1
|
Scheffler F, Ipser J, Pancholi D, Murphy A, Cao Z, Ottino-González J, Thompson PM, Shoptaw S, Conrod P, Mackey S, Garavan H, Stein DJ. Mega-analysis of the brain-age gap in substance use disorder: An ENIGMA Addiction working group study. Addiction 2024; 119:1937-1946. [PMID: 39165145 DOI: 10.1111/add.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/19/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND AND AIMS The brain age gap (BAG), calculated as the difference between a machine learning model-based predicted brain age and chronological age, has been increasingly investigated in psychiatric disorders. Tobacco and alcohol use are associated with increased BAG; however, no studies have compared global and regional BAG across substances other than alcohol and tobacco. This study aimed to compare global and regional estimates of brain age in individuals with substance use disorders and healthy controls. DESIGN This was a cross-sectional study. SETTING This is an Enhancing Neuro Imaging through Meta-Analysis Consortium (ENIGMA) Addiction Working Group study including data from 38 global sites. PARTICIPANTS This study included 2606 participants, of whom 1725 were cases with a substance use disorder and 881 healthy controls. MEASUREMENTS This study used the Kaufmann brain age prediction algorithms to generate global and regional brain age estimates using T1 weighted magnetic resonance imaging (MRI) scans. We used linear mixed effects models to compare global and regional (FreeSurfer lobestrict output) BAG (i.e. predicted minus chronological age) between individuals with one of five primary substance use disorders as well as healthy controls. FINDINGS Alcohol use disorder (β = -5.49, t = -5.51, p < 0.001) was associated with higher global BAG, whereas amphetamine-type stimulant use disorder (β = 3.44, t = 2.42, p = 0.02) was associated with lower global BAG in the separate substance-specific models. CONCLUSIONS People with alcohol use disorder appear to have a higher brain-age gap than people without alcohol use disorder, which is consistent with other evidence of the negative impact of alcohol on the brain.
Collapse
Affiliation(s)
- Freda Scheffler
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Jonathan Ipser
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Devarshi Pancholi
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, USA
| | - Alistair Murphy
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, USA
| | - Zhipeng Cao
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, USA
| | - Jonatan Ottino-González
- Department of Pediatrics, Division of Endocrinology, Diabetes, and Metabolism, Children's Hospital Los Angeles, Los Angeles, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Department of Neurology, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Steve Shoptaw
- Department of Family Medicine, UCLA, Los Angeles, CA, USA
- University of Cape Town, Cape Town, South Africa
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Canada
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, USA
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, USA
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Azzam M, Xu Z, Liu R, Li L, Meng Soh K, Challagundla KB, Wan S, Wang J. A review of artificial intelligence-based brain age estimation and its applications for related diseases. Brief Funct Genomics 2024:elae042. [PMID: 39436320 DOI: 10.1093/bfgp/elae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024] Open
Abstract
The study of brain age has emerged over the past decade, aiming to estimate a person's age based on brain imaging scans. Ideally, predicted brain age should match chronological age in healthy individuals. However, brain structure and function change in the presence of brain-related diseases. Consequently, brain age also changes in affected individuals, making the brain age gap (BAG)-the difference between brain age and chronological age-a potential biomarker for brain health, early screening, and identifying age-related cognitive decline and disorders. With the recent successes of artificial intelligence in healthcare, it is essential to track the latest advancements and highlight promising directions. This review paper presents recent machine learning techniques used in brain age estimation (BAE) studies. Typically, BAE models involve developing a machine learning regression model to capture age-related variations in brain structure from imaging scans of healthy individuals and automatically predict brain age for new subjects. The process also involves estimating BAG as a measure of brain health. While we discuss recent clinical applications of BAE methods, we also review studies of biological age that can be integrated into BAE research. Finally, we point out the current limitations of BAE's studies.
