1
|
Gracia-Tabuenca Z, Barbeau EB, Kousaie S, Chen JK, Chai X, Klein D. Enhanced efficiency in the bilingual brain through the inter-hemispheric cortico-cerebellar pathway in early second language acquisition. Commun Biol 2024; 7:1298. [PMID: 39390147 PMCID: PMC11467263 DOI: 10.1038/s42003-024-06965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Bilingualism has a profound impact on the structure and function of the brain, but it is not yet well understood how this experience influences brain functional organization. We examine a large sample (151 participants) of monolinguals and bilinguals with varied age of second language acquisition, who underwent resting-state functional magnetic brain imaging. Whole-brain network analyses reveal higher global efficiency in bilingual individuals than monolinguals, indicating enhanced functional integration in the bilingual brain. Moreover, the age at which the second language was acquired correlated with this increased efficiency, suggesting that earlier exposure to a second language has lasting positive effects on brain functional organization. Further investigation using the network-based statistics approach indicates that this effect is primarily driven by heightened functional connectivity between association networks and the cerebellum. These findings show that the timing of bilingual learning experience alters the brain functional organization at both global and local levels.
Collapse
Affiliation(s)
- Zeus Gracia-Tabuenca
- Department of Statistical Methods, University of Zaragoza, Zaragoza, Aragón, Spain.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Elise B Barbeau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Shanna Kousaie
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Jen-Kai Chen
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Denise Klein
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Kristanto D, Burkhardt M, Thiel C, Debener S, Gießing C, Hildebrandt A. The multiverse of data preprocessing and analysis in graph-based fMRI: A systematic literature review of analytical choices fed into a decision support tool for informed analysis. Neurosci Biobehav Rev 2024; 165:105846. [PMID: 39117132 DOI: 10.1016/j.neubiorev.2024.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The large number of different analytical choices used by researchers is partly responsible for the challenge of replication in neuroimaging studies. For an exhaustive robustness analysis, knowledge of the full space of analytical options is essential. We conducted a systematic literature review to identify the analytical decisions in functional neuroimaging data preprocessing and analysis in the emerging field of cognitive network neuroscience. We found 61 different steps, with 17 of them having debatable parameter choices. Scrubbing, global signal regression, and spatial smoothing are among the controversial steps. There is no standardized order in which different steps are applied, and the parameter settings within several steps vary widely across studies. By aggregating the pipelines across studies, we propose three taxonomic levels to categorize analytical choices: 1) inclusion or exclusion of specific steps, 2) parameter tuning within steps, and 3) distinct sequencing of steps. We have developed a decision support application with high educational value called METEOR to facilitate access to the data in order to design well-informed robustness (multiverse) analysis.
Collapse
Affiliation(s)
- Daniel Kristanto
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany.
| | - Micha Burkhardt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Christiane Thiel
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany
| | - Stefan Debener
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany
| | - Carsten Gießing
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany.
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany.
| |
Collapse
|
3
|
Muller AM, Manning V, Wong CYF, Pennington DL. The Neural Correlates of Alcohol Approach Bias - New Insights from a Whole-Brain Network Analysis Perspective. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.26.24314399. [PMID: 39399042 PMCID: PMC11469381 DOI: 10.1101/2024.09.26.24314399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Alcohol approach bias, a tendency to approach rather than to avoid alcohol and alcohol-related cues regardless of associated negative consequences, is an emerging key characteristic of alcohol use disorder (AUD). Reaction times from the Approach-Avoidance Task (AAT) can be used to quantify alcohol approach bias. However, only a handful of studies have investigated the neural correlates of implicit alcohol approach behavior. Graph Theory Analysis (GTA) metrics, specifically, weighted global efficiency (wGE), community detection, and inter-community information integration were used to analyze functional magnetic resonance imaging (fMRI) data of an in-scanner version of the AAT from 31 heavy drinking Veterans with AUD (HDV) engaged in out-patient treatment and 19 healthy Veterans as controls (HC). We found a functional imprint of alcohol approach bias in HDVs. HDVs showed significantly higher wGE values for approaching than for avoiding alcohol, indicating that their brain was more efficiently organized or functionally set to approach alcohol in the presence to alcohol-related external cues. In contrast, Brains of HCs did not show such a processing advantage for either the approach or avoid condition. Further post-hoc analyses revealed that HDVs and HCs differed in how they implemented top-down control when approaching/avoiding alcohol and in how the fronto-parietal control network interacted with subsystems of the default mode network. These findings contribute to understanding the complex neural underpinnings of alcohol approach bias and lay the foundation for developing more potent and targeted interventions to modify these neural patterns in AUD patients.
Collapse
Affiliation(s)
- Angela M Muller
- University of California San Francisco, Department of Psychiatry, San Francisco, California, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Victoria Manning
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Clayton, Australia
- Turning Point, Eastern Health, Melbourne, Victoria, Australia
| | - Christy Y F Wong
- University of California San Francisco, Department of Psychiatry, San Francisco, California, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - David L Pennington
- University of California San Francisco, Department of Psychiatry, San Francisco, California, USA
- San Francisco Veterans Affairs Health Care System, Mental Health, San Francisco, California, USA
- Melantha Health, San Francisco, California, USA
| |
Collapse
|
4
|
Cerna J, Gupta P, He M, Ziegelman L, Hu Y, Hernandez ME. Tai Chi Practice Buffers Aging Effects in Functional Brain Connectivity. Brain Sci 2024; 14:901. [PMID: 39335397 PMCID: PMC11430092 DOI: 10.3390/brainsci14090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Tai Chi (TC) practice has been shown to improve both cognitive and physical function in older adults. However, the neural mechanisms underlying the benefits of TC remain unclear. Our primary aims are to explore whether distinct age-related and TC-practice-related relationships can be identified with respect to either temporal or spatial (within/between-network connectivity) differences. This cross-sectional study examined recurrent neural network dynamics, employing an adaptive, data-driven thresholding approach to source-localized resting-state EEG data in order to identify meaningful connections across time-varying graphs, using both temporal and spatial features derived from a hidden Markov model (HMM). Mann-Whitney U tests assessed between-group differences in temporal and spatial features by age and TC practice using either healthy younger adult controls (YACs, n = 15), healthy older adult controls (OACs, n = 15), or Tai Chi older adult practitioners (TCOAs, n = 15). Our results showed that aging is associated with decreased within-network and between-network functional connectivity (FC) across most brain networks. Conversely, TC practice appears to mitigate these age-related declines, showing increased FC within and between networks in older adults who practice TC compared to non-practicing older adults. These findings suggest that TC practice may abate age-related declines in neural network efficiency and stability, highlighting its potential as a non-pharmacological intervention for promoting healthy brain aging. This study furthers the triple-network model, showing that a balancing and reorientation of attention might be engaged not only through higher-order and top-down mechanisms (i.e., FPN/DAN) but also via the coupling of bottom-up, sensory-motor (i.e., SMN/VIN) networks.
Collapse
Affiliation(s)
- Jonathan Cerna
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Prakhar Gupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Maxine He
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Liran Ziegelman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Yang Hu
- Department of Kinesiology, San Jose State University, San Jose, CA 95192, USA;
| | - Manuel E. Hernandez
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Adamovich T, Ismatullina V, Chipeeva N, Zakharov I, Feklicheva I, Malykh S. Task-specific topology of brain networks supporting working memory and inhibition. Hum Brain Mapp 2024; 45:e70024. [PMID: 39258339 PMCID: PMC11387957 DOI: 10.1002/hbm.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Network neuroscience explores the brain's connectome, demonstrating that dynamic neural networks support cognitive functions. This study investigates how distinct cognitive abilities-working memory and cognitive inhibitory control-are supported by unique brain network configurations constructed by estimating whole-brain networks using mutual information. The study involved 195 participants who completed the Sternberg Item Recognition task and Flanker tasks while undergoing electroencephalography recording. A mixed-effects linear model analyzed the influence of network metrics on cognitive performance, considering individual differences and task-specific dynamics. The findings indicate that working memory and cognitive inhibitory control are associated with different network attributes, with working memory relying on distributed networks and cognitive inhibitory control on more segregated ones. Our analysis suggests that both strong and weak connections contribute to cognitive processes, with weak connections potentially leading to a more stable and support networks of memory and cognitive inhibitory control. The findings indirectly support the network neuroscience theory of intelligence, suggesting different functional topology of networks inherent to various cognitive functions. Nevertheless, we propose that understanding individual variations in cognitive abilities requires recognizing both shared and unique processes within the brain's network dynamics.
Collapse
Affiliation(s)
- Timofey Adamovich
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Victoria Ismatullina
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Nadezhda Chipeeva
- Federal State Institution “National Medical Research Center for Children's Health” of the Ministry of Health of the Russian FederationMoscowRussia
| | - Ilya Zakharov
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | | | - Sergey Malykh
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| |
Collapse
|
6
|
Lei T, Liao X, Liang X, Sun L, Xia M, Xia Y, Zhao T, Chen X, Men W, Wang Y, Ma L, Liu N, Lu J, Zhao G, Ding Y, Deng Y, Wang J, Chen R, Zhang H, Tan S, Gao JH, Qin S, Tao S, Dong Q, He Y. Functional network modules overlap and are linked to interindividual connectome differences during human brain development. PLoS Biol 2024; 22:e3002653. [PMID: 39292711 PMCID: PMC11441662 DOI: 10.1371/journal.pbio.3002653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/30/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024] Open
Abstract
The modular structure of functional connectomes in the human brain undergoes substantial reorganization during development. However, previous studies have implicitly assumed that each region participates in one single module, ignoring the potential spatial overlap between modules. How the overlapping functional modules develop and whether this development is related to gray and white matter features remain unknown. Using longitudinal multimodal structural, functional, and diffusion MRI data from 305 children (aged 6 to 14 years), we investigated the maturation of overlapping modules of functional networks and further revealed their structural associations. An edge-centric network model was used to identify the overlapping modules, and the nodal overlap in module affiliations was quantified using the entropy measure. We showed a regionally heterogeneous spatial topography of the overlapping extent of brain nodes in module affiliations in children, with higher entropy (i.e., more module involvement) in the ventral attention, somatomotor, and subcortical regions and lower entropy (i.e., less module involvement) in the visual and default-mode regions. The overlapping modules developed in a linear, spatially dissociable manner, with decreased entropy (i.e., decreased module involvement) in the dorsomedial prefrontal cortex, ventral prefrontal cortex, and putamen and increased entropy (i.e., increased module involvement) in the parietal lobules and lateral prefrontal cortex. The overlapping modular patterns captured individual brain maturity as characterized by chronological age and were predicted by integrating gray matter morphology and white matter microstructural properties. Our findings highlight the maturation of overlapping functional modules and their structural substrates, thereby advancing our understanding of the principles of connectome development.
