1
|
Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE. Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay. Mol Neurobiol 2017; 55:2285-2300. [PMID: 28332151 DOI: 10.1007/s12035-017-0481-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
Previous studies have indicated that paracrine factors (conditioned medium) increase wound closure and reduce reactive oxygen species in a traumatic brain injury in vitro model. Although the beneficial effects of conditioned medium from human adipose tissue-derived mesenchymal stem cells (hMSCA-CM) have been previously suggested for various neurological diseases, their actions on astrocytic cells are not well understood. In this study, we have explored the effect of hMSCA-CM on human astrocyte model (T98G cells) subjected to scratch assay. Our results indicated that hMSCA-CM improved cell viability, reduced nuclear fragmentation, attenuated the production of reactive oxygen species, and preserved mitochondrial membrane potential and ultrastructural parameters. In addition, hMSCA-CM upregulated neuroglobin in T98G cells and the genetic silencing of this protein prevented the protective action of hMSCA-CM on damaged cells, suggesting that neuroglobin is mediating, at least in part, the protective effect of hMSCA-CM. Overall, this evidence suggests that the use of hMSCA-CM is a promising therapeutic strategy for the protection of astrocytic cells in central nervous system (CNS) pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gina Guio Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
- GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA
- School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., 119991, Moscow, Russia
| | - Paula Esquinas
- Facultad Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Ranno E, D'Antoni S, Spatuzza M, Berretta A, Laureanti F, Bonaccorso CM, Pellitteri R, Longone P, Spalloni A, Iyer AM, Aronica E, Catania MV. Endothelin-1 is over-expressed in amyotrophic lateral sclerosis and induces motor neuron cell death. Neurobiol Dis 2014; 65:160-71. [PMID: 24423643 DOI: 10.1016/j.nbd.2014.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/13/2013] [Accepted: 01/04/2014] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of motor neurons (MNs) and astrogliosis. Recent evidence suggests that factors secreted by activated astrocytes might contribute to degeneration of MNs. We focused on endothelin-1 (ET-1), a peptide which is strongly up-regulated in reactive astrocytes under different pathological conditions. We show that ET-1 is abundantly expressed by reactive astrocytes in the spinal cord of the SOD1-G93A mouse model and sporadic ALS patients. To test if ET-1 might play a role in degeneration of MNs, we investigated its effect on MN survival in an in vitro model of mixed rat spinal cord cultures (MSCs) enriched of astrocytes exhibiting a reactive phenotype. ET-1 exerted a toxic effect on MNs in a time- and concentration-dependent manner, with an exposure to 100-200nM ET-1 for 48h resulting in 40-50% MN cell death. Importantly, ET-1 did not induce MN degeneration when administered on cultures treated with AraC (5μM) or grown in a serum-free medium that did not favor astrocyte proliferation and reactivity. We found that both ETA and ETB receptors are enriched in astrocytes in MSCs. The ET-1 toxic effect was mimicked by ET-3 (100nM) and sarafotoxin S6c (10nM), two selective agonists of endothelin-B receptors, and was not additive with that of ET-3 suggesting the involvement of ETB receptors. Surprisingly, however, the ET-1 effect persisted in the presence of the ETB receptor antagonist BQ-788 (200nM-2μM) and was slightly reversed by the ETA receptor antagonist BQ-123 (2μM), suggesting an atypical pharmacological profile of the astrocytic receptors responsible for ET-1 toxicity. The ET-1 effect was not undone by the ionotropic glutamate receptor AMPA antagonist GYKI 52466 (20μM), indicating that it is not caused by an increased glutamate release. Conversely, a 48-hour ET-1 treatment increased MN cell death induced by acute exposure to AMPA (50μM), which is indicative of two distinct pathways leading to neuronal death. Altogether these results indicate that ET-1 exerts a toxic effect on cultured MNs through mechanisms mediated by reactive astrocytes and suggest that ET-1 may contribute to MN degeneration in ALS. Thus, a treatment aimed at lowering ET-1 levels or antagonizing its effect might be envisaged as a potential therapeutic strategy to slow down MN degeneration in this devastating disease.
Collapse
Affiliation(s)
- Eugenia Ranno
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy; PhD Program in Neurobiology, University of Catania, Catania, Italy
| | - Simona D'Antoni
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Antonio Berretta
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Floriana Laureanti
- Department of Biomedical Sciences, Section of Physiology, University of Catania, Catania, Italy
| | | | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Patrizia Longone
- Molecular Neurobiology Unit, Experimental Neurology, Fondazione Santa Lucia, Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Experimental Neurology, Fondazione Santa Lucia, Rome, Italy
| | - Anand M Iyer
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy; IRCCS Oasi Maria SS, Troina (EN), Italy.
| |
Collapse
|
3
|
Adornetto A, Pagliara V, Renzo GD, Arcone R. Polychlorinated biphenyls impair dibutyryl cAMP-induced astrocytic differentiation in rat C6 glial cell line. FEBS Open Bio 2013; 3:459-66. [PMID: 24251112 PMCID: PMC3829991 DOI: 10.1016/j.fob.2013.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 02/04/2023] Open
Abstract
In the central nervous system, alteration of glial cell differentiation can affect brain functions. Polychlorinated biphenyls (PCBs) are persistent environmental chemical contaminants that exert neurotoxic effects in glial and neuronal cells. We examined the effects of a commercial mixture of PCBs, Aroclor1254 (A1254) on astrocytic differentiation of glial cells, using the rat C6 cell line as in vitro model. The exposure for 24 h to sub-toxic concentrations of A1254 (3 or 9 μM) impaired dibutyryl cAMP-induced astrocytic differentiation as showed by the decrease of glial fibrillary acidic protein (GFAP) protein levels and inhibition in change of cell morphology toward an astrocytic phenotype. The A1254 inhibition was restored by the addition of a protein kinase C (PKC) inhibitor, bisindolylmaleimide (bis), therefore indicating that PCBs disturbed the cAMP-induced astrocytic differentiation of C6 cells via the PKC pathway. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) is essential for cAMP-induced transcription of GFAP promoter in C6 cells. Our results indicated that the exposure to A1254 (3 or 9 μM) for 24 h suppressed cAMP-induced STAT3 phosphorylation. Moreover, A1254 reduced cAMP-dependent phosphorylation of STAT3 requires inhibition of PKC activity. Together, our results suggest that PCBs induce perturbation in cAMP/PKA and PKC signaling pathway during astrocytic differentiation of glial cells.
Collapse
Key Words
- A1254, Aroclor 1254
- Aroclor1254
- Astrocytic differentiation
- C6 glial cell line
- CNS, central nervous system
- CRE, cAMP responsive element
- CREB, cAMP-response element binding protein
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco’s Modified Eagle’s Medium
- DMSO, dimethyl sulfoxide
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GFAP, glial fibrillary acidic protein
- Glial fibrillary acidic protein (GFAP)
- MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
- NMDA, N-methyl-d-aspartate
- PCBs, polychlorinated biphenyls
- PKA, protein kinase A
- PKC, protein kinase C
- Protein kinase C (PKC)
- ROS, reactive oxygen species
- STAT3, signal transducer and activator of transcription 3
- Signal transducer and activator of transcription 3 (STAT3)
- TRE, CRE transcriptional response element
- bis, 2-[1-(3-dimethylamino-propyl)indol-3-yl]-3-(indol-3-yl) maleimide
- dbcAMP, N6,2′-O-dibutyryl cAMP
- nNOS, neuronal nitric oxide
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende, Cosenza (CS) 87036, Italy
| | | | | | | |
Collapse
|
4
|
Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol 2012; 46:251-64. [PMID: 22684804 DOI: 10.1007/s12035-012-8287-4] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/29/2012] [Indexed: 11/29/2022]
Abstract
Reactive astrogliosis is a pathologic hallmark of spinal cord injury (SCI). It is characterised by profound morphological, molecular, and functional changes in astrocytes that occur within hours of SCI and evolves as time elapses after injury. Astrogliosis is a defense mechanism to minimize and repair the initial damage but eventually leads to some detrimental effects. Reactive astrocytes secrete a plethora of both growth promoting and inhibitory factors after SCI. However, the production of inhibitory components surpasses the growth stimulating factors, thus, causing inhibitory effects. In severe cases of injury, astrogliosis results in the formation of irreversible glial scarring that acts as regeneration barrier due to the expression of inhibitory components such as chondroitin sulfate proteoglycans. Scar formation was therefore recognized from a negative perspective for many years. Accumulating evidence from pharmacological and genetic studies now signifies the importance of astrogliosis and its timing for spinal cord repair. These studies have advanced our knowledge regarding signaling pathways and molecular mediators, which trigger and modulate reactive astrocytes and scar formation. In this review, we discuss the recent advances in this field. We also review therapeutic strategies that have been developed to target astrocytes reactivity and glial scaring in the environment of SCI. Astrocytes play pivotal roles in governing SCI mechanisms, and it is therefore crucial to understand how their activities can be targeted efficiently to harness their potential for repair and regeneration after SCI.
Collapse
Affiliation(s)
- Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Departments of Physiology and Biochemistry and Medical Genetics, the Spinal Cord Research Center, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | | |
Collapse
|
5
|
D'Antoni S, Berretta A, Seminara G, Longone P, Giuffrida-Stella AM, Battaglia G, Sortino MA, Nicoletti F, Catania MV. A prolonged pharmacological blockade of type-5 metabotropic glutamate receptors protects cultured spinal cord motor neurons against excitotoxic death. Neurobiol Dis 2011; 42:252-64. [DOI: 10.1016/j.nbd.2011.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
|
6
|
Abd-El-Basset EM, Abd-El-Barr MM. Effect of interleukin-1β on the expression of actin isoforms in cultured mouse astroglia. Anat Rec (Hoboken) 2010; 294:16-23. [PMID: 21157913 DOI: 10.1002/ar.21303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/27/2010] [Indexed: 12/20/2022]
Abstract
Cytokines are soluble mediators that are thought to act as communication signals between astroglia and neighboring neural cells. They are both released by, and act on, astroglia. It is hypothesized that it is this effect on astroglia that may be important in widespread phenomena including traumatic brain injury, inflammation, and scar formation. In this article, we examine the effect of mouse recombinant interleukin-1β (IL-1β) on the morphology, organization, and expression of glial fibrillary acidic protein (GFAP) and actin isoforms in cultured mouse astroglia. This study shows that the majority of the astroglia treated with IL-1β acquire long processes. Immunofluorescence staining shows that there are no remarkable changes in the organization of GFAP, F-actin, α-smooth muscle (α-sm) actin, and β-actin isoforms. In fluorescent microplate assay, the short-term treated astroglia (range, 1-2 days) show an increase in the intensity of GFAP and β-actin isoform over the level observed in untreated control, whereas no remarkable changes are observed in the intensity of α-sm actin isoform. In the case of long-term treatment (range, 4-8 days), the intensity of GFAP and α-sm actin isoform progressively decreases below the level of untreated control. In addition, the intensity of β-actin isoform increases above the control level. These results have been confirmed by immunoblotting experiments. The upregulation of β-actin isoform may be important in limiting the noxious effects of an inflammatory reaction. This gives credence to the hypothesis that it might be possible to modulate astroglial effects on neuronal inflammation and scar formation with appropriate therapies.