Collapse
Affiliation(s)
- Mohamed Azzam
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
| | - Ziyang Xu
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Ruobing Liu
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Lie Li
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kah Meng Soh
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kishore B Challagundla
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jieqiong Wang
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
3
|
Constantinides C, Caramaschi D, Zammit S, Freeman TP, Walton E. Exploring associations between psychotic experiences and structural brain age: a population-based study in late adolescence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24314890. [PMID: 39417107 PMCID: PMC11482991 DOI: 10.1101/2024.10.07.24314890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neuroimaging studies show advanced structural "brain age" in schizophrenia and related psychotic disorders, potentially reflecting aberrant brain ageing or maturation. The extent to which altered brain age is associated with subthreshold psychotic experiences (PE) in youth remains unclear. We investigated the association between PE and brain-predicted age difference (brain-PAD) in late adolescence using a population-based sample of 117 participants with PE and 115 without PE (aged 19-21 years) from the Avon Longitudinal Study of Parents and Children. Brain-PAD was estimated using a publicly available machine learning model previously trained on a combination of region-wise T1-weighted grey-matter measures. We found little evidence for an association between PEs and brain-PAD after adjusting for age and sex (Cohen's d = -0.21 [95% CI -0.47, 0.05], p = 0.11). While there was some evidence for lower brain-PAD in those with PEs relative to those without PEs after additionally adjusting for parental social class (Cohen's d = -0.31 [95% CI -0.58, -0.03], p = 0.031) or birth weight (Cohen's d = -0.29 [95% CI -0.55, -0.03], p = 0.038), adjusting for maternal education or childhood IQ did not alter the primary results. These findings do not support the notion of advanced brain age in older adolescents with PEs. However, they weakly suggest there might be a younger-looking brain in those individuals, indicative of subtle delays in structural brain maturation. Future studies with larger samples covering a wider age range and multimodal measures could further investigate brain age as a marker of psychotic experiences in youth.
Collapse
Affiliation(s)
| | - Doretta Caramaschi
- Department of Psychology, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Stanley Zammit
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom P Freeman
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, UK
| | | |
Collapse
|
4
|
Gaser C, Kalc P, Cole JH. A perspective on brain-age estimation and its clinical promise. NATURE COMPUTATIONAL SCIENCE 2024; 4:744-751. [PMID: 39048692 DOI: 10.1038/s43588-024-00659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Brain-age estimation has gained increased attention in the neuroscientific community owing to its potential use as a biomarker of brain health. The difference between estimated and chronological age based on neuroimaging data enables a unique perspective on brain development and aging, with multiple open questions still remaining in the brain-age research field. This Perspective presents an overview of current advancements in the field and envisions the future evolution of the brain-age framework before its potential deployment in hospital settings.
Collapse
Affiliation(s)
- Christian Gaser
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany.
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
- German Centre for Mental Health (DZPG), Jena-Halle-Magdeburg, Jena, Germany.
| | - Polona Kalc
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
5
|
Wu Y, Gao H, Zhang C, Ma X, Zhu X, Wu S, Lin L. Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review. Tomography 2024; 10:1238-1262. [PMID: 39195728 PMCID: PMC11359833 DOI: 10.3390/tomography10080093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of 'brain age', derived from neuroimaging data, serves as a crucial biomarker reflecting cognitive vitality and neurodegenerative trajectories. In the past decade, machine learning (ML) and deep learning (DL) integration has transformed the field, providing advanced models for brain age estimation. However, achieving precise brain age prediction across all ages remains a significant analytical challenge. This comprehensive review scrutinizes advancements in ML- and DL-based brain age prediction, analyzing 52 peer-reviewed studies from 2020 to 2024. It assesses various model architectures, highlighting their effectiveness and nuances in lifespan brain age studies. By comparing ML and DL, strengths in forecasting and methodological limitations are revealed. Finally, key findings from the reviewed articles are summarized and a number of major issues related to ML/DL-based lifespan brain age prediction are discussed. Through this study, we aim at the synthesis of the current state of brain age prediction, emphasizing both advancements and persistent challenges, guiding future research, technological advancements, and improving early intervention strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Lin
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (Y.W.); (H.G.); (C.Z.); (X.M.); (X.Z.); (S.W.)