Collapse
Affiliation(s)
- Tianyuan Lei
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yunman Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaodan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jing Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yuyin Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yao Deng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical College, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
7
|
Hirsch F, Bumanglag Â, Zhang Y, Wohlschlaeger A. Diverging functional connectivity timescales: Capturing distinct aspects of cognitive performance in early psychosis. Neuroimage Clin 2024; 43:103657. [PMID: 39208481 PMCID: PMC11401179 DOI: 10.1016/j.nicl.2024.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Psychosis spectrum disorders (PSDs) are marked by cognitive impairments, the neurobiological correlates of which remain poorly understood. Here, we investigate the entropy of time-varying functional connectivity (TVFC) patterns from resting-state functional magnetic resonance imaging (rs-fMRI) as potential biomarker for cognitive performance in PSDs. By combining our results with multimodal reference data, we hope to generate new insights into the mechanisms underlying cognitive dysfunction in PSDs. We hypothesized that low-entropy TVFC patterns (LEN) would be more behaviorally informative than high-entropy TVFC patterns (HEN), especially for tasks that require extensive integration across diverse cognitive subdomains. METHODS rs-fMRI and behavioral data from 97 patients in the early phases of psychosis and 53 controls were analyzed. Positron emission tomography (PET) and magnetoencephalography (MEG) data were taken from a public repository (Hansen et al., 2022). Multivariate analyses were conducted to examine relationships between TVFC patterns at multiple spatial scales and cognitive performance in patients. RESULTS Compared to HEN, LEN explained significantly more cognitive variance on average in PSD patients, driven by superior encoding of information on psychometrically more integrated tasks. HEN better captured information in specific subdomains of executive functioning. Nodal HEN-LEN transitions were spatially aligned with neurobiological gradients reflecting monoaminergic transporter densities and MEG beta-power. Exploratory analyses revealed a close statistical relationship between LEN and positive symptom severity in patients. CONCLUSION Our entropy-based analysis of TVFC patterns dissociates distinct aspects of cognition in PSDs. By linking topographies of neurotransmission and oscillatory dynamics with cognitive performance, it enhances our understanding of the mechanisms underlying cognitive deficits in PSDs.
Collapse
Affiliation(s)
- Fabian Hirsch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany.
| | - Ângelo Bumanglag
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Yifei Zhang
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| |
Collapse
|
8
|
Hirsch F, Bumanglag Â, Zhang Y, Wohlschlaeger A. Diverging functional connectivity timescales: Capturing distinct aspects of cognitive performance in early psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.07.24306932. [PMID: 38766002 PMCID: PMC11100938 DOI: 10.1101/2024.05.07.24306932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Psychosis spectrum disorders (PSDs) are marked by cognitive impairments, the neurobiological correlates of which remain poorly understood. Here, we investigate the entropy of time-varying functional connectivity (TVFC) patterns from resting-state fMRI (rfMRI) as potential biomarker for cognitive performance in PSDs. By combining our results with multimodal reference data, we hope to generate new insights into the mechanisms underlying cognitive dysfunction in PSDs. We hypothesized that low-entropy TVFC patterns (LEN) would be more behaviorally informative than high-entropy TVFC patterns (HEN), especially for tasks that require extensive integration across diverse cognitive subdomains. Methods rfMRI and behavioral data from 97 patients in the early phases of psychosis and 53 controls were analyzed. Positron-Emission Tomography (PET) and magnetoencephalography (MEG) data were taken from a public repository (Hansen et al., 2022). Multivariate analyses were conducted to examine relationships between TVFC patterns at multiple spatial scales and cognitive performance in patients. Results Compared to HEN, LEN explained significantly more cognitive variance on average in PSD patients, driven by superior encoding of information on psychometrically more integrated tasks. HEN better captured information in specific subdomains of executive functioning. Nodal HEN-LEN transitions were spatially aligned with neurobiological gradients reflecting monoaminergic transporter densities and MEG beta power. Exploratory analyses revealed a close statistical relationship between LEN and positive PSD symptoms. Conclusion Our entropy-based analysis of TVFC patterns dissociates distinct aspects of cognition in PSDs. By linking topographies of neurotransmission and oscillatory dynamics with cognitive performance, it enhances our understanding of the mechanisms underlying cognitive deficits in PSDs. CRediT Authorship Contribution Statement Fabian Hirsch: Conceptualization, Methodology, Software, Formal analysis, Writing - Original Draft, Writing - Review & Editing, Visualization; Ângelo Bumanglag: Methodology, Software, Formal analysis, Writing - Review & Editing; Yifei Zhang: Methodology, Software, Formal analysis, Writing - Review & Editing; Afra Wohlschlaeger: Methodology, Writing - Review & Editing, Supervision, Project administration.
Collapse
|
9
|
Nakamura Y, Yamasaki S, Okada N, Ando S, Nishida A, Kasai K, Koike S. Macronutrient intake is associated with intelligence and neural development in adolescents. Front Nutr 2024; 11:1349738. [PMID: 38706562 PMCID: PMC11067507 DOI: 10.3389/fnut.2024.1349738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Macronutrient intake can be one of the most influential factors in cognitive and neural development in adolescents. Adolescence is a specific period of cognitive and neural development, and nutritional effects during this period could be life-long. Therefore, understanding the effects of macronutrient intake on cognitive and neural development in adolescents is crucially important. We thus examined the association across macronutrient intake, intelligence, and neural development using population-based cohort data. Methods We conducted two studies. In study 1, we included a total of 1,734 participants (boys, 907, age [mean ± standard deviation] 171.9 ± 3.44 months; range 163.0-186.0 months) from the Tokyo TEEN Cohort (TTC) to examine the association between macronutrient intake and intelligence quotient (IQ). In study 2, we included a total of 63 participants (boys, 38, age 174.4 ± 7.7 months; range 160.7-191.6 months) to investigate the effect of nutrition intake on neural development using graph theory analysis for resting-state functional magnetic resonance imaging (rs-fMRI) derived from a subset of the TTC. Results TTC data revealed that a higher IQ was associated in boys with increased protein intake (β = 0.068, p = 0.031), and in girls, with reduced carbohydrate intake (β = -0.076, p = 0.024). Graph theory analysis for rs-fMRI at approximately age 12 has shown that impaired local efficiency in the left inferior frontal gyrus was associated with higher carbohydrate and fat intake ([x, y, z] = [-51, 23, 8], pFDR-corrected = 0.00018 and 0.02290, respectively), whereas increased betweenness centrality in the left middle temporal gyrus was associated with higher carbohydrate, fat, and protein intake ([x, y, z] = [-61, -43, -13], pFDR-corrected = 0.0027, 0.0029, and 0.00075, respectively). Moreover, we identified a significant moderating effect of fat and protein intake on the relationship between change in betweenness centrality over a 2-year measurement gap in the left middle temporal gyrus and intelligence (β = 12.41, p = 0.0457; β = 12.12, p = 0.0401, respectively). Conclusion Our study showed the association between macronutrient intake and neural development related to intelligence in early adolescents. Appropriate nutritional intake would be a key factor for healthy cognitive and neural development.
Collapse
Affiliation(s)
- Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| | - Syudo Yamasaki
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (IRCN), Tokyo, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Atsushi Nishida
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kiyoto Kasai
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (IRCN), Tokyo, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
- International Research Center for Neurointelligence (IRCN), Tokyo, Japan
| |
Collapse
|
10
|
Harp NR, Nielsen AN, Schultz DH, Neta M. In the face of ambiguity: intrinsic brain organization in development predicts one's bias toward positivity or negativity. Cereb Cortex 2024; 34:bhae102. [PMID: 38494885 PMCID: PMC10945044 DOI: 10.1093/cercor/bhae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Exacerbated negativity bias, including in responses to ambiguity, represents a common phenotype of internalizing disorders. Individuals differ in their propensity toward positive or negative appraisals of ambiguity. This variability constitutes one's valence bias, a stable construct linked to mental health. Evidence suggests an initial negativity in response to ambiguity that updates via regulatory processes to support a more positive bias. Previous work implicates the amygdala and prefrontal cortex, and regions of the cingulo-opercular system, in this regulatory process. Nonetheless, the neurodevelopmental origins of valence bias remain unclear. The current study tests whether intrinsic brain organization predicts valence bias among 119 children and adolescents (6 to 17 years). Using whole-brain resting-state functional connectivity, a machine-learning model predicted valence bias (r = 0.20, P = 0.03), as did a model restricted to amygdala and cingulo-opercular system features (r = 0.19, P = 0.04). Disrupting connectivity revealed additional intra-system (e.g. fronto-parietal) and inter-system (e.g. amygdala to cingulo-opercular) connectivity important for prediction. The results highlight top-down control systems and bottom-up perceptual processes that influence valence bias in development. Thus, intrinsic brain organization informs the neurodevelopmental origins of valence bias, and directs future work aimed at explicating related internalizing symptomology.
Collapse
Affiliation(s)
- Nicholas R Harp
- Department of Psychiatry, Yale University, 300 George Street, New Haven, CT 06511, United States
| | - Ashley N Nielsen
- Department of Neurology, Washington University, 660 S. Euclid Ave., St. Louis, MO 63110, United States
| | - Douglas H Schultz
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588, United States
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, C89 East Stadium, Lincoln, NE 68588, United States
| | - Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588, United States
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, C89 East Stadium, Lincoln, NE 68588, United States
| |
Collapse
|
11
|
Metzen D, Stammen C, Fraenz C, Schlüter C, Johnson W, Güntürkün O, DeYoung CG, Genç E. Investigating robust associations between functional connectivity based on graph theory and general intelligence. Sci Rep 2024; 14:1368. [PMID: 38228689 DOI: 10.1038/s41598-024-51333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
Previous research investigating relations between general intelligence and graph-theoretical properties of the brain's intrinsic functional network has yielded contradictory results. A promising approach to tackle such mixed findings is multi-center analysis. For this study, we analyzed data from four independent data sets (total N > 2000) to identify robust associations amongst samples between g factor scores and global as well as node-specific graph metrics. On the global level, g showed no significant associations with global efficiency or small-world propensity in any sample, but significant positive associations with global clustering coefficient in two samples. On the node-specific level, elastic-net regressions for nodal efficiency and local clustering yielded no brain areas that exhibited consistent associations amongst data sets. Using the areas identified via elastic-net regression in one sample to predict g in other samples was not successful for local clustering and only led to one significant, one-way prediction across data sets for nodal efficiency. Thus, using conventional graph theoretical measures based on resting-state imaging did not result in replicable associations between functional connectivity and general intelligence.