Collapse
Affiliation(s)
- E M Abd-El-Basset
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait.
| | | |
Collapse
|
7
|
STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 2008; 28:7231-43. [PMID: 18614693 DOI: 10.1523/jneurosci.1709-08.2008] [Citation(s) in RCA: 700] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Signaling mechanisms that regulate astrocyte reactivity and scar formation after spinal cord injury (SCI) are not well defined. We used the Cre recombinase (Cre)-loxP system under regulation of the mouse glial fibrillary acidic protein (GFAP) promoter to conditionally delete the cytokine and growth factor signal transducer, signal transducer and activator of transcription 3 (STAT3), from astrocytes. After SCI in GFAP-Cre reporter mice, >99% of spinal cord cells that exhibited Cre activity as detected by reporter protein expression were GFAP-expressing astrocytes. Conditional deletion (or knock-out) of STAT3 (STAT3-CKO) from astrocytes in GFAP-Cre-loxP mice was confirmed in vivo and in vitro. In uninjured adult STAT3-CKO mice, astrocytes appeared morphologically similar to those in STAT3+/+ mice except for a partially reduced expression of GFAP. In STAT3+/+ mice, phosphorylated STAT3 (pSTAT3) was not detectable in astrocytes in uninjured spinal cord, and pSTAT3 was markedly upregulated after SCI in astrocytes and other cell types near the injury. Mice with STAT3-CKO from astrocytes exhibited attenuated upregulation of GFAP, failure of astrocyte hypertrophy, and pronounced disruption of astroglial scar formation after SCI. These changes were associated with increased spread of inflammation, increased lesion volume and partially attenuated motor recovery over the first 28 d after SCI. These findings indicate that STAT3 signaling is a critical regulator of certain aspects of reactive astrogliosis and provide additional evidence that scar-forming astrocytes restrict the spread of inflammatory cells after SCI.
Collapse
|
8
|
Benvenisti-Zarom L, Regan RF. Astrocyte-specific heme oxygenase-1 hyperexpression attenuates heme-mediated oxidative injury. Neurobiol Dis 2007; 26:688-95. [PMID: 17467999 PMCID: PMC1952678 DOI: 10.1016/j.nbd.2007.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 01/28/2023] Open
Abstract
In prior studies, we have observed that HO activity protects astrocytes from heme-mediated injury, but paradoxically increases neuronal injury. In this study, we tested the hypothesis that an adenovirus encoding the human HO-1 gene driven by an enhanced glial fibrillary acidic protein promoter (Ad-GFAP-HO-1) would increase HO-1 expression selectively in astrocytes, and provide cytoprotection. Treatment with 100 MOI Ad-GFAP-HO-1 for 24 h resulted in HO-1 expression that was 6.4-fold higher in cultured primary astrocytes than in neurons. Astrocyte HO activity was increased by approximately fourfold over baseline, which was sufficient to reduce cell death after 24-h hemin exposure by 60%, as assessed by both MTT and LDH release assays. A similar reduction in cell protein oxidation, quantified by carbonyl assay, was also observed. These results suggest that HO-1 transgene expression regulated by an enhanced GFAP promoter selectively increases HO-1 expression in astrocytes, and is cytoprotective. Further investigation of this strategy in vivo is warranted.
Collapse
Affiliation(s)
| | - Raymond F. Regan
- *Corresponding Author. Department of Emergency Medicine, Thomas Jefferson University, 1020 Sansom Street, Thompson Building Room 239, Philadelphia, PA 19107, Telephone: 215-955-2695; FAX: 215-923-6225, E-mail:
| |
Collapse
|
9
|
Bramanti V, Campisi A, Tomassoni D, Costa A, Fisichella A, Mazzone V, Denaro L, Avitabile M, Amenta F, Avola R. Astroglial-Conditioned Media and Growth Factors Modulate Proliferation and Differentiation of Astrocytes in Primary Culture. Neurochem Res 2006; 32:49-56. [PMID: 17151914 DOI: 10.1007/s11064-006-9224-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
Astroglial conditioned media (ACM) influence the development and maturation of cultured nerve cells and modulate neuron-glia interaction. To clarify mechanisms of astroglial cell proliferation/differentiation in culture, incorporation of [methyl-3H]-thymidine or [5,6-3H]-uridine in cultured astrocytes was assessed. Cultures were pre-treated with epidermal growth factor (EGF), insulin (INS), insulin-like growth factor-I (IGF-I), and basic fibroblast growth factor (bFGF) and subsequently with ACM. DNA labeling revealed a marked stimulatory effect of ACM from 15 days in vitro (DIV) cultures in 30 DIV astrocytes after 12 h pre-treatment with growth factors. The main effects were found after INS or EGF pre-treatment in 30 DIV cultures. ACM collected from 15 or 60 or 90 DIV increased RNA labeling of 15 and 30 DIV astrocyte cultures, being the highest value that of 30 DIV cultures added with ACM from 90 DIV. The findings of increased DNA labeling after EGF or INS pre-treatment in 30 DIV cultures, followed by addition of ACM from 15 DIV cultures, suggest that these phenomena may depend by extra cellular signal-regulated kinase 1 (ERK1) activation.
Collapse
Affiliation(s)
- Vincenzo Bramanti
- Section of Biochemistry and Molecular Biology, Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Ribotta MG, Menet V, Privat A. Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice. ACTA NEUROCHIRURGICA. SUPPLEMENT 2004; 89:87-92. [PMID: 15335106 DOI: 10.1007/978-3-7091-0603-7_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Astrocytes play an active role in the brain and spinal cord. For example, they have a function in formation and maintenance of the blood-brain barrier, ion homeostasis, neurotransmitter transport, production of extracellular matrix, and neuromodulation. Moreover, they play a role in preserving or even restoring the structural and physiological integrity after tissue injury. Currently, the function of astrocytes was studied with regard to the controversially discussed aspects of permissivity on the one-hand-side and inhibition of the other side exerted by reactive astrocytes for axonal regrowth in the adult CNS. Accordingly, knock-out mice deficient in vimentin (VIM) and/or glial fibrillary acidic protein (GFAP), the two major IF-proteins of astrocytes, were investigated. In addition, in vitro studies were carried out, on whether the absence of one or both proteins (VIM, GFAP) influences axonal regeneration. In experimental animals, a hemisection of the spinal cord was performed utilizing the above mentioned double-mutant mice. The knock-out mice were generated by gene targeting. Double-mutants were obtained by crossing single null mice. The in vitro results indicate that both VIM and GFAP were absent in astrocytic cultures obtained from double-mutant mice. On the other side, the proteins were detected in more than 85%, of cultured cells from wild types. Co-culture of mutant mice astrocytes with neurons revealed that the neuronal density was different from that obtained in culture with wild type astrocytes. On the other side, there was a marked increase in neuronal density in co-cultures utilizing both GFAP knock-out- or double-mutant mice astrocytes again as compared to co-cultures with wild type astrocytes. Moreover, the neurite length of neurons was significantly increased in experiments with neurons growing on astrocytes from GFAP-knock-out or double-mutant mice. The in vivo experiments demonstrate an increase of nestin (NES) immunoreactivity at three days in the sectioned side of the spinal cord, in the perikaryon and astroglial processes. In double-mutant mice only a slight increase in NES-immunoreactivity was found in the lesion side, albeit confined to the perikaryon of astrocytes. Below the lesion, serotonin immunostaining was dramatically reduced three days after the insult in both sides, particularly in the lesion side. The decrease was more pronounced in double-mutant than in wild type mice. On the other side, double-mutant mice had a much higher density of serotonergic fibers in the ventral horn in the lesioned side. In conclusion, the findings demonstrate that in the absence of important astrocytic proteins as VIM and GFAP, the astroglial response to injury is significantly modified underlying reduced scar formation. Attenuation of scar formation may enhance axonal sprouting of serotonergic axons below the lesion, which specifically reinnervate motoneuron pools.
Collapse
Affiliation(s)
- M G Ribotta
- INSERM U, Université Montpellier, Cedex, France
| | | | | |
Collapse
|
12
|
Abstract
The N20.1 oligodendroglial cell line, immortalized with SV40 T antigen, simultaneously expresses oligodendroglial markers and glial fibrillary acidic protein (GFAP), an astroglial marker. This study examines the plasticity of N20.1 cells with regard to GFAP expression, and its relationship to expression of SV40 T antigen, p53, and a novel nuclear antigen detected by the A007 monoclonal antibody. Marked changes occur in GFAP levels and cell morphology when N20.1 cells are switched from the permissive temperature (34 degrees C) to the non-permissive temperature (39 degrees C), and with cyclic AMP elevation at 39 degrees C. At 34 degrees C, levels of GFAP are high; when cells are switched to 39 degrees C, GFAP levels decrease significantly, then increase slightly when forskolin is added. At both temperatures, the cells display feathery GFAP immunostaining. When forskolin is added at 39 degrees C, however, cells display bright fibrous GFAP staining in elongated processes. The changes in GFAP were compared to changes in T antigen and p53. As expected, the decrease in T antigen at 39 degrees C was accompanied by movement of p53 from the nucleus to cytoplasm. Total p53 levels did not change, however, and forskolin did not alter the respective distribution or levels of p53 at either temperature. At both temperatures, the cell bodies and processes show internal expression of sulfatide, as demonstrated with the O4, Sulph I, and A007 antibodies. We show, for the first time, abundant nuclear immunoreactivity with the A007 monoclonal antibody in the N20.1 cells. This nuclear reactivity is seen at 34 degrees C, but not at 39 degrees C, similar to p53, and is not detected with the other sulfatide antibodies. Double-label immunostaining shows that the nuclear A007 immunoreactivity is co-localized in nuclear structures with T antigen and p53 at 34 degrees C, but is not found in every nucleus containing these antigens. We conclude that regulation of GFAP expression and morphology in N20.1 cells is dependent on a combination of T antigen expression and level of cAMP and may be related to regulation of p53 and the A007 nuclear antigen.