| |
Collapse
|
6
|
Panikratova YR, Tomyshev AS, Abdullina EG, Rodionov GI, Arkhipov AY, Tikhonov DV, Bozhko OV, Kaleda VG, Strelets VB, Lebedeva IS. Resting-state functional connectivity correlates of brain structural aging in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01837-5. [PMID: 38914851 DOI: 10.1007/s00406-024-01837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
A large body of research has shown that schizophrenia patients demonstrate increased brain structural aging. Although this process may be coupled with aberrant changes in intrinsic functional architecture of the brain, they remain understudied. We hypothesized that there are brain regions whose whole-brain functional connectivity at rest is differently associated with brain structural aging in schizophrenia patients compared to healthy controls. Eighty-four male schizophrenia patients and eighty-six male healthy controls underwent structural MRI and resting-state fMRI. The brain-predicted age difference (b-PAD) was a measure of brain structural aging. Resting-state fMRI was applied to obtain global correlation (GCOR) maps comprising voxelwise values of the strength and sign of functional connectivity of a given voxel with the rest of the brain. Schizophrenia patients had higher b-PAD compared to controls (mean between-group difference + 2.9 years). Greater b-PAD in schizophrenia patients, compared to controls, was associated with lower whole-brain functional connectivity of a region in frontal orbital cortex, inferior frontal gyrus, Heschl's Gyrus, plana temporale and polare, insula, and opercular cortices of the right hemisphere (rFTI). According to post hoc seed-based correlation analysis, decrease of functional connectivity with the posterior cingulate gyrus, left superior temporal cortices, as well as right angular gyrus/superior lateral occipital cortex has mainly driven the results. Lower functional connectivity of the rFTI was related to worse verbal working memory and language production. Our findings demonstrate that well-established frontotemporal functional abnormalities in schizophrenia are related to increased brain structural aging.
Collapse
Affiliation(s)
| | | | | | - Georgiy I Rodionov
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Andrey Yu Arkhipov
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Valeria B Strelets
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
7
|
Tetereva A, Pat N. Brain age has limited utility as a biomarker for capturing fluid cognition in older individuals. eLife 2024; 12:RP87297. [PMID: 38869938 PMCID: PMC11175613 DOI: 10.7554/elife.87297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
One well-known biomarker candidate that supposedly helps capture fluid cognition is Brain Age, or a predicted value based on machine-learning models built to predict chronological age from brain MRI. To formally evaluate the utility of Brain Age for capturing fluid cognition, we built 26 age-prediction models for Brain Age based on different combinations of MRI modalities, using the Human Connectome Project in Aging (n=504, 36-100 years old). First, based on commonality analyses, we found a large overlap between Brain Age and chronological age: Brain Age could uniquely add only around 1.6% in explaining variation in fluid cognition over and above chronological age. Second, the age-prediction models that performed better at predicting chronological age did NOT necessarily create better Brain Age for capturing fluid cognition over and above chronological age. Instead, better-performing age-prediction models created Brain Age that overlapped larger with chronological age, up to around 29% out of 32%, in explaining fluid cognition. Third, Brain Age missed around 11% of the total variation in fluid cognition that could have been explained by the brain variation. That is, directly predicting fluid cognition from brain MRI data (instead of relying on Brain Age and chronological age) could lead to around a 1/3-time improvement of the total variation explained. Accordingly, we demonstrated the limited utility of Brain Age as a biomarker for fluid cognition and made some suggestions to ensure the utility of Brain Age in explaining fluid cognition and other phenotypes of interest.
