroinflammation. Sci Rep 2023; 13:7757. [PMID: 37173368 PMCID: PMC10182087 DOI: 10.1038/s41598-023-34781-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Emotional stress is a leading risk factor in the development of neuropsychiatric disorders possibly via immune activation. P2X7 receptors promote neuroinflammation, and research suggests a relationship between chromosome region 12q2431, in which the P2X7R gene is located, and development of mood disorders, however, few studies concentrate on its association with anxiety. Our aim was to investigate the effects of P2RX7 variation in interaction with early childhood traumas and recent stressors on anxiety. 1752 participants completed questionnaires assessing childhood adversities and recent negative life events, provided data on anxiety using the Brief Symptom Inventory, and were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into linear regression models followed by a linkage disequilibrium-based clumping procedure to identify clumps of SNPs with a significant main or interaction effect. We identified a significant clump with top SNP rs67881993 and containing a set of 29SNPs that are in high LD, which significantly interacted with early childhood traumas but not with recent stress conveying a protective effect against increased anxiety in those exposed to early adversities. Our study demonstrated that P2RX7 variants interact with distal and more etiological stressors in influencing the severity of anxiety symptoms, supporting previous scarce results and demonstrating its role in moderating the effects of stress.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Sara Sutori
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Berta Erdelyi-Hamza
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Bioinformatics Center, Institute of Chemical Research, Kyoto University, Uji, Kyoto, Japan
- Research Unit for Realization of Sustainable Society, Kyoto University, Uji, Kyoto, Japan
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ian M Anderson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - John Francis William Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
24
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
25
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
26
|
von Mücke-Heim IA, Deussing JM. The P2X7 receptor in mood disorders: Emerging target in immunopsychiatry, from bench to bedside. Neuropharmacology 2023; 224:109366. [PMID: 36470368 DOI: 10.1016/j.neuropharm.2022.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Psychiatric disorders are among the most burdensome disorders worldwide. Though therapies have evolved over the last decades, treatment resistance still affects many patients. Recently, neuroimmune systems have been identified as important factors of mood disorder biology. The underlying dysregulation in neuroimmune cross-talk is driven by genetic risk factors and accumulating adverse environmental influences like chronic psychosocial stress. These result in a cluster of proinflammatory cytokines and quantitative and functional changes of immune cell populations (e.g., microglia, monocytes, T cells), varying by disease entity and state. Among the emerging immune targets, purinergic signalling revolving around the membranous and ATP specific P2X7 receptor (P2X7R) has gained wider attention and clinical studies making use of antagonistic drugs are on-going. Still, no clinically meaningful applications have been identified so far. A major problem is the often overly simplified approach taken to translate findings from bench to bedside. Therefore, the present review focuses on purinergic signalling via P2X7R in the context of recent advances in immunopsychiatric mood disorder research. Our aim is to provide an overview of the current P2X7R-related findings, from bench to bedside. First, we summarize the characteristics of purinergic signalling and P2X7R, followed by a depiction of genetic and clinical data connecting P2X7R to mood disorders. We close with our perspective on current developments and discuss changes necessary to translate the evident potential of P2X7R signalling modulation into meaningful clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
| | - Jan M Deussing
- Max Planck Institute for Psychiatry, Molecular Neurogenetics, Munich, Germany.
| |
Collapse
|
27
|
Spotlight on P2X7 Receptor PET Imaging: A Bright Target or a Failing Star? Int J Mol Sci 2023; 24:ijms24021374. [PMID: 36674884 PMCID: PMC9861945 DOI: 10.3390/ijms24021374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
The homotrimeric P2X7 receptor (P2X7R) is expressed by virtually all cells of the innate and adaptive immune system and plays a crucial role in various pathophysiological processes such as autoimmune and neurodegenerative diseases, inflammation, neuropathic pain and cancer. Consequently, the P2X7R is considered a promising target for therapy and diagnosis. As the development of tracers comes hand-in-hand with the development of potent and selective receptor ligands, there is a rising number of PET tracers available in preclinical and clinical studies. This review analyzes the development of P2X7R positron emission tomography (PET) tracers and their potential in various PET imaging applications.
Collapse
|
28
|
Pacheco PAF, Gonzaga DTG, von Ranke NL, Rodrigues CR, da Rocha DR, da Silva FDC, Ferreira VF, Faria RX. Synthesis, Biological Evaluation and Molecular Modeling Studies of Naphthoquinone Sulfonamides and Sulfonate Ester Derivatives as P2X7 Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020590. [PMID: 36677652 PMCID: PMC9866630 DOI: 10.3390/molecules28020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
ATP acts in the extracellular environment as an important signal, activating a family of receptors called purinergic receptors. In recent years, interest in the potential therapeutics of purinergic components, including agonists and antagonists of receptors, has increased. Currently, many observations have indicated that ATP acts as an important mediator of inflammatory responses and, when found in high concentrations in the extracellular space, is related to the activation of the P2X7 purinergic receptor. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Sulfonamide derivatives have been reported to be potent inhibitors of P2X receptors. In this study, ten naphthoquinone sulfonamide derivatives and five naphthoquinone sulfonate ester derivatives were tested for their inhibitory activity on the P2X7 receptor expressed in peritoneal macrophages. Some compounds showed promising results, displaying IC50 values lower than that of A740003. Molecular docking and dynamic studies also indicated that the active compounds bind to an allosteric site on P2X7R. The binding free energy indicates that sulfonamides have an affinity for the P2X7 receptor similar to A740003. Therefore, the compounds studied herein present potential P2X7R inhibition.