Collapse
Affiliation(s)
- Dorothea Metzen
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany.
- Institute of Psychology, Department of Educational Sciences and Psychology, TU Dortmund University, 44227, Dortmund, Germany.
| | - Christina Stammen
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany
| | - Christoph Fraenz
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany
| | - Caroline Schlüter
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Wendy Johnson
- Department of Psychology, University of Edinburgh, EH8 9JZ, Edinburgh, UK
| | - Onur Güntürkün
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota, 55455, Minneapolis, MN, USA
| | - Erhan Genç
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany
| |
Collapse
|
12
|
Michael C, Tillem S, Sripada CS, Burt SA, Klump KL, Hyde LW. Neighborhood poverty during childhood prospectively predicts adolescent functional brain network architecture. Dev Cogn Neurosci 2023; 64:101316. [PMID: 37857040 PMCID: PMC10587714 DOI: 10.1016/j.dcn.2023.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Family poverty has been associated with altered brain structure, function, and connectivity in youth. However, few studies have examined how disadvantage within the broader neighborhood may influence functional brain network organization. The present study leveraged a longitudinal community sample of 538 twins living in low-income neighborhoods to evaluate the prospective association between exposure to neighborhood poverty during childhood (6-10 y) with functional network architecture during adolescence (8-19 y). Using resting-state and task-based fMRI, we generated two latent measures that captured intrinsic brain organization across the whole-brain and network levels - network segregation and network segregation-integration balance. While age was positively associated with network segregation and network balance overall across the sample, these associations were moderated by exposure to neighborhood poverty. Specifically, these positive associations were observed only in youth from more, but not less, disadvantaged neighborhoods. Moreover, greater exposure to neighborhood poverty predicted reduced network segregation and network balance in early, but not middle or late, adolescence. These effects were detected both across the whole-brain system as well as specific functional networks, including fronto-parietal, default mode, salience, and subcortical systems. These findings indicate that where children live may exert long-reaching effects on the organization and development of the adolescent brain.
Collapse
Affiliation(s)
- Cleanthis Michael
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Scott Tillem
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Chandra S Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Simpson-Kent IL, Gataviņš MM, Tooley UA, Boroshok AL, McDermott CL, Park AT, Delgado Reyes L, Bathelt J, Tisdall MD, Mackey AP. Multilayer network associations between the exposome and childhood brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563611. [PMID: 37961103 PMCID: PMC10634748 DOI: 10.1101/2023.10.23.563611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Growing up in a high poverty neighborhood is associated with elevated risk for academic challenges and health problems. Here, we take a data-driven approach to exploring how measures of children's environments relate to the development of their brain structure and function in a community sample of children between the ages of 4 and 10 years. We constructed exposomes including measures of family socioeconomic status, children's exposure to adversity, and geocoded measures of neighborhood socioeconomic status, crime, and environmental toxins. We connected the exposome to two structural measures (cortical thickness and surface area, n = 170) and two functional measures (participation coefficient and clustering coefficient, n = 130). We found dense connections within exposome and brain layers and sparse connections between exposome and brain layers. Lower family income was associated with thinner visual cortex, consistent with the theory that accelerated development is detectable in early-developing regions. Greater neighborhood incidence of high blood lead levels was associated with greater segregation of the default mode network, consistent with evidence that toxins are deposited into the brain along the midline. Our study demonstrates the utility of multilayer network analysis to bridge environmental and neural explanatory levels to better understand the complexity of child development.
Collapse
Affiliation(s)
- Ivan L. Simpson-Kent
- Institute of Psychology, Developmental and Educational Psychology Unit, Leiden University, Leiden, the Netherlands
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mārtiņš M. Gataviņš
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ursula A. Tooley
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Washington University in St. Louis, USA
- Department of Neurology, Washington University in St. Louis, USA
| | - Austin L. Boroshok
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Anne T. Park
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Joe Bathelt
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - M. Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson P. Mackey
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Jiang C, He Y, Betzel RF, Wang YS, Xing XX, Zuo XN. Optimizing network neuroscience computation of individual differences in human spontaneous brain activity for test-retest reliability. Netw Neurosci 2023; 7:1080-1108. [PMID: 37781147 PMCID: PMC10473278 DOI: 10.1162/netn_a_00315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/22/2023] [Indexed: 10/03/2023] Open
Abstract
A rapidly emerging application of network neuroscience in neuroimaging studies has provided useful tools to understand individual differences in intrinsic brain function by mapping spontaneous brain activity, namely intrinsic functional network neuroscience (ifNN). However, the variability of methodologies applied across the ifNN studies-with respect to node definition, edge construction, and graph measurements-makes it difficult to directly compare findings and also challenging for end users to select the optimal strategies for mapping individual differences in brain networks. Here, we aim to provide a benchmark for best ifNN practices by systematically comparing the measurement reliability of individual differences under different ifNN analytical strategies using the test-retest design of the Human Connectome Project. The results uncovered four essential principles to guide ifNN studies: (1) use a whole brain parcellation to define network nodes, including subcortical and cerebellar regions; (2) construct functional networks using spontaneous brain activity in multiple slow bands; and (3) optimize topological economy of networks at individual level; and (4) characterize information flow with specific metrics of integration and segregation. We built an interactive online resource of reliability assessments for future ifNN (https://ibraindata.com/research/ifNN).
Collapse
Affiliation(s)
- Chao Jiang
- School of Psychology, Capital Normal University, Beijing, China
| | - Ye He
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Yin-Shan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiu-Xia Xing
- Department of Applied Mathematics, College of Mathematics, Faculty of Science, Beijing University of Technology, Beijing, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- National Basic Science Data Center, Beijing, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Wilcox RR, Barbey AK. Connectome-based predictive modeling of fluid intelligence: evidence for a global system of functionally integrated brain networks. Cereb Cortex 2023; 33:10322-10331. [PMID: 37526284 DOI: 10.1093/cercor/bhad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
Cognitive neuroscience continues to advance our understanding of the neural foundations of human intelligence, with significant progress elucidating the role of the frontoparietal network in cognitive control mechanisms for flexible, intelligent behavior. Recent evidence in network neuroscience further suggests that this finding may represent the tip of the iceberg and that fluid intelligence may depend on the collective interaction of multiple brain networks. However, the global brain mechanisms underlying fluid intelligence and the nature of multi-network interactions remain to be well established. We therefore conducted a large-scale Connectome-based Predictive Modeling study, administering resting-state fMRI to 159 healthy college students and examining the contributions of seven intrinsic connectivity networks to the prediction of fluid intelligence, as measured by a state-of-the-art cognitive task (the Bochum Matrices Test). Specifically, we aimed to: (i) identify whether fluid intelligence relies on a primary brain network or instead engages multiple brain networks; and (ii) elucidate the nature of brain network interactions by assessing network allegiance (within- versus between-network connections) and network topology (strong versus weak connections) in the prediction of fluid intelligence. Our results demonstrate that whole-brain predictive models account for a large and significant proportion of variance in fluid intelligence (18%) and illustrate that the contribution of individual networks is relatively modest by comparison. In addition, we provide novel evidence that the global architecture of fluid intelligence prioritizes between-network connections and flexibility through weak ties. Our findings support a network neuroscience approach to understanding the collective role of brain networks in fluid intelligence and elucidate the system-wide network mechanisms from which flexible, adaptive behavior is constructed.
Collapse
Affiliation(s)
- Ramsey R Wilcox
- Decision Neuroscience Laboratory, University of Nebraska-Lincoln, NE 68501, United States
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, NE 68501, United States
- Department of Psychology, University of Nebraska-Lincoln, NE 68501, United States
- Department of Psychology, University of Illinois, Urbana, IL 61801, United States
| | - Aron K Barbey
- Decision Neuroscience Laboratory, University of Nebraska-Lincoln, NE 68501, United States
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, NE 68501, United States
- Department of Psychology, University of Nebraska-Lincoln, NE 68501, United States
- Department of Psychology, University of Illinois, Urbana, IL 61801, United States
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, United States
| |
Collapse
|
16
|
Bogdan PC, Iordan AD, Shobrook J, Dolcos F. ConnSearch: A framework for functional connectivity analysis designed for interpretability and effectiveness at limited sample sizes. Neuroimage 2023; 278:120274. [PMID: 37451373 DOI: 10.1016/j.neuroimage.2023.120274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Functional connectivity studies increasingly turn to machine learning methods, which typically involve fitting a connectome-wide classifier, then conducting post hoc interpretation analyses to identify the neural correlates that best predict a dependent variable. However, this traditional analytic paradigm suffers from two main limitations. First, even if classifiers are perfectly accurate, interpretation analyses may not identify all the patterns expressed by a dependent variable. Second, even if classifiers are generalizable, the patterns implicated via interpretation analyses may not replicate. In other words, this traditional approach can yield effective classifiers while falling short of most neuroscientists' goals: pinpointing the neural correlates of dependent variables. We propose a new framework for multivariate analysis, ConnSearch, which involves dividing the connectome into components (e.g., groups of highly connected regions) and fitting an independent model for each component (e.g., a support vector machine or a correlation-based model). Conclusions about the link between a dependent variable and the brain are based on which components yield predictive models rather than on interpretation analysis. We used working memory data from the Human Connectome Project (N = 50-250) to compare ConnSearch with four existing connectome-wide classification/interpretation methods. For each approach, the models attempted to classify examples as being from the high-load or low-load conditions (binary labels). Relative to traditional methods, ConnSearch identified neural correlates that were more comprehensive, had greater consistency with the WM literature, and better replicated across datasets. Hence, ConnSearch is well-positioned to be an effective tool for functional connectivity research.
