1
|
Lonkar N, Latz E, McManus RM. Neuroinflammation and immunometabolism in neurodegenerative diseases. Curr Opin Neurol 2025; 38:163-171. [PMID: 39936491 DOI: 10.1097/wco.0000000000001356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
PURPOSE OF REVIEW Immunometabolism is an emerging field of research investigating the ability of immune cells to modulate their metabolic activity for optimal function. While this has been extensively examined in peripheral immune cells like macrophages, only recently have these studies been extended to assess the immunometabolic activity of microglia, the innate immune cells of the brain. RECENT FINDINGS Microglia are highly metabolically flexible and can utilize different nutrients for their diverse functions. Like other immune cells, they undergo metabolic reprogramming on immune stimulation and in inflammatory, neurodegenerative conditions such as Alzheimer's disease (AD). In recent years, researchers have looked at the intricate mechanisms that modulate microglial activity and have uncovered key links between altered metabolism, neuroinflammation, and the involvement of disease-associated risk genes. SUMMARY This review highlights the recent studies that have significantly contributed to our understanding of the metabolic dysregulation observed in activated microglia in conditions such as AD, unveiling novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Neha Lonkar
- German Center for Neurodegenerative Diseases (DZNE)
- Institute of Innate Immunity, University Hospital Bonn, Bonn
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn
- Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE)
- Institute of Innate Immunity, University Hospital Bonn, Bonn
| |
Collapse
|
2
|
Zhao Z, Fu Q, Guo X, He H, Yang G. Potential Biomarkers and Treatment of Neuroinflammation in Parkinson's Disease. ACTAS ESPANOLAS DE PSIQUIATRIA 2025; 53:181-188. [PMID: 39801407 PMCID: PMC11726199 DOI: 10.62641/aep.v53i1.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 09/04/2024] [Indexed: 01/16/2025]
Abstract
Parkinson's disease (PD) is a degenerative disease of the central nervous system primarily affecting middle-aged and elderly individuals, significantly compromising their quality of life. Neuroinflammation is now recognized as a key feature in the pathogenesis of PD. This study reviews recent advances in the identification of potential biomarkers associated with neuroinflammation in PD and their significance for therapeutic strategies. These findings suggest that inflammatory factors play a pivotal role in PD treatment, and interventions involving anti-inflammatory drugs, physical exercise, and dietary modifications have shown promising results in mitigating disease progression.
Collapse
Affiliation(s)
- Ziqi Zhao
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, 130117 Changchun, Jilin, China
| | - Qiang Fu
- Department of Geriatrics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, 130021 Changchun, Jilin, China
| | - Xiangyu Guo
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, 130117 Changchun, Jilin, China
| | - Huihan He
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, 130117 Changchun, Jilin, China
| | - Ge Yang
- Department of Geriatrics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, 130021 Changchun, Jilin, China
| |
Collapse
|
3
|
Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, Chen N, Yan J. Inflammasomes in neurodegenerative diseases. Transl Neurodegener 2024; 13:65. [PMID: 39710713 PMCID: PMC11665095 DOI: 10.1186/s40035-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Inflammasomes represent a crucial component of the innate immune system, which respond to threats by recognizing different molecules. These are known as pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). In neurodegenerative diseases and neuroinflammation, the accumulation of misfolded proteins, such as beta-amyloid and alpha-synuclein, can lead to inflammasome activation, resulting in the release of interleukin (IL)-1β and IL-18. This activation also induces pyroptosis, the release of inflammatory mediators, and exacerbates neuroinflammation. Increasing evidence suggests that inflammasomes play a pivotal role in neurodegenerative diseases. Therefore, elucidating and investigating the activation and regulation of inflammasomes in these diseases is of paramount importance. This review is primarily focused on evidence indicating that inflammasomes are activated through the canonical pathway in these diseases. Inflammasomes as potential targets for treating neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Qianchen Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Zhang
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Liping Chen
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wanxue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Bellini G, D'Antongiovanni V, Palermo G, Antonioli L, Fornai M, Ceravolo R, Bernardini N, Derkinderen P, Pellegrini C. α-Synuclein in Parkinson's Disease: From Bench to Bedside. Med Res Rev 2024. [PMID: 39704040 DOI: 10.1002/med.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
α-Synuclein (α-syn), a pathological hallmark of PD, is emerging as a bridging element at the crossroads between neuro/immune-inflammatory responses and neurodegeneration in PD. Several evidence show that pathological α-syn accumulates in neuronal and non-neuronal cells (i.e., neurons, microglia, macrophages, skin cells, and intestinal cells) in central and peripheral tissues since the prodromal phase of the disease, contributing to brain pathology. Indeed, pathological α-syn deposition can promote neurogenic/immune-inflammatory responses that contribute to systemic and central neuroinflammation associated with PD. After providing an overview of the structure and functions of physiological α-syn as well as its pathological forms, we review current studies about the role of neuronal and non-neuronal α-syn at the crossroads between neuroinflammation and neurodegeneration in PD. In addition, we provide an overview of the correlation between the accumulation of α-syn in central and peripheral tissues and PD, related symptoms, and neuroinflammation. Special attention was paid to discussing whether targeting α-syn can represent a suitable therapeutical approach for PD.
Collapse
Affiliation(s)
- Gabriele Bellini
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Neurology, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone Health, New York City, New York, USA
| | - Vanessa D'Antongiovanni
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pascal Derkinderen
- Department of Neurology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Sun D, Li X, Xu S, Cao S, Quan Y, Cui S, Xu D. Dazhu Hongjingtian injection attenuated alcohol-induced depressive symptoms by inhibiting hippocampus oxidative stress and inflammation through Nrf2/HO-1/NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118564. [PMID: 38996946 DOI: 10.1016/j.jep.2024.118564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alcoholic depression, a disorder of the central nervous system, is characterized by alcohol abuse, which causes blood-brain barrier disruption and oxidative damage in the brain. The rhizome of Rhodiola crenulate, from which Dazhu Hongjingtian Injection (DZHJTI) is derived, has been traditionally employed in ethnopharmacology to treat neurological disorders due to its neuroprotective, anti-inflammatory, and antioxidant properties. However, the exact mechanism by which DZHJTI alleviates alcoholic depression remains unclear. AIM OF THE STUDY This study aimed to investigate the antidepressant effects of DZHJTI and its underlying mechanisms in a mouse model of alcohol-induced depression. MATERIALS AND METHODS A model of alcoholic depression was established using C57BL/6J mice, and the effects of DZHJTI on depression-like behaviors induced by alcohol exposure were assessed through behavioral experiments. Histopathological examination was conducted to observe nerve cell damage and microglial activation in the hippocampal region. Oxidative stress indices in the hippocampus, inflammatory factors, and serum levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) were measured using ELISA. Expression of proteins related to the Nrf2/HO-1/NLRP3 signaling pathway was determined by Western blot analysis. RESULTS DZHJTI attenuated depression-like behaviors, neuronal cell damage, oxidative stress levels, inflammatory responses, and microglial activation. It also restored levels of brain-derived neurotrophic factor, brain myelin basic protein, DA, and 5-HT in mice with chronic alcohol exposure. After DZHJTI treatment, the expressions of Nuclear Respiratory Factor 2 (Nrf2) and Heme Oxygenase-1 (HO-1) increased in the hippocampus, whereas the levels of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD, cleaved caspase-1, interleukin (IL)-1β, and IL-18 decreased. CONCLUSIONS DZHJTI ameliorates alcohol-induced depressive symptoms in mice through its antioxidant and anti-inflammatory effects, involving mechanisms associated with the Nrf2/HO-1/NLRP3 signaling pathway. This study highlights the potential of DZHJTI as a therapeutic option for alcohol-related depression and suggests the scope for future research to further elucidate its mechanisms and broader clinical applications.
Collapse
Affiliation(s)
- Dingchun Sun
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Xiangdan Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Songji Xu
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Shuxia Cao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Yingshi Quan
- Department of Anesthesiology, Yanbian University Hospital, Yanji, Jilin, China
| | - Songbiao Cui
- Department of Neurology, Yanbian University Hospital, Yanji, Jilin, China.
| | - Dongyuan Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.