Collapse
Affiliation(s)
| | - Daniel Tadeu Gomes Gonzaga
- Departament of Pharmacy, West Zone Campus, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Natalia Lidmar von Ranke
- Department of Pharmaceuticals and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - Carlos Rangel Rodrigues
- Department of Pharmaceuticals and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - David Rodrigues da Rocha
- Department of Organic Chemistry, Institute of Chemistry, Federal Fluminense University, Niterói 24020-141, Brazil
| | | | - Vitor Francisco Ferreira
- Department of Organic Chemistry, Institute of Chemistry, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Robson Xavier Faria
- Evaluation and Promotion of the Ambiental Health Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Postgraduate Program in Sciences and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói 24210-130, Brazil
- Correspondence:
| |
Collapse
|
29
|
Mikkelsen JD, Aripaka SS, Kaad S, Pazarlar BA, Pinborg L, Finsen B, Varrone A, Bang-Andersen B, Bastlund JF. Characterization of the Novel P2X7 Receptor Radioligand [ 3H]JNJ-64413739 in Human Brain Tissue. ACS Chem Neurosci 2022; 14:111-118. [PMID: 36535632 PMCID: PMC9817075 DOI: 10.1021/acschemneuro.2c00561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Radioligands targeting microglia cells have been developed to identify and determine neuroinflammation in the living brain. One recently discovered ligand is JNJ-64413739 that binds selectively to the purinergic receptor P2X7R. The expression of P2X7R is increased under inflammation; hence, the ligand is considered useful in the detection of neuroinflammation in the brain. [18F]JNJ-64413739 has been evaluated in healthy subjects with positron emission tomography; however, the in vitro binding properties of the ligand in human brain tissue have not been investigated. Therefore, the purpose of this study was to measure Bmax and Kd of [3H]JNJ-64413739 using autoradiography on human cortical tissue sections resected from a total of 48 patients with treatment-resistant epilepsy. Correlations between the specific binding of [3H]JNJ-64413739 with age, sex, and duration of disease were explored. Finally, to examine the relationship between P2X7R and TSPO availability, specific binding of [3H]JNJ-64413739 and [123I]CLINDE was examined in the same tissue. The binding was measured in both cortical gray and subcortical white matter. Saturation revealed a Kd (5 nM) value similar between gray and white matter but a larger Bmax in the white than in the gray matter. The binding was completely displaced by the cold ligand and structurally different P2X7R ligands. The variability in saturable binding among the samples was found to be 38% in gray and white matter but was not correlated to either age, sex, or the duration of the disease. Interestingly, there was no significant correlation between [3H]JNJ-64413739 and [123I]CLINDE binding. These data demonstrate that [3H]JNJ-64413739 is a suitable radioligand for evaluating the distribution and expression of the P2X7R in the human brain.
Collapse
Affiliation(s)
- Jens D. Mikkelsen
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Copenhagen 2100, Denmark,Institute
of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark,Department
of Molecular Medicine, University of Southern
Denmark, Odense 5000, Denmark,. Tel.: +45 3545 6701
| | - Sanjay S. Aripaka
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Sif Kaad
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Burcu A. Pazarlar
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Copenhagen 2100, Denmark,Physiology
Department, Faculty of Medicine, Izmir Katip
Celebi University, Izmir 35330, Turkey
| | - Lars Pinborg
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Copenhagen 2100, Denmark,Epilepsy
Clinic, Department of Neurology, Copenhagen
University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | - Bente Finsen
- Department
of Molecular Medicine, University of Southern
Denmark, Odense 5000, Denmark
| | | | | | | |
Collapse
|
30
|
Chisari M, Barraco M, Bucolo C, Ciranna L, Sortino MA. Purinergic ionotropic P2X7 and metabotropic glutamate mGlu 5 receptors crosstalk influences pro-inflammatory conditions in microglia. Eur J Pharmacol 2022; 938:175389. [PMID: 36435235 DOI: 10.1016/j.ejphar.2022.175389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
Microglia represent the resident immune system in the brain. They mediate neuroinflammatory processes and have been described as important regulators of homeostasis in the central nervous system (CNS). Among several players and mechanisms contributing to microglial function in inflammation, ATP and glutamate have been shown to be involved in microgliosis. In this study, we focused on receptor subtypes that respond to these neurotransmitters, purinergic ionotropic P2X7 receptor and metabotropic glutamate mGlu5 receptor. We found that both receptors are functionally expressed in a murine microglia cell line, BV2 cells, and we performed patch-clamp experiments to measure purinergic ionotropic P2X7 receptor ion flux in control condition and after metabotropic glutamate mGlu5 receptor activation. The selective purinergic ionotropic P2X7 receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate (BzATP, 100 μM), elicited a robust current that was prevented by the selective purinergic ionotropic P2X7 receptor antagonist A438079 (10 μM). When BV2 cells were acutely stimulated with the selective metabotropic glutamate mGlu5 agonist, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 200 μM), purinergic ionotropic P2X7 receptor current was increased. This positive modulation was prevented by the selective metabotropic glutamate mGlu5 receptor antagonist 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP, 1 μM). Moreover, nitric oxide synthesis elicited by purinergic ionotropic P2X7 receptor activation was enhanced by metabotropic glutamate mGlu5 receptor co-stimulation. Taken together, our results suggest an important crosstalk between ATP and glutamate in inflammation. Pro-inflammatory effects mediated by purinergic ionotropic P2X7 receptor might be exacerbated by simultaneous exposure of microglia to ATP and glutamate, suggesting new pharmacological targets to modulate neuroinflammation.
