1
|
Ahmad Najar R, Rahat B, Hussain A, Thakur S, Kaur J, Kaur J, Hamid A. Gene specific epigenetic regulation of hepatic folate transport system is responsible for perturbed cellular folate status during aging and exogenous modulation. Mol Nutr Food Res 2016; 60:1501-13. [PMID: 26990146 DOI: 10.1002/mnfr.201500991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 01/11/2023]
Abstract
SCOPE The present study was designed to identify the molecular mechanism of folate modulation and aging on aberrant liver folate transporter system. METHODS AND RESULTS An in vivo rat model was used, in which weanling, young and adult rats were given folate deficient diet for 3 and 5 months and after 3 months of folate deficiency, one group received physiological folate repletion (2 mg/kg diet) and another group received over supplemented folate diet (8 mg/kg diet) for another 2 months. In adult group, 3 and 5 months of folate deficiency decreased serum and tissue folate levels with decreased uptake of folate, further associated with decreased expression levels of reduced folate carrier (RFC) and increased expression levels of folate exporter (ABCG2) at both mRNA and protein levels, which in turn regulated by promoter hypermethylation of RFC and promoter hypomethylation of ABCG2 gene. CONCLUSION Promoter hypermethylation of RFC and promoter hypomethylation of ABCG2 may be attributed to the down regulation of RFC and up regulation of ABCG2 at mRNA and protein levels in conditions of 3 and 5 months of folate deficiency in the adult group.
Collapse
Affiliation(s)
- Rauf Ahmad Najar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Department of Biochemistry, Panjab University, Chandigarh, India
| | - Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aashiq Hussain
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Shilpa Thakur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,CSIR-Academy of Scientific & Innovative Research, New Delhi, India
| |
Collapse
|
2
|
Glutathionists in the battlefield of gamma-glutamyl cycle. Arch Biochem Biophys 2016; 595:61-3. [DOI: 10.1016/j.abb.2015.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 10/22/2022]
|
3
|
Masuda M, Ichikawa Y, Shimono K, Shimizu M, Tanaka Y, Nara T, Miyauchi S. Electrophysiological characterization of human Na+/taurocholate cotransporting polypeptide (hNTCP) heterologously expressed in Xenopus laevis oocytes. Arch Biochem Biophys 2014; 562:115-21. [DOI: 10.1016/j.abb.2014.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/27/2022]
|
4
|
Masoud Neghab Neill H Stacey. Serum bile acids as a sensitive biological marker for evaluating hepatic effects of organic solvents. Biomarkers 2013; 5:81-107. [PMID: 23885947 DOI: 10.1080/135475000230415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Serum bile acids (SBAs) are suggested as a potentially sensitive and specific indicator of liver function which, accordingly, could provide an early indication of hepatobiliary dysfunction. This offers advantages over more traditional parameters of liver integrity/function. Recent studies have shown that occupational exposure to low levels of halogenated aliphatic or non-halogenated aromatic solvents is associated with significant increases in SBA levels. As this has often been evident in the absence of any effect on conventional parameters of hepatobiliary integrity/function, elevated SBA levels may well be regarded as a sensitive biological marker of exposure/effect of these compounds. In addition, it may be considered that they provide an early indicator of solvent-induced changes in hepatobiliary function. Extensive studies with experimental animals have also provided supporting evidence for these observations in solvent-exposed individuals. Investigations of the mechanisms at cellular and subcellular levels by which these increases occur have suggested that these effects are likely to be the result of selective, dose-related and reversible inhibition of bile acid uptake at the sinusoidal domain of the hepatocyte plasma membrane. Increased concentrations of SBA under low levels of exposure to different solvents have been demonstrated to be a short-lived and reversible effect which is not accompanied by any other evidence of liver damage. Therefore, it could be assumed that it is unlikely that there would be pathological sequelae to these effects, although the longer term ramifications of such effects have not been thoroughly investigated. Nevertheless, the available evidence indicates that investigation of SBA in solvent-exposed workers could provide useful indications of exposure and effect.
Collapse
|
5
|
Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177985 DOI: 10.1016/b978-0-12-394316-3.00004-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The SLC10 family represents seven genes containing 1-12 exons that encode proteins in humans with sequence lengths of 348-477 amino acids. Although termed solute carriers (SLCs), only three out of seven (i.e. SLC10A1, SLC10A2, and SLC10A6) show sodium-dependent uptake of organic substrates across the cell membrane. These include the uptake of bile salts, sulfated steroids, sulfated thyroidal hormones, and certain statin drugs by SLC10A1 (Na(+)-taurocholate cotransporting polypeptide (NTCP)), the uptake of bile salts by SLC10A2 (apical sodium-dependent bile acid transporter (ASBT)), and uptake of sulfated steroids and sulfated taurolithocholate by SLC10A6 (sodium-dependent organic anion transporter (SOAT)). The other members of the family are orphan carriers not all localized in the cell membrane. The name "bile acid transporter family" arose because the first two SLC10 members (NTCP and ASBT) are carriers for bile salts that establish their enterohepatic circulation. In recent years, information has been obtained on their 2D and 3D membrane topology, structure-transport relationships, and on the ligand and sodium-binding sites. For SLC10A2, the putative 3D morphology was deduced from the crystal structure of a bacterial SLC10A2 analog, ASBT(NM). This information was used in this chapter to calculate the putative 3D structure of NTCP. This review provides first an introduction to recent knowledge about bile acid synthesis and newly found bile acid hormonal functions, and then describes step-by-step each individual member of the family in terms of expression, localization, substrate pattern, as well as protein topology with emphasis on the three functional SLC10 carrier members.