| |
Collapse
|
6
|
Harackiewicz O, Grembecka B. The Role of Microglia and Astrocytes in the Pathomechanism of Neuroinflammation in Parkinson's Disease-Focus on Alpha-Synuclein. J Integr Neurosci 2024; 23:203. [PMID: 39613467 DOI: 10.31083/j.jin2311203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024] Open
Abstract
Glial cells, including astrocytes and microglia, are pivotal in maintaining central nervous system (CNS) homeostasis and responding to pathological insults. This review elucidates the complex immunomodulatory functions of glial cells, with a particular focus on their involvement in inflammation cascades initiated by the accumulation of alpha-synuclein (α-syn), a hallmark of Parkinson's disease (PD). Deriving insights from studies on both sporadic and familial forms of PD, as well as animal models of PD, we explore how glial cells contribute to the progression of inflammation triggered by α-syn aggregation. Additionally, we analyze the interplay between glial cells and the blood-brain barrier (BBB), highlighting the role of these cells in maintaining BBB integrity and permeability in the context of PD pathology. Furthermore, we delve into the potential activation of repair and neuroprotective mechanisms mediated by glial cells amidst α-syn-induced neuroinflammation. By integrating information on sporadic and familial PD, as well as BBB dynamics, this review aims to deepen our understanding of the multifaceted interactions between glial cells, α-syn pathology, and CNS inflammation, thereby offering valuable insights into therapeutic strategies for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Oliwia Harackiewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
7
|
Chatterjee A, Mohapatra J, Sharma M, Jha A, Patro R, Das D, Patel H, Patel H, Chaudhari J, Borda N, Viswanathan K, Sharma B, Bhavsar H, Patel A, Ranvir R, Sundar R, Agarwal S, Jain M. A novel selective NLRP3 inhibitor shows disease-modifying potential in animal models of Parkinson's disease. Brain Res 2024; 1842:149129. [PMID: 39074525 DOI: 10.1016/j.brainres.2024.149129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/23/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024]
Abstract
Pathological activation of the Nod-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome signaling underlies many autoimmune and neuroinflammatory conditions. Here we report that, a rationally designed, novel, orally active, selective NLRP3 inflammasome inhibitor, Usnoflast (ZYIL1), showed potent inhibition of ATP, Nigericin and monosodium urate-mediated interleukin (IL)-1β release in THP-1 cells and human PBMC. In isolated microglia cells, the IC50 of ZYIL1 mediated inhibition of IL-1β was 43 nM. ZYIL1 displayed good pharmacokinetic profile in mice, rats and primates after oral administration and the concentrations found in the brain and cerebrospinal fluid (CSF) were markedly higher than the IC50 values. In an in vivo model of neuroinflammation, ZYIL1 demonstrated robust suppression of NLRP3 inflammasome activation and IL-1β upon oral administration. This translated into efficacy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-Hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) models in mice. In MPTP and/or 6-OHDA models, treatment with ZYIL1 ameliorated motor deficits, degeneration of nigrostriatal dopaminergic neurons and abnormal accumulation of α-synuclein. There were positive changes in the genes related to walking, locomotor activity, neurogenesis, neuroblast proliferation and neuronal differentiation in the PD brain indicating improvement in neural health which translated into improved mobility. These findings clearly indicate that selective NLRP3 inhibitor ZYIL1, ameliorates neuroinflammation and appears to have the potential for disease modification and progression associated with PD.
Collapse
Affiliation(s)
- Abhijit Chatterjee
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India.
| | - Jogeswar Mohapatra
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Manoranjan Sharma
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Abhishek Jha
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Randeep Patro
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Debajeet Das
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Hiren Patel
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Harilal Patel
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Jaimin Chaudhari
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Nilesh Borda
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Kasinath Viswanathan
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Bhavesh Sharma
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Harsh Bhavsar
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Ashvin Patel
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Ramchandra Ranvir
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Rajesh Sundar
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Sameer Agarwal
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| | - Mukul Jain
- Zydus Research Centre, Zydus Lifesciences Limited, Sharkhej-Bavla NH No. 8A, Village Moraiya, Changodar, Ahmedabad 382 213, Gujarat, India
| |
Collapse
|
8
|
Roodveldt C, Bernardino L, Oztop-Cakmak O, Dragic M, Fladmark KE, Ertan S, Aktas B, Pita C, Ciglar L, Garraux G, Williams-Gray C, Pacheco R, Romero-Ramos M. The immune system in Parkinson's disease: what we know so far. Brain 2024; 147:3306-3324. [PMID: 38833182 PMCID: PMC11449148 DOI: 10.1093/brain/awae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Parkinson's disease is characterized neuropathologically by the degeneration of dopaminergic neurons in the ventral midbrain, the accumulation of α-synuclein (α-syn) aggregates in neurons and chronic neuroinflammation. In the past two decades, in vitro, ex vivo and in vivo studies have consistently shown the involvement of inflammatory responses mediated by microglia and astrocytes, which may be elicited by pathological α-syn or signals from affected neurons and other cell types, and are directly linked to neurodegeneration and disease development. Apart from the prominent immune alterations seen in the CNS, including the infiltration of T cells into the brain, more recent studies have demonstrated important changes in the peripheral immune profile within both the innate and adaptive compartments, particularly involving monocytes, CD4+ and CD8+ T cells. This review aims to integrate the consolidated understanding of immune-related processes underlying the pathogenesis of Parkinson's disease, focusing on both central and peripheral immune cells, neuron-glia crosstalk as well as the central-peripheral immune interaction during the development of Parkinson's disease. Our analysis seeks to provide a comprehensive view of the emerging knowledge of the mechanisms of immunity in Parkinson's disease and the implications of this for better understanding the overall pathogenesis of this disease.
Collapse
Affiliation(s)
- Cintia Roodveldt
- Centre for Molecular Biology and Regenerative Medicine-CABIMER, University of Seville-CSIC, Seville 41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville 41009, Spain
| | - Liliana Bernardino
- Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Ozgur Oztop-Cakmak
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Department of Molecular Biology and Endocrinology, ‘VINČA’ Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Kari E Fladmark
- Department of Biological Science, University of Bergen, 5006 Bergen, Norway
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur 15200, Turkey
| | - Carlos Pita
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Lucia Ciglar
- Center Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria
| | - Gaetan Garraux
- Movere Group, Faculty of Medicine, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510156, Santiago, Chile
| | - Marina Romero-Ramos
- Department of Biomedicine & The Danish Research Institute of Translational Neuroscience—DANDRITE, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Biby S, Mondal P, Xu Y, Gomm A, Kaur B, Namme JN, Wang C, Tanzi RE, Zhang S, Zhang C. Functional Characterization of an Arylsulfonamide-Based Small-Molecule Inhibitor of the NLRP3 Inflammasome. ACS Chem Neurosci 2024; 15:3576-3586. [PMID: 39297418 PMCID: PMC11450741 DOI: 10.1021/acschemneuro.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
Considerable evidence indicates that the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays key roles in human pathophysiology, suggesting it as a potential drug target. Currently, studies have yet to develop compounds that are promising therapeutics in the clinic by targeting the NLRP3 inflammasome. Herein, we aim to further biologically characterize a previously identified small-molecule inhibitor of the NLRP3 inflammasome from our group, YM-I-26, to confirm its functional activities. We showed that YM-I-26 is highly selective toward the NLRP3 inflammasome and binds to NLRP3 directly. A systemic analysis revealed YM-I-26 with inflammation-related and immunomodulatory activities by the Eurofins BioMAP Diversity PLUS panel. In addition, studies using the mouse microglia BV2 cell model demonstrated that YM-I-26 is not cytotoxic, improved the phagocytotic functions of BV2 cells toward beta-amyloid, and suppressed the production of cytokines of IL-1β and IL-10 upon the activation of the NLRP3 inflammasome. Collectively, our studies support the functional activities of YM-I-26 as a NLRP3 inhibitor in physiologically relevant cell models, and warrant future studies of YM-I-26 and its analogs to advance the drug development as potential therapeutics.
Collapse
Affiliation(s)
- Savannah Biby
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Prasenjit Mondal
- Genetics
and Aging Research Unit, McCance Center for Brain Health, MassGeneral
Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yiming Xu
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Ashley Gomm
- Genetics
and Aging Research Unit, McCance Center for Brain Health, MassGeneral
Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Baljit Kaur
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Jannatun N. Namme
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Changning Wang
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph E. Tanzi
- Genetics
and Aging Research Unit, McCance Center for Brain Health, MassGeneral
Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Shijun Zhang
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Can Zhang
- Genetics
and Aging Research Unit, McCance Center for Brain Health, MassGeneral
Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
10
|
Ivanova O, Karelina T. Quantitative systems pharmacology model of α-synuclein pathology in Parkinson's disease-like mouse for investigation of passive immunotherapy mechanisms. CPT Pharmacometrics Syst Pharmacol 2024; 13:1798-1809. [PMID: 39177164 PMCID: PMC11494828 DOI: 10.1002/psp4.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
The main pathophysiological hallmark of Parkinson's disease (PD) is the accumulation of aggregated alpha-synuclein (αSyn). Microglial activation is an early event in PD and may play a key role in pathological αSyn aggregation and transmission, as well as in clearance of αSyn and immunotherapy efficacy. Our aim was to investigate how different proposed mechanisms of anti-αSyn immunotherapy may contribute to pathology reduction in various PD-like mouse models. Our mechanistic model of PD pathology in mouse includes αSyn production, aggregation, degradation and distribution in neurons, secretion into interstitial fluid, internalization, and subsequent clearance by neurons and microglia. It describes the influence of neuroinflammation on PD pathogenesis and dopaminergic neurodegeneration. Multiple data from mouse PD models were used for calibration and validation. Simulations of anti-αSyn passive immunotherapy adequately reproduce preclinical data and suggest that (1) immunotherapy is efficient in the reduction of aggregated αSyn in various models of PD-like pathology; (2) prevention of aSyn spread only does not reduce the pathology; (3) a decrease in microglial inflammatory activation and aSyn aggregation may be alternative therapy approaches in PD-like pathology.