Collapse
Affiliation(s)
- Mariangela Chisari
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy.
| | - Michele Barraco
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy; PhD Program in Neuroscience, University of Catania, Italy
| | - Claudio Bucolo
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy
| | - Lucia Ciranna
- Dept. of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Maria Angela Sortino
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy
| |
Collapse
|
31
|
Zhang Y, Yin HY, Rubini P, Tang Y, Illes P. A Possible Causal Involvement of Neuroinflammatory, Purinergic P2X7 Receptors in Psychiatric Disorders. Curr Neuropharmacol 2022; 20:2142-2155. [PMID: 35236262 PMCID: PMC9886837 DOI: 10.2174/1570159x20666220302152400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/26/2022] [Indexed: 11/22/2022] Open
Abstract
P2X7 receptors (Rs) are prominent members of the P2XR family, which after binding ATP, open non-selective cationic channels, thereby allowing the transmembrane passage of Na+, Ca2+, and K+. Long-lasting and repetitive stimulation of the receptor by its agonist leads to the formation of large membrane pores permeable for organic cations of up to 900 Da molecular size. These pores are believed to play a role in apoptosis and inflammation. P2X7Rs are located primarily at peripheral macrophages and microglial cells, the resident macrophages of the CNS. The coactivation of toll-like receptors 4 (TLR4) by lipopolysaccharide, a constituent of the cell membrane of gram-negative bacteria, and the P2X7R by ATP leads to the generation and release of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α. Together with the microglial release of chemokines, reactive oxygen and nitrogen species, proteases, and excitotoxic glutamate, these cytokines result in neurodegeneration. P2X7Rs were found not only to amplify various neurodegenerative illnesses, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis, but also to participate in a range of psychiatric diseases, such as major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. Based on the prevention/reversal of neuroinflammation, pharmacological antagonists of P2X7Rs and their genetic deletion in animal experiments counteract these deleterious psychiatric conditions. Hence, brain penetrant P2X7R antagonists are potential therapeutics for psychiatric diseases, although the available evidence still needs to be extended and validated by further clinical data.
Collapse
Affiliation(s)
- Ying Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Patrizia Rubini
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,Address correspondence to these authors at the Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany; Tel/Fax: (+49)341-9724614, (+49)341-9724609; E-mail: or at Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China; Tel/Fax: (+86) 28-87689918, (+86) 28-87683962; E-mail:
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109 Leipzig, Germany,Address correspondence to these authors at the Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany; Tel/Fax: (+49)341-9724614, (+49)341-9724609; E-mail: or at Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China; Tel/Fax: (+86) 28-87689918, (+86) 28-87683962; E-mail:
| |
Collapse
|
32
|
Pinto-Espinoza C, Guillou C, Rissiek B, Wilmes M, Javidi E, Schwarz N, Junge M, Haag F, Liaukouskaya N, Wanner N, Nicke A, Stortelers C, Tan YV, Adriouch S, Magnus T, Koch-Nolte F. Effective targeting of microglial P2X7 following intracerebroventricular delivery of nanobodies and nanobody-encoding AAVs. Front Pharmacol 2022; 13:1029236. [PMID: 36299894 PMCID: PMC9589454 DOI: 10.3389/fphar.2022.1029236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
The P2X7 ion channel is a key sensor for extracellular ATP and a key trigger of sterile inflammation. Intravenous injection of nanobodies that block P2X7 has shown to be beneficial in mouse models of systemic inflammation. P2X7 has also emerged as an attractive therapeutic target for inflammatory brain diseases. However, little is known about the ability of nanobodies to cross the BBB. Here we evaluated the ability of P2X7-specific nanobodies to reach and to block P2X7 on microglia following intravenous or intracerebral administration. For this study, we reformatted and sequence-optimized P2X7 nanobodies for higher stability and elevated isoelectric point. Following injection of nanobodies or nanobody-encoding adeno-associated viral vectors (AAV), we monitored the occupancy and blockade of microglial P2X7 in vivo using ex vivo flow cytometry. Our results show that P2X7 on microglia was within minutes completely occupied and blocked by intracerebroventricularly injected nanobodies, even at low doses. In contrast, very high doses were required to achieve similar effects when injected intravenously. The endogenous production of P2X7-antagonistic nanobodies following intracerebral or intramuscular injection of nanobody-encoding AAVs resulted in a long-term occupancy and blockade of P2X7 on microglia. Our results provide new insights into the conditions for the delivery of nanobodies to microglial P2X7 and point to AAV-mediated delivery of P2X7 nanobodies as a promising strategy for the treatment of sterile brain inflammation.
Collapse
Affiliation(s)
- Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Guillou
- Normandie Univ, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity and Immunotherapy (PanTHER), Rouen, France
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Wilmes
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ehsan Javidi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Schwarz
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- MSH- Medical School Hamburg- Dep. Anatomy, Hamburg, Germany
| | - Marten Junge
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nicola Wanner
- Department of Nephrology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | - Yossan-Var Tan
- Normandie Univ, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity and Immunotherapy (PanTHER), Rouen, France
| | - Sahil Adriouch
- Normandie Univ, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity and Immunotherapy (PanTHER), Rouen, France
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Friedrich Koch-Nolte,
| |
Collapse
|
33
|
Jackson T, Seifi M, Górecki DC, Swinny JD. Specific Dystrophins Selectively Associate with Inhibitory and Excitatory Synapses of the Mouse Cerebellum and their Loss Alters Expression of P2X7 Purinoceptors and Pro-Inflammatory Mediators. Cell Mol Neurobiol 2022; 42:2357-2377. [PMID: 34101068 PMCID: PMC9418305 DOI: 10.1007/s10571-021-01110-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.