Collapse
Affiliation(s)
- Diane M Studzinski
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
13
|
Ahlemeyer B, Kölker S, Zhu Y, Hoffmann GF, Krieglstein J. Cytosine arabinofuranoside-induced activation of astrocytes increases the susceptibility of neurons to glutamate due to the release of soluble factors. Neurochem Int 2003; 42:567-81. [PMID: 12590940 DOI: 10.1016/s0197-0186(02)00164-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Activation of astrocytes occurs during many forms of CNS injury, but its importance for neuronal survival is poorly understood. When hippocampal cultures of neurons and astrocytes were treated from day 2-4 in vitro (DIV 2-4) with 1 microM cytosine arabinofuranoside (AraC), we observed a stellation of astrocytes, an increase in glial fibrillary acidic protein (GFAP) level as well as a higher susceptibility of the neurons to glutamate compared with cultures treated from DIV 2-4 with vehicle. To find out whether factors released into the culture medium were responsible for the observed differences in glutamate neurotoxicity, conditioned medium of AraC-treated cultures (MCMAraC) was added to vehicle-treated cultures and conditioned medium of vehicle-treated cultures (MCMvh) was added to AraC-treated cultures 2 h before and up to 18 h after the exposure to 1mM glutamate for 1 h. MCMAraC increased glutamate neurotoxicity in vehicle-treated cultures and MCMvh reduced glutamate neurotoxicity in AraC-treated cultures. Heat-inactivation of MCMvh increased, whereas heat-inactivation of MCMAraC did not affect glutamate toxicity suggesting that heat-inactivation changed the proportion of factors in MCMvh inhibiting and exacerbating the excitotoxic injury. Similar findings were obtained using conditioned medium of pure astrocyte cultures of DIV 12 treated from DIV 2-4 with vehicle or 1 microM AraC suggesting that heat-sensitive factors in MCMvh were mainly derived from astrocytes. Treatment of hippocampal cultures with 1mM dibutyryl-cAMP for 3 days induced an activation of the astrocytes similar to AraC and increased neuronal susceptibility to glutamate. Our findings provide evidence that activation of astrocytes impairs their ability to protect neurons after excitotoxic injury due to changes in the release of soluble and heat-sensitive factors.
Collapse
Affiliation(s)
- Barbara Ahlemeyer
- Institut für Pharmakologie und Toxikologie, Fachbereich Pharmazie der Philipps-Universität Marburg, Ketzerbach 63, 35032 Marburg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Giménez y Ribotta M, Menet V, Privat A. The role of astrocytes in axonal regeneration in the mammalian CNS. PROGRESS IN BRAIN RESEARCH 2001; 132:587-610. [PMID: 11545022 DOI: 10.1016/s0079-6123(01)32105-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- M Giménez y Ribotta
- INSERM U336, Université Montpellier II, Place E. Bataillon, B.P. 106, 34095 Montpellier, France
| | | | | |
Collapse
|
15
|
Dutuit M, Didier-Bazès M, Vergnes M, Mutin M, Conjard A, Akaoka H, Belin MF, Touret M. Specific alteration in the expression of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine synthetase in rats with genetic absence epilepsy. Glia 2000; 32:15-24. [PMID: 10975907 DOI: 10.1002/1098-1136(200010)32:1<15::aid-glia20>3.0.co;2-#] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes play a predominant role in energy metabolism and in the catabolism of gamma-aminobutyric acid (GABA) and glutamate, neurotransmitters critically involved in epileptic processes. We show specific astrocytic alterations in the genetic absence epilepsy rats from Strasbourg (GAERS). Spontaneous absence seizures appear in this strain in the cortex and thalamus after the age of 1 month. In these brain structures, we demonstrate increased GFAP expression in both adult and young GAERS, suggesting that reactive astrocytes are already present before the onset of seizures. Glutamate dehydrogenase (GDH) and glutamine synthetase (GS), which are localized mainly in astrocytes and involved in glutamate catabolism, are shown to be differentially altered. GDH expression was increased in the thalamus of both young and adult GAERS and in the cortex of young GAERS. GS expression was slightly decreased in the thalamus of young GAERS. These astrocytic modifications are not adaptive responses to seizures, as the modifications appear before the development of absence seizures. Thus, astrocytes might be involved in the neuronal processes giving rise to epileptic seizures in this strain.
Collapse
Affiliation(s)
- M Dutuit
- INSERM U433, Neurobiologie Expérimentale et Physiopathologie, Faculté de Médecine Laënnec, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sasaki T, Endo T. Both cell-surface carbohydrates and protein tyrosine phosphatase are involved in the differentiation of astrocytes in vitro. Glia 2000; 32:60-70. [PMID: 10975911 DOI: 10.1002/1098-1136(200010)32:1<60::aid-glia60>3.0.co;2-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocytes are important in the development and maintenance of functions of the CNS, acting in cooperation with neurons and other glial cells. The glycans on astrocyte membrane are believed to play important roles in cell-cell communication. Plant lectins are useful probes, because the lectins can bind to certain cell surface receptors and elicit cellular responses that are normally activated by endogenous ligands for those receptors. In the present study, we investigated the effect of Datura stramonium agglutinin (DSA) on astrocytes and characterized several molecular events. The addition of DSA to a culture of flat, polygonal, immature astrocytes derived from the neonatal rat cerebellum caused the cells to become stellate in shape, similar to astrocytes observed in vivo, concomitant with an increase in expression of astrocyte-specific intermediate filament (glial fibrillary acidic protein [GFAP]) and inhibition of proliferation. These results indicate that DSA binds to astrocytes and triggers differentiation. We also found a decrease in the extent of tyrosine-phosphorylation of a 38-kDa protein. To elucidate the molecular events during astrocyte differentiation, we examined the effects of various signal transduction inhibitors on the transformation from the polygonal to stellate shape (stellation). Interestingly, only tyrosine phosphatase inhibitors, orthovanadate and phenylarsine oxide, showed an inhibitory effect. Our results suggest that DSA induced astrocyte differentiation acts via tyrosine dephosphorylation.
Collapse
Affiliation(s)
- T Sasaki
- Department of Glycobiology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | | |
Collapse
|
17
|
Kalcheva N, Rockwood JM, Kress Y, Steiner A, Shafit-Zagardo B. Molecular and functional characteristics of MAP-2a: ability of MAP-2a versus MAP-2b to induce stable microtubules in COS cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:272-85. [PMID: 9678670 DOI: 10.1002/(sici)1097-0169(1998)40:3<272::aid-cm6>3.0.co;2-f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microtubule-associated protein-2 (MAP-2) is a prominent cytoskeletal protein in the mammalian nervous system. Two high-molecular-weight (HMW) MAP-2 isoforms, MAP-2a and MAP-2b, are developmentally regulated. MAP-2b is expressed through the life of the neuron, while MAP-2a expression coincides with the time of synaptic formation. MAP-2a and MAP-2b differ in size by approximately 10 kD. Attempts to differentiate MAP-2a from MAP-2b led to the identification of additional exons; exons 7A, 8, 13, and 16. The focus of the present study was to define the complete molecular composition of MAP-2a that was prerequisite for investigating the functional characteristic of the MAP-2a protein. Detailed examination of rat brain mRNA by Northern blot analysis and RT-PCR showed that MAP-2a contains only exon 8 in addition to the exons found in the MAP-2b transcript. Exons 7A, 13, and 16 are not present in the MAP-2a transcript. Antibody generated to exon 8 expressed protein, immunoprecipitated a HMW protein from adult rat brain that co-migrated with MAP-2a and was immunopositive with other MAP-2 antibodies. Comparative transfections of full-length MAP-2a and MAP-2b cDNA into COS-7 cells demonstrated that MAP-2a influenced the microtubule network differently than MAP-2b by inducing rapid and stable microtubule bundle formation even in the presence of nocodazole.
Collapse
Affiliation(s)
- N Kalcheva
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
18
|
van der Zee EA, Luiten PG. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 1999; 58:409-71. [PMID: 10380240 DOI: 10.1016/s0301-0082(98)00092-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunocytochemical mapping studies employing the extensively used monoclonal anti-muscarinic acetylcholine receptor (mAChR) antibody M35 are reviewed. We focus on three neuronal muscarinic cholinoceptive substrates, which are target regions of the cholinergic basal forebrain system intimately involved in cognitive functions: the hippocampus; neocortex; and amygdala. The distribution and neurochemistry of mAChR-immunoreactive cells as well as behaviorally induced alterations in mAChR-immunoreactivity (ir) are described in detail. M35+ neurons are viewed as cells actively engaged in neuronal functions in which the cholinergic system is typically involved. Phosphorylation and subsequent internalization of muscarinic receptors determine the immunocytochemical outcome, and hence M35 as a tool to visualize muscarinic receptors is less suitable for detection of the entire pool of mAChRs in the central nervous system (CNS). Instead, M35 is sensitive to and capable of detecting alterations in the physiological condition of muscarinic receptors. Therefore, M35 is an excellent tool to localize alterations in cellular cholinoceptivity in the CNS. M35-ir is not only determined by acetylcholine (ACh), but by any substance that changes the phosphorylation/internalization state of the mAChR. An important consequence of this proposition is that other neurotransmitters than ACh (especially glutamate) can regulate M35-ir and the cholinoceptive state of a neuron, and hence the functional properties of a neuron. One of the primary objectives of this review is to provide a synthesis of our data and literature data on mAChR-ir. We propose a hypothesis for the role of muscarinic receptors in learning and memory in terms of modulation between learning and recall states of brain areas at the postsynaptic level as studied by way of immunocytochemistry employing the monoclonal antibody M35.