Collapse
|
11
|
Kumari M, Bisht KS, Ahuja K, Motiani RK, Maiti TK. Glycation Produces Topologically Different α-Synuclein Oligomeric Strains and Modulates Microglia Response via the NLRP3-Inflammasome Pathway. ACS Chem Neurosci 2024. [PMID: 39320935 DOI: 10.1021/acschemneuro.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
α-Synuclein, a key player in Parkinson's disease and other synucleinopathies, possesses an inherently disordered structure that allows for versatile structural changes during aggregation. Microglia, the brain immune cells, respond differently to various α-synuclein strains, influencing their activation and release of harmful molecules, leading to neuronal death. Post-translational modifications, such as glycation in α-synuclein, add a layer of complexity to microglial activation. This study aimed to explore the impact of glycation on α-synuclein aggregation and microglial responses, which have not been studied before. Biophysical analyses revealed that glycated α-synuclein oligomers had distinct morphologies with a more negative and hydrophobic surface, preventing fibril formation and interfering with membrane interactions. Notably, there was increased cytosolic Ca2+ dysregulation, redox stress, and mitochondrial instability compared to cells exposed to unmodified α-synuclein oligomers. Additionally, glycated α-synuclein oligomers exhibited impaired binding to Toll-like receptor 2, compromising downstream signaling. Surprisingly, these oligomers promoted TLR4 endocytosis and degradation. In our experiments with oligomers, glycated α-synuclein oligomers preferred NLRP3 inflammasome-mediated neuroinflammation, contributing differently from unmodified α-synuclein oligomers. In summary, this study unveils the mechanism underlying the effect of glycation on α-synuclein oligomers and highlights the conformation-specific microglial responses toward extracellular α-synuclein.
Collapse
Affiliation(s)
- Manisha Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Krishna Singh Bisht
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
12
|
Stanton C, Buasakdi C, Sun J, Levitan I, Bora P, Kutseikin S, Wiseman RL, Bollong MJ. The glycolytic metabolite methylglyoxal covalently inactivates the NLRP3 inflammasome. Cell Rep 2024; 43:114688. [PMID: 39196782 DOI: 10.1016/j.celrep.2024.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 08/30/2024] Open
Abstract
The NLRP3 inflammasome promotes inflammation in disease, yet the full repertoire of mechanisms regulating its activity is not well delineated. Among established regulatory mechanisms, covalent modification of NLRP3 has emerged as a common route for the pharmacological inactivation of this protein. Here, we show that inhibition of the glycolytic enzyme phosphoglycerate kinase 1 (PGK1) results in the accumulation of methylglyoxal, a reactive metabolite whose increased levels decrease NLRP3 assembly and inflammatory signaling in cells. We find that methylglyoxal inactivates NLRP3 via a non-enzymatic, covalent-crosslinking-based mechanism, promoting inter- and intraprotein MICA (methyl imidazole crosslink between cysteine and arginine) posttranslational linkages within NLRP3. This work establishes NLRP3 as capable of sensing a host of electrophilic chemicals, both exogenous small molecules and endogenous reactive metabolites, and suggests a mechanism by which glycolytic flux can moderate the activation status of a central inflammatory signaling pathway.
Collapse
Affiliation(s)
- Caroline Stanton
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chavin Buasakdi
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jie Sun
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian Levitan
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Prerona Bora
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergei Kutseikin
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Sagredo GT, Tanglay O, Shahdadpuri S, Fu Y, Halliday GM. ⍺-Synuclein levels in Parkinson's disease - Cell types and forms that contribute to pathogenesis. Exp Neurol 2024; 379:114887. [PMID: 39009177 DOI: 10.1016/j.expneurol.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Parkinson's disease (PD) has two main pathological hallmarks, the loss of nigral dopamine neurons and the proteinaceous aggregations of ⍺-synuclein (⍺Syn) in neuronal Lewy pathology. These two co-existing features suggest a causative association between ⍺Syn aggregation and the underpinning mechanism of neuronal degeneration in PD. Both increased levels and post-translational modifications of ⍺Syn can contribute to the formation of pathological aggregations of ⍺Syn in neurons. Recent studies have shown that the protein is also expressed by multiple types of non-neuronal cells in the brain and peripheral tissues, suggesting additional roles of the protein and potential diversity in non-neuronal pathogenic triggers. It is important to determine (1) the threshold levels triggering ⍺Syn to convert from a biological to a pathologic form in different brain cells in PD; (2) the dominant form of pathologic ⍺Syn and the associated post-translational modification of the protein in each cell type involved in PD; and (3) the cell type associated biological processes impacted by pathologic ⍺Syn in PD. This review integrates these aspects and speculates on potential pathological mechanisms and their impact on neuronal and non-neuronal ⍺Syn in the brains of patients with PD.
Collapse
Affiliation(s)
- Giselle Tatiana Sagredo
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Onur Tanglay
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - Shrey Shahdadpuri
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - YuHong Fu
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
14
|
Gatica-Garcia B, Bannon MJ, Martínez-Dávila IA, Soto-Rojas LO, Reyes-Corona D, Escobedo L, Maldonado-Berny M, Gutierrez-Castillo ME, Espadas-Alvarez AJ, Fernandez-Parrilla MA, Mascotte-Cruz JU, Rodríguez-Oviedo CP, Valenzuela-Arzeta IE, Luna-Herrera C, Lopez-Salas FE, Santoyo-Salazar J, Martinez-Fong D. Unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neuropathology and behavioral deficits in parkinsonian rats with α-synucleinopathy. Neural Regen Res 2024; 19:2057-2067. [PMID: 38227536 DOI: 10.4103/1673-5374.391190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00039/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinsonism by unilateral, intranigral β-sitosterol β-D-glucoside administration in rats is distinguished in that the α-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time, thus replicating several clinical features of Parkinson's disease, a typical α-synucleinopathy. As Nurr1 represses α-synuclein, we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateral β-sitosterol β-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection. This study found that rNurr1-V5 expression but not that of the green fluorescent protein (the negative control) reduced β-sitosterol β-D-glucoside-induced neuropathology. Accordingly, a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum. In addition, tyrosine hydroxylase-positive cells displayed less senescence marker β-galactosidase and more neuron-cytoskeleton marker βIII-tubulin and brain-derived neurotrophic factor. A significant decrease in activated microglia (positive to ionized calcium-binding adaptor molecule 1) and neurotoxic astrocytes (positive to glial fibrillary acidic protein and complement component 3) and increased neurotrophic astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10) also occurred in the substantia nigra. These effects followed the bilateral reduction in α-synuclein aggregates in the nigrostriatal system, improving sensorimotor behavior. Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration (senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells), neuroinflammation (activated microglia, neurotoxic astrocytes), α-synuclein aggregation, and sensorimotor deficits. Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect, supporting its potential clinical use in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Bismark Gatica-Garcia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Irma Alicia Martínez-Dávila
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Luis O Soto-Rojas
- Laboratorio de Patogénesis Molecular, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México
- Red de Medicina para la Educación y Desarrollo y la Investigación Científica de Iztacala (Red MEDICI), Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México
| | | | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - M E Gutierrez-Castillo
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, Ciudad de México, México
| | - Armando J Espadas-Alvarez
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Juan U Mascotte-Cruz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | | | - Irais E Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Claudia Luna-Herrera
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Francisco E Lopez-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
- Nanoparticle Therapy Institute, Aguascalientes, México
- Programa de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| |
Collapse
|
15
|
Krawczuk D, Groblewska M, Mroczko J, Winkel I, Mroczko B. The Role of α-Synuclein in Etiology of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9197. [PMID: 39273146 PMCID: PMC11395629 DOI: 10.3390/ijms25179197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
A presynaptic protein called α-synuclein plays a crucial role in synaptic function and neurotransmitter release. However, its misfolding and aggregation have been implicated in a variety of neurodegenerative diseases, particularly Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Emerging evidence suggests that α-synuclein interacts with various cellular pathways, including mitochondrial dysfunction, oxidative stress, and neuroinflammation, which contributes to neuronal cell death. Moreover, α-synuclein has been involved in the propagation of neurodegenerative processes through prion-like mechanisms, where misfolded proteins induce similar conformational changes in neighboring neurons. Understanding the multifaced roles of α-synuclein in neurodegeneration not only aids in acquiring more knowledge about the pathophysiology of these diseases but also highlights potential biomarkers and therapeutic targets for intervention in alpha-synucleinopathies. In this review, we provide a summary of the mechanisms by which α-synuclein contributes to neurodegenerative processes, focusing on its misfolding, oligomerization, and the formation of insoluble fibrils that form characteristic Lewy bodies. Furthermore, we compare the potential value of α-synuclein species in diagnosing and differentiating selected neurodegenerative diseases.
Collapse
Affiliation(s)
- Daria Krawczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (J.M.)
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (J.M.)
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Ścinawa, Poland;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (J.M.)