Collapse
Affiliation(s)
- Paul C Bogdan
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA..
| | | | - Jonathan Shobrook
- Department of Mathematics, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Florin Dolcos
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
17
|
Ren X, Libertus ME. Identifying the Neural Bases of Math Competence Based on Structural and Functional Properties of the Human Brain. J Cogn Neurosci 2023; 35:1212-1228. [PMID: 37172121 DOI: 10.1162/jocn_a_02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Human populations show large individual differences in math performance and math learning abilities. Early math skill acquisition is critical for providing the foundation for higher quantitative skill acquisition and succeeding in modern society. However, the neural bases underlying individual differences in math competence remain unclear. Modern neuroimaging techniques allow us to not only identify distinct local cortical regions but also investigate large-scale neural networks underlying math competence both structurally and functionally. To gain insights into the neural bases of math competence, this review provides an overview of the structural and functional neural markers for math competence in both typical and atypical populations of children and adults. Although including discussion of arithmetic skills in children, this review primarily focuses on the neural markers associated with complex math skills. Basic number comprehension and number comparison skills are outside the scope of this review. By synthesizing current research findings, we conclude that neural markers related to math competence are not confined to one particular region; rather, they are characterized by a distributed and interconnected network of regions across the brain, primarily focused on frontal and parietal cortices. Given that human brain is a complex network organized to minimize the cost of information processing, an efficient brain is capable of integrating information from different regions and coordinating the activity of various brain regions in a manner that maximizes the overall efficiency of the network to achieve the goal. We end by proposing that frontoparietal network efficiency is critical for math competence, which enables the recruitment of task-relevant neural resources and the engagement of distributed neural circuits in a goal-oriented manner. Thus, it will be important for future studies to not only examine brain activation patterns of discrete regions but also examine distributed network patterns across the brain, both structurally and functionally.
Collapse
|
18
|
Anderson ED, Barbey AK. Investigating cognitive neuroscience theories of human intelligence: A connectome-based predictive modeling approach. Hum Brain Mapp 2023; 44:1647-1665. [PMID: 36537816 PMCID: PMC9921238 DOI: 10.1002/hbm.26164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/18/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Central to modern neuroscientific theories of human intelligence is the notion that general intelligence depends on a primary brain region or network, engaging spatially localized (rather than global) neural representations. Recent findings in network neuroscience, however, challenge this assumption, providing evidence that general intelligence may depend on system-wide network mechanisms, suggesting that local representations are necessary but not sufficient to account for the neural architecture of human intelligence. Despite the importance of this key theoretical distinction, prior research has not systematically investigated the role of local versus global neural representations in predicting general intelligence. We conducted a large-scale connectome-based predictive modeling study (N = 297), administering resting-state fMRI and a comprehensive cognitive battery to evaluate the efficacy of modern neuroscientific theories of human intelligence, including spatially localized theories (Lateral Prefrontal Cortex Theory, Parieto-Frontal Integration Theory, and Multiple Demand Theory) and recent global accounts (Process Overlap Theory and Network Neuroscience Theory). The results of our study demonstrate that general intelligence can be predicted by local functional connectivity profiles but is most robustly explained by global profiles of whole-brain connectivity. Our findings further suggest that the improved efficacy of global theories is not reducible to a greater strength or number of connections, but instead results from considering both strong and weak connections that provide the basis for intelligence (as predicted by the Network Neuroscience Theory). Our results highlight the importance of considering local neural representations in the context of a global information-processing architecture, suggesting future directions for theory-driven research on system-wide network mechanisms underlying general intelligence.
Collapse
Affiliation(s)
- Evan D. Anderson
- Decision Neuroscience LaboratoryBeckman Institute for Advanced Science and Technology, University of IllinoisUrbanaIllinoisUSA
- Neuroscience ProgramUniversity of IllinoisUrbanaIllinoisUSA
- Ball Aerospace and Technologies CorpBroomfieldColoradoUSA
- Air Force Research LaboratoryWright‐Patterson AFBOhioUSA
| | - Aron K. Barbey
- Decision Neuroscience LaboratoryBeckman Institute for Advanced Science and Technology, University of IllinoisUrbanaIllinoisUSA
- Neuroscience ProgramUniversity of IllinoisUrbanaIllinoisUSA
- Department of PsychologyUniversity of IllinoisUrbanaIllinoisUSA
- Department of BioengineeringUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
19
|
Nenning KH, Xu T, Franco AR, Swallow K, Tambini A, Margulies DS, Smallwood J, Colcombe SJ, Milham MP. Omnipresence of the sensorimotor-association axis topography in the human connectome. Neuroimage 2023; 272:120059. [PMID: 37001835 DOI: 10.1016/j.neuroimage.2023.120059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Low-dimensional representations are increasingly used to study meaningful organizational principles within the human brain. Most notably, the sensorimotor-association axis consistently explains the most variance in the human connectome as its so-called principal gradient, suggesting that it represents a fundamental organizational principle. While recent work indicates these low dimensional representations are relatively robust, they are limited by modeling only certain aspects of the functional connectivity structure. To date, the majority of studies have restricted these approaches to the strongest connections in the brain, treating weaker or negative connections as noise despite evidence of meaningful structure among them. The present work examines connectivity gradients of the human connectome across a full range of connectivity strengths and explores the implications for outcomes of individual differences, identifying potential dependencies on thresholds and opportunities to improve prediction tasks. Interestingly, the sensorimotor-association axis emerged as the principal gradient of the human connectome across the entire range of connectivity levels. Moreover, the principal gradient of connections at intermediate strengths encoded individual differences, better followed individual-specific anatomical features, and was also more predictive of intelligence. Taken together, our results add to evidence of the sensorimotor-association axis as a fundamental principle of the brain's functional organization, since it is evident even in the connectivity structure of more lenient connectivity thresholds. These more loosely coupled connections further appear to contain valuable and potentially important information that could be used to improve our understanding of individual differences, diagnosis, and the prediction of treatment outcomes.
Collapse
|
20
|
Deery HA, Di Paolo R, Moran C, Egan GF, Jamadar SD. The older adult brain is less modular, more integrated, and less efficient at rest: A systematic review of large-scale resting-state functional brain networks in aging. Psychophysiology 2023; 60:e14159. [PMID: 36106762 PMCID: PMC10909558 DOI: 10.1111/psyp.14159] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/23/2022]
Abstract
The literature on large-scale resting-state functional brain networks across the adult lifespan was systematically reviewed. Studies published between 1986 and July 2021 were retrieved from PubMed. After reviewing 2938 records, 144 studies were included. Results on 11 network measures were summarized and assessed for certainty of the evidence using a modified GRADE method. The evidence provides high certainty that older adults display reduced within-network and increased between-network functional connectivity. Older adults also show lower segregation, modularity, efficiency and hub function, and decreased lateralization and a posterior to anterior shift at rest. Higher-order functional networks reliably showed age differences, whereas primary sensory and motor networks showed more variable results. The inflection point for network changes is often the third or fourth decade of life. Age effects were found with moderate certainty for within- and between-network altered patterns and speed of dynamic connectivity. Research on within-subject bold variability and connectivity using glucose uptake provides low certainty of age differences but warrants further study. Taken together, these age-related changes may contribute to the cognitive decline often seen in older adults.
Collapse
Affiliation(s)
- Hamish A. Deery
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
| | - Robert Di Paolo
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
| | - Chris Moran
- Peninsula Clinical School, Central Clinical SchoolMonash UniversityFrankstonVictoriaAustralia
- Department of Geriatric MedicinePeninsula HealthFrankstonVictoriaAustralia
| | - Gary F. Egan
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
- Australian Research Council Centre of Excellence for Integrative Brain FunctionMelbourneVictoriaAustralia
| | - Sharna D. Jamadar
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
- Australian Research Council Centre of Excellence for Integrative Brain FunctionMelbourneVictoriaAustralia
| |
Collapse
|
21
|
Adamovich T, Zakharov I, Tabueva A, Malykh S. The thresholding problem and variability in the EEG graph network parameters. Sci Rep 2022; 12:18659. [PMID: 36333413 PMCID: PMC9636266 DOI: 10.1038/s41598-022-22079-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Graph thresholding is a frequently used practice of eliminating the weak connections in brain functional connectivity graphs. The main aim of the procedure is to delete the spurious connections in the data. However, the choice of the threshold is arbitrary, and the effect of the threshold choice is not fully understood. Here we present the description of the changes in the global measures of a functional connectivity graph depending on the different proportional thresholds based on the 146 resting-state EEG recordings. The dynamics is presented in five different synchronization measures (wPLI, ImCoh, Coherence, ciPLV, PPC) in sensors and source spaces. The analysis shows significant changes in the graph's global connectivity measures as a function of the chosen threshold which may influence the outcome of the study. The choice of the threshold could lead to different study conclusions; thus it is necessary to improve the reasoning behind the choice of the different analytic options and consider the adoption of different analytic approaches. We also proposed some ways of improving the procedure of thresholding in functional connectivity research.
Collapse
Affiliation(s)
- Timofey Adamovich
- Psychological Institute of Russian Academy of Education, Moscow, Russia.
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia.
| | - Ilya Zakharov
- Psychological Institute of Russian Academy of Education, Moscow, Russia
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Anna Tabueva
- Psychological Institute of Russian Academy of Education, Moscow, Russia
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Sergey Malykh
- Psychological Institute of Russian Academy of Education, Moscow, Russia
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
22
|
Tooley UA, Park AT, Leonard JA, Boroshok AL, McDermott CL, Tisdall MD, Bassett DS, Mackey AP. The Age of Reason: Functional Brain Network Development during Childhood. J Neurosci 2022; 42:8237-8251. [PMID: 36192151 PMCID: PMC9653278 DOI: 10.1523/jneurosci.0511-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/25/2022] [Accepted: 09/03/2022] [Indexed: 01/27/2023] Open
Abstract
Human childhood is characterized by dramatic changes in the mind and brain. However, little is known about the large-scale intrinsic cortical network changes that occur during childhood because of methodological challenges in scanning young children. Here, we overcome this barrier by using sophisticated acquisition and analysis tools to investigate functional network development in children between the ages of 4 and 10 years ([Formula: see text]; 50 female, 42 male). At multiple spatial scales, age is positively associated with brain network segregation. At the system level, age was associated with segregation of systems involved in attention from those involved in abstract cognition, and with integration among attentional and perceptual systems. Associations between age and functional connectivity are most pronounced in visual and medial prefrontal cortex, the two ends of a gradient from perceptual, externally oriented cortex to abstract, internally oriented cortex. These findings suggest that both ends of the sensory-association gradient may develop early, in contrast to the classical theories that cortical maturation proceeds from back to front, with sensory areas developing first and association areas developing last. More mature patterns of brain network architecture, controlling for age, were associated with better visuospatial reasoning abilities. Our results suggest that as cortical architecture becomes more specialized, children become more able to reason about the world and their place in it.SIGNIFICANCE STATEMENT Anthropologists have called the transition from early to middle childhood the "age of reason", when children across cultures become more independent. We employ cutting-edge neuroimaging acquisition and analysis approaches to investigate associations between age and functional brain architecture in childhood. Age was positively associated with segregation between cortical systems that process the external world and those that process abstract phenomena like the past, future, and minds of others. Surprisingly, we observed pronounced development at both ends of the sensory-association gradient, challenging the theory that sensory areas develop first and association areas develop last. Our results open new directions for research into how brains reorganize to support rapid gains in cognitive and socioemotional skills as children reach the age of reason.