Collapse
Affiliation(s)
- Barbara Döring
- SLC10 family research group, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center (BFS), Giessen, Germany
| | | | | | | |
Collapse
|
6
|
Abstract
The kinetics of xenobiotics in biological systems are a critical factor in determining the site and degree of toxicological responses observed. Historically, whole animal kinetic studies coupled with classical compartmental analysis have been used to describe the movement of xenobiotics in biological systems. Often, this traditional approach has not been adequate to meet the needs of toxicologists. In the last few years, biologically based kinetic (BBK) modelling has made a significant contribution to solving this problem. The issue arises as to how in vitro approaches can contribute to this effort. In the past, in vitro models have been used mainly for metabolism studies. Generally, these applications have been qualitative studies to: (1) identify metabolites; (2) investigate metabolic pathways; or (3) assist in interspecies extrapolation issues. The quantitative application of in vitro data has been restricted by limitations of experimental models and the lack of a theoretical framework for the incorporation of these data into predictive models. The current status of BBK modelling and the potential use of in vitro data is discussed with examples of current approaches from the areas of determination of surrogate dose, membrane transport and protein binding.
Collapse
|
7
|
Wani NA, Nada R, Khanduja KL, Kaur J. Decreased activity of folate transporters in lipid rafts resulted in reduced hepatic folate uptake in chronic alcoholism in rats. GENES AND NUTRITION 2012; 8:209-19. [PMID: 22956120 DOI: 10.1007/s12263-012-0318-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/17/2012] [Indexed: 11/29/2022]
Abstract
Folic acid is an essential nutrient that is required for one-carbon biosynthetic processes and for methylation of biomolecules. Deficiency of this micronutrient leads to disturbances in normal physiology of cell. Chronic alcoholism is well known to be associated with folate deficiency, which is due in part to folate malabsorption. The present study deals with the regulatory mechanisms of folate uptake in liver during chronic alcoholism. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20 % solution) orally for 3 months, and the molecular mechanisms of folate uptake were studied in liver. The characterization of the folate transport system in liver basolateral membrane (BLM) suggested it to be a carrier mediated and acidic pH dependent, with the major involvement of proton coupled folate transporter and folate binding protein in the uptake. The folate transporters were found to be associated with lipid raft microdomain of liver BLM. Moreover, ethanol ingestion decreased the folate transport by altering the Vmax of folate transport process and downregulated the expression of folate transporters in lipid rafts. The decreased transporter levels were associated with reduced protein and mRNA levels of these transporters in liver. The deranged folate uptake together with reduced folate transporter levels in lipid rafts resulted in reduced folate levels in liver and thereby to its reduced levels in serum of ethanol-fed rats. The chronic ethanol ingestion led to decreased folate uptake in liver, which was associated with the decreased number of transporter molecules in the lipid rafts that can be ascribed to the reduced synthesis of these transporters.
Collapse
Affiliation(s)
- Nissar Ahmad Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | | | | | | |
Collapse
|
8
|
Fenner KS, Jones HM, Ullah M, Kempshall S, Dickins M, Lai Y, Morgan P, Barton HA. The evolution of the OATP hepatic uptake transport protein family in DMPK sciences: from obscure liver transporters to key determinants of hepatobiliary clearance. Xenobiotica 2011; 42:28-45. [PMID: 22077101 DOI: 10.3109/00498254.2011.626464] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the last two decades the impact on drug pharmacokinetics of the organic anion transporting polypeptides (OATPs: OATP-1B1, 1B3 and 2B1), expressed on the sinusoidal membrane of the hepatocyte, has been increasingly recognized. OATP-mediated uptake into the hepatocyte coupled with subsequent excretion into bile via efflux proteins, such as MRP2, is often referred to as hepatobiliary excretion. OATP transporter proteins can impact some drugs in several ways including pharmacokinetic variability, pharmacodynamic response and drug-drug interactions (DDIs). The impact of transporter mediated hepatic clearance is illustrated with case examples, from the literature and also from the Pfizer portfolio. The currently available in vitro techniques to study the hepatic transporter proteins involved in the hepatobiliary clearance of drugs are reviewed herein along with recent advances in using these in vitro data to predict the human clearance of compounds recognized by hepatic uptake transporters.