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| |
Collapse
|
16
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
17
|
Samsuzzaman M, Subedi L, Hong SM, Lee S, Gaire BP, Ko EJ, Choi JW, Seo SY, Kim SY. A Synthetic Derivative SH 66 of Homoisoflavonoid from Liliaceae Exhibits Anti-Neuroinflammatory Activity against LPS-Induced Microglial Cells. Molecules 2024; 29:3037. [PMID: 38998988 PMCID: PMC11243437 DOI: 10.3390/molecules29133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Naturally occurring homoisoflavonoids isolated from some Liliaceae plants have been reported to have diverse biological activities (e.g., antioxidant, anti-inflammatory, and anti-angiogenic effects). The exact mechanism by which homoisoflavonones exert anti-neuroinflammatory effects against activated microglia-induced inflammatory cascades has not been well studied. Here, we aimed to explore the mechanism of homoisoflavonoid SH66 having a potential anti-inflammatory effect in lipopolysaccharide (LPS)-primed BV2 murine microglial cells. Microglia cells were pre-treated with SH66 followed by LPS (100 ng/mL) activation. SH66 treatment attenuated the production of inflammatory mediators, including nitric oxide and proinflammatory cytokines, by down-regulating mitogen-activated protein kinase signaling in LPS-activated microglia. The SH66-mediated inhibition of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex and the respective inflammatory biomarker-like active interleukin (IL)-1β were noted to be one of the key pathways of the anti-inflammatory effect. In addition, SH66 increased the neurite length in the N2a neuronal cell and the level of nerve growth factor in the C6 astrocyte cell. Our results demonstrated the anti-neuroinflammatory effect of SH66 against LPS-activated microglia-mediated inflammatory events by down-regulating the NLRP3 inflammasome complex, with respect to its neuroprotective effect. SH66 could be an interesting candidate for further research and development regarding prophylactics and therapeutics for inflammation-mediated neurological complications.
Collapse
Affiliation(s)
- Md Samsuzzaman
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea; (M.S.); (L.S.); (S.-M.H.); (S.L.); (B.P.G.); (E.-J.K.); (J.-W.C.)
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | - Lalita Subedi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea; (M.S.); (L.S.); (S.-M.H.); (S.L.); (B.P.G.); (E.-J.K.); (J.-W.C.)
| | - Seong-Min Hong
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea; (M.S.); (L.S.); (S.-M.H.); (S.L.); (B.P.G.); (E.-J.K.); (J.-W.C.)
| | - Sanha Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea; (M.S.); (L.S.); (S.-M.H.); (S.L.); (B.P.G.); (E.-J.K.); (J.-W.C.)
| | - Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea; (M.S.); (L.S.); (S.-M.H.); (S.L.); (B.P.G.); (E.-J.K.); (J.-W.C.)
| | - Eun-Ji Ko
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea; (M.S.); (L.S.); (S.-M.H.); (S.L.); (B.P.G.); (E.-J.K.); (J.-W.C.)
| | - Ji-Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea; (M.S.); (L.S.); (S.-M.H.); (S.L.); (B.P.G.); (E.-J.K.); (J.-W.C.)
| | - Seung-Yong Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea; (M.S.); (L.S.); (S.-M.H.); (S.L.); (B.P.G.); (E.-J.K.); (J.-W.C.)
| | - Sun-Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea; (M.S.); (L.S.); (S.-M.H.); (S.L.); (B.P.G.); (E.-J.K.); (J.-W.C.)
| |
Collapse
|
18
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
19
|
Wu Z, Zhong K, Tang B, Xie S. Research trends of ferroptosis and pyroptosis in Parkinson's disease: a bibliometric analysis. Front Mol Neurosci 2024; 17:1400668. [PMID: 38817551 PMCID: PMC11137268 DOI: 10.3389/fnmol.2024.1400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Objective This study aims to visualize the trends and hotspots in the research of "ferroptosis in PD" and "pyroptosis in PD" through bibliometric analysis from the past to 2024. Methods Literature was retrieved from the Web of Science Core Collection (WoSCC) from the past to February 16, 2024, and bibliometric analysis was conducted using Vosviewer and Citespace. Results 283 and 542 papers were collected in the field of "ferroptosis in PD" and "pyroptosis in PD." The number of publications in both fields has increased yearly, especially in "ferroptosis in PD," which will become the focus of PD research. China, the United States and England had extensive exchanges and collaborations in both fields, and more than 60% of the top 10 institutions were from China. In the fields of "ferroptosis in PD" and "pyroptosis in PD," the University of Melbourne and Nanjing Medical University stood out in terms of publication numbers, citation frequency, and centrality, and the most influential journals were Cell and Nature, respectively. The keyword time zone map showed that molecular mechanisms and neurons were the research hotspots of "ferroptosis in PD" in 2023, while memory and receptor 2 were the research hotspots of "pyroptosis in PD" in 2023, which may predict the future research direction. Conclusion This study provides insights into the development, collaborations, research themes, hotspots, and tendencies of "ferroptosis in PD" and "pyroptosis in PD." Overall situation of these fields is available for researchers to further explore the underlying mechanisms and potential treatments.
Collapse
Affiliation(s)
- Zihua Wu
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Kexin Zhong
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Biao Tang
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- People’s Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, China
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha, China
| | - Sijian Xie
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
20
|
Lučiūnaitė A, Mašalaitė K, Plikusiene I, Maciulis V, Juciute S, Norkienė M, Žvirblienė A. Structural properties of immune complexes formed by viral antigens and specific antibodies shape the inflammatory response of macrophages. Cell Biosci 2024; 14:53. [PMID: 38664730 PMCID: PMC11046781 DOI: 10.1186/s13578-024-01237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Data on the course of viral infections revealed severe inflammation as a consequence of antiviral immune response. Despite extensive research, there are insufficient data on the role of innate immune cells in promoting inflammation mediated by immune complexes (IC) of viral antigens and their specific antibodies. Recently, we demonstrated that antigens of human polyomaviruses (PyVs) induce an inflammatory response in macrophages. Here, we investigated macrophage activation by IC. We used primary murine macrophages as a cell model, virus-like particles (VLPs) of PyV capsid protein as antigens, and a collection of murine monoclonal antibodies (mAbs) of IgG1, IgG2a, IgG2b subclasses. The inflammatory response was investigated by analysing inflammatory chemokines and activation of NLRP3 inflammasome. We observed a diverse pattern of chemokine secretion in macrophages treated with different IC compared to VLPs alone. To link IC properties with cell activation status, we characterised the IC by advanced optical and acoustic techniques. Ellipsometry provided precise real-time kinetics of mAb-antigen interactions, while quartz crystal microbalance measurements showed changes in conformation and viscoelastic properties during IC formation. These results revealed differences in mAb-antigen interaction and mAb binding parameters of the investigated IC. We found that IC-mediated cell activation depends more on IC characteristics, including mAb affinity, than on mAb affinity for the activating Fc receptor. IC formed by the highest affinity mAb showed a significant enhancement of inflammasome activation. This may explain the hyperinflammation related to viral infection and vaccination. Our findings demonstrate that IC promote the viral antigen-induced inflammatory response depending on antibody properties.
Collapse
Affiliation(s)
- Asta Lučiūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania.
| | - Kristina Mašalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania
| | - Ieva Plikusiene
- State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
- Pharmacy and Pharmacology Center, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vincentas Maciulis
- State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Silvija Juciute
- NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Milda Norkienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania
| |
Collapse
|
21
|
Stanton C, Buasakdi C, Sun J, Levitan I, Bora P, Kutseikin S, Wiseman RL, Bollong MJ. The Glycolytic Metabolite Methylglyoxal Covalently Inactivates the NLRP3 Inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.589802. [PMID: 38659753 PMCID: PMC11042358 DOI: 10.1101/2024.04.19.589802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The NLRP3 inflammasome promotes inflammation in disease, yet the full repertoire of mechanisms regulating its activity are not well delineated. Among established regulatory mechanisms, covalent modification of NLRP3 has emerged as a common route for pharmacological inactivation of this protein. Here, we show that inhibition of the glycolytic enzyme PGK1 results in the accumulation of methylglyoxal, a reactive metabolite whose increased levels decrease NLRP3 assembly and inflammatory signaling in cells. We find that methylglyoxal inactivates NLRP3 via a non-enzymatic, covalent crosslinking-based mechanism, promoting inter- and intra-protein MICA posttranslational linkages within NLRP3. This work establishes NLRP3 as capable of sensing a host of electrophilic chemicals, both exogenous small molecules and endogenous reactive metabolites, and suggests a mechanism by which glycolytic flux can moderate the activation status of a central inflammatory signaling pathway.
Collapse
Affiliation(s)
- Caroline Stanton
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chavin Buasakdi
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jie Sun
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian Levitan
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Prerona Bora
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sergei Kutseikin
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - R. Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
22
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Li Z, Wu X, Li H, Bi C, Zhang C, Sun Y, Yan Z. Complex interplay of neurodevelopmental disorders (NDDs), fractures, and osteoporosis: a mendelian randomization study. BMC Psychiatry 2024; 24:232. [PMID: 38539137 PMCID: PMC10967110 DOI: 10.1186/s12888-024-05693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/18/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs), such as Attention-Deficit/Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), and Tourette Syndrome (TS), have been extensively studied for their multifaceted impacts on social and emotional well-being. Recently, there has been growing interest in their potential relationship with fracture risks in adulthood. This study aims to explore the associations between these disorders and fracture rates, in order to facilitate better prevention and treatment. METHODS Employing a novel approach, this study utilized Mendelian randomization (MR) analysis to investigate the complex interplay between ADHD, ASD, TS, and fractures. The MR framework, leveraging extensive genomic datasets, facilitated a systematic examination of potential causal relationships and genetic predispositions. RESULTS The findings unveil intriguing bidirectional causal links between ADHD, ASD, and specific types of fractures. Notably, ADHD is identified as a risk factor for fractures, with pronounced associations in various anatomical regions, including the skull, trunk, and lower limbs. Conversely, individuals with specific fractures, notably those affecting the femur and lumbar spine, exhibit an increased genetic predisposition to ADHD and ASD. In this research, no correlation was found between TS and fractures, or osteoporosis.These results provide a genetic perspective on the complex relationships between NDDs and fractures, emphasizing the importance of early diagnosis, intervention, and a holistic approach to healthcare. CONCLUSION This research sheds new light on the intricate connections between NDDs and fractures, offering valuable insights into potential risk factors and causal links. The bidirectional causal relationships between ADHD, ASD, and specific fractures highlight the need for comprehensive clinical approaches that consider both NDDs and physical well-being.