Collapse
Affiliation(s)
- Torquil Jackson
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
| | - Mohsen Seifi
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Dariusz C Górecki
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001, Warsaw, Poland
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK.
| |
Collapse
|
34
|
Turgutalp B, Bhattarai P, Ercetin T, Luise C, Reis R, Gurdal EE, Isaak A, Biriken D, Dinter E, Sipahi H, Schepmann D, Junker A, Wünsch B, Sippl W, Gulcan HO, Kizil C, Yarim M. Discovery of Potent Cholinesterase Inhibition-Based Multi-Target-Directed Lead Compounds for Synaptoprotection in Alzheimer's Disease. J Med Chem 2022; 65:12292-12318. [PMID: 36084304 DOI: 10.1021/acs.jmedchem.2c01003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Drug development efforts that focused on single targets failed to provide effective treatment for Alzheimer's disease (AD). Therefore, we designed cholinesterase inhibition (ChEI)-based multi-target-directed ligands (MTDLs) to simultaneously target AD-related receptors. We built a library of 70 compounds, sequentially screened for ChEI, and determined σ1R, σ2R, NMDAR-GluN2B binding affinities, and P2X7R antagonistic activities. Nine fulfilled in silico drug-likeness criteria and did not display toxicity in three cell lines. Seven displayed cytoprotective activity in two stress-induced cellular models. Compared to donepezil, six showed equal/better synaptic protection in a zebrafish model of acute amyloidosis-induced synaptic degeneration. Two P2X7R antagonists alleviated the activation state of microglia in vivo. Permeability studies were performed, and four did not inhibit CYP450 3A4, 2D6, and 2C9. Therefore, four ChEI-based lead MTDLs are promising drug candidates for synaptic integrity protection and could serve as disease-modifying AD treatment. Our study also proposes zebrafish as a useful preclinical tool for drug discovery and development.
Collapse
Affiliation(s)
- Bengisu Turgutalp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey.,German Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association, 01307 Dresden, Germany
| | - Prabesh Bhattarai
- German Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association, 01307 Dresden, Germany.,Department of Neurology, Columbia University Irving Medical Center, 10032 New York, United States
| | - Tugba Ercetin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, TRNC, via Mersin 10, 99628 Famagusta, Turkey
| | - Chiara Luise
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, 6099 Halle (Saale), Germany
| | - Rengin Reis
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey.,Department of Toxicology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, 34758 Istanbul, Turkey
| | - Enise Ece Gurdal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey.,Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany
| | - Andreas Isaak
- European Institute for Molecular Imaging (EIMI), der Westfälischen Wilhelms-Universität, D-48149 Münster, Germany
| | - Derya Biriken
- German Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association, 01307 Dresden, Germany.,Department of Medical Microbiology, Ankara University Faculty of Medicine, 06620 Ankara, Turkey
| | - Elisabeth Dinter
- German Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association, 01307 Dresden, Germany.,Department of Neurology, University Clinic, TU Dresden, 01307 Dresden, Germany
| | - Hande Sipahi
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, D-48149 Münster, Germany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI), der Westfälischen Wilhelms-Universität, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, D-48149 Münster, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, 6099 Halle (Saale), Germany
| | - Hayrettin Ozan Gulcan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, TRNC, via Mersin 10, 99628 Famagusta, Turkey
| | - Caghan Kizil
- German Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association, 01307 Dresden, Germany.,Department of Neurology, Columbia University Irving Medical Center, 10032 New York, United States
| | - Mine Yarim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey
| |
Collapse
|
35
|
Huang G, Lu X, Qiu Y, Bi L, Ye P, Yang M, Shen Y, Jin H, Han J. Hetero-aryl bromide precursor fluorine-18 radiosynthesis and preclinical evaluation of a novel positron emission tomography (PET) tracer [ 18F]GSK1482160. Bioorg Med Chem 2022; 73:116996. [PMID: 36126443 DOI: 10.1016/j.bmc.2022.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
The purinergic P2X7 receptor (P2X7R), an ATP gated ion channel, is an important therapeutic target for various inflammatory immune and neurodegenerative diseases. A novel P2X7R targeting radiotracer GSK1482160 was radiosynthesized by hetero-aryl bromides precursor 10 with [18F]Et4NF, 20-30 % radiochemical yield, > 68 GBq/μmol specific activity, >98 % radiochemical purity. Evaluation in healthy male Sprague-Dawley rats revealed that [18F]GSK1482160 ([18F]11) was stably retained 87.81 %, 72.45 %, and 56.32 % in brain, blood and liver respectively 60-min post-injection. Ex-vivo biodistribution of [18F]11 proved that it was able to target the P2X7R in vivo and there was no defluorination in the major organs. PET/MRI imaging and autoradiography revealed that [18F]11 was able to penetrate the blood-brain barrier (BBB) and to be a promising P2X7R PET radioligand for clinical translation.
Collapse
Affiliation(s)
- Guolong Huang
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaolei Lu
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, China
| | - Yifan Qiu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Peizhen Ye
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yanfang Shen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, China.
| |
Collapse
|
36
|
Sander S, Müller I, Alai MG, Nicke A, Tidow H. New insights into P2X7 receptor regulation: Ca 2+-calmodulin and GDP bind to the soluble P2X7 ballast domain. J Biol Chem 2022; 298:102495. [PMID: 36115462 PMCID: PMC9574498 DOI: 10.1016/j.jbc.2022.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022] Open
Abstract
P2X7 receptors are nonselective cation channels that are activated by extracellular ATP and play important roles in inflammation. They differ from other P2X family members by a large intracellular C-terminus that mediates diverse signaling processes that are little understood. A recent cryo-EM study revealed that the C-terminus of the P2X7 receptor forms a unique cytoplasmic ballast domain that possesses a GDP-binding site as well as a dinuclear Zn2+ site. However, the molecular basis for the regulatory function of the ballast domain as well as the interplay between the various ligands remain unclear. Here, we successfully expressed a soluble trimeric P2X7 ballast domain (P2X7BD) and characterized its ligand binding properties using a biophysical approach. We identified calmodulin (CaM)-binding regions within the ballast domain and found that binding of Ca2+-CaM and GDP to P2X7BD have opposite effects on its stability. Small-angle X-ray scattering experiments indicate that Ca2+-CaM binding disrupts the trimeric state of P2X7BD. Our results provide a possible framework for the intracellular regulation of the P2X7 receptor.