Collapse
Affiliation(s)
- Katherine S Fenner
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Sandwich, Kent, UK.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
No significant effect of the SLCO1B1 polymorphism on the pharmacokinetics of ursodeoxycholic acid. Eur J Clin Pharmacol 2011; 67:1159-67. [DOI: 10.1007/s00228-011-1070-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/23/2011] [Indexed: 01/01/2023]
|
10
|
|
11
|
Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol 2011:205-59. [PMID: 21103971 DOI: 10.1007/978-3-642-14541-4_5] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bile formation is an important function of the liver. Bile salts are a major constituent of bile and are secreted by hepatocytes into bile and delivered into the small intestine, where they assist in fat digestion. In the small intestine, bile salts are almost quantitatively reclaimed and transported back via the portal circulation to the liver. In the liver, hepatocytes take up bile salts and secrete them again into bile for ongoing enterohepatic circulation. Uptake of bile salts into hepatocytes occurs largely in a sodium-dependent manner by the sodium taurocholate cotransporting polypeptide NTCP. The transport properties of NTCP have been extensively characterized. It is an electrogenic member of the solute carrier family of transporters (SLC10A1) and transports predominantly bile salts and sulfated compounds, but is also able to mediate transport of additional substrates, such as thyroid hormones, drugs and toxins. It is highly regulated under physiologic and pathophysiologic conditions. Regulation of NTCP copes with changes of bile salt load to hepatocytes and prevents entry of cytotoxic bile salts during liver disease. Canalicular export of bile salts is mediated by the ATP-binding cassette transporter bile salt export pump BSEP (ABCB11). BSEP constitutes the rate limiting step of hepatocellular bile salt transport and drives enterohepatic circulation of bile salts. It is extensively regulated to keep intracellular bile salt levels low under normal and pathophysiologic situations. Mutations in the BSEP gene lead to severe progressive familial intrahepatic cholestasis. The substrates of BSEP are practically restricted to bile salts and their metabolites. It is, however, subject to inhibition by endogenous metabolites or by drugs. A sustained inhibition will lead to acquired cholestasis, which can end in liver injury.
Collapse
Affiliation(s)
- Bruno Stieger
- Division of Clinical Pharmacology and Toxicology, University Hospital, 8091, Zurich, Switzerland.
| |
Collapse
|
12
|
Boyd CA. Cotransport systems in the brush border membrane of the human placenta. CIBA FOUNDATION SYMPOSIUM 2008; 95:300-26. [PMID: 6303722 DOI: 10.1002/9780470720769.ch18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cotransport systems present in the brush border membrane of the human placental syncytiotrophoblast are reviewed. Attention is focused on the systems that are powered by the electrochemical gradient of Na+ (for example, for neutral amino acids but not for glucose), and on recently described systems in which K+ flux is coupled to C1- flux or to that for Na+ and C1-. These systems are similar to those found in other tissues and may be significant for net trans-placental transport and its control, as well as for the regulation of placental trophoblast volume.
Collapse
|
13
|
Watanabe N, Kagawa T, Kojima S, Takashimizu S, Nagata N, Nishizaki Y, Mine T. Taurolithocholate impairs bile canalicular motility and canalicular bile secretion in isolated rat hepatocyte couplets. World J Gastroenterol 2006; 12:5320-5. [PMID: 16981261 PMCID: PMC4088198 DOI: 10.3748/wjg.v12.i33.5320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 05/28/2006] [Accepted: 06/15/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of taurolithocholate (TLC) on the canalicular motility in isolated rat hepatocyte couplets (IRHC). METHODS TLC was added to IRHC at concentrations of 10 and 50 mumol/L, respectively. In each group, five time-lapse movies containing 3 representative bile canaliculi were taken under phase-contrast microscopy for 12 h. The number of bile canalicular contractions and the intervals between consecutive canalicular contractions were calculated. Furthermore, the effects of TLC on IRHC were examined by transmission electron microscopy. RESULTS The bile canalicular contractions were spontaneous and forceful in the controls. Active vesicular movement was observed in the pericanalicular region. Immediately after the addition of TLC, the bile canaliculi were deformed, and canalicular bile was incorporated into the vacuoles. The canaliculi were gradually dilated, and canalicular contractions were markedly inhibited by TLC. The vesicular movements became extremely slow in the pericanalicular region. The number of canalicular contractions significantly decreased in the TLC-treated groups, as compared with that in the controls. The time intervals were prolonged, as the TLC dosage increased, indicating that bile secretion into the canaliculi was impaired with TLC. Transmission electron microscopy revealed the lamellar transformation of the canalicular membranes in IRHC treated with TLC. CONCLUSION TLC impairs both the bile canalicular contractions and the canalicular bile secretion, possibly by acting directly on the canalicular membranes in TLC-induced cholestasis.