Collapse
Affiliation(s)
- Zefang Li
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueqiang Wu
- Department of Health Science, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Hanzheng Li
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cong Bi
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Can Zhang
- School of Biomedical Sciences, Shandong First Medical University, Jinan, China
| | - Yiqing Sun
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaojun Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
24
|
Korhonen E. Inflammasome activation in response to aberrations of cellular homeostasis in epithelial cells from human cornea and retina. Acta Ophthalmol 2024; 102 Suppl 281:3-68. [PMID: 38386419 DOI: 10.1111/aos.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
|
25
|
Dorion MF, Yaqubi M, Senkevich K, Kieran NW, MacDonald A, Chen CXQ, Luo W, Wallis A, Shlaifer I, Hall JA, Dudley RWR, Glass IA, Stratton JA, Fon EA, Bartels T, Antel JP, Gan-or Z, Durcan TM, Healy LM. MerTK is a mediator of alpha-synuclein fibril uptake by human microglia. Brain 2024; 147:427-443. [PMID: 37671615 PMCID: PMC10834256 DOI: 10.1093/brain/awad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Mer tyrosine kinase (MerTK) is a receptor tyrosine kinase that mediates non-inflammatory, homeostatic phagocytosis of diverse types of cellular debris. Highly expressed on the surface of microglial cells, MerTK is of importance in brain development, homeostasis, plasticity and disease. Yet, involvement of this receptor in the clearance of protein aggregates that accumulate with ageing and in neurodegenerative diseases has yet to be defined. The current study explored the function of MerTK in the microglial uptake of alpha-synuclein fibrils which play a causative role in the pathobiology of synucleinopathies. Using human primary and induced pluripotent stem cell-derived microglia, the MerTK-dependence of alpha-synuclein fibril internalization was investigated in vitro. Relevance of this pathway in synucleinopathies was assessed through burden analysis of MERTK variants and analysis of MerTK expression in patient-derived cells and tissues. Pharmacological inhibition of MerTK and siRNA-mediated MERTK knockdown both caused a decreased rate of alpha-synuclein fibril internalization by human microglia. Consistent with the non-inflammatory nature of MerTK-mediated phagocytosis, alpha-synuclein fibril internalization was not observed to induce secretion of pro-inflammatory cytokines such as IL-6 or TNF, and downmodulated IL-1β secretion from microglia. Burden analysis in two independent patient cohorts revealed a significant association between rare functionally deleterious MERTK variants and Parkinson's disease in one of the cohorts (P = 0.002). Despite a small upregulation in MERTK mRNA expression in nigral microglia from Parkinson's disease/Lewy body dementia patients compared to those from non-neurological control donors in a single-nuclei RNA-sequencing dataset (P = 5.08 × 10-21), no significant upregulation in MerTK protein expression was observed in human cortex and substantia nigra lysates from Lewy body dementia patients compared to controls. Taken together, our findings define a novel role for MerTK in mediating the uptake of alpha-synuclein fibrils by human microglia, with possible involvement in limiting alpha-synuclein spread in synucleinopathies such as Parkinson's disease. Upregulation of this pathway in synucleinopathies could have therapeutic values in enhancing alpha-synuclein fibril clearance in the brain.
Collapse
Affiliation(s)
- Marie-France Dorion
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Konstantin Senkevich
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal H3A 0C7, Canada
| | - Nicholas W Kieran
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Adam MacDonald
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Carol X Q Chen
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Wen Luo
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Amber Wallis
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Irina Shlaifer
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Roy W R Dudley
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University Health Centers, Montreal H4A 3J1, Canada
| | - Ian A Glass
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Edward A Fon
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Ziv Gan-or
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal H3A 0C7, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| |
Collapse
|
26
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
27
|
Hansen ML, Ambjørn M, Harndahl MN, Benned-Jensen T, Fog K, Bjerregaard-Andersen K, Sotty F. Characterization of pSer129-αSyn Pathology and Neurofilament Light-Chain Release across In Vivo, Ex Vivo, and In Vitro Models of Pre-Formed-Fibril-Induced αSyn Aggregation. Cells 2024; 13:253. [PMID: 38334646 PMCID: PMC10854598 DOI: 10.3390/cells13030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Protein aggregation is a predominant feature of many neurodegenerative diseases, including synucleinopathies, which are characterized by cellular inclusions containing α-Synuclein (αSyn) phosphorylated at serine 129 (pSer129). In the present study, we characterized the development of αSyn pre-formed fibril (PFF)-induced pSer129-αSyn pathology in F28tg mice overexpressing human wild-type αSyn, as well as in ex vivo organotypic cultures and in vitro primary cultures from the same mouse model. Concurrently, we collected cerebrospinal fluid (CSF) from mice and conditioned media from ex vivo and in vitro cultures and quantified the levels of neurofilament light chain (NFL), a biomarker of neurodegeneration. We found that the intra-striatal injection of PFFs induces the progressive spread of pSer129-αSyn pathology and microglial activation in vivo, as well as modest increases in NFL levels in the CSF. Similarly, PFF-induced αSyn pathology occurs progressively in ex vivo organotypic slice cultures and is accompanied by significant increases in NFL release into the media. Using in vitro primary hippocampal cultures, we further confirmed that pSer129-αSyn pathology and NFL release occur in a manner that correlates with the fibril dose and the level of the αSyn protein. Overall, we demonstrate that αSyn pathology is associated with NFL release across preclinical models of seeded αSyn aggregation and that the pharmacological inhibition of αSyn aggregation in vitro also significantly reduces NFL release.
Collapse
Affiliation(s)
- Maja L. Hansen
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | - Malene Ambjørn
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | - Mikkel N. Harndahl
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.N.H.); (K.B.-A.)
| | - Tau Benned-Jensen
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | - Karina Fog
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | | | - Florence Sotty
- Neuroscience, Histology and Pathology Models, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| |
Collapse
|
28
|
Miao Y, Meng H. The involvement of α-synucleinopathy in the disruption of microglial homeostasis contributes to the pathogenesis of Parkinson's disease. Cell Commun Signal 2024; 22:31. [PMID: 38216911 PMCID: PMC10785555 DOI: 10.1186/s12964-023-01402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 01/14/2024] Open
Abstract
The intracellular deposition and intercellular transmission of α-synuclein (α-syn) are shared pathological characteristics among neurodegenerative disorders collectively known as α-synucleinopathies, including Parkinson's disease (PD). Although the precise triggers of α-synucleinopathies remain unclear, recent findings indicate that disruption of microglial homeostasis contributes to the pathogenesis of PD. Microglia play a crucial role in maintaining optimal neuronal function by ensuring a homeostatic environment, but this function is disrupted during the progression of α-syn pathology. The involvement of microglia in the accumulation, uptake, and clearance of aggregated proteins is critical for managing disease spread and progression caused by α-syn pathology. This review summarizes current knowledge on the interrelationships between microglia and α-synucleinopathies, focusing on the remarkable ability of microglia to recognize and internalize extracellular α-syn through diverse pathways. Microglia process α-syn intracellularly and intercellularly to facilitate the α-syn neuronal aggregation and cell-to-cell propagation. The conformational state of α-synuclein distinctly influences microglial inflammation, which can affect peripheral immune cells such as macrophages and lymphocytes and may regulate the pathogenesis of α-synucleinopathies. We also discuss ongoing research efforts to identify potential therapeutic approaches targeting both α-syn accumulation and inflammation in PD. Video Abstract.