Collapse
Affiliation(s)
- Simon Sander
- The Hamburg Advanced Research Centre for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Isabel Müller
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Maria Garcia Alai
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Henning Tidow
- The Hamburg Advanced Research Centre for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| |
Collapse
|
37
|
Masdeu JC, Pascual B, Fujita M. Imaging Neuroinflammation in Neurodegenerative Disorders. J Nucl Med 2022; 63:45S-52S. [PMID: 35649654 DOI: 10.2967/jnumed.121.263200] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation plays a major role in the etiopathology of neurodegenerative diseases, including Alzheimer and Parkinson diseases, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. In vivo monitoring of neuroinflammation using PET is critical to understand this process, and data are accumulating in this regard, thus a review is useful. From PubMed, we retrieved publications using any of the available PET tracers to image neuroinflammation in humans as well as selected articles dealing with experimental animal models or the chemistry of currently used or potential radiotracers. We reviewed 280 articles. The most common PET neuroinflammation target, translocator protein (TSPO), has limitations, lacking cellular specificity and the ability to separate neuroprotective from neurotoxic inflammation. However, TSPO PET is useful to define the amount and location of inflammation in the brain of people with neurodegenerative disorders. We describe the characteristics of TSPO and other potential PET neuroinflammation targets and PET tracers available or in development. Despite target and tracer limitations, in recent years there has been a sharp increase in the number of reports of neuroinflammation PET in humans. The most studied has been Alzheimer disease, in which neuroinflammation seems initially neuroprotective and neurotoxic later in the progression of the disease. We describe the findings in all the major neurodegenerative disorders. Neuroinflammation PET is an indispensable tool to understand the process of neurodegeneration, particularly in humans, as well as to validate target engagement in therapeutic clinical trials.
Collapse
Affiliation(s)
- Joseph C Masdeu
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas; and
| | - Belen Pascual
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas; and
| | - Masahiro Fujita
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas; and.,PET Core, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| |
Collapse
|
38
|
Mckenzie ADJ, Garrett TR, Werry EL, Kassiou M. Purinergic P2X 7 Receptor: A Therapeutic Target in Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:1479-1490. [PMID: 35512313 DOI: 10.1021/acschemneuro.2c00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by upper and lower motor neuron loss. The pathomechanisms of ALS are still poorly understood with current hypotheses involving genetic mutations, excitotoxicity, and reactive oxygen species formation. In the absence of a disease-altering clinically approved therapeutic, there is an ever-increasing need to identify new targets to develop drugs that delay disease onset and/or progression. The purinergic P2X7 receptor (P2X7R) has been implicated widely across the ALS realm, providing a potential therapeutic strategy. This review summarizes the current understanding of ALS, the P2X7R and its role in ALS, the current landscape of P2X7R antagonists, and the in vivo potential of these antagonists in preclinical ALS models.
Collapse
Affiliation(s)
- André D. J. Mckenzie
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Taylor R. Garrett
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Eryn L. Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
39
|
Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front Aging Neurosci 2022; 14:825086. [PMID: 35401152 PMCID: PMC8990307 DOI: 10.3389/fnagi.2022.825086] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most common diseases in the central nervous system (CNS) with high mortality and morbidity. Patients with TBI usually suffer many sequelae in the life time post injury, including neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the pathological mechanisms connecting these two processes have not yet been fully elucidated. It is important to further investigate the pathophysiological mechanisms underlying TBI and TBI-induced neurodegeneration, which will promote the development of precise treatment target for these notorious neurodegenerative consequences after TBI. A growing body of evidence shows that neuroinflammation is a pivotal pathological process underlying chronic neurodegeneration following TBI. Microglia, as the immune cells in the CNS, play crucial roles in neuroinflammation and many other CNS diseases. Of interest, microglial activation and functional alteration has been proposed as key mediators in the evolution of chronic neurodegenerative pathology following TBI. Here, we review the updated studies involving phenotypical and functional alterations of microglia in neurodegeneration after injury, survey key molecules regulating the activities and functional responses of microglia in TBI pathology, and explore their potential implications to chronic neurodegeneration after injury. The work will give us a comprehensive understanding of mechanisms driving TBI-related neurodegeneration and offer novel ideas of developing corresponding prevention and treatment strategies for this disease.
Collapse
Affiliation(s)
- Fangjie Shao
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Qun Wu,
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
- Jianmin Zhang,
| |
Collapse
|
40
|
Yu Y, He X, Wang Y, Zhang J, Tang C, Rong P. Transcutaneous auricular vagal nerve stimulation inhibits limbic-regional P2X7R expression and reverses depressive-like behaviors in Zucker diabetic fatty rats. Neurosci Lett 2022; 775:136562. [PMID: 35245625 DOI: 10.1016/j.neulet.2022.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
Zucker diabetic fatty (ZDF) rats develop type 2 diabetes (T2D) along with depressive-like behaviors. Transcutaneous auricular vagal nerve stimulation (taVNS) has antidiabetic and antidepressant-like effects in ZDF rats; however, the underlying antidepressant-like mechanisms are unclear. The purinergic receptor P2X7R, which is related to inflammation and depression, is upregulated in the limbic brain regions of depressed patients and rodents and is considered as a potential therapeutic target. Thus, this study aimed to provide preliminary evidence at the molecular level of taVNS antidepressant-like effect in ZDF rats through testing their limbic-regional P2X7R expression. ZDF rats were subjected to taVNS and transcutaneous non-vagal nerve stimulation (tnVNS). Body weight and blood glucose levels were monitored weekly. Depressive-like behaviors were evaluated with the open-field test (OFT) and forced swimming test (FST). Limbic-regional P2X7R expression was examined by western blotting (WB). P2X7R expressing cells were detected by immunohistochemistry (IHC). Compared to their lean littermates (ZL rats), ZDF rats developed obesity, hyperglycemia, and depressive-like behaviors with elevated limbic-regional P2X7R expression. taVNS but not tnVNS lowered body weight, reduced and stabilized blood glucose levels, suppressed limbic-regional P2X7R expression, and reversed the depressive-like behaviors. P2X7R was found primarily expressed in ZDF rats' limbic-regional astrocytes. In conclusion, taVNS inhibits ZDF rats' limbic-regional P2X7R expression, which may be one of the taVNS antidepressant-like mechanisms.