Collapse
Affiliation(s)
- Alina Tetereva
- Department of Psychology, University of OtagoDunedinNew Zealand
| | - Narun Pat
- Department of Psychology, University of OtagoDunedinNew Zealand
| |
Collapse
|
8
|
Korbmacher M, van der Meer D, Beck D, de Lange AMG, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Brain asymmetries from mid- to late life and hemispheric brain age. Nat Commun 2024; 15:956. [PMID: 38302499 PMCID: PMC10834516 DOI: 10.1038/s41467-024-45282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
The human brain demonstrates structural and functional asymmetries which have implications for ageing and mental and neurological disease development. We used a set of magnetic resonance imaging (MRI) metrics derived from structural and diffusion MRI data in N=48,040 UK Biobank participants to evaluate age-related differences in brain asymmetry. Most regional grey and white matter metrics presented asymmetry, which were higher later in life. Informed by these results, we conducted hemispheric brain age (HBA) predictions from left/right multimodal MRI metrics. HBA was concordant to conventional brain age predictions, using metrics from both hemispheres, but offers a supplemental general marker of brain asymmetry when setting left/right HBA into relationship with each other. In contrast to WM brain asymmetries, left/right discrepancies in HBA are lower at higher ages. Our findings outline various sex-specific differences, particularly important for brain age estimates, and the value of further investigating the role of brain asymmetries in brain ageing and disease development.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway.
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
9
|
Dörfel RP, Arenas‐Gomez JM, Fisher PM, Ganz M, Knudsen GM, Svensson JE, Plavén‐Sigray P. Prediction of brain age using structural magnetic resonance imaging: A comparison of accuracy and test-retest reliability of publicly available software packages. Hum Brain Mapp 2023; 44:6139-6148. [PMID: 37843020 PMCID: PMC10619370 DOI: 10.1002/hbm.26502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Brain age prediction algorithms using structural magnetic resonance imaging (MRI) aim to assess the biological age of the human brain. The difference between a person's chronological age and the estimated brain age is thought to reflect deviations from a normal aging trajectory, indicating a slower or accelerated biological aging process. Several pre-trained software packages for predicting brain age are publicly available. In this study, we perform a comparison of such packages with respect to (1) predictive accuracy, (2) test-retest reliability, and (3) the ability to track age progression over time. We evaluated the six brain age prediction packages: brainageR, DeepBrainNet, brainage, ENIGMA, pyment, and mccqrnn. The accuracy and test-retest reliability were assessed on MRI data from 372 healthy people aged between 18.4 and 86.2 years (mean 38.7 ± 17.5 years). All packages showed significant correlations between predicted brain age and chronological age (r = 0.66-0.97, p < 0.001), with pyment displaying the strongest correlation. The mean absolute error was between 3.56 (pyment) and 9.54 years (ENIGMA). brainageR, pyment, and mccqrnn were superior in terms of reliability (ICC values between 0.94-0.98), as well as predicting age progression over a longer time span. Of the six packages, pyment and brainageR consistently showed the highest accuracy and test-retest reliability.