Collapse
Affiliation(s)
- Yongzhen Miao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hongrui Meng
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
29
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
30
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
31
|
Xu Y, Gao W, Sun Y, Wu M. New insight on microglia activation in neurodegenerative diseases and therapeutics. Front Neurosci 2023; 17:1308345. [PMID: 38188026 PMCID: PMC10770846 DOI: 10.3389/fnins.2023.1308345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Microglia are immune cells within the central nervous system (CNS) closely linked to brain health and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In response to changes in the surrounding environment, microglia activate and change their state and function. Several factors, example for circadian rhythm disruption and the development of neurodegenerative diseases, influence microglia activation. In this review, we explore microglia's function and the associated neural mechanisms. We elucidate that circadian rhythms are essential factors influencing microglia activation and function. Circadian rhythm disruption affects microglia activation and, consequently, neurodegenerative diseases. In addition, we found that abnormal microglia activation is a common feature of neurodegenerative diseases and an essential factor of disease development. Here we highlight the importance of microglia activation in neurodegenerative diseases. Targeting microglia for neurodegenerative disease treatment is a promising direction. We introduce the progress of methods targeting microglia for the treatment of neurodegenerative diseases and summarize the progress of drugs developed with microglia as targets, hoping to provide new ideas for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yucong Xu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Gao
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingnan Sun
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Modi P, Shah BM, Patel S. Interleukin-1β converting enzyme (ICE): A comprehensive review on discovery and development of caspase-1 inhibitors. Eur J Med Chem 2023; 261:115861. [PMID: 37857145 DOI: 10.1016/j.ejmech.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Caspase-1 is a critical mediator of the inflammatory process by activating various pro-inflammatory cytokines such as pro-IL-1β, IL-18 and IL-33. Uncontrolled activation of caspase-1 leads to various cytokines-mediated diseases. Thus, inhibition of Caspase-1 is considered therapeutically beneficial to halt the progression of such diseases. Currently, rilonacept, canakinumab and anakinra are in use for caspase-1-mediated autoinflammatory diseases. However, the poor pharmacokinetic profile of these peptides limits their use as therapeutic agents. Therefore, several peptidomimetic inhibitors have been developed, but only a few compounds (VX-740, VX-765) have advanced to clinical trials; because of their toxic profile. Several small molecule inhibitors have also been progressing based on the three-dimensional structure of caspase-1. However there is no successful candidate available clinically. In this perspective, we highlight the mechanism of caspase-1 activation, its therapeutic potential as a disease target and potential therapeutic strategies targeting caspase-1 with their limitations.
Collapse
Affiliation(s)
- Palmi Modi
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University Ahmedabad - 382 210, Gujarat, India
| | - Bhumi M Shah
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University Ahmedabad - 382 210, Gujarat, India
| | - Shivani Patel
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
33
|
Dzamko N. Cytokine activity in Parkinson's disease. Neuronal Signal 2023; 7:NS20220063. [PMID: 38059210 PMCID: PMC10695743 DOI: 10.1042/ns20220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The contribution of the immune system to the pathophysiology of neurodegenerative Parkinson's disease (PD) is increasingly being recognised, with alterations in the innate and adaptive arms of the immune system underlying central and peripheral inflammation in PD. As chief modulators of the immune response, cytokines have been intensely studied in the field of PD both in terms of trying to understand their contribution to disease pathogenesis, and if they may comprise much needed therapeutic targets for a disease with no current modifying therapy. This review summarises current knowledge on key cytokines implicated in PD (TNFα, IL-6, IL-1β, IL-10, IL-4 and IL-1RA) that can modulate both pro-inflammatory and anti-inflammatory effects. Cytokine activity in PD is clearly a complicated process mediated by substantial cross-talk of signalling pathways and the need to balance pro- and anti-inflammatory effects. However, understanding cytokine activity may hold promise for unlocking new insight into PD and how it may be halted.
Collapse
Affiliation(s)
- Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
34
|
Huang Q, Yang P, Liu Y, Ding J, Lu M, Hu G. The interplay between α-Synuclein and NLRP3 inflammasome in Parkinson's disease. Biomed Pharmacother 2023; 168:115735. [PMID: 37852103 DOI: 10.1016/j.biopha.2023.115735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023] Open
Abstract
α-Synuclein is a member of a protein of synucleins, which is a presynaptic neuron protein. It is usually highly expressed in the brain and participates in the formation and transmission of nerve synapses. It has been reported that abnormal aggregation of α-Syn can induce the activation of NLRP3 inflammasome in microglia, increase the production of IL-1β, and aggravate neuroinflammation. Therefore, it is recognized as one of the important factors leading to neuroinflammation in Parkinson's disease. In this paper, we aimed to explore the influence of post-translational modification of α-Syn on its pathological aggregation and summarize various pathways that activate NLRP3 triggered by α-Syn and targeted therapeutic strategies, which provided new insights for further exploring the origin and targeted therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Qianhui Huang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pei Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianhua Ding
- Department of Pharmacology, Nanjing Medical University, Jiangsu 211166, China
| | - Ming Lu
- Department of Pharmacology, Nanjing Medical University, Jiangsu 211166, China.
| | - Gang Hu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacology, Nanjing Medical University, Jiangsu 211166, China.
| |
Collapse
|
35
|
Vallese A, Cordone V, Pecorelli A, Valacchi G. Ox-inflammasome involvement in neuroinflammation. Free Radic Biol Med 2023; 207:161-177. [PMID: 37442280 DOI: 10.1016/j.freeradbiomed.2023.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Neuroinflammation plays a crucial role in the onset and the progression of several neuropathologies, from neurodegenerative disorders to migraine, from Rett syndrome to post-COVID 19 neurological manifestations. Inflammasomes are cytosolic multiprotein complexes of the innate immune system that fuel inflammation. They have been under study for the last twenty years and more recently their involvement in neuro-related conditions has been of great interest as possible therapeutic target. The role of oxidative stress in inflammasome activation has been described, however the exact way of action of specific endogenous and exogenous oxidants needs to be better clarified. In this review, we provide the current knowledge on the involvement of inflammasome in the main neuropathologies, emphasizing the importance to further clarify the role of oxidative stress in its activation including the role of mitochondria in inflammasome-induced neuroinflammation.
Collapse
Affiliation(s)
- Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Department of Animal Science, North Carolina State University, 28081, Kannapolis, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
36
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
37
|
Yu H, Chang Q, Sun T, He X, Wen L, An J, Feng J, Zhao Y. Metabolic reprogramming and polarization of microglia in Parkinson's disease: Role of inflammasome and iron. Ageing Res Rev 2023; 90:102032. [PMID: 37572760 DOI: 10.1016/j.arr.2023.102032] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Parkinson's disease (PD) is a slowly progressive neurodegenerative disease characterized by α-synuclein aggregation and dopaminergic neuronal death. Recent evidence suggests that neuroinflammation is an early event in the pathogenesis of PD. Microglia are resident immune cells in the central nervous system that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes as found in peripheral macrophages. To exert their immune functions, microglia respond to various stimuli, resulting in the flexible regulation of their metabolic pathways. Inflammasomes activation in microglia induces metabolic shift from oxidative phosphorylation to glycolysis, and leads to the polarization of microglia to pro-inflammatory M1 phenotype, finally causing neuroinflammation and neurodegeneration. In addition, iron accumulation induces microglia take an inflammatory and glycolytic phenotype. M2 phenotype microglia is more sensitive to ferroptosis, inhibition of which can attenuate neuroinflammation. Therefore, this review highlights the interplay between microglial polarization and metabolic reprogramming of microglia. Moreover, it will interpret how inflammasomes and iron regulate microglial metabolism and phenotypic shifts, which provides a promising therapeutic target to modulate neuroinflammation and neurodegeneration in PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
38
|
Asveda T, Priti T, Ravanan P. Exploring microglia and their phenomenal concatenation of stress responses in neurodegenerative disorders. Life Sci 2023:121920. [PMID: 37429415 DOI: 10.1016/j.lfs.2023.121920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Neuronal cells are highly functioning but also extremely stress-sensitive cells. By defending the neuronal cells against pathogenic insults, microglial cells, a unique cell type, act as the frontline cavalry in the central nervous system (CNS). Their remarkable and unique ability to self-renew independently after their creation is crucial for maintaining normal brain function and neuroprotection. They have a wide range of molecular sensors that help maintain CNS homeostasis during development and adulthood. Despite being the protector of the CNS, studies have revealed that persistent microglial activation may be the root cause of innumerable neurodegenerative illnesses, including Alzheimer's disease (AD), Parkinson's disease (PD), and Amyloid Lateral Sclerosis (ALS). From our vigorous review, we state that there is a possible interlinking between pathways of Endoplasmic reticulum (ER) stress response, inflammation, and oxidative stress resulting in dysregulation of the microglial population, directly influencing the accumulation of pro-inflammatory cytokines, complement factors, free radicals, and nitric oxides leading to cell death via apoptosis. Recent research uses the suppression of these three pathways as a therapeutic approach to prevent neuronal death. Hence, in this review, we have spotlighted the advancement in microglial studies, which focus on their molecular defenses against multiple stresses, and current therapeutic strategies indirectly targeting glial cells for neurodevelopmental diseases.
Collapse
Affiliation(s)
- Thankavelu Asveda
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Talwar Priti
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
39
|
Maran JJ, Adesina MM, Green CR, Kwakowsky A, Mugisho OO. The central role of the NLRP3 inflammasome pathway in the pathogenesis of age-related diseases in the eye and the brain. Ageing Res Rev 2023; 88:101954. [PMID: 37187367 DOI: 10.1016/j.arr.2023.101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
With increasing age, structural changes occur in the eye and brain. Neuronal death, inflammation, vascular disruption, and microglial activation are among many of the pathological changes that can occur during ageing. Furthermore, ageing individuals are at increased risk of developing neurodegenerative diseases in these organs, including Alzheimer's disease (AD), Parkinson's disease (PD), glaucoma and age-related macular degeneration (AMD). Although these diseases pose a significant global public health burden, current treatment options focus on slowing disease progression and symptomatic control rather than targeting underlying causes. Interestingly, recent investigations have proposed an analogous aetiology between age-related diseases in the eye and brain, where a process of chronic low-grade inflammation is implicated. Studies have suggested that patients with AD or PD are also associated with an increased risk of AMD, glaucoma, and cataracts. Moreover, pathognomonic amyloid-β and α-synuclein aggregates, which accumulate in AD and PD, respectively, can be found in ocular parenchyma. In terms of a common molecular pathway that underpins these diseases, the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome is thought to play a vital role in the manifestation of all these diseases. This review summarises the current evidence regarding cellular and molecular changes in the brain and eye with age, similarities between ocular and cerebral age-related diseases, and the role of the NLRP3 inflammasome as a critical mediator of disease propagation in the eye and the brain during ageing.