Collapse
Affiliation(s)
- E A van der Zee
- Department of Zoology, University of Groningen, Haren, The Netherlands.
| | | |
Collapse
|
19
|
Deissler H, Blass-Kampmann S, Bruyneel E, Mareel M, Rajewsky MF. Neural cell surface differentiation antigen gp130(RB13-6) induces fibroblasts and glioma cells to express astroglial proteins and invasive properties. FASEB J 1999; 13:657-66. [PMID: 10094926 DOI: 10.1096/fasebj.13.6.657] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transient expression of the differentiation and tumor cell surface antigen gp130(RB13-6) characterizes a subset of rat glial progenitor cells susceptible to ethylnitrosourea-induced neurooncogenesis. gp130(RB13-6) is as a member of an emerging protein family of ecto-phosphodiesterases/nucleotide pyrophosphatases that includes PC-1 and the tumor cell motility factor autotaxin. We have investigated the potential role of gp130(RB13-6) in glial differentiation by transfection of three cell lines of different origin that do not express endogenous gp130(RB13-6) (NIH-3T3 mouse fibroblasts; C6 and BT7Ca rat glioma cells) with the cDNA encoding gp130(RB13-6). The effect of gp130(RB13-6) expression was analyzed in terms of overall cell morphology, the expression of glial cell-specific marker proteins, and invasiveness. Transfectant sublines, consisting of 100% gp130(RB13-6)-positive cells, exhibited an altered, bipolar morphology. Fascicular aggregates of fibroblastoid cells subsequently developed into mesh-like patterns. Contrary to the parental NIH-3T3 and BT7Ca cells, the transfectant cells invaded into collagen type I. As shown by immunofluorescence staining of the transfectant sublines as well as of primary cultures composed of gp130(RB13-6)-positive and -negative cells, expression of gp130(RB13-6) induced coexpression of proteins typical for glial cells and their precursors, i.e., glial fibrillary acidic protein, the low affinity nerve growth factor receptor, and the neural proteins Thy-1, Ran-2, and S-100. In accordance with its expression in the immature rat nervous system, gp130(RB13-6) may thus have a significant role in the glial differentiation program and its subversion in neurooncogenesis.
Collapse
Affiliation(s)
- H Deissler
- Institute of Cell Biology (Cancer Research), University of Essen Medical School, D-45122 Essen, Germany
| | | | | | | | | |
Collapse
|
20
|
Brodie C, Kuperstein I, Acs P, Blumberg PM. Differential role of specific PKC isoforms in the proliferation of glial cells and the expression of the astrocytic markers GFAP and glutamine synthetase. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:108-17. [PMID: 9602083 DOI: 10.1016/s0169-328x(98)00035-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we explored the role of specific protein kinase C (PKC) isoforms in glial cell proliferation and on the expression of the astrocytic markers GFAP and glutamine synthetase using C6 cells as a model. Analysis of the expression of the various PKC isoforms in control and differentiated C6 cells revealed differences in the expression of specific PKC isoforms. Undifferentiated C6 cells, which express low levels of GFAP and glutamine synthetase (GS), have high levels of PKCalpha and delta, whereas differentiated C6 cells, which express higher levels of both GFAP and GS have lower levels of PKCalpha and delta and higher levels of PKCgamma, theta and eta. Using C6 cells overexpressing specific PKC isoforms, we examined the role of these isoforms on the proliferation and differentiation of C6 cells. Cells overexpressing PKCalpha displayed a reduced level of GFAP, whereas GS expression was not affected. On the other hand, cells overexpressing PKCdelta showed reduced GS expression but little effect on GFAP. Finally, cells expressing PKCgamma displayed a marked increase in the levels of both GFAP and GS. The proliferation of C6 cells was increased in cells overexpressing PKCalpha and epsilon and decreased in cells overexpressing PKCgamma, delta and eta. The results of this study suggest that glial cell proliferation and astrocytic differentiation can be regulated by specific PKC isoforms that selectively affect cell proliferation and the expression of the two astrocytic markers GFAP and GS.
Collapse
Affiliation(s)
- C Brodie
- Molecular Mechanisms of Tumor Promotion Section, LCCTP, NCI, NIH, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
21
|
Rutka JT, Murakami M, Dirks PB, Hubbard SL, Becker LE, Fukuyama K, Jung S, Tsugu A, Matsuzawa K. Role of glial filaments in cells and tumors of glial origin: a review. J Neurosurg 1997; 87:420-30. [PMID: 9285609 DOI: 10.3171/jns.1997.87.3.0420] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the adult human brain, normal astrocytes constitute nearly 40% of the total central nervous system (CNS) cell population and may assume a star-shaped configuration resembling epithelial cells insofar as the astrocytes remain intimately associated, through their cytoplasmic extensions, with the basement membrane of the capillary endothelial cells and the basal lamina of the glial limitans externa. Although their exact function remains unknown, in the past, astrocytes were thought to subserve an important supportive role for neurons, providing a favorable ionic environment, modulating extracellular levels of neurotransmitters, and serving as spacers that organize neurons. In immunohistochemical preparations, normal, reactive, and neoplastic astrocytes may be positively identified and distinguished from other CNS cell types by the expression of the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). Glial fibrillary acidic protein is a 50-kD intracytoplasmic filamentous protein that constitutes a portion of, and is specific for, the cytoskeleton of the astrocyte. This protein has proved to be the most specific marker for cells of astrocytic origin under normal and pathological conditions. Interestingly, with increasing astrocytic malignancy, there is progressive loss of GFAP production. As the human gene for GFAP has now been cloned and sequenced, this review begins with a summary of the molecular biology of GFAP including the proven utility of the GFAP promoter in targeting genes of interest to the CNS in transgenic animals. Based on the data provided the authors argue cogently for an expanded role of GFAP in complex cellular events such as cytoskeletal reorganization, maintenance of myelination, cell adhesion, and signaling pathways. As such, GFAP may not represent a mere mechanical integrator of cellular space, as has been previously thought. Rather, GFAP may provide docking sites for important kinases that recognize key cellular substrates that enable GFAP to form a dynamic continuum with microfilaments, integrin receptors, and the extracellular matrix.
Collapse
Affiliation(s)
- J T Rutka
- Division of Neurosurgery, The Hospital for Sick Children, The University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Glial cells constitute one of the most common cell types in the brain. They play critical roles in central nervous system (CNS) development. Recent evidence demonstrates that glial cells are profoundly affected by prenatal alcohol exposure, suggesting that alterations in these cells may participate in CNS abnormalities associated with ethanol-induced teratogenesis. In vivo studies show that prenatal exposure to alcohol hampers myelinogenesis and is associated with neuroglial heterotopias and abnormal astrogliogenesis. Studies using primary cultures of rat cortical astrocytes show that ethanol affects DNA, RNA, and protein synthesis, decreases the number of mitotic cells, alters the content and distribution of several cytoskeletal proteins including the astroglial marker, glial fibrillary acidic protein (GFAP), and the levels of plasma-membrane glycoproteins, reduces the capacity of astrocytes to secrete growth factors, and induces oxidative stress. Furthermore, ethanol exposure during early embryogenesis alters the normal development of radial glia cells (the main astrocytic precursors), delays the onset of GFAP expression, and decreases mRNA GFAP levels in fetal and postnatal brains and in radial glia and astrocytes in primary culture. Recent evidence suggests that ethanol interferes with the transcription process of GFAP, thus leading to a reduction in GFAP-gene expression during astrogliogenesis. However, brief exposure of rats to high levels of ethanol during the neonatal period (the period of astrocyte differentiation) causes a transient gliosis, with an increase in GFAP and its mRNA levels. These findings indicate that astroglial cells are an important target of ethanol toxicity during central nervous system (CNS) development.
Collapse
Affiliation(s)
- C Guerri
- Instituto Investigaciones Citológicas (FVIB), Amadeo de Saboya, Valencia
| | | |
Collapse
|
23
|
Rutka JT, Murakami M, Dirks PB, Hubbard SL, Becker LE, Fukuyama K, Jung S, Matsuzawa K. Role of glial filaments in cells and tumors of glial origin: a review. Neurosurg Focus 1997. [DOI: 10.3171/foc.1997.3.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the adult human brain, normal astrocytes constitute nearly 40% of the total central nervous system (CNS) cell population and may assume a star-shaped configuration resembling epithelial cells insofar as the astrocytes remain intimately associated, through their cytoplasmic extensions, with the basement membrane of the capillary endothelial cells and the basal lamina of the glial limitans externa. Although their exact function remains unknown, in the past, astrocytes were thought to subserve an important supportive role for neurons, providing a favorable ionic environment, modulating extracellular levels of neurotransmitters, and serving as spacers that organize neurons. In immunohistochemical preparations, normal, reactive, and neoplastic astrocytes may be positively identified and distinguished from other CNS cell types by the expression of the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). This GFAP is a 50-kD intracytoplasmic filamentous protein that constitutes a portion of, and is specific for, the cytoskeleton of the astrocyte. This protein has proved to be the most specific marker for cells of astrocytic origin under normal and pathological conditions. Interestingly, with increasing astrocytic malignancy, there is progressive loss of GFAP production. As the human gene for GFAP has now been cloned and sequenced, this review begins with a summary of the molecular biology of GFAP including the proven utility of the GFAP promoter in targeting genes of interest to the CNS in transgenic animals. Based on the data provided the authors argue cogently for an expanded role of GFAP in complex cellular events such as cytoskeletal reorganization, maintenance of myelination, cell adhesion, and signaling pathways. As such, GFAP may not represent a mere mechanical integrator of cellular space, as has been previously thought. Rather, GFAP may provide docking sites for important kinases that recognize key cellular substrates that enable GFAP to form a dynamic continuum with microfilaments, integrin receptors, and the extracellular matrix.