Collapse
Affiliation(s)
- Ursula A Tooley
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Anne T Park
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Julia A Leonard
- Department of Psychology, Yale University, New Haven, Connecticut 06520
| | - Austin L Boroshok
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Cassidy L McDermott
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Matthew D Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Santa Fe Institute, Santa Fe, New Mexico 87501
| | - Allyson P Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
23
|
Buján A, Sampaio A, Pinal D. Resting-state electroencephalographic correlates of cognitive reserve: Moderating the age-related worsening in cognitive function. Front Aging Neurosci 2022; 14:854928. [PMID: 36185469 PMCID: PMC9521492 DOI: 10.3389/fnagi.2022.854928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
This exploratory study aimed to investigate the resting-state electroencephalographic (rsEEG) correlates of the cognitive reserve from a life span perspective. Current source density (CSD) and lagged-linear connectivity (LLC) measures were assessed to this aim. We firstly explored the relationship between rsEEG measures for the different frequency bands and a socio-behavioral proxy of cognitive reserve, the Cognitive Reserve Index (CRI). Secondly, we applied moderation analyses to assess whether any of the correlated rsEEG measures showed a moderating role in the relationship between age and cognitive function. Moderate negative correlations were found between the CRI and occipital CSD of delta and beta 2. Moreover, inter- and intrahemispheric LLC measures were correlated with the CRI, showing a negative association with delta and positive associations with alpha 1, beta 1, and beta 2. Among those correlated measures, just two rsEEG variables were significant moderators of the relationship between age and cognition: occipital delta CSD and right hemispheric beta 2 LLC between occipital and limbic regions. The effect of age on cognitive performance was stronger for higher values of both measures. Therefore, lower values of occipital delta CSD and lower beta 2 LLC between right occipital and limbic regions might protect or compensate for the effects of age on cognition. Results of this exploratory study might be helpful to allocate more preventive efforts to curb the progression of cognitive decline in adults with less CR, possibly characterized by these rsEEG parameters at a neural level. However, given the exploratory nature of this study, more conclusive work on these rsEEG measures is needed to firmly establish their role in the cognition-age relationship, for example, verifying if these measures moderate the relationship between brain structure and cognition.
Collapse
Affiliation(s)
- Ana Buján
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | | | | |
Collapse
|
24
|
Litwińczuk MC, Trujillo-Barreto N, Muhlert N, Cloutman L, Woollams A. Combination of structural and functional connectivity explains unique variation in specific domains of cognitive function. Neuroimage 2022; 262:119531. [PMID: 35931312 DOI: 10.1016/j.neuroimage.2022.119531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between structural and functional brain networks has been characterised as complex: the two networks mirror each other and show mutual influence but they also diverge in their organisation. This work explored whether a combination of structural and functional connectivity can improve the fit of regression models of cognitive performance. Principal Component Analysis (PCA) was first applied to cognitive data from the Human Connectome Project to identify latent cognitive components: Executive Function, Self-regulation, Language, Encoding and Sequence Processing. A Principal Component Regression approach with embedded Step-Wise Regression (SWR-PCR) was then used to fit regression models of each cognitive domain based on structural (SC), functional (FC) or combined structural-functional (CC) connectivity. Executive Function was best explained by the CC model. Self-regulation was equally well explained by SC and FC. Language was equally well explained by CC and FC models. Encoding and Sequence Processing were best explained by SC. Evaluation of out-of-sample models' skill via cross-validation showed that SC, FC and CC produced generalisable models of Language performance. SC models performed most effectively at predicting Language performance in unseen sample. Executive Function was most effectively predicted by SC models, followed only by CC models. Self-regulation was only effectively predicted by CC models and Sequence Processing was only effectively predicted by FC models. The present study demonstrates that integrating structural and functional connectivity can help explaining cognitive performance, but that the added explanatory value (in sample) may be domain-specific and can come at the expense of reduced generalisation performance (out-of-sample).
Collapse
Affiliation(s)
| | | | - Nils Muhlert
- Division of Neuroscience and Experimental Psychology, University of Manchester, UK
| | - Lauren Cloutman
- Division of Neuroscience and Experimental Psychology, University of Manchester, UK
| | - Anna Woollams
- Division of Neuroscience and Experimental Psychology, University of Manchester, UK
| |
Collapse
|
25
|
Predicting brain structural network using functional connectivity. Med Image Anal 2022; 79:102463. [PMID: 35490597 DOI: 10.1016/j.media.2022.102463] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/06/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
Abstract
Uncovering the non-trivial brain structure-function relationship is fundamentally important for revealing organizational principles of human brain. However, it is challenging to infer a reliable relationship between individual brain structure and function, e.g., the relations between individual brain structural connectivity (SC) and functional connectivity (FC). Brain structure-function displays a distributed and heterogeneous pattern, that is, many functional relationships arise from non-overlapping sets of anatomical connections. This complex relation can be interwoven with widely existed individual structural and functional variations. Motivated by the advances of generative adversarial network (GAN) and graph convolutional network (GCN) in the deep learning field, in this work, we proposed a multi-GCN based GAN (MGCN-GAN) to infer individual SC based on corresponding FC by automatically learning the complex associations between individual brain structural and functional networks. The generator of MGCN-GAN is composed of multiple multi-layer GCNs which are designed to model complex indirect connections in brain network. The discriminator of MGCN-GAN is a single multi-layer GCN which aims to distinguish the predicted SC from real SC. To overcome the inherent unstable behavior of GAN, we designed a new structure-preserving (SP) loss function to guide the generator to learn the intrinsic SC patterns more effectively. Using Human Connectome Project (HCP) dataset and Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset as test beds, our MGCN-GAN model can generate reliable individual SC from FC. This result implies that there may exist a common regulation between specific brain structural and functional architectures across different individuals.
Collapse
|
26
|
|
27
|
Multivariate Gaussian Copula Mutual Information to Estimate Functional Connectivity with Less Random Architecture. ENTROPY 2022; 24:e24050631. [PMID: 35626516 PMCID: PMC9141633 DOI: 10.3390/e24050631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
Recognition of a brain region’s interaction is an important field in neuroscience. Most studies use the Pearson correlation to find the interaction between the regions. According to the experimental evidence, there is a nonlinear dependence between the activities of different brain regions that is ignored by Pearson correlation as a linear measure. Typically, the average activity of each region is used as input because it is a univariate measure. This dimensional reduction, i.e., averaging, leads to a loss of spatial information across voxels within the region. In this study, we propose using an information-theoretic measure, multivariate mutual information (mvMI), as a nonlinear dependence to find the interaction between regions. This measure, which has been recently proposed, simplifies the mutual information calculation complexity using the Gaussian copula. Using simulated data, we show that the using this measure overcomes the mentioned limitations. Additionally using the real resting-state fMRI data, we compare the level of significance and randomness of graphs constructed using different methods. Our results indicate that the proposed method estimates the functional connectivity more significantly and leads to a smaller number of random connections than the common measure, Pearson correlation. Moreover, we find that the similarity of the estimated functional networks of the individuals is higher when the proposed method is used.
Collapse
|
28
|
Chen Y, Bukhari Q, Lin TW, Sejnowski TJ. Functional connectivity of fMRI using differential covariance predicts structural connectivity and behavioral reaction times. Netw Neurosci 2022; 6:614-633. [PMID: 35733425 PMCID: PMC9207998 DOI: 10.1162/netn_a_00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/10/2022] [Indexed: 11/04/2022] Open
Abstract
Abstract
Recordings from resting state functional Magnetic Resonance Imaging (rs-fMRI) reflect the influence of pathways between brain areas. A wide range of methods have been proposed to measure this functional connectivity (FC), but the lack of “ground truth” has made it difficult to systematically validate them. Most measures of FC produce connectivity estimates that are symmetrical between brain areas. Differential covariance (dCov) is an algorithm for analyzing FC with directed graph edges. When we applied dCov to rs-fMRI recordings from the human connectome project (HCP) and anesthetized mice, dCov-FC accurately identified strong cortical connections from diffusion Magnetic Resonance Imaging (dMRI) in individual humans and viral tract tracing in mice. In addition, those HCP subjects whose dCov-FCs were more integrated, as assessed by a graph-theoretic measure, tended to have shorter reaction times in several behavioral tests. Thus, dCov-FC was able to identify anatomically verified connectivity that yielded measures of brain integration significantly correlated with behavior.
Collapse
Affiliation(s)
- Yusi Chen
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
- Division of Biological Studies, University of California San Diego, La Jolla, CA, USA
| | - Qasim Bukhari
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiger W. Lin
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Terrence J. Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
- Division of Biological Studies, University of California San Diego, La Jolla, CA, USA
- Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Zanin M, Güntekin B, Aktürk T, Yıldırım E, Yener G, Kiyi I, Hünerli-Gündüz D, Sequeira H, Papo D. Telling functional networks apart using ranked network features stability. Sci Rep 2022; 12:2562. [PMID: 35169227 PMCID: PMC8847658 DOI: 10.1038/s41598-022-06497-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Over the past few years, it has become standard to describe brain anatomical and functional organisation in terms of complex networks, wherein single brain regions or modules and their connections are respectively identified with network nodes and the links connecting them. Often, the goal of a given study is not that of modelling brain activity but, more basically, to discriminate between experimental conditions or populations, thus to find a way to compute differences between them. This in turn involves two important aspects: defining discriminative features and quantifying differences between them. Here we show that the ranked dynamical stability of network features, from links or nodes to higher-level network properties, discriminates well between healthy brain activity and various pathological conditions. These easily computable properties, which constitute local but topographically aspecific aspects of brain activity, greatly simplify inter-network comparisons and spare the need for network pruning. Our results are discussed in terms of microstate stability. Some implications for functional brain activity are discussed.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122, Palma de Mallorca, Spain.