Collapse
Affiliation(s)
- Jack J Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Moradeke M Adesina
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and the New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|
40
|
Cabrera Ranaldi EDLRM, Nuytemans K, Martinez A, Luca CC, Keane RW, de Rivero Vaccari JP. Proof-of-Principle Study of Inflammasome Signaling Proteins as Diagnostic Biomarkers of the Inflammatory Response in Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:883. [PMID: 37375830 DOI: 10.3390/ph16060883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the death of dopaminergic neurons in the midbrain, the accumulation of α-synuclein aggregates, and motor deficits. A major contributor to dopaminergic neuronal loss is neuroinflammation. The inflammasome is a multiprotein complex that perpetuates neuroinflammation in neurodegenerative disorders including PD. Increases in inflammasome proteins are associated with worsened pathology. Thus, the inhibition of inflammatory mediators has the potential to aid in PD treatment. Here, we investigated inflammasome signaling proteins as potential biomarkers of the inflammatory response in PD. Plasma from PD subjects and healthy age-matched controls were evaluated for levels of the inflammasome protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin (IL)-18. This was carried out using Simple Plex technology to identify changes in inflammasome proteins in the blood of PD subjects. The area under the curve (AUC) was obtained through calculation of the receiver operating characteristics (ROC) to obtain information on biomarker reliability and traits. Additionally, we completed a stepwise regression selected from the lowest Akaike information criterion (AIC) to assess how the inflammasome proteins caspase-1 and ASC contribute to IL-18 levels in people with PD. PD subjects demonstrated elevated caspase-1, ASC, and IL-18 levels when compared to controls; each of these proteins were found to be promising biomarkers of inflammation in PD. Furthermore, inflammasome proteins were determined to significantly contribute to and predict IL-18 levels in subjects with PD. Thus, we demonstrated that inflammasome proteins serve as reliable biomarkers of inflammation in PD and that inflammasome proteins provide significant contributions to IL-18 levels in PD.
Collapse
Affiliation(s)
- Erika D L R M Cabrera Ranaldi
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karen Nuytemans
- The Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anisley Martinez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Corneliu C Luca
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Robert W Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
41
|
Stefanova N, Wenning GK. Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms. Nat Rev Neurosci 2023; 24:334-346. [PMID: 37085728 DOI: 10.1038/s41583-023-00697-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/23/2023]
Abstract
Multiple system atrophy (MSA) is a rare oligodendroglial α-synucleinopathy characterized by neurodegeneration in striatonigral and olivopontocerebellar regions and autonomic brain centres. It causes complex cumulative motor and non-motor disability with fast progression and effective therapy is currently lacking. The difficulties in the diagnosis and treatment of MSA are largely related to the incomplete understanding of the pathogenesis of the disease. The MSA pathogenic landscape is complex, and converging findings from genetic and neuropathological studies as well as studies in experimental models of MSA have indicated the involvement of genetic and epigenetic changes; α-synuclein misfolding, aggregation and spreading; and α-synuclein strain specificity. These studies also indicate the involvement of myelin and iron dyshomeostasis, neuroinflammation, mitochondrial dysfunction and other cell-specific aspects that are relevant to the fast progression of MSA. In this Review, we discuss these findings and emphasize the implications of the complexity of the multifactorial pathogenic cascade for future translational research and its impact on biomarker discovery and treatment target definitions.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Liu P, Zhou Y, Shi J, Wang F, Yang X, Zheng X, Wang Y, He Y, Xie X, Pang X. Myricetin improves pathological changes in 3×Tg-AD mice by regulating the mitochondria-NLRP3 inflammasome-microglia channel by targeting P38 MAPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154801. [PMID: 37086707 DOI: 10.1016/j.phymed.2023.154801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/09/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) represents the common neurodegenerative disease featured by the manifestations of cognitive impairment and memory loss. AD could be alleviated with medication and improving quality of life. Clinical treatment of AD is mainly aimed at improving the cognitive function of patients. Donepezil, memantine and galantamine are commonly used drug. But they could only relieve AD, not cure it. Therefore, new treatment strategies focusing on AD pathogenesis are of great significance and value. Myricetin (Myr) is a natural flavonoid extracted from Myrica rubra. And it shows different bioactivities, such as anti-inflammation, antioxidation as well as central nervous system (CNS) activities. Nonetheless, its associated mechanism in treating AD remains unknown. PURPOSE Here we focused on investigating Myr's effect on treating AD and exploring if its protection on the nervous system activity was associated with specifically inhibiting P38 MAPK signaling pathway while regulating mitochondria-NLRP3 inflammasome-microglia. STUDY DESIGN AND METHODS This work utilized triple transgenic mice (3 × Tg-AD) as AD models and Aβ25-35 was used to induce BV2 cells to build an in vitro AD model. Behavioristics, pathology and related inflammatory factors were examined. Molecular mechanisms are investigated by western-blot, immunofluorescence staining, CETSA, molecular docking, network pharmacology. RESULTS According to our findings, Myr could remarkably improve memory loss, spatial learning ability, Aβ plaque deposition, neuronal and synaptic damage in 3 × Tg-AD mice through specifically inhibiting P38 MAPK pathway activation while restraining microglial hyperactivation. Furthermore, Myr promoted the transformation of microglial phenotype, restored the mitochondrial fission-fusion balance, facilitated mitochondrial biogenesis, and restrained NLRP3 inflammasome activation and neuroinflammation. For the in-vitro experiments, P38 agonist dehydrocorydaline (DHC) was utilized to confirm the key regulatory role of P38 MAPK signaling pathway on the mitochondria-NLRP3 inflammasome-microglia channel. CONCLUSIONS Our results revealed the therapeutic efficacy of Myr in experimental AD, and implied that the associated mechanism is possibly associated with inhibiting tmitochondrial dysfunction, activating NLRP3 inflammasome, and neuroinflammation which was mediated by P38 MAPK pathway. Myr is the drug candidate in AD therapy via targeting P38 MAPK pathway.
Collapse
Affiliation(s)
- Pengfei Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yunfeng Zhou
- School of Pharmacy, Henan University, Kaifeng 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Junzhuo Shi
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Feng Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xiaojia Yang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xuhui Zheng
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yanran Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yangyang He
- School of Pharmacy, Henan University, Kaifeng 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China.
| | - Xinmei Xie
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China.
| |
Collapse
|
43
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
44
|
Lv QK, Tao KX, Wang XB, Yao XY, Pang MZ, Liu JY, Wang F, Liu CF. Role of α-synuclein in microglia: autophagy and phagocytosis balance neuroinflammation in Parkinson's disease. Inflamm Res 2023; 72:443-462. [PMID: 36598534 DOI: 10.1007/s00011-022-01676-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phagocytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related genes such as LRRK2, GBA and DJ-1 also contribute to this stability process. OBJECTIVES Further studies are needed to determine how α-syn works in microglia. METHODS A keyword-based search was performed using the PubMed database for published articles. CONCLUSION In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may provide a novel insight into treatment of PD.
Collapse
Affiliation(s)
- Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Kang-Xin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
45
|
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. SCIENCE ADVANCES 2023; 9:eabq1141. [PMID: 36791205 PMCID: PMC9931221 DOI: 10.1126/sciadv.abq1141] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/19/2023] [Indexed: 05/28/2023]
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glial cells, and neurons. As a fundamental functional module in the central nervous system, the NVU maintains homeostasis in the microenvironment and the integrity of the blood-brain barrier. Disruption of the NVU and interactions among its components are involved in the pathophysiology of synucleinopathies, which are characterized by the pathological accumulation of α-synuclein. Neuroinflammation contributes to the pathophysiology of synucleinopathies, including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. This review aims to summarize the neuroinflammatory response of glial cells and vascular cells in the NVU. We also review neuroinflammation in the context of the cross-talk between glial cells and vascular cells, between glial cells and pericytes, and between microglia and astroglia. Last, we discuss how α-synuclein affects neuroinflammation and how neuroinflammation influences the aggregation and spread of α-synuclein and analyze different properties of α-synuclein in synucleinopathies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 308433, Singapore
- Karolinska Institutet, Department of Odontology, 171 77 Solna, Sweden
- Faculty of Medical Sciences, Sunway University, Subang Jaya, 47500 Selangor, Malaysia
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
46
|
NLRP3 Inflammasome-Mediated Neuroinflammation and Related Mitochondrial Impairment in Parkinson's Disease. Neurosci Bull 2023; 39:832-844. [PMID: 36757612 PMCID: PMC10169990 DOI: 10.1007/s12264-023-01023-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 02/10/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder caused by the loss of dopamine neurons in the substantia nigra and the formation of Lewy bodies, which are mainly composed of alpha-synuclein fibrils. Alpha-synuclein plays a vital role in the neuroinflammation mediated by the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in PD. A better understanding of the NLRP3 inflammasome-mediated neuroinflammation and the related mitochondrial impairment during PD progression may facilitate the development of promising therapies for PD. This review focuses on the molecular mechanisms underlying NLRP3 inflammasome activation, comprising priming and protein complex assembly, as well as the role of mitochondrial impairment and its subsequent inflammatory effects on the progression of neurodegeneration in PD. In addition, the therapeutic strategies targeting the NLRP3 inflammasome for PD treatment are discussed, including the inhibitors of NLRP3 inflammatory pathways, mitochondria-focused treatments, microRNAs, and other therapeutic compounds.