Collapse
Affiliation(s)
- Yutian Yu
- Acupuncture Department, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Ninth School of Clinical Medicine, Peking University, Beijing, China; Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xun He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunzhi Tang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
41
|
Drevets WC, Wittenberg GM, Bullmore ET, Manji HK. Immune targets for therapeutic development in depression: towards precision medicine. Nat Rev Drug Discov 2022; 21:224-244. [PMID: 35039676 PMCID: PMC8763135 DOI: 10.1038/s41573-021-00368-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
Over the past two decades, compelling evidence has emerged indicating that immune mechanisms can contribute to the pathogenesis of major depressive disorder (MDD) and that drugs with primary immune targets can improve depressive symptoms. Patients with MDD are heterogeneous with respect to symptoms, treatment responses and biological correlates. Defining a narrower patient group based on biology could increase the treatment response rates in certain subgroups: a major advance in clinical psychiatry. For example, patients with MDD and elevated pro-inflammatory biomarkers are less likely to respond to conventional antidepressant drugs, but novel immune-based therapeutics could potentially address their unmet clinical needs. This article outlines a framework for developing drugs targeting a novel patient subtype within MDD and reviews the current state of neuroimmune drug development for mood disorders. We discuss evidence for a causal role of immune mechanisms in the pathogenesis of depression, together with targets under investigation in randomized controlled trials, biomarker evidence elucidating the link to neural mechanisms, biological and phenotypic patient selection strategies, and the unmet clinical need among patients with MDD.
Collapse
Affiliation(s)
- Wayne C Drevets
- Neuroscience, Janssen Research & Development, LLC, San Diego, CA, USA
| | | | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | | |
Collapse
|
42
|
Kulkarni B, Cruz-Martins N, Kumar D. Microglia in Alzheimer's Disease: An Unprecedented Opportunity as Prospective Drug Target. Mol Neurobiol 2022; 59:2678-2693. [PMID: 35149973 DOI: 10.1007/s12035-021-02661-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an ever more common neurodegenerative disease among the elderly, characterized by recurrent neuroinflammation and amyloid beta (Aβ) accumulation in the brain parenchyma. Recent genome-wide association studies (GWAS) have shown a distinct role for the innate immune system in AD, with microglia playing a key role. The function of microglial cells is stringently regulated by the neighboring microenvironment in the brain. Upon interruption in diseases, like AD, it demonstrates neurotoxic and neuroprotective action by M1 (neurotoxic) and M2 (neuroprotective) microglial phenotypes, respectively, in the brain. Microglial cells on activation by complement factors, toll-like receptors, and genetic variants result in Aβ' phagocytosis, synaptic pruning, and reactivation of complement pathway. Recent studies have demonstrated the presence of potential therapeutic targets in microglial cells. Immune receptors revealed on microglia as potential drug targets can be paired immunoglobulin-like type 2 receptor (PILR), CD3358, and triggering receptor expressed on myeloid cells 2 (TREM2), as they can have impact on late-onset AD occurrence and progression. Thus, targeting these receptors can accentuate the beneficial effects of microglial cells required to decelerate the progression of AD. This review emphasizes the microglial phenotypes, its function in AD brain, and potential immunological and therapeutic targets to fight this highly progressive neurodegenerative disorder.
Collapse
Affiliation(s)
- Bhargavi Kulkarni
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed To Be University) Erandawane, Pune, 411038, Maharashtra, India
| | - Natália Cruz-Martins
- Institute of Research and Advanced, Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal. .,Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319, Porto, Portugal. .,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed To Be University) Erandawane, Pune, 411038, Maharashtra, India.
| |
Collapse
|
43
|
Garcia P, Jürgens‐Wemheuer W, Uriarte Huarte O, Michelucci A, Masuch A, Brioschi S, Weihofen A, Koncina E, Coowar D, Heurtaux T, Glaab E, Balling R, Sousa C, Kaoma T, Nicot N, Pfander T, Schulz‐Schaeffer W, Allouche A, Fischer N, Biber K, Kleine‐Borgmann F, Mittelbronn M, Ostaszewski M, Schmit KJ, Buttini M. Neurodegeneration and neuroinflammation are linked, but independent of alpha‐synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia 2022; 70:935-960. [PMID: 35092321 PMCID: PMC9305192 DOI: 10.1002/glia.24149] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α‐synuclein. Alpha‐synuclein (α‐syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α‐syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α‐syn induced by striatal injection of α‐syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α‐syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α‐syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α‐syn inclusion formation is not the major driver in the early phases of PD‐like neurodegeneration, but that microglia, activated by diffusible, oligomeric α‐syn, may play a key role in this process. Our findings uncover new features of α‐syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α‐syn spreading.