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey.,School of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Ilayda Kiyi
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Duygu Hünerli-Gündüz
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Henrique Sequeira
- University of Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, 59000, Lille, France
| | - David Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy.,Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
30
|
Species and individual differences and connectional asymmetry of Broca's area in humans and macaques. Neuroimage 2021; 244:118583. [PMID: 34562577 DOI: 10.1016/j.neuroimage.2021.118583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
To reveal the connectional specialization of the Broca's area (or its homologue), voxel-wise inter-species and individual differences, and inter-hemispheric asymmetry were respectively inspected in humans and macaques at both whole-brain connectivity and single tract levels. It was discovered that the developed connectivity blueprint approach is able to localize connectionally comparable voxels between the two species in Broca's area, whereas the quantitative differences between blueprints of locationally or connectionally corresponding voxels enable us to generate inter-hemispheric, inter-subject, and inter-species connectional variabilities, respectively. More importantly, the inter-species and inter-subject variabilities exhibited positive correlation in both two primates, and relatively higher variabilities were detected in the anatomically defined pars triangularis. By contrast, negative relationship was identified between the inter-species variability and hemispheric asymmetry in human brain. In particular, relatively higher asymmetry was revealed in the anatomically defined pars opercularis. Therefore, our novel findings demonstrated that pars triangularis, as compared to pars opercularis, might be a more active area during primate evolution, in which the brain connectivity and possible functions of pars triangularis show relatively higher degree in species specialization, yet lower in hemispheric specialization. Meanwhile, brain connectivity and possible functions of pars opercularis manifested an opposite pattern. At the tract level, functional roles related to the ventral stream in speech comprehension were relatively conservative and bilaterally organized, while those related to the dorsal stream in speech production show relatively higher species and hemispheric specializations.
Collapse
|
31
|
Rogala J, Dreszer J, Malinowska U, Waligóra M, Pluta A, Antonova I, Wróbel A. Stronger connectivity and higher extraversion protect against stress-related deterioration of cognitive functions. Sci Rep 2021; 11:17452. [PMID: 34465808 PMCID: PMC8408208 DOI: 10.1038/s41598-021-96718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
Here we attempted to define the relationship between: EEG activity, personality and coping during lockdown. We were in a unique situation since the COVID-19 outbreak interrupted our independent longitudinal study. We already collected a significant amount of data before lockdown. During lockdown, a subgroup of participants willingly continued their engagement in the study. These circumstances provided us with an opportunity to examine the relationship between personality/cognition and brain rhythms in individuals who continued their engagement during lockdown compared to control data collected well before pandemic. The testing consisted of a one-time assessment of personality dimensions and two sessions of EEG recording and deductive reasoning task. Participants were divided into groups based on the time they completed the second session: before or during the COVID-19 outbreak ‘Pre-pandemic Controls’ and ‘Pandemics’, respectively. The Pandemics were characterized by a higher extraversion and stronger connectivity, compared to Pre-pandemic Controls. Furthermore, the Pandemics improved their cognitive performance under long-term stress as compared to the Pre-Pandemic Controls matched for personality traits to the Pandemics. The Pandemics were also characterized by increased EEG connectivity during lockdown. We posit that stronger EEG connectivity and higher extraversion could act as a defense mechanism against stress-related deterioration of cognitive functions.
Collapse
Affiliation(s)
- Jacek Rogala
- Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland. .,The Center for Systemic Risk Analysis, Faculty of "Artes Liberales", University of Warsaw, Warsaw, Poland.
| | - Joanna Dreszer
- The Center for Systemic Risk Analysis, Faculty of "Artes Liberales", University of Warsaw, Warsaw, Poland.,Institute of Psychology, Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Urszula Malinowska
- Instytut Biologii Doświadczalnej Im. Marcelego Nenckiego, Warsaw, Poland
| | - Marek Waligóra
- Instytut Biologii Doświadczalnej Im. Marcelego Nenckiego, Warsaw, Poland
| | - Agnieszka Pluta
- Faculty of Psychology, The University of Warsaw, Warsaw, Poland
| | - Ingrida Antonova
- Instytut Biologii Doświadczalnej Im. Marcelego Nenckiego, Warsaw, Poland
| | - Andrzej Wróbel
- The Center for Systemic Risk Analysis, Faculty of "Artes Liberales", University of Warsaw, Warsaw, Poland.,Instytut Biologii Doświadczalnej Im. Marcelego Nenckiego, Warsaw, Poland.,Institute of Philosophy, Faculty of Epistemology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Chen X, Necus J, Peraza LR, Mehraram R, Wang Y, O'Brien JT, Blamire A, Kaiser M, Taylor JP. The functional brain favours segregated modular connectivity at old age unless affected by neurodegeneration. Commun Biol 2021; 4:973. [PMID: 34400752 PMCID: PMC8367990 DOI: 10.1038/s42003-021-02497-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
Brain's modular connectivity gives this organ resilience and adaptability. The ageing process alters the organised modularity of the brain and these changes are further accentuated by neurodegeneration, leading to disorganisation. To understand this further, we analysed modular variability-heterogeneity of modules-and modular dissociation-detachment from segregated connectivity-in two ageing cohorts and a mixed cohort of neurodegenerative diseases. Our results revealed that the brain follows a universal pattern of high modular variability in metacognitive brain regions: the association cortices. The brain in ageing moves towards a segregated modular structure despite presenting with increased modular heterogeneity-modules in older adults are not only segregated, but their shape and size are more variable than in young adults. In the presence of neurodegeneration, the brain maintains its segregated connectivity globally but not locally, and this is particularly visible in dementia with Lewy bodies and Parkinson's disease dementia; overall, the modular brain shows patterns of differentiated pathology.
Collapse
Affiliation(s)
- Xue Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, China.
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Joe Necus
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom.
- University of Nottingham, NIHR Nottingham Biomedical Research Centre, School of Medicine, Nottingham, UK.
| | - Luis R Peraza
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- IXICO Plc, London, UK
| | - Ramtin Mehraram
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- Experimental Oto-rhino-laryngology (ExpORL) Research Group, Department of Neurosciences, KU Leuven, Leuven, Belgium
- NIHR Newcastle Biomedical Research Centre, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Yanjiang Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, China
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Medicine, Cambridge, United Kingdom
| | - Andrew Blamire
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- University of Nottingham, NIHR Nottingham Biomedical Research Centre, School of Medicine, Nottingham, UK
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
33
|
LUO SONG, CHEN RUI, YANG ZHENGTING, LI KUN. INTELLIGENCE LEVEL MIGHT BE PREDICTED BY THE CHARACTERISTICS OF EEG SIGNALS AT SPECIFIC FREQUENCIES AND BRAIN REGIONS. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421400479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The total energy the brain consumed and the intensities of information flows across different brain regions in an intellectual activity may help to explain an individual’s intelligence level. To verify this assumption, 43 students aged 18–25 were recruited as the research subjects. Their intelligence quotients (IQ) were scored by using Wechsler Adult Intelligence Scale (WAIS), while their electroencephalogram (EEG) signals were recorded simultaneously by using Neuroscan system. The total energy and distribution patterns of EEG signals were acquired in Curry 8.0. The intensities of information flow across different brain regions were measured by Phase Slope Index (PSI). 20 channels and 190 channel combinations were selected for data analysis. The results show that the IQ score negatively correlates to the EEG energy and positively correlates to the intensities of information flows at specific frequency bands in specific channel pairs, especially in some long distance (18–24[Formula: see text]cm) channel pairs.
Collapse
Affiliation(s)
- SONG LUO
- School of Life Sciences, Guizhou Normal University Guiyang 550025, P. R. China
| | - RUI CHEN
- School of Life Sciences, Guizhou Normal University Guiyang 550025, P. R. China
| | - ZHENGTING YANG
- School of Life Sciences, Guizhou Normal University Guiyang 550025, P. R. China
| | - KUN LI
- School of Life Sciences, Guizhou Normal University Guiyang 550025, P. R. China
| |
Collapse
|
34
|
Menardi A, Reineberg AE, Vallesi A, Friedman NP, Banich MT, Santarnecchi E. Heritability of brain resilience to perturbation in humans. Neuroimage 2021; 235:118013. [PMID: 33794357 PMCID: PMC8192441 DOI: 10.1016/j.neuroimage.2021.118013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/06/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Resilience is the capacity of complex systems to persist in the face of external perturbations and retain their functional properties and performance. In the present study, we investigated how individual variations in brain resilience, which might influence response to stress, aging and disease, are influenced by genetics and/or the environment, with potential implications for the implementation of resilience-boosting interventions. Resilience estimates were derived from in silico lesioning of either brain regions or functional connections constituting the connectome of healthy individuals belonging to two different large and unique datasets of twins, specifically: 463 individual twins from the Human Connectome Project and 453 individual twins from the Colorado Longitudinal Twin Study. As has been reported previously, moderate heritability was found for several topological indexes of brain efficiency and modularity. Importantly, evidence of heritability was found for resilience measures based on removal of brain connections rather than specific single regions, suggesting that genetic influences on resilience are preferentially directed toward region-to-region communication rather than local brain activity. Specifically, the strongest genetic influence was observed for moderately weak, long-range connections between a specific subset of functional brain networks: the Default Mode, Visual and Sensorimotor networks. These findings may help identify a link between brain resilience and network-level alterations observed in neurological and psychiatric diseases, as well as inform future studies investigating brain shielding interventions against physiological and pathological perturbations.
Collapse
Affiliation(s)
- Arianna Menardi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, 35131 Italy; Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215 USA
| | - Andrew E Reineberg
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80309 USA
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, 35131 Italy; IRCCS San Camillo Hospital, Venice, 30126 Italy
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80309 USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309 USA
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309 USA; Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309 USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215 USA.
| |
Collapse
|
35
|
Maffei A, Sessa P. Time-resolved connectivity reveals the “how” and “when” of brain networks reconfiguration during face processing. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Zhou WR, Wang M, Zheng H, Wang MJ, Dong GH. Altered modular segregation of brain networks during the cue-craving task contributes to the disrupted executive functions in internet gaming disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110256. [PMID: 33503493 DOI: 10.1016/j.pnpbp.2021.110256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 01/16/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Previous studies have shown that gaming-related cues could induce gaming cravings and bring about changes in brain activities in subjects with Internet gaming disorder (IGD). However, little is known about the brain network organizations in IGD subjects during a cue-craving task and the relationship between this network organization and IGD severity. METHODS Sixty-one IGD subjects and 61 matched recreational game users (RGUs) were scanned while performing a cue-craving task. We calculated and compared the participation coefficient (PC) among brain network modules between IGD subjects and RGUs. Based on the results, further group comparison analyses were performed to explain the PC changes and to explore the relationship between PCs and IGD severity. RESULTS While performing a cue-craving task, compared with RGUs, IGD subjects showed significantly decreased PCs in the default-mode network (DMN) and the frontal-parietal network (FPN). Specifically, the number of connections between nodes in the ventromedial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex and other nodes in the DMN of IGD subjects was much larger than that in RGUs. Correlation results showed that the number of DMN intra-modular connections was positively correlated with addiction severity and craving degree. CONCLUSIONS These results provide neural evidence that can explain why cognitive control, emotion, attention and other functions are impaired in IGD subjects in the face of gaming cues, which leads to compulsive behavior toward games. These findings extend our understanding of the neural mechanism of IGD and have important implications for developing effective interventions to treat IGD subjects.