Collapse
Affiliation(s)
- Norihito Watanabe
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ortiz DF, Moseley J, Calderon G, Swift AL, Li S, Arias IM. Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin-Darby canine kidney cells. J Biol Chem 2004; 279:32761-70. [PMID: 15159385 DOI: 10.1074/jbc.m404337200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette (ABC)-type proteins are essential for bile formation in vertebrate liver. BSEP, MDR1, MDR2, and MRP2 ABC transporters are targeted to the apical (canalicular) membrane of hepatocytes where they execute ATP-dependent transport of bile acids, drugs, amphipathic cations, phospholipids, and conjugated organic anions, respectively. Changes in activity and abundance of transporters in the canalicular membrane regulate bile flow; however, little is known regarding cellular proteins that bind ABC transporters and regulate their trafficking. A yeast two-hybrid screen identified HAX-1 as a binding partner for BSEP, MDR1, and MDR2. The interactions were validated biochemically by glutathione S-transferase pull-down and co-immunoprecipitation assays. BSEP and HAX-1 were over-represented in rat liver subcellular fractions enriched for canalicular membrane vesicles, microsomes, and clathrin-coated vesicles. HAX-1 was bound to BSEP, MDR1, and MDR2 in canalicular membrane vesicles and co-localized with BSEP and MDR1 in the apical membrane of Madin-Darby canine kidney (MDCK) cells. RNA interference of HAX-1 increased BSEP levels in the apical membrane of MDCK cells by 71%. Pulse-chase studies indicated that HAX-1 depletion did not affect BSEP translation, post-translational modification, delivery to the plasma membrane, or half-life. HAX-1 depletion resulted in an increased peak of metabolically labeled apical membrane BSEP at 4 h and enhanced retention at 6 and 9 h. HAX-1 also interacts with cortactin. Expression of dominant negative cortactin increased steady state levels of BSEP 2-fold in the apical membrane of MDCK cells, as did expression of dominant negative EPS15. These findings suggest that HAX-1 and cortactin participate in BSEP internalization from the apical membrane.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11
- ATP-Binding Cassette Transporters/metabolism
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Bile Acids and Salts/chemistry
- Biological Transport
- Biotinylation
- Cations
- Cell Line
- Cell Membrane/metabolism
- Cortactin
- Dogs
- Escherichia coli/metabolism
- Genes, Dominant
- Glutathione Transferase/metabolism
- Hepatocytes/metabolism
- Humans
- Immunoblotting
- Liver/metabolism
- Microfilament Proteins/metabolism
- Microscopy, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Phospholipids/chemistry
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Biosynthesis
- Protein Processing, Post-Translational
- Protein Transport
- Proteins/chemistry
- Proteins/physiology
- RNA Interference
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Subcellular Fractions
- Time Factors
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Daniel F Ortiz
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Kipp H, Pichetshote N, Arias IM. Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J Biol Chem 2001; 276:7218-24. [PMID: 11113123 DOI: 10.1074/jbc.m007794200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
ABC transporter trafficking in rat liver induced by cAMP or taurocholate and [(35)S]methionine metabolic labeling followed by subcellular fractionation were used to identify and characterize intrahepatic pools of ABC transporters. ABC transporter trafficking induced by cAMP or taurocholate is a physiologic response to a temporal demand for increased bile secretion. Administration of cAMP or taurocholate to rats increased amounts of SPGP, MDR1, and MDR2 in the bile canalicular membrane by 3-fold; these effects abated after 6 h and were insensitive to prior treatment of rats with cycloheximide. Half-lives of ABC transporters were 5 days, which suggests cycling of ABC transporters between canalicular membrane and intrahepatic sites before degradation. In vivo [(35)S]methionine labeling of rats followed by immunoprecipitation of (sister of P-glycoprotein) (SPGP) from subcellular liver fractions revealed a steady state distribution after 20 h of SPGP between canalicular membrane and a combined endosomal fraction. After mobilization of transporters from intrahepatic sites with cAMP or taurocholate, a significant increase in the amount of ABC transporters in canalicular membrane vesicles was observed, whereas the decrease in the combined endosomal fraction remained below detection limits in Western blots. This observation is in accordance with relatively large intracellular ABC transporter pools compared with the amount present in the bile canalicular membrane. Furthermore, trafficking of newly synthesized SPGP through intrahepatic sites was accelerated by additional administration of cAMP but not by taurocholate, indicating two distinct intrahepatic pools. Our data indicate that ABC transporters cycle between the bile canaliculus and at least two large intrahepatic ABC transporter pools, one of which is mobilized to the canalicular membrane by cAMP and the other, by taurocholate. In parallel to regulation of other membrane transporters, we propose that the "cAMP-pool" in hepatocytes corresponds to a recycling endosome, whereas recruitment from the "taurocholate-pool" involves a hepatocyte-specific mechanism.