Collapse
Affiliation(s)
- Pierre Garcia
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Wiebke Jürgens‐Wemheuer
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Institute of Neuropathology Saarland University Clinic (UKS) Homburg Germany
| | - Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Annette Masuch
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | - Simone Brioschi
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | | | - Eric Koncina
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Carole Sousa
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Tony Kaoma
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Nathalie Nicot
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Tatjana Pfander
- Institute of Neuropathology Saarland University Clinic (UKS) Homburg Germany
| | | | | | | | - Knut Biber
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | - Felix Kleine‐Borgmann
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Kristopher J. Schmit
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| |
Collapse
|
44
|
Wu P, Zhou G, Wu X, Lv R, Yao J, Wen Q. P2X7 receptor induces microglia polarization to the M1 phenotype in cancer-induced bone pain rat models. Mol Pain 2022; 18:17448069211060962. [PMID: 35057643 PMCID: PMC8961217 DOI: 10.1177/17448069211060962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background The transition from pro-inflammatory M1 phenotype to anti-inflammatory M2
phenotype presents a novel therapeutic strategy for chronic pain. Objective We investigated the role of microglia polarization in cancer-induced bone
pain (CIBP), as well as the role of the P2X7 receptor in modulating M1 to M2
polarization. Methods Walker-256 breast cancer cells were administered into tibias of female rats
to induce bone cancer–associated cancer. Results During bone cancer development, the P2X7 receptor and M1 microglia markers
were upregulated. In contrast, inhibition of the P2X7 receptor by BBG, a
blood-brain barrier-permeable P2X7R-specific antagonist, alleviated the pain
and promoted microglia polarization toward the M2 phenotype, while
suppressing the M1 phenotype in vivo and in
vitro. Conclusion P2X7 receptor-mediated spinal microglia polarization is involved in
alleviation of CIBP. Therefore, P2X7R is a potential option for CIBP
treatment.
Collapse
Affiliation(s)
- Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guohua Zhou
- Anesthesiology Department, Dalian Medical University, Dalian, China
| | - Xiaoqi Wu
- Anesthesiology Department, Dalian Medical University, Dalian, China
| | - Run Lv
- Department of Anesthesiology, The first hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
45
|
Jackson A, Werry EL, O'Brien-Brown J, Schiavini P, Wilkinson S, Wong ECN, McKenzie ADJ, Maximova A, Kassiou M. Pharmacological characterization of a structural hybrid P2X7R antagonist using ATP and LL-37. Eur J Pharmacol 2022; 914:174667. [PMID: 34863711 DOI: 10.1016/j.ejphar.2021.174667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/03/2022]
Abstract
Antagonists of the P2X7 receptor (P2X7R) have the potential to treat diseases where neuroinflammation is present such as depression, chronic pain and Alzheimer's disease. We recently developed a structural hybrid (C1; 1-((adamantan-1-yl)methyl)-2-cyano-3-(quinolin-5-yl)guanidine) of a purported competitive P2X7R antagonist (C2; 2-cyano-1-((1S)-1-phenylethyl)-3-(quinolin-5-yl)guanidine) and a likely negative allosteric modulator (NAM) of the P2X7R (C3; N-((adamantan-1-yl)methyl)-2-chloro-5-methoxybenzamide). Here we aimed to pharmacologically characterize C1, to gain insights into how select structural components impact antagonist interaction with the P2X7R. A second aim was to examine the role of the peptide LL-37, an apparent activator of the P2X7R, and compare the ability of multiple P2X7R antagonists to block its effects. Compounds 1, 2 and 3 were characterised using washout, Schild and receptor protection studies, all using dye uptake assays in HEK293 cells expressing the P2X7R. LL-37 was examined in the same HEK293 cells and THP-1 monocytes. Compounds 2 and 3 acted as a BzATP-competitive antagonist and NAM of the P2X7R respectively. Compound 1 was a slowly reversible NAM of the P2X7R suggesting the incorporation of an appropriately positioned adamantane promotes binding to the allosteric site of the P2X7R. LL-37 was shown to potentiate the ability of ATP to induce dye uptake at low concentrations (1-3 μg mL-1) or induce dye uptake alone at higher concentrations (10-20 μg mL-1). None of the P2X7R antagonists studied were able to block LL-37-induced dye uptake bringing in to question the ability of current P2X7R antagonists to inhibit the inflammatory action of LL-37 in vivo.
Collapse
Affiliation(s)
- Alexander Jackson
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eryn L Werry
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Paolo Schiavini
- Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shane Wilkinson
- Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Erick C N Wong
- Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - André D J McKenzie
- Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexandra Maximova
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Kassiou
- Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
46
|
Gonçalves MCB, Andrejew R, Gubert C. The Purinergic System as a Target for the Development of Treatments for Bipolar Disorder. CNS Drugs 2022; 36:787-801. [PMID: 35829960 PMCID: PMC9345801 DOI: 10.1007/s40263-022-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
The neurobiological and neurochemical mechanisms underlying the pathophysiology of bipolar disorder are complex and not yet fully understood. From circadian disruption to neuroinflammation, many pathways and signaling molecules are important contributors to bipolar disorder development, some specific to a disease subtype or a cycling episode. Pharmacological agents for bipolar disorder have shown only partial efficacy, including mood stabilizers and antipsychotics. The purinergic hypothesis for bipolar disorder emerges in this scenario as a promising target for further research and drug development, given its role in neurotransmission and neuroinflammation that results in behavioral and mood regulation. Here, we review the basic concepts of purinergic signaling in the central nervous system and its contribution to bipolar disorder pathophysiology. Allopurinol and novel P2X7 receptor antagonists are promising candidates for treating bipolar disorder. We further explore currently available pharmacotherapies and the emerging new purinergic targets for drug development in bipolar disorder.