Collapse
Affiliation(s)
- Wei-Ran Zhou
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Min Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Meng-Jing Wang
- Southeast University, Monash University Joint Graduate School, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institutes of Psychological Sciences, Hangzhou Normal University, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
37
|
Sahoo D, Satterthwaite TD, Davatzikos C. Hierarchical Extraction of Functional Connectivity Components in Human Brain Using Resting-State fMRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:940-950. [PMID: 33284752 DOI: 10.1109/tmi.2020.3042873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study of functional networks of the human brain has been of significant interest in cognitive neuroscience for over two decades, albeit they are typically extracted at a single scale using various methods, including decompositions like ICA. However, since numerous studies have suggested that the functional organization of the brain is hierarchical, analogous decompositions might better capture functional connectivity patterns. Moreover, hierarchical decompositions can efficiently reduce the very high dimensionality of functional connectivity data. This paper provides a novel method for the extraction of hierarchical connectivity components in the human brain using resting-state fMRI. The method builds upon prior work of Sparse Connectivity Patterns (SCPs) by introducing a hierarchy of sparse, potentially overlapping patterns. The components are estimated by cascaded factorization of correlation matrices generated from fMRI. The goal of the paper is to extract sparse interpretable hierarchically-organized patterns using correlation matrices where a low rank decomposition is formed by a linear combination of a higher rank decomposition. We formulate the decomposition as a non-convex optimization problem and solve it using gradient descent algorithms with adaptive step size. Along with the hierarchy, our method aims to capture the heterogeneity of the set of common patterns across individuals. We first validate our model through simulated experiments. We then demonstrate the effectiveness of the developed method on two different real-world datasets by showing that multi-scale hierarchical SCPs are reproducible between sub-samples and are more reproducible as compared to single scale patterns. We also compare our method with an existing hierarchical community detection approach.
Collapse
|
38
|
Muller AM, Meyerhoff DJ. Maladaptive brain organization at 1 month into abstinence as an indicator for future relapse in patients with alcohol use disorder. Eur J Neurosci 2021; 53:2923-2938. [PMID: 33630358 PMCID: PMC8252378 DOI: 10.1111/ejn.15161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Abstinence is a lifelong endeavor, and the risk of a relapse is always present for patients with Alcohol Use Disorder (AUD). The aim of the study was to better understand specific characteristics of the intrinsic whole-brain-network architecture of 34 AUD patients that may support abstinence or relapse. We used Graph Theory Analysis (GTA) of resting-state fMRI data from treatment seekers at 1 month of abstinence and their follow-up data as abstainers or relapsers 3 months later, together with data from 30 light/non-drinking controls scanned at the same interval. We determined the group-specific intrinsic community configurations at both timepoints as well as the corresponding modularity Q, a GTA measure that quantifies how well individual network communities are separated from each other. Both AUD groups at both timepoints had community configurations significantly different from those of controls, but the three groups did not significantly differ in their Q values. However, relapsers showed a maladaptive community configuration at baseline, which became more similar to the controls' community organization after the relapsers had started consuming alcohol again during the study interval. Additionally, successful recovery from AUD was not associated with re-gaining the intrinsic brain organization found in light/non-drinkers, but with a re-configuration resulting in a new brain organization distinctly different from that of healthy controls. Resting-state fMRI provides useful measures reflecting neuroplastic adaptations related to AUD treatment outcome.
Collapse
Affiliation(s)
- Angela M Muller
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Dieter J Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Santonja J, Martínez K, Román FJ, Escorial S, Quiroga MÁ, Álvarez-Linera J, Iturria-Medina Y, Santarnecchi E, Colom R. Brain resilience across the general cognitive ability distribution: Evidence from structural connectivity. Brain Struct Funct 2021; 226:845-859. [DOI: 10.1007/s00429-020-02213-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
|
40
|
Dreszer J, Grochowski M, Lewandowska M, Nikadon J, Gorgol J, Bałaj B, Finc K, Duch W, Kałamała P, Chuderski A, Piotrowski T. Spatiotemporal complexity patterns of resting-state bioelectrical activity explain fluid intelligence: Sex matters. Hum Brain Mapp 2020; 41:4846-4865. [PMID: 32808732 PMCID: PMC7643359 DOI: 10.1002/hbm.25162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022] Open
Abstract
Neural complexity is thought to be associated with efficient information processing but the exact nature of this relation remains unclear. Here, the relationship of fluid intelligence (gf) with the resting-state EEG (rsEEG) complexity over different timescales and different electrodes was investigated. A 6-min rsEEG blocks of eyes open were analyzed. The results of 119 subjects (57 men, mean age = 22.85 ± 2.84 years) were examined using multivariate multiscale sample entropy (mMSE) that quantifies changes in information richness of rsEEG in multiple data channels at fine and coarse timescales. gf factor was extracted from six intelligence tests. Partial least square regression analysis revealed that mainly predictors of the rsEEG complexity at coarse timescales in the frontoparietal network (FPN) and the temporo-parietal complexities at fine timescales were relevant to higher gf. Sex differently affected the relationship between fluid intelligence and EEG complexity at rest. In men, gf was mainly positively related to the complexity at coarse timescales in the FPN. Furthermore, at fine and coarse timescales positive relations in the parietal region were revealed. In women, positive relations with gf were mostly observed for the overall and the coarse complexity in the FPN, whereas negative associations with gf were found for the complexity at fine timescales in the parietal and centro-temporal region. These outcomes indicate that two separate time pathways (corresponding to fine and coarse timescales) used to characterize rsEEG complexity (expressed by mMSE features) are beneficial for effective information processing.
Collapse
Affiliation(s)
- Joanna Dreszer
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Marek Grochowski
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| | - Monika Lewandowska
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Jan Nikadon
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
| | - Joanna Gorgol
- Faculty of PsychologyUniversity of WarsawWarsawPoland
| | - Bibianna Bałaj
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Karolina Finc
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
| | - Włodzisław Duch
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| | - Patrycja Kałamała
- Department of Cognitive ScienceInstitute of Philosophy, Jagiellonian UniversityKrakowPoland
| | - Adam Chuderski
- Department of Cognitive ScienceInstitute of Philosophy, Jagiellonian UniversityKrakowPoland
| | - Tomasz Piotrowski
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| |
Collapse
|
41
|
rest2vec: Vectorizing the resting-state functional connectome using graph embedding. Neuroimage 2020; 226:117538. [PMID: 33188880 PMCID: PMC7978175 DOI: 10.1016/j.neuroimage.2020.117538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 02/01/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used in connectomics for studying the functional relationships between regions of the human brain. rs-fMRI connectomics, however, has inherent analytical challenges, such as how to properly model negative correlations between BOLD time series. In addition, functional relationships between brain regions do not necessarily correspond to their anatomical distance, making the functional topology of the brain less well understood. Recent machine learning techniques, such as word2vec, have used embedding methods to map high-dimensional data into vector spaces, where words with more similar meanings are mapped closer to one another. Inspired by this approach, we have developed the graph embedding pipeline rest2vec for studying the vector space of functional connectomes. We demonstrate how rest2vec uses the phase angle spatial embedding (PhASE) method with dimensionality reduction to embed the connectome into lower dimensions, where the functional definition of a brain region is represented continuously in an intrinsic “functional space.” Furthermore, we show how the “functional distance” between brain regions in this space can be applied to discover biologically-relevant connectivity gradients. Interestingly, rest2vec can be conceptualized in the context of the recently proposed maximum mean discrepancy (MMD) metric, followed by a double-centering approach seen in kernel PCA. In sum, rest2vec creates a low-dimensional representation of the rs-fMRI connectome where brain regions are mapped according to their functional relationships, giving a more informed understanding of the functional organization of the brain.
Collapse
|
42
|
Jiang S, Pei H, Huang Y, Chen Y, Liu L, Li J, He H, Yao D, Luo C. Dynamic Temporospatial Patterns of Functional Connectivity and Alterations in Idiopathic Generalized Epilepsy. Int J Neural Syst 2020; 30:2050065. [PMID: 33161788 DOI: 10.1142/s0129065720500653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dynamic profile of brain function has received much attention in recent years and is also a focus in the study of epilepsy. The present study aims to integrate the dynamics of temporal and spatial characteristics to provide comprehensive and novel understanding of epileptic dynamics. Resting state fMRI data were collected from eighty-three patients with idiopathic generalized epilepsy (IGE) and 87 healthy controls (HC). Specifically, we explored the temporal and spatial variation of functional connectivity density (tvFCD and svFCD) in the whole brain. Using a sliding-window approach, for a given region, the standard variation of the FCD series was calculated as the tvFCD and the variation of voxel-wise spatial distribution was calculated as the svFCD. We found primary, high-level, and sub-cortical networks demonstrated distinct tvFCD and svFCD patterns in HC. In general, the high-level networks showed the highest variation, the subcortical and primary networks showed moderate variation, and the limbic system showed the lowest variation. Relative to HC, the patients with IGE showed weaken temporal and enhanced spatial variation in the default mode network and weaken temporospatial variation in the subcortical network. Besides, enhanced temporospatial variation in sensorimotor and high-level networks was also observed in patients. The hyper-synchronization of specific brain networks was inferred to be associated with the phenomenon responsible for the intrinsic propensity of generation and propagation of epileptic activities. The disrupted dynamic characteristics of sensorimotor and high-level networks might potentially contribute to the driven motion and cognition phenotypes in patients. In all, presently provided evidence from the temporospatial variation of functional interaction shed light on the dynamics underlying neuropathological profiles of epilepsy.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Yang Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Linli Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Jianfu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu P. R. China
| |
Collapse
|
43
|
Assem M, Blank IA, Mineroff Z, Ademoğlu A, Fedorenko E. Activity in the fronto-parietal multiple-demand network is robustly associated with individual differences in working memory and fluid intelligence. Cortex 2020; 131:1-16. [PMID: 32777623 PMCID: PMC7530021 DOI: 10.1016/j.cortex.2020.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/11/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023]
Abstract
Numerous brain lesion and fMRI studies have linked individual differences in executive abilities and fluid intelligence to brain regions of the fronto-parietal "multiple-demand" (MD) network. Yet, fMRI studies have yielded conflicting evidence as to whether better executive abilities are associated with stronger or weaker MD activations and whether this relationship is restricted to the MD network. Here, in a large-sample (n = 216) fMRI investigation, we found that stronger activity in MD regions - functionally defined in individual participants - was robustly associated with more accurate and faster responses on a spatial working memory task performed in the scanner, as well as fluid intelligence measured independently (n = 114). In line with some prior claims about a relationship between language and fluid intelligence, we also found a weak association between activity in the brain regions of the left fronto-temporal language network during an independent passive reading task, and performance on the working memory task. However, controlling for the level of MD activity abolished this relationship, whereas the MD activity-behavior association remained highly reliable after controlling for the level of activity in the language network. Finally, we demonstrate how unreliable MD activity measures, coupled with small sample sizes, could falsely lead to the opposite, negative, association that has been reported in some prior studies. Taken together, these results demonstrate that a core component of individual differences variance in executive abilities and fluid intelligence is selectively and robustly positively associated with the level of activity in the MD network, a result that aligns well with lesion studies.