Collapse
|
24
|
Anciaux K, Van Dommelen K, Nicola� S, Van Mechelen E, Slegers H. Cyclic AMP-mediated induction of the glial fibrillary acidic protein is independent of protein kinase A activation in rat C6 glioma. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970515)48:4<324::aid-jnr4>3.0.co;2-d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Jalenques I, Burette A, Albuisson E, Romand R. Age-related changes in GFAP-immunoreactive astrocytes in the rat ventral cochlear nucleus. Hear Res 1997; 107:113-24. [PMID: 9165352 DOI: 10.1016/s0378-5955(97)00026-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The age-related changes in the ventral cochlear nucleus (VCN) as revealed by glial fibrillary acid protein (GFAP) immunoreactivity were analyzed in the following age groups: 3-, 6-, 12-, 18-, and 24-month-old Sprague-Dawley rats. A cartographic and a quantitative analysis showed a significant increase in the number of GFAP positive astrocytes during the first year of life and a significant decrease in older rats. We also observed an age-induced modification in the spatial distribution of GFAP positive astrocyte. In the anterior part of the VCN of the 3- and 6-month-old rats, we observed a significant decrease in the rostro-caudal as well in the dorso-ventral axes. In the posterior part of the VCN, a significant decrease in the dorso-ventral axis could be also observed, but no significant difference in the spatial distribution was obtained in the rostro-caudal axis. In older rats, the distribution appeared homogeneous throughout the nucleus. Additionally, aging was associated with a significant increase in GFAP positive astrocyte sizes, except for immunolabelled astrocytes in the granule cell layer. The different levels of GFAP expression occurring in the VCN during normal aging could reflect a progressive decline of cellular activity in the VCN, without severe cell degeneration or synaptic loss.
Collapse
Affiliation(s)
- I Jalenques
- USN1, Centre Médico-Psychologique, CHU Saint-Jacques, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
26
|
Lal PG, Ghirnikar RS, Eng LF. Astrocytoma and Schwann cells in coculture. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 29:93-104. [PMID: 8887943 DOI: 10.1007/bf02815196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is the principal intermediate filament protein found in mature astrocytes. Although the exact function of GFAP is poorly understood, it is presumed to stabilize the astrocyte's cytoskeleton and help in maintaining cell shape. Previous studies from our laboratory have shown that when astrocytes were cocultured with primary Schwann cells (pSCs), astrocytes became hypertrophied and fibrous with intensely positive GFAP staining and segregated Schwann cells (SCs) into pockets. In order to understand the functional role of GFAP in this already established astrocyte-SC coculture model, we generated GFAP-negative cell lines from a GFAP-positive astrocytoma cell line and cocultured both the cell lines with pSCs. Our studies demonstrate that the GFAP-positive cell line put out processes toward the SCs, whereas the GFAP-negative cells did not form processes and the majority of the cells remained round. The most significant and interesting finding of this study, however, is the formation of elaborate processes by SCs when grown in coculture with the astrocytoma cells, unlike SCs cultured alone, which showed their typical bipolar spindle-shaped morphology. The extent of processes did not seem to be dependent of GFAP, since SCs cultured with both the cell lines formed similar processes. This coculture model may be useful in elucidating the factor(s) responsible for the formation of processes by SCs and can be further help in our understanding of the mechanism of morphological transformation of SCs.
Collapse
Affiliation(s)
- P G Lal
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | | | | |
Collapse
|
27
|
Schiffer D, Cordera S, Cavalla P, Migheli A. Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis. J Neurol Sci 1996; 139 Suppl:27-33. [PMID: 8899654 DOI: 10.1016/0022-510x(96)00073-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many observations have been carried out on astrogliosis in the cerebral cortex in amyotrophic lateral sclerosis (ALS), whereas little attention has been paid to astrogliosis in the spinal cord. Twenty autopsy cases of sporadic, common form of ALS have been studied. Spinal cords have been examined at the cervical, thoracic and lumbar levels by histological methods and immunohistochemistry for GFAP, Vimentin, Tau-protein, Neurofilaments, PCNA. A gliosis was found in the ventral horns, in dorsal horns and at the transition between gray matter and anterior and lateral funiculi, especially close to laminae VII, VI and V as being due to secondary gliosis. The findings cannot be interpreted on the only basis of the substitutive role of reacting glia. The proposed pathogenetic mechanisms of ALS are evaluated as possible responsible stimuli; the coincidence of the distribution of reactive astrocytes with the entering points of the corticospinal tracts into the gray matter is considered of primary importance. Of special interest are reactive astrocytes at the transition between laminae VII, VI and V and the lateral funiculus, where dystrophic neurites are known to concentrate.
Collapse
Affiliation(s)
- D Schiffer
- Department of Neurology, University of Turin, Italy
| | | | | | | |
Collapse
|
28
|
Abstract
Beta adrenergic receptor antagonists greatly reduce reactive astrocyte formation induced by neuronal degeneration. To test the hypothesis that the density of noradrenergic innervation is a factor in the regulation of astrocytosis, we measured glial fibrillary acidic protein (GFAP) optical density after neuronal injury in central nervous system (CNS) regions with permanent noradrenergic sprouting or norepinephrine (NE) depletion. The injury model employs the injection of Ricinus communis lectin into a cranial or peripheral nerve to destroy CNS neurons without the blood-brain barrier disruption and lymphocyte infiltration associated with contusive or surgical lesions. We took advantage of the lack of an NE transporter in the terminals of certain classes of noradrenergic axons to produce noradrenergic sprouting in the trigeminal motor nucleus (MoV) with neonatal 6-hydroxydopamine (6-OHDA) treatment and to produce depletion of NE in the spinal cord dorsal horn with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) administration. In each of these regions, GFAP optical density in the region of reactive astrocytes on the Ricin lectin-treated side was compared with the untreated contralateral (control) side in animals with NE hyperinnervation or NE depletion. GFAP density was increased about 55% in the injured NE-hyperinnervated MoV and was decreased about 35% in the injured NE-depleted dorsal horn. The degree of reactive astrocyte formation to injury is known to vary in different regions of the CNS, and our results suggest that differences in noradrenergic innervation may contribute to this variation. Along with earlier findings that beta-adrenergic receptor blockade reduces reactive astrocyte formation, these data indicate that the noradrenergic innervation is a factor in the degree of astrocyte reactivity following injury.
Collapse
Affiliation(s)
- R Griffith
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
29
|
Teter B, Rozovsky I, Krohn K, Anderson C, Osterburg H, Finch C. Methylation of the glial fibrillary acidic protein gene shows novel biphasic changes during brain development. Glia 1996; 17:195-205. [PMID: 8840161 DOI: 10.1002/(sici)1098-1136(199607)17:3<195::aid-glia2>3.0.co;2-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The gene for glial fibrillary acidic protein (GFAP) was analyzed in the rat for developmental changes in methylation of cytosine at CpG sequences as a correlate of the onset of GFAP mRNA expression and for the effect of methylation on GFAP promoter activity. The methylation of nine CpG sites in the GFAP promoter and ten sites in exon 1 was analyzed in F344 rats by a quantitative application of ligation-mediated polymerase chain reaction. Whole rat brain poly(A)+ RNA showed an exponential increase of GFAP mRNA after embryo day 14 that reached stable adult levels by postnatal day 10. During development, only the seven CpG sites in the far-upstream promoter showed large changes in methylation; these sites constitute the brain-specific domain of methylation described in adult rats (Teter et al: J Neurosci Res 39:680, 1994). These seven CpG sites showed a cycle of demethylation during the onset of GFAP transcription in the embryo (between embryonic day 14 and postnatal day 10) followed by remethylation at later postnatal ages when GFAP mRNA remains prevalent. The minimum levels of methylation across these CpG sites displayed a gradient with the lowest minima at the 3' sites. This demethylation/remethylation cycle is a novel phenomenon in DNA methylation during perinatal development. The demethylation/remethylation cycle during development was also shown by the opposite-strand cytosines. Two cytosines in this region that are conserved in rat and mouse also undergo the same demethylation/remethylation cycle in the mouse GFAP gene during development, implying evolutionary conservation and functional significance. As a further test of functional significance, a Luciferase reporter gene assay was evaluated in primary cultured astrocytes; the activity of the GFAP promoter was reduced when it was methylated at one or all CpG sites. Therefore, the GFAP promoter may be activated in rodent development by transient demethylation of a conserved brain-specific methylation domain.
Collapse
Affiliation(s)
- B Teter
- Neurogerontology Division, Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wyss-Coray T, Masliah E, Toggas SM, Rockenstein EM, Brooker MJ, Lee HS, Mucke L. Dysregulation of signal transduction pathways as a potential mechanism of nervous system alterations in HIV-1 gp120 transgenic mice and humans with HIV-1 encephalitis. J Clin Invest 1996; 97:789-98. [PMID: 8609236 PMCID: PMC507117 DOI: 10.1172/jci118478] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
HIV-1 associated central nervous system (CNS) disease involves neuronal damage and prominent reactive astrocytosis, the latter characterized by strong upregulation of the glial fibrillary acidic protein (GFAP) in astrocytes. Similar alterations are found in transgenic mice expressing the HIV-1 envelope protein gp120 in the CNS. Because alterations of astrocyte functions could contribute to neuronal impairment, we compared brains of gp120 transgenic mice and gp120-transfected C6 astrocytoma cells with controls and found that gp120 induced a prominent elevation of steady state GFAP mRNA levels, primarily due to transcript stabilization. Increased levels of GFAP mRNA were also found in nontransfected C6 cells exposed to recombinant gp120. Exposure of C6 cells or primary mouse astrocytes to soluble gp120 led to activation of PKC as indicated by redistribution and increase in PKC immunoreactivity at the single cell level. gp120 effects were diminished by inhibitors of protein kinase C (PKC) but not inhibitors of protein kinase A. PKC activity was upmodulated in gp120-transfected C6 cells and in the CNS of gp120 transgenic mice. Further, brain tissue from patients with HIV-1 encephalitis and from gp120 transgenic mice showed increased PKC immunoreactivity. Taken together, these results indicate that gp120-induced increases in PKC activity may contribute to the gliosis seen in gp120 transgenic mice as well as in HIV-1-infected humans and raise the question of whether dysregulation of signal transduction pathways represents a general mechanism of HIV-associated pathogenesis.
Collapse
Affiliation(s)
- T Wyss-Coray
- Gladstone Molecular Neurobiology Program, University of California, San Francisco 94141-9100, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kalcheva N, Albala J, O'Guin K, Rubino H, Garner C, Shafit-Zagardo B. Genomic structure of human microtubule-associated protein 2 (MAP-2) and characterization of additional MAP-2 isoforms. Proc Natl Acad Sci U S A 1995; 92:10894-8. [PMID: 7479905 PMCID: PMC40537 DOI: 10.1073/pnas.92.24.10894] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have determined that the gene for human microtubule-associated protein 2 (MAP-2) spans 19 exons, including 6 exons identified in this study, 1-4, 8, and 13; all six of these exons are transcribed. The alternative splicing of coding exons generates a greater diversity of MAP-2 transcripts and isoforms. The first three exons encode alternate 5' untranslated regions that can be spliced to additional untranslated sequences contained in exons 4 and 5. Exons 8 and 13 are transcribed in human fetal spinal cord, adult brain, MSN cells, and rat brain, and each exon maintains an open reading frame with both high and low molecular weight MAP-2 isoforms. Antibodies generated to synthetic peptides of exons 8 and 13 demonstrate that these exons are translated and MAP-2 isoforms containing these exons are generated.