Collapse
Affiliation(s)
- Ruben P. Dörfel
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Centre for Psychiatry Research, Department of Clinical NeuroscienceKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Joan M. Arenas‐Gomez
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Patrick M. Fisher
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Melanie Ganz
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Gitte M. Knudsen
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Jonas E. Svensson
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Centre for Psychiatry Research, Department of Clinical NeuroscienceKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Pontus Plavén‐Sigray
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Centre for Psychiatry Research, Department of Clinical NeuroscienceKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
| |
Collapse
|
10
|
Korbmacher M, Wang M, Eikeland R, Buchert R, Andreassen OA, Espeseth T, Leonardsen E, Westlye LT, Maximov II, Specht K. Considerations on brain age predictions from repeatedly sampled data across time. Brain Behav 2023; 13:e3219. [PMID: 37587620 PMCID: PMC10570486 DOI: 10.1002/brb3.3219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION Brain age, the estimation of a person's age from magnetic resonance imaging (MRI) parameters, has been used as a general indicator of health. The marker requires however further validation for application in clinical contexts. Here, we show how brain age predictions perform for the same individual at various time points and validate our findings with age-matched healthy controls. METHODS We used densely sampled T1-weighted MRI data from four individuals (from two densely sampled datasets) to observe how brain age corresponds to age and is influenced by acquisition and quality parameters. For validation, we used two cross-sectional datasets. Brain age was predicted by a pretrained deep learning model. RESULTS We found small within-subject correlations between age and brain age. We also found evidence for the influence of field strength on brain age which replicated in the cross-sectional validation data and inconclusive effects of scan quality. CONCLUSION The absence of maturation effects for the age range in the presented sample, brain age model bias (including training age distribution and field strength), and model error are potential reasons for small relationships between age and brain age in densely sampled longitudinal data. Clinical applications of brain age models should consider of the possibility of apparent biases caused by variation in the data acquisition process.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
- Mohn Medical Imaging and Visualisation Center (MMIV)BergenNorway
| | - Meng‐Yun Wang
- Mohn Medical Imaging and Visualisation Center (MMIV)BergenNorway
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - Rune Eikeland
- Mohn Medical Imaging and Visualisation Center (MMIV)BergenNorway
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Thomas Espeseth
- Department of PsychologyUniversity of OsloOsloNorway
- Department of PsychologyOslo New University CollegeOsloNorway
| | - Esten Leonardsen
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Ivan I. Maximov
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Karsten Specht
- Mohn Medical Imaging and Visualisation Center (MMIV)BergenNorway
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Department of EducationUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
11
|
Korbmacher M, Gurholt TP, de Lange AMG, van der Meer D, Beck D, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Bio-psycho-social factors' associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants. Front Psychol 2023; 14:1117732. [PMID: 37359862 PMCID: PMC10288151 DOI: 10.3389/fpsyg.2023.1117732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/27/2023] [Indexed: 06/28/2023] Open
Abstract
Brain age refers to age predicted by brain features. Brain age has previously been associated with various health and disease outcomes and suggested as a potential biomarker of general health. Few previous studies have systematically assessed brain age variability derived from single and multi-shell diffusion magnetic resonance imaging data. Here, we present multivariate models of brain age derived from various diffusion approaches and how they relate to bio-psycho-social variables within the domains of sociodemographic, cognitive, life-satisfaction, as well as health and lifestyle factors in midlife to old age (N = 35,749, 44.6-82.8 years of age). Bio-psycho-social factors could uniquely explain a small proportion of the brain age variance, in a similar pattern across diffusion approaches: cognitive scores, life satisfaction, health and lifestyle factors adding to the variance explained, but not socio-demographics. Consistent brain age associations across models were found for waist-to-hip ratio, diabetes, hypertension, smoking, matrix puzzles solving, and job and health satisfaction and perception. Furthermore, we found large variability in sex and ethnicity group differences in brain age. Our results show that brain age cannot be sufficiently explained by bio-psycho-social variables alone. However, the observed associations suggest to adjust for sex, ethnicity, cognitive factors, as well as health and lifestyle factors, and to observe bio-psycho-social factor interactions' influence on brain age in future studies.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Mohn Medical Imaging and Visualization Center (MMIV), Bergen, Norway
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ann-Marie G. de Lange
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Dani Beck
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Center (MMIV), Bergen, Norway
| | - Arvid Lundervold
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Center (MMIV), Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I. Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Jirsaraie RJ, Gorelik AJ, Gatavins MM, Engemann DA, Bogdan R, Barch DM, Sotiras A. A systematic review of multimodal brain age studies: Uncovering a divergence between model accuracy and utility. PATTERNS (NEW YORK, N.Y.) 2023; 4:100712. [PMID: 37123443 PMCID: PMC10140612 DOI: 10.1016/j.patter.2023.100712] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Brain aging is a complex, multifaceted process that can be challenging to model in ways that are accurate and clinically useful. One of the most common approaches has been to apply machine learning to neuroimaging data with the goal of predicting age in a data-driven manner. Building on initial brain age studies that were derived solely from T1-weighted scans (i.e., unimodal), recent studies have incorporated features across multiple imaging modalities (i.e., "multimodal"). In this systematic review, we show that unimodal and multimodal models have distinct advantages. Multimodal models are the most accurate and sensitive to differences in chronic brain disorders. In contrast, unimodal models from functional magnetic resonance imaging were most sensitive to differences across a broad array of phenotypes. Altogether, multimodal imaging has provided us valuable insight for improving the accuracy of brain age models, but there is still much untapped potential with regard to achieving widespread clinical utility.