Collapse
Affiliation(s)
- Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Idan A Blank
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Zachary Mineroff
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ahmet Ademoğlu
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Evelina Fedorenko
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, USA.
| |
Collapse
|
44
|
Azaryah H, Verdejo-Román J, Martin-Pérez C, García-Santos JA, Martínez-Zaldívar C, Torres-Espínola FJ, Campos D, Koletzko B, Pérez-García M, Catena A, Campoy C. Effects of Maternal Fish Oil and/or 5-Methyl-Tetrahydrofolate Supplementation during Pregnancy on Offspring Brain Resting-State at 10 Years Old: A Follow-Up Study from the NUHEAL Randomized Controlled Trial. Nutrients 2020; 12:E2701. [PMID: 32899673 PMCID: PMC7551257 DOI: 10.3390/nu12092701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Recent studies have shown that maternal supplementation with folate and long-chain polyunsaturated fatty acids (LC-PUFAs) during pregnancy may affect children's brain development. We aimed at examining the potential long-term effect of maternal supplementation with fish oil (FO) and/or 5-methyl-tetrahydrofolate (5-MTHF) on the brain functionality of offspring at the age of 9.5-10 years. The current study was conducted as a follow-up of the Spanish participants belonging to the Nutraceuticals for a Healthier Life (NUHEAL) project; 57 children were divided into groups according to mother's supplementation and assessed through functional magnetic resonance imaging (fMRI) scanning and neurodevelopment testing. Independent component analysis and double regression methods were implemented to investigate plausible associations. Children born to mothers supplemented with FO (FO and FO + 5-MTHF groups, n = 33) showed weaker functional connectivity in the default mode (DM) (angular gyrus), the sensorimotor (SM) (motor and somatosensory cortices) and the fronto-parietal (FP) (angular gyrus) networks compared to the No-FO group (placebo and 5-MTHF groups, n = 24) (PFWE < 0.05). Furthermore, no differences were found regarding the neuropsychological tests, except for a trend of better results in an object recall (memory) test. Considering the No-FO group, the aforementioned networks were associated negatively with attention and speed-processing functions. Mother's FO supplementation during pregnancy seems to be able to shape resting-state network functioning in their children at school age and appears to produce long-term effects on children´s cognitive processing.
Collapse
Affiliation(s)
- Hatim Azaryah
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Juan Verdejo-Román
- Mind, Brain and Behaviour International Research Centre (CIMCYC), University of Granada, 18011 Granada, Spain; (J.V.-R.); (C.M.-P.); (M.P.-G.); (A.C.)
| | - Cristina Martin-Pérez
- Mind, Brain and Behaviour International Research Centre (CIMCYC), University of Granada, 18011 Granada, Spain; (J.V.-R.); (C.M.-P.); (M.P.-G.); (A.C.)
| | - José Antonio García-Santos
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs-GRANADA), Health Sciences Technological Park, 18012 Granada, Spain
| | - Cristina Martínez-Zaldívar
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Francisco J. Torres-Espínola
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Daniel Campos
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Berthold Koletzko
- Ludwig-Maximiliams-Universität München, Dr. von Hauner Children’s Hospital, University of Munich Hospitals, 80337 Munich, Germany;
| | - Miguel Pérez-García
- Mind, Brain and Behaviour International Research Centre (CIMCYC), University of Granada, 18011 Granada, Spain; (J.V.-R.); (C.M.-P.); (M.P.-G.); (A.C.)
| | - Andrés Catena
- Mind, Brain and Behaviour International Research Centre (CIMCYC), University of Granada, 18011 Granada, Spain; (J.V.-R.); (C.M.-P.); (M.P.-G.); (A.C.)
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (H.A.); (J.A.G.-S.); (C.M.-Z.); (F.J.T.-E.); (D.C.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs-GRANADA), Health Sciences Technological Park, 18012 Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada’s Node, Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
45
|
Cheng S, Wu C, Qi X, Liu L, Ma M, Zhang L, Cheng B, Liang C, Li P, Kafle OP, Wen Y, Zhang F. A Large-Scale Genetic Correlation Scan Between Intelligence and Brain Imaging Phenotypes. Cereb Cortex 2020; 30:4197-4203. [PMID: 32108233 DOI: 10.1093/cercor/bhaa043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Limited efforts have been paid to evaluate the potential relationships between structural and functional brain imaging and intelligence until now. We performed a two-stage analysis to systematically explore the relationships between 3144 brain image-derived phenotypes (IDPs) and intelligence. First, by integrating genome-wide association studies (GWAS) summaries data of brain IDPs and two GWAS summary datasets of intelligence, we systematically scanned the relationship between each of the 3144 brain IDPs and intelligence through linkage disequilibrium score regression (LDSC) analysis. Second, using the individual-level genotype and intelligence data of 160 124 subjects derived from UK Biobank datasets, polygenetic risk scoring (PRS) analysis was performed to replicate the common significant associations of the first stage. In the first stage, LDSC identified 6 and 2 significant brain IDPs significantly associated with intelligence dataset1 and dataset2, respectively. It is interesting that NET100_0624 showed genetic correlations with intelligence in the two datasets of intelligence. After adjusted for age and sex as the covariates, NET100_0624 (P = 5.26 × 10-20, Pearson correlation coefficients = -0.02) appeared to be associated with intelligence by PRS analysis of UK Biobank samples. Our findings may help to understand the genetic mechanisms of the effects of brain structure and function on the development of intelligence.
Collapse
Affiliation(s)
- Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Om Prakash Kafle
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76, West Yanta Road, Xi'an, China
| |
Collapse
|
46
|
Iterative consensus spectral clustering improves detection of subject and group level brain functional modules. Sci Rep 2020; 10:7590. [PMID: 32371990 PMCID: PMC7200822 DOI: 10.1038/s41598-020-63552-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/31/2020] [Indexed: 11/29/2022] Open
Abstract
Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC.
Collapse
|
47
|
Nicolini C, Forcellini G, Minati L, Bifone A. Scale-resolved analysis of brain functional connectivity networks with spectral entropy. Neuroimage 2020; 211:116603. [DOI: 10.1016/j.neuroimage.2020.116603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/01/2020] [Indexed: 12/30/2022] Open
|
48
|
Stability-driven non-negative matrix factorization-based approach for extracting dynamic network from resting-state EEG. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Zhou H, Geng F, Wang T, Wang C, Xie Y, Hu Y, Chen F. Training on Abacus-based Mental Calculation Enhances Resting State Functional Connectivity of Bilateral Superior Parietal Lobules. Neuroscience 2020; 432:115-125. [PMID: 32112920 DOI: 10.1016/j.neuroscience.2020.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
Abstract
Accumulating evidence indicates a positive effect of abacus-based mental calculation (AMC) training on various cognitive functions including short-term memory (STM). Our previous work has shown AMC training-induced activation changes in the frontal-parietal network (FPN) using task fMRI. However, whether AMC training-induced functional plasticity in the same brain network can be detected at resting state remains unknown. The current study aimed to address this question using resting state functional connectivity in a longitudinal AMC training experiment engaging a training group (18 subjects, age = 21.439 ± 0.565) and a control group (18 subjects, age = 21.113 ± 1.140). Our results revealed that the average functional connectivity strength within the FPN showing task activation changes was significantly enhanced after training in the AMC group, whereas it remained stable in the control group. Further analysis indicated that such connectivity increase in the AMC group was primarily driven by the enhanced coupling of bilateral superior parietal lobules (SPL). In addition, a significant and positive correlation between letter forward memory span and SPL connectivity was found at post-training session in the AMC group. While the weakest quartile of SPL connections ranking by pre-training connectivity strength showed the largest effect of enhancement after training, it was the strongest quartile of SPL connectivity that correlated the most with memory span at post-training session. These findings suggest that AMC training may enhance bilateral SPL functional connectivity, through which AMC training might exert a transfer effect to improve short-term memory capacity.
Collapse
Affiliation(s)
- Hui Zhou
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Fengji Geng
- Department of Curriculum and Learning Science, College of Education, Zhejiang University, Hangzhou 310027, China
| | - Tengfei Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Chunjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China; Department of Psychology, School of Education, Hangzhou Normal University, China
| | - Ye Xie
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
50
|
Rogala J, Kublik E, Krauz R, Wróbel A. Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance. Sci Rep 2020; 10:5064. [PMID: 32193502 PMCID: PMC7081192 DOI: 10.1038/s41598-020-61866-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence indicates that resting-state EEG activity is related to various cognitive functions. To trace physiological underpinnings of this relationship, we investigated EEG and behavioral performance of 36 healthy adults recorded at rest and during visual attention tasks: visual search and gun shooting. All measures were repeated two months later to determine stability of the results. Correlation analyses revealed that within the range of 2–45 Hz, at rest, beta-2 band power correlated with the strength of frontoparietal connectivity and behavioral performance in both sessions. Participants with lower global beta-2 resting-state power (gB2rest) showed weaker frontoparietal connectivity and greater capacity for its modifications, as indicated by changes in phase correlations of the EEG signals. At the same time shorter reaction times and improved shooting accuracy were found, in both test and retest, in participants with low gB2rest compared to higher gB2rest values. We posit that weak frontoparietal connectivity permits flexible network reconfigurations required for improved performance in everyday tasks.
Collapse
Affiliation(s)
- Jacek Rogala
- Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mokra 17 street, Kajetany, 05-830, Nadarzyn, Poland.
| | - Ewa Kublik
- Instytut Biologii Doświadczalnej im. Marcelego Nenckiego, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Rafał Krauz
- Military University of Technology, Physical Education, 3 gen, Sylwestra Kaliskiego street, 00-908, Warsaw, Poland
| | - Andrzej Wróbel
- Instytut Biologii Doświadczalnej im. Marcelego Nenckiego, 3 Pasteur Street, 02-093, Warsaw, Poland.,Department of Epistemology, Institute of Philosophy, University of Warsaw, 3 Krakowskie Przedmiescie street, 00-927, Warszawa, Poland
| |
Collapse
|