Collapse
Affiliation(s)
- N Kalcheva
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
32
|
Baltuch GH, Dooley NP, Villemure JG, Yong VW. Protein kinase C and growth regulation of malignant gliomas. Neurol Sci 1995; 22:264-71. [PMID: 8599768 DOI: 10.1017/s0317167100039457] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article reviews the role of the signal transduction enzyme protein kinase C in the regulation of growth of malignant gliomas, and describes how targetting this enzyme clinically can provide a novel approach to glioma therapy.
Collapse
Affiliation(s)
- G H Baltuch
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|
33
|
Belluardo N, Salin T, Dell'Albani P, Mudò G, Corsaro M, Jiang XH, Timmusk T, Condorelli DF. Neurotoxic injury in rat hippocampus differentially affects multiple trkB and trkC transcripts. Neurosci Lett 1995; 196:1-4. [PMID: 7501231 DOI: 10.1016/0304-3940(95)11819-i] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the present work we determined, by Northern blotting, ribonuclease assay and in situ hybridization, the level of multiple trkB and trkC transcripts at different times after ibotenic acid-induced neuronal injury in the rat hippocampus. All the transcripts (7.0-7.5, 2.4 and 1.8 kb) encoding the truncated TrkB receptor are coordinately up-regulated following neurotoxic injury, with a time-course similar to that observed for the glial fibrillary acidic protein mRNA, a molecular marker of reactive astrocytes. The highest level of induction was observed for the 2.4 kb mRNA level. The 1.8 kb mRNA, whose relative level is higher in astroglial cultures compared to normal brain tissue, is detectable only in the gliotic hippocampus. The 9 kb trkB mRNA, which encodes the full-length TrkB receptor, rapidly decreases with a time-course similar to that previously observed for other neuronal markers. In situ hybridization studies show that the increased mRNA level per cell is a major determinant in the up-regulation of truncated trkB expression. A decrease of truncated and full-length trkC mRNA was observed in the neuron-depleted astroglia-enriched hippocampus, suggesting that this mRNA is mainly localized in the neuronal layers and that no induction of its expression occurs in reactive astrocytes.
Collapse
Affiliation(s)
- N Belluardo
- Institute of Human Physiology, Faculty of Medicine, University of Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Salero-Coca E, Vergara P, Segovia J. Intracellular increases of cAMP induce opposite effects in glutamic acid decarboxylase (GAD67) and glial fibrillary acidic protein immunoreactivities in C6 cells. Neurosci Lett 1995; 191:9-12. [PMID: 7659299 DOI: 10.1016/0304-3940(95)11544-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
C6 is a cell line that expresses glial and neuronal markers. Treatments that increase intracellular cAMP levels induce the differentiation of these cells. We had previously demonstrated that forskolin, an agent that activates adenylate cyclase, produced changes in gene expression in C6 cells. As a consequence of this treatment, glutamic acid decarboxylase (GAD) activity and the mRNA for GAD67, one of the isoforms of the enzyme, decreased. In contrast, this treatment increased the transcription of the glial fibrillary acidic protein (GFAP) gene. We now show, by immunocytochemistry, that the changes in gene expression are phenotypically reflected by corresponding changes in the levels of the proteins encoded by the GAD67 and GFAP genes. Computer-assisted image analysis demonstrated that both the increase in GFAP immunofluorescence, and the decrease in GAD67 immunofluorescence are statistically significant. The changes in gene expression and in protein immunoreactivity are part of the differentiation process of the C6 cells towards a more mature glial phenotype.
Collapse
Affiliation(s)
- E Salero-Coca
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | | | | |
Collapse
|
35
|
Arcuri C, Bocchini V, Guerrieri P, Fages C, Tardy M. PKA and PKC activation induces opposite glial fibrillary acidic protein (GFAP) expression and morphology changes in a glioblastoma multiform cell line of clonal origin. J Neurosci Res 1995; 40:622-31. [PMID: 7541474 DOI: 10.1002/jnr.490400507] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Possible differentiation mechanisms were investigated in a glioblastoma multiform cell line (GL15) presenting an undifferentiated phenotype with weak glial fibrillary acidic protein (GFAP) and strong vimentin (VIM) expression. Serum-free conditions induced time-dependent increases of GFAP-mRNA and GFAP protein levels, associated with a process-bearing astrocytic morphology. Activation of protein kinase C (PKC) by tumor promoter phorbol 12-myrystate 13-acetate (PMA) induced a rapid morphological differentiation and a decrease in GFAP mRNA, whereas the GFAP level remained unchanged. Such parameters were shown to characterize a physiological differentiation stage in astroglial cultures. Treatment of process-bearing GL15 cells with dibutyryl cyclic AMP (dbcAMP), a protein kinase A (PKA) activator, induced a time-dependent decrease in the GFAP mRNA and GFAP protein levels and reverted morphological changes induced by serum-free conditions. Neither PMA nor dbcAMP influenced the VIM mRNA expression. In GL15 cells, PKC and PKA activation have opposite effects. Understanding the role of these kinases in malignant transformation and in the in vitro differentiation process is of both basic and clinical interest.
Collapse
Affiliation(s)
- C Arcuri
- INSERM U 282, Hôpital Henri Mondor, Creteil, France
| | | | | | | | | |
Collapse
|
36
|
Sarthy V, Egal H. Transient induction of the glial intermediate filament protein gene in Müller cells in the mouse retina. DNA Cell Biol 1995; 14:313-20. [PMID: 7710688 DOI: 10.1089/dna.1995.14.313] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The glial intermediate filament protein (GFAP) gene is not normally expressed by retinal Müller cells but it is transcriptionally activated following photoreceptor degeneration. In the present study, we have examined the relationship between progressive photoreceptor loss and changes in GFAP gene activity in Müller cells. In albino mice with light-induced photoreceptor degeneration, GFAP level was strongly elevated after 2 weeks. GFAP level remained high even after 3 months in light. In situ hybridization studies showed that GFAP transcripts were quite sparse in the first week but increased dramatically after 2 weeks of light exposure. After 4 weeks in constant light, however, little GFAP mRNA was detected in Müller cells. RNA blotting also showed that there was an approximately 20-fold increase in GFAP mRNA content at 2 weeks; but at 4 weeks, the RNA content fell to about four-fold higher than the basal level. These results show that GFAP level remains high long after its synthesis, probably as a consequence of low GFAP turnover in the Müller cell cytoskeleton, while GFAP mRNA level rises and declines rapidly due to transient activation of the GFAP gene in Müller cells.
Collapse
Affiliation(s)
- V Sarthy
- Department of Ophthalmology, Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
37
|
Doucette R, Devon R. Elevated intracellular levels of cAMP induce olfactory ensheathing cells to express GAL-C and GFAP but not MBP. Glia 1995; 13:130-40. [PMID: 7544324 DOI: 10.1002/glia.440130206] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The primary olfactory pathway contains non-myelinating glial cells, called ensheathing cells, that exhibit a variety of phenotypes depending on their immediate environment. In vivo, these cells normally possess a mixture of astrocyte- and Schwann cell-specific phenotypic features. When co-cultured with dorsal root ganglion neurons, their phenotype can become more like that of a myelinating Schwann cell. The objective of this study was to determine whether ensheathing cells would express a myelinating phenotype in culture in the absence of neurons but in the presence of cAMP analogues that are known to induce the expression of myelin associated molecules in Schwann cell cultures. The ensheathing cell cultures were initiated using the nerve fiber layers of Theiler stage 23 rat olfactory bulb primordia and were fed for 1 day to 3 weeks with serum containing (1% or 10% FBS) or serum-free media to which was added different concentrations of dBcAMP (0.1 to 1 mM) or forskolin (10 microM). These cultures were double-labelled with a rabbit polyclonal antibody to S100 in combination with mouse anti-GAL-C (O1 and BRD1 hybridomas) or anti-MBP monoclonal antibodies. The remaining cultures were double-labeled with a rabbit polyclonal antibody to GFAP in combination with the BRD1 antibody. Treatment with dBcAMP or forskolin failed to induce ensheathing cells to express MBP regardless of the concentration. On the other hand, the treatment induced approximately one tenth of the cells to express GAL-C, and virtually all of the cells to express GFAP. These results indicate that although ensheathing cells can synthesize myelin associated molecules, the cAMP second messenger system appears to play a lesser role in controlling the expression of a myelinating phenotype in ensheathing cells than it does in Schwann cells.
Collapse
Affiliation(s)
- R Doucette
- Department of Anatomy, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
38
|
Baltuch GH, Dooley NP, Rostworowski KM, Villemure JG, Yong VW. Protein kinase C isoform alpha overexpression in C6 glioma cells and its role in cell proliferation. J Neurooncol 1995; 24:241-50. [PMID: 7595754 DOI: 10.1007/bf01052840] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies from this laboratory have demonstrated that protein kinase C (PKC) enzyme activity is highly correlated with the proliferation rate of glioma cells, and that glioma cells of both human and rat origin have very high PKC enzyme activity when compared to non-malignant glia including astrocytes, the antecedents of most gliomas. In the present study, by contrasting the rat C6 glioma cells with non-malignant rat astrocytes, we have sought to determine whether the high PKC enzyme activity of glioma cells was due to the overexpression of a specific isoform of PKC. By Western blot analyses, both C6 glioma cells and astrocytes were found to express PKC alpha, beta, delta, epsilon and zeta, but not gamma. Enzyme activity measurements revealed that the elevated PKC activity of glioma cells compared to glia was calcium-dependent, thereby implicating abnormal activity of the alpha or beta isoforms. On Western blots, when compared to astrocytes, glioma cells were determined to overexpress PKC alpha but not beta. An antisense oligonucleotide to PKC alpha, directed at the site of initiation of translation, inhibited the proliferation rate of glioma cells when compared to cells treated with control oligonucleotides; PKC enzyme activity and PKC alpha protein expression were significantly reduced by the antisense treatment. These results suggest that the high PKC enzyme activity of glioma cells, and its correspondence with proliferation rate, is the result of overexpression of isozyme alpha. Targetting PKC alpha in glioma cells may provide a refinement of therapy of glioma patients, some of which are already showing clinical stabilization when treated with drugs with PKC-inhibitory effects.