Collapse
Affiliation(s)
- H Kipp
- Tufts University School of Medicine, Department of Physiology, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
16
|
Kipp H, Arias IM. Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. J Biol Chem 2000; 275:15917-25. [PMID: 10748167 DOI: 10.1074/jbc.m909875199] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Newly synthesized canalicular ectoenzymes and a cell adhesion molecule (cCAM105) have been shown to traffic from the Golgi to the basolateral plasma membrane, from where they transcytose to the apical bile canalicular domain. It has been proposed that all canalicular proteins are targeted via this indirect route in hepatocytes. We studied the membrane targeting of rat canalicular proteins by in vivo [(35)S]methionine metabolic labeling followed by preparation of highly purified Golgi membranes and canalicular (CMVs) and sinusoidal/basolateral (SMVs) membrane vesicles and subsequent immunoprecipitation. In particular, we compared membrane targeting of newly synthesized canalicular ABC (ATP-binding cassette) transporters MDR1, MDR2, and SPGP (sister of P-glycoprotein) with that of cCAM105. Significant differences were observed in metabolic pulse-chase labeling experiments with regard to membrane targeting of these apical proteins. After a chase time of 15 min, cCAM105 appeared exclusively in SMVs, peaked at 1 h, and progressively declined thereafter. In CMVs, cCAM105 was first detected after 1 h and subsequently increased for 3 h. This findings confirm the transcytotic targeting of cCAM105 reported in earlier studies. In contrast, at no time point investigated were MDR1, MDR2, and SPGP detected in SMVs. In CMVs, MDR1 and MDR2 appeared after 30 min, whereas SPGP appeared after 2 h of labeling. In Golgi membranes, each of the ABC transporters peaked at 30 min and was virtually absent thereafter. These data suggest rapid, direct targeting of newly synthesized MDR1 and MDR2 from the Golgi to the bile canaliculus and transient sequestering of SPGP in an intracellular pool en route from the Golgi to the apical plasma membrane. This study provides biochemical evidence for direct targeting of newly synthesized apical ABC transporters from the Golgi to the bile canaliculus in vivo.
Collapse
Affiliation(s)
- H Kipp
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
17
|
Abstract
Benign recurrent intrahepatic cholestasis is a rare autosomal recessive disorder characterized by repeated episodes of intense pruritus and jaundice. Each attack lasts from several weeks to months before resolving spontaneously. Patients are completely asymptomatic for months to years between symptomatic periods. The disorder does not lead to progressive liver disease. Although attacks seem to be associated with a viral prodrome, an inciting viral agent or toxin has not been defined. Genetic studies have mapped the defect of this disorder to the long arm of chromosome 18 and a gene that codes for a P-type ATPase, which appears to be involved in aminophospholipid transport. Therapy during symptomatic periods is supportive and aimed at relief of severe pruritus until the episode resolves spontaneously.
Collapse
Affiliation(s)
- V A Luketic
- Department of Medicine, Hepatology Section, Medical College of Virginia Commonwealth University, Richmond, Virginia, USA
| | | |
Collapse
|
18
|
Kamisako T, Gabazza EC, Ishihara T, Adachi Y. Molecular aspects of organic compound transport across the plasma membrane of hepatocytes. J Gastroenterol Hepatol 1999; 14:405-12. [PMID: 10355502 DOI: 10.1046/j.1440-1746.1999.01886.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many organic compounds are taken up from the blood by membrane transporters, taken across the sinosuidal membrane of hepatocytes and then excreted into bile via the bile canalicular membrane. The hepatic uptake of conjugated bile acids is mediated by the sodium taurocholate cotransporting polypeptide. Many organic anions and bulky organic cations are incorporated into hepatocytes by the organic anion transporting polypeptide, while small organic cations are transported by the organic cation transporter. At the canalicular membrane, organic compounds are excreted into bile by ATP-binding cassette transporters which hydrolyse ATP to ADP. Excretion of monovalent bile acids is mediated by the canalicular bile salt transporter and that of organic anions, including divalent bile acid, conjugates, are mediated by the multi-drug resistance-associated protein 2, also termed canalicular multi-specific organic anion transporter. Organic cations are excreted into bile by the multi-drug resistance gene product (MDR) 1 and phospholipids are excreted by MDR3 (mdr2 in mice and rats). The clinical syndromes associated with alterations of these transporters are also discussed.
Collapse
Affiliation(s)
- T Kamisako
- Second Department of Internal Medicine, Kinki University School of Medicine, Osakasayama, Japan
| | | | | | | |
Collapse
|
19
|
Gow PJ, Treepongkaruna S, Ching MS, Ghabrial H, Shulkes A, Smallwood RA, Jin CJ, Morgan DJ. Uptake and excretion of sodium taurocholate by the isolated perfused neonatal sheep liver. J Pharm Sci 1999; 88:445-9. [PMID: 10187755 DOI: 10.1021/js9803151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a model for perfusion of the isolated perfused neonatal sheep liver which allows examination of drug disposition by the intact organ. We studied the disposition of sodium taurocholate (TC) in seven neonatal lambs (ages 2-11 days) and compared the results with earlier data from the perfused fetal sheep liver (Ring, J. A. et al. Biochem. Pharmacol. 1994, 48, 667-674). Measurements of perfusion pressure, oxygen consumption, lactate:pyruvate ratio, bile flow, and liver histology indicated that the preparation was both viable and stable over a 2 h period. [14C]-labeled TC was added to the reservoir by constant infusion (30 micromol/h) and the ductus venosus shunt quantitated by injection of [153Gd]-labeled microspheres. Shunt-corrected hepatic extraction ratio of TC was 0. 56 +/- 0.14 (fetal 0.23 +/- 0.16, p < 0.005) and clearance of TC was 0.92 +/- 0.35 mL/min/g liver (fetal 0.44 +/- 0.23 mL/min/g, p < 0. 01). We conclude that the isolated perfused neonatal sheep liver is a useful experimental model which will facilitate the study of the developmental physiology and pharmacology of the liver. There is considerable maturation of the biliary excretion of TC between the late fetal and early neonatal periods in the lamb.