Collapse
Affiliation(s)
- Robert J. Jirsaraie
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron J. Gorelik
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Martins M. Gatavins
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Undergraduate Neuroscience Program, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Denis A. Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
- Université Paris-Saclay, Inria, CEA, Palaiseau, France
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M. Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Corresponding author
| |
Collapse
|
13
|
Levakov G, Kaplan A, Yaskolka Meir A, Rinott E, Tsaban G, Zelicha H, Blüher M, Ceglarek U, Stumvoll M, Shelef I, Avidan G, Shai I. The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity. eLife 2023; 12:e83604. [PMID: 37022140 PMCID: PMC10174688 DOI: 10.7554/elife.83604] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Background Obesity negatively impacts multiple bodily systems, including the central nervous system. Retrospective studies that estimated chronological age from neuroimaging have found accelerated brain aging in obesity, but it is unclear how this estimation would be affected by weight loss following a lifestyle intervention. Methods In a sub-study of 102 participants of the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT-PLUS) trial, we tested the effect of weight loss following 18 months of lifestyle intervention on predicted brain age based on magnetic resonance imaging (MRI)-assessed resting-state functional connectivity (RSFC). We further examined how dynamics in multiple health factors, including anthropometric measurements, blood biomarkers, and fat deposition, can account for changes in brain age. Results To establish our method, we first demonstrated that our model could successfully predict chronological age from RSFC in three cohorts (n=291;358;102). We then found that among the DIRECT-PLUS participants, 1% of body weight loss resulted in an 8.9 months' attenuation of brain age. Attenuation of brain age was significantly associated with improved liver biomarkers, decreased liver fat, and visceral and deep subcutaneous adipose tissues after 18 months of intervention. Finally, we showed that lower consumption of processed food, sweets and beverages were associated with attenuated brain age. Conclusions Successful weight loss following lifestyle intervention might have a beneficial effect on the trajectory of brain aging. Funding The German Research Foundation (DFG), German Research Foundation - project number 209933838 - SFB 1052; B11, Israel Ministry of Health grant 87472511 (to I Shai); Israel Ministry of Science and Technology grant 3-13604 (to I Shai); and the California Walnuts Commission 09933838 SFB 105 (to I Shai).
Collapse
Affiliation(s)
- Gidon Levakov
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Alon Kaplan
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- Department of Internal Medicine D, Chaim Sheba Medical CenterRamat-GanIsrael
| | - Anat Yaskolka Meir
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Ehud Rinott
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Gal Tsaban
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Hila Zelicha
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | | | - Uta Ceglarek
- Department of Medicine, University of LeipzigLeipzigGermany
| | | | - Ilan Shelef
- Department of Diagnostic Imaging, Soroka Medical CenterBeer ShevaIsrael
| | - Galia Avidan
- Department of Psychology, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Iris Shai
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- Department of Medicine, University of LeipzigLeipzigGermany
- Department of Nutrition, Harvard T.H. Chan School of Public HealthBostonUnited States
| |
Collapse
|