Collapse
Affiliation(s)
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3032, Australia.
| |
Collapse
|
47
|
Ren WJ, Illes P. Involvement of P2X7 receptors in chronic pain disorders. Purinergic Signal 2021; 18:83-92. [PMID: 34799827 PMCID: PMC8850523 DOI: 10.1007/s11302-021-09796-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic pain is caused by cellular damage with an obligatory inflammatory component. In response to noxious stimuli, high levels of ATP leave according to their concentration gradient, the intracellular space through discontinuities generated in the plasma membrane or diffusion through pannexin-1 hemichannels, and activate P2X7Rs localized at peripheral and central immune cells. Because of the involvement of P2X7Rs in immune functions and especially the initiation of macrophage/microglial and astrocytic secretion of cytokines, chemokines, prostaglandins, proteases, reactive oxygen, and nitrogen species as well as the excitotoxic glutamate/ATP, this receptor type has a key role in chronic pain processes. Microglia are equipped with a battery of pattern recognition receptors that detect pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) from bacterial infections or danger associated molecular patterns (DAMPs) such as ATP. The co-stimulation of these receptors leads to the activation of the NLRP3 inflammasome and interleukin-1β (IL-1β) release. In the present review, we invite you to a journey through inflammatory and neuropathic pain, primary headache, and regulation of morphine analgesic tolerance, in the pathophysiology of which P2X7Rs are centrally involved. P2X7R bearing microglia and astrocyte-like cells playing eminent roles in chronic pain will be also discussed.
Collapse
Affiliation(s)
- Wen-Jing Ren
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany.
| |
Collapse
|
48
|
Role of neuroglia in neuropathic pain and depression. Pharmacol Res 2021; 174:105957. [PMID: 34688904 DOI: 10.1016/j.phrs.2021.105957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Patients with neuropathic pain induced by nerve injury usually present with co-morbid affective changes, such as depression. Neuroglia was reported to play an important role in the development and maintenance of neuropathic pain both centrally and peripherally. Meanwhile, there have been studies showing that neuroglia participated in the development of depression. However, the specific role of neuroglia in neuropathic pain and depression has not been reviewed comprehensively. Therefore, we summarized the recent findings on the role of neuroglia in neuropathic pain and depression. Based on this review, we found a bridge-like role of neuroglia in neuropathic pain co-morbid with depression. This review may provide therapeutic implications in the treatment of neuropathic pain and offer potential help in the studies of mechanisms in the future.
Collapse
|
49
|
von Muecke-Heim IA, Ries C, Urbina L, Deussing JM. P2X7R antagonists in chronic stress-based depression models: a review. Eur Arch Psychiatry Clin Neurosci 2021; 271:1343-1358. [PMID: 34279714 PMCID: PMC8429152 DOI: 10.1007/s00406-021-01306-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Depression affects around 320 million people worldwide. Growing evidence proposes the immune system to be the core interface between psychosocial stress and the neurobiological and behavioural features of depression. Many studies have identified purinergic signalling via the P2X7 receptor (P2X7R) to be of great importance in depression genesis yet only a few have evaluated P2X7R antagonists in chronic stress-based depression models. This review summarizes their findings and analyses their methodology. The four available studies used three to nine weeks of unpredictable, chronic mild stress or unpredictable, chronic stress in male mice or rats. Stress paradigm composition varied moderately, with stimuli being primarily psychophysical rather than psychosocial. Behavioural testing was performed during or after the last week of stress application and resulted in depressive-like behaviours, immune changes (NLRP3 assembly, interleukin-1β level increase, microglia activation) and neuroplasticity impairment. During the second half of each stress paradigm, a P2X7R antagonist (Brilliant Blue G, A-438079, A-804598) was applied. Studies differed with regard to antagonist dosage and application timing. Nonetheless, all treatments attenuated the stress-induced neurobiological changes and depressive-like behaviours. The evidence at hand underpins the importance of P2X7R signalling in chronic stress and depression. However, improvements in study planning and reporting are necessary to minimize experimental bias and increase data purview. To achieve this, we propose adherence to the Research Domain Criteria and the STRANGE framework.
Collapse
Affiliation(s)
- Iven-Alex von Muecke-Heim
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany.
| | - Clemens Ries
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Graduate School of Systemic Neurosciences, University of Munich (LMU), Munich, Germany
| | - Lidia Urbina
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- Graduate School of Systemic Neurosciences, University of Munich (LMU), Munich, Germany
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany.
| |
Collapse
|
50
|
Beaino W, Janssen B, Vugts DJ, de Vries HE, Windhorst AD. Towards PET imaging of the dynamic phenotypes of microglia. Clin Exp Immunol 2021; 206:282-300. [PMID: 34331705 PMCID: PMC8561701 DOI: 10.1111/cei.13649] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence showing the heterogeneity of microglia activation in neuroinflammatory and neurodegenerative diseases. It has been hypothesized that pro‐inflammatory microglia are detrimental and contribute to disease progression, while anti‐inflammatory microglia play a role in damage repair and remission. The development of therapeutics targeting the deleterious glial activity and modulating it into a regenerative phenotype relies heavily upon a clearer understanding of the microglia dynamics during disease progression and the ability to monitor therapeutic outcome in vivo. To that end, molecular imaging techniques are required to assess microglia dynamics and study their role in disease progression as well as to evaluate the outcome of therapeutic interventions. Positron emission tomography (PET) is such a molecular imaging technique, and provides unique capabilities for non‐invasive quantification of neuroinflammation and has the potential to discriminate between microglia phenotypes and define their role in the disease process. However, several obstacles limit the possibility for selective in vivo imaging of microglia phenotypes mainly related to the poor characterization of specific targets that distinguish the two ends of the microglia activation spectrum and lack of suitable tracers. PET tracers targeting translocator protein 18 kDa (TSPO) have been extensively explored, but despite the success in evaluating neuroinflammation they failed to discriminate between microglia activation statuses. In this review, we highlight the current knowledge on the microglia phenotypes in the major neuroinflammatory and neurodegenerative diseases. We also discuss the current and emerging PET imaging targets, the tracers and their potential in discriminating between the pro‐ and anti‐inflammatory microglia activation states.
Collapse
Affiliation(s)
- Wissam Beaino
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Bieneke Janssen
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|