Collapse
Affiliation(s)
- P J Gow
- Department of Medicine, Austin and Repatriation Medical Centre, West Heidelberg, 3081, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Van Aerde JE, Duerksen DR, Gramlich L, Meddings JB, Chan G, Thomson AB, Clandinin MT. Intravenous fish oil emulsion attenuates total parenteral nutrition-induced cholestasis in newborn piglets. Pediatr Res 1999; 45:202-8. [PMID: 10022591 DOI: 10.1203/00006450-199902000-00008] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Total parenteral nutrition (TPN) causes intrahepatic cholestasis and membrane phospholipid changes. Fatty acid (FA) composition of bile and hepatocyte phospholipid is influenced by dietary FA composition. We hypothesized that altering FA composition of i.v. lipid emulsions modifies 1) severity of TPN-induced cholestasis; 2) hepatocyte membrane composition and function; 3) bile flow and composition. Newborn piglets received either sow's milk, TPN with i.v. soybean oil or TPN with i.v. fish oil (FO). After 3 wk, basal and stimulated bile flow were measured after bolus injections of 20, 50, and 100 micromol/kg of taurocholate (TCA). Bile was analyzed for bile acids, cholesterol, phospholipids, and phospholipid-FA. Sinusoidal and canalicular membrane PL-FA, fluidity, and Na+/K+-ATPase were measured. Although the soybean oil-fed animals developed cholestasis, the FO and milk group had similar liver and serum bilirubin. Basal and stimulated bile flow rates were impaired in the soybean oil but not in the FO group. Hepatocyte membrane FA composition reflected dietary FA. Changes in sinusoidal and canalicular membrane fluidity and sinusoidal Na+/K+-ATPase activity did not explain the effect of FO on TPN-induced cholestasis. Intravenous FO reduces TPN-induced cholestasis by unknown mechanisms.
Collapse
Affiliation(s)
- J E Van Aerde
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Misra S, Ujházy P, Gatmaitan Z, Varticovski L, Arias IM. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J Biol Chem 1998; 273:26638-44. [PMID: 9756904 DOI: 10.1074/jbc.273.41.26638] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent studies indicate that wortmannin, a potent inhibitor of phosphatidylinositol (PI) 3-kinase, interferes with bile acid secretion in rat liver; taurocholate induces recruitment of ATP-dependent transporters to the bile canalicular membrane, and PI 3-kinase products are important in intracellular trafficking. We investigated the role of PI 3-kinase in bile acid secretion by studying the in vivo effect of taurocholate, colchicine, and wortmannin on bile acid secretion, kinase activity, and protein levels in canalicular membrane vesicle (CMV) and sinusoidal membrane vesicle (SMV) fractions from rat liver. Treatment of rats or perfusion of isolated liver with taurocholate significantly increased PI 3-kinase activity in both membrane fractions. Taurocholate increased protein content of ATP-dependent transporters, which were detected only in CMVs, whereas increased levels of p85 and a cell adhesion molecule, cCAM 105, were observed in both fractions. Colchicine prevented taurocholate-induced changes in all proteins studied, as well as the increase in PI 3-kinase activity in CMVs, but it resulted in further accumulation of PI 3-kinase activity, p85, and cCAM 105 in SMVs. These results indicate that taurocholate-mediated changes involve a microtubular system. Wortmannin blocked taurocholate-induced bile acid secretion. The effect was more profound when wortmannin was administered prior to treatment with taurocholate. When wortmannin was given after taurocholate, the protein levels of each ATP-dependent transporter were maintained in CMVs, whereas the levels of p85 and cCAM decreased in both membrane fractions. Perfusion of liver with wortmannin before taurocholate administration blocked accumulation of all proteins studied in CMVs and SMVs. These results indicate that PI 3-kinase is required for intracellular trafficking of itself, as well as of ATP-dependent canalicular transporters.
Collapse
Affiliation(s)
- S Misra
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
22
|
Marinho HS, Baptista M, Pinto RE. Glutathione metabolism in hepatomous liver of rats treated with diethylnitrosamine. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1360:157-68. [PMID: 9128181 DOI: 10.1016/s0925-4439(96)00075-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutathione metabolism was studied in rat liver during diethylnitrosamine (DEN) carcinogenesis. Some studies were also made in foetal rat liver. Endogenous GSH and non-protein thiols concentrations are increased in DEN-treated rats when compared to non-treated rats but no differences were found in cysteine, total thiols and protein thiols concentration. In foetal liver GSH concentration is only 35% of that in DEN-treated rat liver. The activities of several enzymes involved in glutathione metabolism are changed in DEN-treated rats. gamma-Glutamyl transferase activity and cysteine formation from GSH by liver homogenates is increased sevenfold. gamma-Glutamylcysteine synthetase activity, initial rate of [35S]cysteine incorporation in gamma-glutamylcysteine and initial rate of GSH formation from [35S]cysteine are increased two-fold. Cytosolic GSH S-transferase activity is increased twofold in DEN-treated rats and so GSH S-conjugates concentration is probably also increased. In foetal rat liver gamma-glutamyl transferase activity is about the same but gamma-glutamylcysteine synthetase activity is only 10% of that in DEN-treated rat liver. The increased GSH concentration in DEN-treated rat liver is probably due to the simultaneous increase in the activities of gamma-glutamyl transferase and gamma-glutamylcysteine synthetase. Blood plasma total glutathione is increased 1.4 times in DEN-treated rats, but no differences are found in GSH hepatic arteriovenous gradient. This associated with the increased gamma-glutamyl transferase activity suggests that sinusoidal GSH efflux is increased in DEN-treated rats.