Collapse
|
47
|
Zheng R, Yan Y, Dai S, Ruan Y, Chen Y, Hu C, Lin Z, Xue N, Song Z, Liu Y, Zhang B, Pu J. ASC specks exacerbate α‑synuclein pathology via amplifying NLRP3 inflammasome activities. J Neuroinflammation 2023; 20:26. [PMID: 36740674 PMCID: PMC9899382 DOI: 10.1186/s12974-023-02709-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/29/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammasome activation has a pathogenic role in Parkinson's disease (PD). Up-regulated expressions of inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC) and assembly of ASC specks have been observed in postmortems of human PD brains and experimental PD models. Extracellular ASC specks behave like danger signals and sustain prolonged inflammasome activation. However, the contribution of ASC specks in propagation of inflammasome activation and pathological progression in PD has not been fully established. METHODS Herein, we used human A53T mutant α-synuclein preformed fibrils (PFFs)-stimulated microglia in vitro and unilateral striatal stereotaxic injection of PFFs-induced mice model of PD in vivo, to investigate the significance of ASC specks in PD pathological progression. Rotarod and open-field tests were performed to measure motor behaviors of indicated mice. Changes in the molecular expression were evaluated by immunofluorescence and immunoblotting (IB). Intracellular knockdown of the ASC in BV2 cells was performed using si-RNA. Microglial and neuronal cells were co-cultured in a trans-well system to determine the effects of ASC knockdown on cytoprotection. RESULTS We observed a direct relationship between levels of ASC protein and misfolded α‑synuclein aggregates in PD mice brains. ASC specks amplified NLRP3 inflammasome activation driven by α-synuclein PFFs stimulation, which aggravated reactive microgliosis and accelerated α‑synuclein pathology, dopaminergic neurodegeneration and motor deficits. Endogenous ASC knockdown suppressed microglial inflammasome activation and neuronal α‑synuclein aggregation. CONCLUSIONS In conclusion, our study elucidated that ASC specks contribute to the propagation of inflammasome activation-associated α‑synuclein pathology in PD, which forms the basis for targeting ASC as a potential therapy for PD.
Collapse
Affiliation(s)
- Ran Zheng
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Yiqun Yan
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Shaobing Dai
- grid.13402.340000 0004 1759 700XDepartment of Anesthesiology, School of Medicine, Women’s Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Yang Ruan
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Ying Chen
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Chenjun Hu
- grid.13402.340000 0004 1759 700XDepartment of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang China
| | - Zhihao Lin
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Naijia Xue
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Zhe Song
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Yi Liu
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Baorong Zhang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Jiali Pu
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| |
Collapse
|
48
|
Bearoff F, Dhavale D, Kotzbauer P, Kortagere S. Aggregated alpha-synuclein transcriptionally activates pro-inflammatory canonical and non-canonical NF-κB signaling pathways in peripheral monocytic cells. Mol Immunol 2023; 154:1-10. [PMID: 36571978 PMCID: PMC9905308 DOI: 10.1016/j.molimm.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by chronic neuroinflammation, loss of dopaminergic neurons in the substantia nigra, and in several cases accumulation of alpha-synuclein fibril (α-syn) containing Lewy-bodies (LBs). Peripheral inflammation may play a causal role in inducing and perpetuating neuroinflammation in PD and accumulation of fibrillar α-syn has been reported at several peripheral sites including the gut and liver. Peripheral fibrillar α-syn may induce activation of monocytes via recognition by toll-like receptors (TLRs) and stimulation of downstream NF-κB signaling; however, the specific mechanism by which this occurs is not defined. In this study we utilized the THP-1 monocytic cell line to model the peripheral transcriptional response to preformed fibrillar (PFF) α-syn. Compared to monomeric α-syn, PFF α-syn displays overt inflammatory gene upregulation and pathway activation including broad pan-TLR signaling pathway activation and increases in TNF and IL1B gene expression. Notably, the non-canonical NF-κB signaling pathway gene and PD genome wide association study (GWAS) candidate NFKB2 was upregulated. Additionally, non-canonical NF-κB activation-associated RANK and CD40 pathways were also upregulated. Transcriptional-phenotype analysis suggests PFFs induce transcriptional programs associated with differentiation of monocytes towards macrophages and osteoclasts via non-canonical NF-κB signaling as a potential mechanism in which myeloid/monocyte cells may contribute to peripheral inflammation and pathogenesis in PD.
Collapse
Affiliation(s)
- Frank Bearoff
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Dhruva Dhavale
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Paul Kotzbauer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
49
|
Anderson FL, Biggs KE, Rankin BE, Havrda MC. NLRP3 inflammasome in neurodegenerative disease. Transl Res 2023; 252:21-33. [PMID: 35952982 PMCID: PMC10614656 DOI: 10.1016/j.trsl.2022.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative diseases are characterized by a dysregulated neuro-glial microenvironment, culminating in functional deficits resulting from neuronal cell death. Inflammation is a hallmark of the neurodegenerative microenvironment and despite a critical role in tissue homeostasis, increasing evidence suggests that chronic inflammatory insult can contribute to progressive neuronal loss. Inflammation has been studied in the context of neurodegenerative disorders for decades but few anti-inflammatory treatments have advanced to clinical use. This is likely due to the related challenges of predicting and mitigating off-target effects impacting the normal immune response while detecting inflammatory signatures that are specific to the progression of neurological disorders. Inflammasomes are pro-inflammatory cytosolic pattern recognition receptors functioning in the innate immune system. Compelling pre-clinical data has prompted an intense interest in the role of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in neurodegenerative disease. NLRP3 is typically inactive but can respond to sterile triggers commonly associated with neurodegenerative disorders including protein misfolding and aggregation, mitochondrial and oxidative stress, and exposure to disease-associated environmental toxicants. Clear evidence of enhanced NLRP3 inflammasome activity in common neurodegenerative diseases has coincided with rapid advancement of novel small molecule therapeutics making the NLRP3 inflammasome an attractive target for near-term interventional studies. In this review, we highlight evidence from model systems and patients indicating inflammasome activity in neurodegenerative disease associated with the NLRP3 inflammasome's ability to recognize pathologic forms of amyloid-β, tau, and α-synuclein. We discuss inflammasome-driven pyroptotic processes highlighting the potential utility of evaluating extracellular inflammasome-related proteins in the context of biomarker discovery. We complete the report by pointing out gaps in our understanding of intracellular modifiers of inflammasome activity and mechanisms regulating the resolution of inflammasome activation. The literature review and perspectives provide a conceptual platform for continued analysis of inflammation in neurodegenerative diseases through the study of inflammasomes and pyroptosis, mechanisms of inflammation and cell death now recognized to function in multiple highly prevalent neurological disorders.
Collapse
Affiliation(s)
- Faith L Anderson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Karl E Biggs
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Brynn E Rankin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire.
| |
Collapse
|
50
|
Panda C, Mahapatra RK. Bi-Directional Relationship Between Autophagy and Inflammasomes in Neurodegenerative Disorders. Cell Mol Neurobiol 2023; 43:115-137. [PMID: 35066716 PMCID: PMC11415217 DOI: 10.1007/s10571-021-01184-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/12/2021] [Indexed: 01/18/2023]
Abstract
The innate immune system, as the first line of cellular defense, triggers a protective response called inflammation when encountered with invading pathogens. Inflammasome is a multi-protein cytosolic signaling complex that induces inflammation and is critical for inflammation-induced pyroptotic cell death. Inflammasome activation has been found associated with neurodegenerative disorders (NDs), inflammatory diseases, and cancer. Autophagy is a crucial intracellular quality control and homeostasis process which removes the dysfunctional organelles, damaged proteins, and pathogens by sequestering the cytosolic components in a double-membrane vesicle, which eventually fuses with lysosome resulting in cargo degradation. Autophagy disruption has been observed in many NDs presented with persistent neuroinflammation and excessive inflammasome activation. An interplay between inflammation activation and the autophagy process has been realized over the last decade. In the case of NDs, autophagy regulates neuroinflammation load and cellular damage either by engulfing the misfolded protein deposits, dysfunctional mitochondria, or the inflammasome complex itself. A healthy two-way regulation between both cellular processes has been realized for cell survival and cell defense during inflammatory conditions. Therefore, clinical interest in the modulation of inflammasome activation by autophagy inducers is rapidly growing. In this review, we discuss the structural basis of inflammasome activation and the mechanistic ideas of the autophagy process in NDs. Along with comments on multiple ways of neuroinflammation regulation by microglial autophagy, we also present a perspective on pharmacological opportunities in this molecular interplay pertaining to NDs.
Collapse
Affiliation(s)
- Chinmaya Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Rajani Kanta Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|