Collapse
Affiliation(s)
- G H Baltuch
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and McGill University, Quebec, Canada
| | | | | | | | | |
Collapse
|
39
|
McKeever PE, Varani J, Papadopoulos SM, Wang M, McCoy JP. Products of cells from gliomas: IX. Evidence that two fundamentally different mechanisms change extracellular matrix expression by gliomas. J Neurooncol 1995; 24:267-80. [PMID: 7595757 DOI: 10.1007/bf01052843] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Four human astrocytic gliomas of high grade of malignancy were each evaluated in tissue and in vitro for percentages of cells expressing glial fibrillary acidic protein (GFAP), collagen type IV, laminin and fibronectin assessed by immunofluorescence with counterstaining of nuclear DNA. Percentages of cells with reticulin and cells binding fluorescein-labeled Ulex europaeus agglutinin were also assessed. In tissue, each extracellular matrix (ECM) component was associated with cells in the walls of abnormal proliferations of glioma vessels, and all four tumors had the same staining pattern. Two strikingly different patterns of conversion of gene product expression emerged during in vitro cultivation. (1). In the most common pattern, percentages of all six markers consistently shifted toward the exact phenotype of mesenchymal cells in abnormal vascular proliferations: increased reticulin, collagen type IV, laminin and fibronectin; markedly decreased glial marker GFAP and absent endothelial marker Ulex europaeus agglutinin. The simplest explanation of this constellation of changes coordinated toward expression of vascular ECM markers is that primary glioma cell cultures are overgrown by mesenchymal cells from the abnormal vascular proliferations of the original glioma. These cell cultures were tested for in situ hybridization (ISH) signals of chromosomes 7 and 10. Cells from one glioma had diploid signals. Cells from the other glioma had aneuploid signals indicating they were neoplastic; however, their signals reflected different numerical chromosomal aberrations than those common to neoplastic glia. (2). The second pattern was different. Cells with ISH chromosomal signals of neoplastic glia retained GFAP, and gained collagen type IV. Their laminin and fibronectin diminished, but persisted among a lower percentage of cells. Cloning and double immunofluorescence confirmed the presence of individual cells with glial and mesenchymal markers. A cell expressing GFAP in addition to either fibronectin, reticulin or collagen type IV is not a known constituent of glioblastoma tissue. This provides evidence of a second mechanism of conversion of gene expression in gliomas.
Collapse
Affiliation(s)
- P E McKeever
- Department of Pathology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
40
|
Chen WJ, Liem RK. Reexpression of glial fibrillary acidic protein rescues the ability of astrocytoma cells to form processes in response to neurons. J Cell Biol 1994; 127:813-23. [PMID: 7962062 PMCID: PMC2120233 DOI: 10.1083/jcb.127.3.813] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Astroglial cells play an important role in orchestrating the migration and positioning of neurons during central nervous system development. Primary astroglia, as well as astrocytoma cells will extend long stable processes when co-cultured with granule neurons. In order to determine the function of the glial fibrillary acidic protein (GFAP), the major intermediate filament protein in astroglia and astrocytoma cells, we suppressed the expression of GFAP by stable transfection of an anti-sense GFAP construct in human astrocytoma U251MG cells. The resulting AS2-U251 cells can no longer extend stable processes in the presence of granule neurons. To show that this effect is due specifically to the absence of GFAP, we reintroduced a fully encoding rat brain GFAP cDNA into these AS2-U251 cells. The resulting rat GFAP appeared as a filamentous network and the reexpression of GFAP rescued the ability of these astrocytoma cells to form stable processes when co-cultured with neurons. From these results, it is clear that the glial specific intermediate filament protein, GFAP, is required for process extension of these astrocytoma cells in response to granule neurons.
Collapse
Affiliation(s)
- W J Chen
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York 10032
| | | |
Collapse
|
41
|
Missler M, Eins S, Böttcher H, Wolff JR. Postnatal development of glial fibrillary acidic protein, vimentin and S100 protein in monkey visual cortex: evidence for a transient reduction of GFAP immunoreactivity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 82:103-17. [PMID: 7842498 DOI: 10.1016/0165-3806(94)90153-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the cerebral cortex of some species, the gradual appearance of glial fibrillary acidic protein (GFAP) is often interpreted as reflecting the parallel maturation of neuronal connectivity. We studied the postnatal maturation of astrocytes in the primary visual cortex of Callithrix jacchus using antibodies against GFAP, vimentin and S100 protein as immunohistochemical markers. In the cortical grey matter of this species, the overall GFAP-immunoreactivity (IR) as measured by image analysis is high at birth (130% of the adult value), decreases until about 3 months (80%) and increases again towards adult values (100%). Vimentin-IR was high at birth, and declined towards 3 months and later. In contrast, S100-IR augmented postnatally in neuropil, and showed a laminar shift of maximum IR from layer IV to supragranular layers during ontogenesis. The decrease of GFAP-IR is predominantly due to changes in density of GFAP-positive (+) astrocytes within cortical tissue (newborn: 18,600 GFAP+astrocytes/mm3; 1 month: 11,600/mm3; 3 months: 5,700/mm3; adult: 10,200/mm3), while the overall number of astrocytes remained relatively constant as shown by the number of S100-positive astrocytic cell bodies. At times of low GFAP-IR a reduced area density of intermediate filaments was found in astrocytes by electron microscopy. The period of reduced GFAP-expression coincides with the time of prominent synapse remodeling in the visual cortex of marmosets. These data suggest that GFAP-expression may depend on functional conditions rather than time-dependent maturation.
Collapse
Affiliation(s)
- M Missler
- Department of Anatomy, University of Göttingen, FRG
| | | | | | | |
Collapse
|
42
|
Abstract
Transcriptional regulation of the GFAP gene is intimately connected with astrocyte function: its initial activation marks the differentiation of astrocytes, and its up-regulation accompanies the reactive response to CNS injury. Studies of GFAP transcription should thus provide insights into multiple regulatory pathways operating in these cells. In addition, they should identify DNA elements that could be used to direct synthesis of other proteins to astrocytes in transgenic animals, permitting creation of disease models, and the testing of cause and effect relationships. This review describes several GFAP cDNA and genomic clones that have been isolated, including homology comparisons of the encoded RNAs and proteins. Cell transfection studies by several laboratories are summarized that have identified a DNA segment immediately upstream of the RNA start site that is essential for transcriptional activity, but which have yielded conflicting results concerning the importance of other segments located both further upstream and downstream of the RNA start site. Two procedures are recounted that have led to the successful expression of GFAP-transgenes in astrocytes in mice. One of these incorporates the transgene into the first exon of a fragment spanning the entire GFAP gene, while the other links it to a 2 kb 5'-flanking segment. Results already produced by GFAP-transgenic studies include demonstration of a neurotoxic effect of the HIV-1 gp120 coat protein, and creation of a hydrocephalic mouse model.
Collapse
Affiliation(s)
- M Brenner
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
43
|
Vernadakis A, Kentroti S. Glial cells derived from aged mouse brain in culture display both mature and immature astrocytic phenotypes. J Neurosci Res 1994; 38:451-8. [PMID: 7932875 DOI: 10.1002/jnr.490380411] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In earlier studies, we established glial cell cultures derived from aged (18-month-old) mouse cerebral hemispheres (MACH) and have maintained them frozen at various passages. These cultures were characterized immunocytochemically and consist of: 5% oligodendrocytes (GalC+), 75% astrocytes-type 1 (GFAP+ only), 15% astrocytes-type 2 (GFAP+ + A2B5+), and 5% progenitor glial cells (A2B5+ only). In the present study, we isolated colonies from MACH passage 29 cultures and also colonies from MACH passage 19 transfected with the gene for SV40 large T antigen and further subcultured for 8 passages. Using double-staining immunocytochemistry, we found in non-transfected MACH passage 19 colonies consisting primarily of cells exhibiting only vimentin-positive staining and are considered to be immature glioblasts; colonies consisting primarily of cells exhibiting GFAP+ + vimentin+ which are considered to be astrocytes at an intermediate stage of maturation; and colonies consisting predominantly of cells exhibiting GFAP+ only which are considered to be mature astrocytes. In contrast, colonies isolated from transfected MACH cultures consisted primarily of vimentin+ cells. In conclusion, astrocytes in cultures derived from aged brain continue to be variable as they are during development. However, their response to the microenvironment may differ during development and during aging. Thus, the availability of clones of mature and immature astrocytes offers the opportunity to study neuron-glia interactions and the role of mature and immature astrocytes in neuronal aging and regeneration.
Collapse
Affiliation(s)
- A Vernadakis
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
44
|
Passaquin AC, Schreier WA, de Vellis J. Gene expression in astrocytes is affected by subculture. Int J Dev Neurosci 1994; 12:363-72. [PMID: 7526608 DOI: 10.1016/0736-5748(94)90086-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have investigated the effects of cell passaging and time in culture on astrocyte morphology, transferrin expression and the expression of two main astrocyte markers, glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS: EC 6.3.1.2). When primary astrocytes were subcultured, giving rise to secondary and tertiary cultures, their morphology changed, regardless of the split ratio used to passage the cells. Correlating with this morphological change, a dramatic increase in the accumulation of GFAP and GS mRNAs was observed after cells had been passaged. This effect was in marked contrast to the moderate increase in the levels of GFAP and GS mRNAs observed over several weeks in primary culture. Hydrocortisone induction of GS gene expression was not affected by cell passage. Transferrin mRNA, which is not normally found in astrocytes in vivo, was expressed at a high level in primary cultures of astrocytes. However, transferring mRNA almost completely disappeared after the second passage. Astrocyte-conditioned media, or co-cultures with oligodendrocytes, modified transferrin gene expression. Taken together, these results show that subculturing of primary rat astrocytes leads to a dramatic change in the genetic expression of several proteins and provides a new approach to modify astrocyte differentiation in vitro.