Collapse
Affiliation(s)
- H S Marinho
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | | | | |
Collapse
|
23
|
Inhibition by trichloroethylene and 1,1,2-trichloro-1,2,2-trifluoroethane of taurocholate uptake into basolateral rat liver plasma membrane vesicles. Toxicol In Vitro 1996; 10:665-74. [DOI: 10.1016/s0887-2333(96)00055-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/1996] [Indexed: 11/21/2022]
|
24
|
|
25
|
Hagenbuch B, Scharschmidt BF, Meier PJ. Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes. Biochem J 1996; 316 ( Pt 3):901-4. [PMID: 8670169 PMCID: PMC1217435 DOI: 10.1042/bj3160901] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A Na(+)-dependent bile acid (Na+/taurocholate co-transporting polypeptide; Ntcp) and a Na(+)-independent bromosulphophthalein (BSP)/bile acid uptake system (organic-anion-transporting polypeptide; oatp) have been cloned from rat liver by using functional expression cloning in Xenopus laevis oocytes. To evaluate the extent to which these cloned transporters could account for overall hepatic bile acid and BSP uptake, we used antisense oligonucleotides to inhibit the expression of Ntcp and oatp in Xenopus laevis oocytes injected with total rat liver mRNA. An Ntcp-specific antisense oligonucleotide co-injected with total rat liver mRNA blocked the expression of Na(+)-dependent taurocholate uptake by approx. 95%. In contrast, an oatp-specific antisense oligonucleotide when co-injected with total rat liver mRNA had no effect on the expression of Na(+)-dependent taurocholate uptake, but it blocked Na(+)-independent uptake of taurocholate by approx. 80% and of BSP by 50%. Assuming similar expression of hepatocellular bile acid and organic anion transporters in Xenopus laevis oocytes, these results indicate that Ntcp and oatp respectively represent the major, if not the only, Na(+)-dependent and Na(+)-independent taurocholate uptake systems in rat liver. By contrast, the cloned oatp accounts for only half of BSP transport, suggesting that there must be additional, non-bile acid transporting organic anion uptake systems in rat liver.
Collapse
Affiliation(s)
- B Hagenbuch
- Department of Medicine, University Hospital, Zürich, Switzerland
| | | | | |
Collapse
|
26
|
ATP-dependent phosphatidylcholine translocation in rat liver canalicular plasma membrane vesicles. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42021-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Azer SA, Stacey NH. Current concepts of hepatic uptake, intracellular transport and biliary secretion of bile acids: physiological basis and pathophysiological changes in cholestatic liver dysfunction. J Gastroenterol Hepatol 1996; 11:396-407. [PMID: 8713709 DOI: 10.1111/j.1440-1746.1996.tb01390.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatic sinusoidal uptake of bile acids is mediated by defined carrier proteins against unfavourable concentration and electrical gradients. Putative carrier proteins have been identified using bile acid photoaffinity labels and more recently using immunological probes, such as monoclonal antibodies. At the sinusoidal domain, proteins with molecular weights of 49 and 54 kDa have been shown to be carriers for bile acid transport. The 49 kDa protein has been associated with the Na(+)-dependent uptake of conjugated bile acids, while the 54 kDa carrier has been involved in the Na(+)-independent bile acid uptake process. Within the hepatocyte, cytosolic proteins, such as the glutathione S-transferase (also designated the Y protein), the Y binders and the fatty acid binding proteins, are able to bind bile acids and possibly facilitate their movement to the canalicular domain. At the canalicular domain a 100 kDa carrier protein has been isolated and it has been shown by several laboratories that this particular protein is concerned with canalicular bile acid transport. The system is ATP-dependent and follows Michaelis-Menten kinetics. Interference with bile acid transport has been demonstrated by several chemicals. The mechanisms by which these chemicals inhibit bile acid transport may explain the apparent cholestatic properties observed in patients and experimental animals treated with these agents. Several studies have shown that Na+/K(+)-ATPase activity is markedly decreased in cholestasis induced by ethinyloestradiol, taurolithocholate and chlorpromazine. However, other types of interference have been described and the cholestatic effects may be the result of several mechanisms. Cholestasis is associated with several adaptive changes that may be responsible for the accumulation of bile acids and other cholephilic compounds in the blood of these patients. It may be speculated that the nature of these changes is to protect liver parenchymal cells from an accumulation of bile acids to toxic levels. However, more detailed quantitative experiments are necessary to answer questions with regard to the significance of these changes and the effect of various hepatobiliary disorders in modifying these mechanisms. It is expected that the mechanisms by which bile acid transport is regulated and efforts to understand the molecular basis for these processes will be among the areas of future research.