Collapse
Affiliation(s)
- A C Passaquin
- Department of Anatomy and Cell Biology, University of California, Los Angeles 90024
| | | | | |
Collapse
|
45
|
Kaneko R, Hagiwara N, Leader K, Sueoka N. Glial-specific cAMP response of the glial fibrillary acidic protein gene cell lines. Proc Natl Acad Sci U S A 1994; 91:4529-33. [PMID: 8183943 PMCID: PMC43819 DOI: 10.1073/pnas.91.10.4529] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Expression of the rat glial fibrillary acidic protein (GFAP) gene is responsive to the intracellular level of cAMP. We have examined the sequence 5'-upstream of the transcription start site of the rat GFAP-encoding gene to determine the elements responsible for regulating the cAMP response. The RT4 cell lines consist of a neural stem-cell type RT4-AC and its three derivative cell types, one glial-cell type, RT4-D, and two neuronal-cell types, RT4-B and RT4-E. GFAP is expressed in the stem-cell type and the glial-cell type but is not expressed in the neuronal-cell types. Luciferase expression vectors containing various areas of the 10.8-kb region upstream of the transcription start site of the GFAP gene were transiently transfected into these RT4 cells. The effect of cAMP was examined by quantitating the transient expression of luciferase. We found that (i) the 5'-upstream region alone (up to 10.8 kb) allows expression of the GFAP gene in the stem-cell type, the glial-cell type, and a neuronal-cell type; (ii) there are negative and positive cAMP-responsive elements that are juxtaposed within the region between -240 bp and -110 bp upstream and are functional in the stem-cell and glial-cell types but are not functional in the neuronal-cell type RT4-E; (iii) there may be elements that respond to dibutyryl-cAMP in all three RT4 cell types within the region from 2 kb to 10.8 kb upstream of the transcription start site; and (iv) a regulatory luciferase plasmid pRLgfap-1, containing both the upstream and downstream regulatory regions of the GFAP gene, not only expresses luciferase but also responds to forskolin in the stem-cell type and the glial-cell type. This regulatory plasmid, however, does not express in the neuronal-cell type with or without the forskolin treatment.
Collapse
Affiliation(s)
- R Kaneko
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | | | |
Collapse
|
46
|
Rudge JS, Morrissey D, Lindsay RM, Pasnikowski EM. Regulation of ciliary neurotrophic factor in cultured rat hippocampal astrocytes. Eur J Neurosci 1994; 6:218-29. [PMID: 8167843 DOI: 10.1111/j.1460-9568.1994.tb00264.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ciliary neurotrophic factor (CNTF) is a pleiotropic cytokine which is detectable only at very low levels in the intact adult rat CNS, but following an aspirative lesion to the dorsal hippocampus and overlying cortex, CNTF mRNA levels are dramatically up-regulated in reactive astrocytes. In cultured rat hippocampal astrocytes, CNTF mRNA levels are high, similar to the levels in reactive astrocytes in vivo, but are strongly suppressed after administration of isoproterenol and forskolin, which stimulate the production of intracellular cyclic AMP, induced marked morphological change in the astrocytes and up-regulate glial fibrillary acidic protein mRNA and nerve growth factor mRNA in these cells. Following a single administration of forskolin to cultured astrocytes, suppression of CNTF mRNA was sustained for up to 7 days. A similar down-regulation was observed with the endogenous adrenergic agonists noradrenaline and adrenaline as well as, to a lesser extent, dopamine and adenosine. Down-regulation of CNTF mRNA resulted in a gradual reduction in the level of CNTF protein within the astrocytes. A single addition of forskolin or isoproterenol resulted in a drop in CNTF protein levels to 29 and 52% of control levels respectively after 9 days in vitro, although the rate of turnover of CNTF remained the same. Down-regulation of CNTF mRNA in cultured hippocampal astrocytes by adenylyl cyclase activation was quite specific, as a wide range of growth factors, cytokines and neurotransmitters had little or no effect upon CNTF mRNA levels.
Collapse
Affiliation(s)
- J S Rudge
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591
| | | | | | | |
Collapse
|
47
|
Konishi T. Activity-dependent regulation of inwardly rectifying potassium currents in non-myelinating Schwann cells in mice. J Physiol 1994; 474:193-202. [PMID: 8006809 PMCID: PMC1160309 DOI: 10.1113/jphysiol.1994.sp020013] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. Voltage-gated potassium currents were recorded from freshly dissociated non-myelinating Schwann cells of sural and sympathetic nerves from 1- to 12-week-old mice using the whole-cell or a single channel variation of the patch-clamp technique. 2. All sural cells from 2-week-old mice showed inwardly rectifying potassium (Kir+) currents in whole-cell recordings. Kir+ currents were virtually undetectable in sural cells from mice more than 6 weeks old, which also showed depolarization of the resting membrane potential. On the other hand, the magnitude of Kir+ currents increased in cervical sympathetic trunk (CST) cells in parallel with an increase of cell capacitance 1-6 weeks after birth. The density of Kir+ currents in CST cells increased 1-4 weeks after birth and then stayed constant for up to 12 weeks. 3. The unitary conductance of a single Kir+ channel in CST cells was 30 pS 2-12 weeks after birth; this was recorded in a cell-attached configuration with 154 mM K+ in the pipette. The steady-state open channel probability of single Kir+ channels in CST cells decreased with membrane hyperpolarization, but was not markedly changed 2-12 weeks after birth. 4. Conduction block of CST for 5 days induced by local application of tetrodotoxin (TTX) resulted in a significant decrease in both the magnitude and the density of Kir+ currents in whole-cell recordings in CST cells rostral to the sites of TTX block. Similar changes of Kir+ currents in whole-cell recordings were observed in cells in the inferior postganglionic branch of a superior cervical ganglion after 5 days of TTX block of CST. 5. These results suggest that neuronal activity regulates the expression of functional Kir+ channels in non-myelinating Schwann cells in adult nerves. The activity-dependent regulation of the expression of glial potassium channels could play an important role in the regulation of the potassium microenvironment around active axons to maintain impulse conduction in unmyelinated fibres.
Collapse
Affiliation(s)
- T Konishi
- Department of Neurology, Utano National Hospital, Kyoto, Japan
| |
Collapse
|
48
|
Krisch B, Mentlein R. Neuropeptide receptors and astrocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 148:119-69. [PMID: 8119781 DOI: 10.1016/s0074-7696(08)62407-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- B Krisch
- Department of Anatomy, University of Kiel, Germany
| | | |
Collapse
|
49
|
Piehl F, Arvidsson U, Johnson H, Cullheim S, Dagerlind A, Ulfhake B, Cao Y, Elde R, Pettersson RF, Terenius L. GAP-43, aFGF, CCK and alpha- and beta-CGRP in rat spinal motoneurons subjected to axotomy and/or dorsal root severance. Eur J Neurosci 1993; 5:1321-33. [PMID: 7506107 DOI: 10.1111/j.1460-9568.1993.tb00918.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mRNA levels for growth-associated protein 43 (GAP-43), acidic fibroblast growth factor (aFGF), alpha- and beta-calcitonin gene-related peptide (CGRP), cholecystokinin (CCK) and choline acetyltransferase (ChAT) in rat lumbar spinal motoneurons were studied by in situ hybridization 1, 5 and 21 days and 20 weeks following unilateral peripheral nerve sectioning, ventral rhizotomy or dorsal rhizotomy. Furthermore, CGRP- and aFGF-like immunoreactivities in the ventral horn were studied using immunohistochemistry. One to 21 days after axotomy, GAP-43 and alpha-CGRP mRNAs increased in lesioned motoneurons, while the aFGF mRNA levels were marginally higher in motoneurons on the lesion side as compared to the control side. beta-CGRP, CCK and ChAT mRNA levels, on the other hand, decreased during the short-term response (1-21 days) to axotomy. After ventral rhizotomy, but not peripheral axotomy, there was complete disappearance of aFGF-like immunoreactivity in the ventral root proximal to the lesion. In animals subjected to long-term survival (20 weeks) after peripheral axotomy, the expression of all studied substances had returned to normal levels. Unilateral dorsal rhizotomy did not induce any substantial short- or long-term shifts in the cellular expression of the GAP-43, aFGF, CGRP and CCK peptides or their mRNAs in motoneurons of lesioned segments. These results indicate that peptides/proteins in motoneurons are expressed differentially after axotomy. Whereas alpha-CGRP and GAP-43 are up-regulated, CCK and beta-CGRP become down-regulated and aFGF is largely unaffected.
Collapse
Affiliation(s)
- F Piehl
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sharma HS, Olsson Y, Cervós-Navarro J. p-Chlorophenylalanine, a serotonin synthesis inhibitor, reduces the response of glial fibrillary acidic protein induced by trauma to the spinal cord. An immunohistochemical investigation in the rat. Acta Neuropathol 1993; 86:422-7. [PMID: 8310791 DOI: 10.1007/bf00228575] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The possibility that serotonin may influence the early response of astrocytes around a spinal cord trauma was investigated in a rat model by making a unilateral incision into the right dorsal horn of the T10-11 segments. One group of rats received a serotonin synthesis inhibitor, p-chlorophenylalanine (p-CPA) before injury in doses which cause a depletion of serotonin in the cord. Another group of traumatised rats did not receive p-CPA. All animals were allowed to survive for 5 h. Samples for immunohistochemistry were taken from the T9, T10-11 and T12 segments of the cord. Paraffin sections were immunostained for glial fibrillary acidic protein (GFAP) using monoclonal antibodies and avidin-biotin complex technique. Trauma to the cord resulted in a marked increase of GFAP immunoreactivity in all the investigated segments, particularly in the ipsilateral side. Pretreatment with p-CPA markedly reduced the GFAP response. This drug did not by itself influence the GFAP immunoreactivity of the cord of untraumatised rats. Our results show that trauma to the spinal cord induces a rapid enhancement of GFAP immunoreactivity in the cord which is present even far away from the primary lesion. This response can be prevented by pretreatment with the serotonin synthesis inhibitor, p-CPA. The results indicate that serotonin influences the increase of GFAP immunoreactivity following spinal cord injury either directly or indirectly, for instance by its microvascular reactions.
Collapse
Affiliation(s)
- H S Sharma
- Laboratory of Neuropathology, University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|