Collapse
Affiliation(s)
- S A Azer
- Toxicology Unit, National Institute of Occupational Health and Safety, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
28
|
The Regulation of Cholesterol Conversion to Bile Acids. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2558(08)60347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Wu G. Discrimination of transport systems for methylmercury uptake in rat erythrocytes using methylmercury-mercaptalbumin by inhibitors and other factors. Pharmacol Res 1995; 32:223-31. [PMID: 8866838 DOI: 10.1016/s1043-6618(05)80026-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This is a continuation of studying the transport system for the uptake of methylmercury (MeHg). The aim of the current study was to study transport systems in rat erythrocyte for the uptake of MeHg while using MeHg-mercaptalbumin (MeHgMASH) complex. The uptake of methylmercury was studied in isolated erythrocytes from rats at 5 degrees C. Different reagents were used to study different transport systems in rat erythrocytes: adenosine 5'-triphosphate (ATP), ouabain and sodium fluoride for the active transport systems; probenecid for the organic anion transport system; 4',4-diisothiocyano-2',2-stilbenedisulphonic acid (DIDS), maleimide and N-ethylmaleimide for Cl- transport system; verapamil for Ca2+ ion transport system; colchicine and vinblastine for the microtubule system; verapamil for Ca2+ ion transport system; colchicine and vinblastine for the microtubule system; valinomycin for the effect of membrane potential; hexanol for the protein-mediated transport system and nonelectrolyte diffusion. The results showed that the uptake of MeHg might be involved in several transport systems: the active transport systems, an organic anion transport system, Cl- ion transport system, and Ca2+ ion transport system. The transport systems were slightly sensitive to the membrane potential. These transport systems seem to share similarities with the transport systems for the uptake of MeHg when using MeHg-cysteine and MeHg-glutathione complexes.
Collapse
Affiliation(s)
- G Wu
- Biochemistry Section, National Institute for Minamata Disease, Kumamoto, Japan
| |
Collapse
|
30
|
Wu G. Screening of potential transport systems for methyl mercury uptake in rat erythrocytes at 5 degrees by use of inhibitors and substrates. PHARMACOLOGY & TOXICOLOGY 1995; 77:169-76. [PMID: 8884879 DOI: 10.1111/j.1600-0773.1995.tb01008.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The current study was designed to screen the potential transport systems for methyl mercury (MeHg) uptake by isolated erythrocytes from rats at 5 degrees. Several inhibitors and substrates were used to test which potential transport system might be involved in MeHg uptake. Probenecid was used to test the organic anion transport system, valinomycin was used to test the effect of the membrane potential, D-glucose and cytochalasin B were used to test the facilitated diffusive D-glucose transport system and colchicine and vinblastine were used to test the microtubule system. The effects of Ca++, Mg++ and Na+ on MeHg uptake have been examined. Ouabain, ATP and glucose were used to test the active transport system, cysteine for the cysteine-facilitated transport system, glycine for system Gly, DL-methionine for system L, and MeHgCl and 4',4-diisothiocyano-2',2-stilbenedisulfonic acid (DIDS) for the Cl- ion transport system. The results showed that MeHg uptake might be involved in the following transport systems at 5 degrees: 1) organic anion transport system; 2) facilitated diffusive D-glucose transport system; 3) cysteine-facilitated transport system; 4) Cl- ion transport system. Moreover, the transport systems for MeHg uptake were sensitive to the membrane potential. Although the mechanisms of interaction of transport systems have not been fully clarified, evidence has been presented which support the existence of several simultaneous transport systems for MeHg uptake.
Collapse
Affiliation(s)
- G Wu
- Biochemistry Section, National Institute for Minamata Disease, Kumamoto, Japan
| |
Collapse
|
31
|
Abstract
Methyl mercury (MeHg) uptake by isolated erythrocytes from rats was studied at 20 degrees C. Inhibitors and substrates were used to test which transport system was involved in MeHg uptake. Ouabain and ATP were used to test the active transport system. Glycine was used to test system Gly. DL-Methionine was used to test system L. Cysteine was used to test the cysteine-facilitated transport system. The effects of Ca2+, Mg2+ and Na+ on MeHg uptake have been examined. MeHgCl and 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) were used to test C1- ion transport system. D-Glucose and cytochalasin B were used to test the facilitated diffusive D-Glucose transport system. Colchicine and vinblastine were used to test the microtubule system. Probenecid was used to test the organic acid transport system. Valinomycin was used to test the effect of the membrane potential on MeHg uptake. The results showed that MeHg uptake at 20 degrees C might be involved in the following transport systems: 1) an active transport system; 2) a cysteine-facilitated transport system; 3) a C1- ion transport system; 4) a facilitated diffusive D-glucose transport system; 5) an organic acid transport system. The transport systems for MeHg uptake were sensitive to the membrane potential.
Collapse
Affiliation(s)
- G Wu
- Biochemistry Section, National Institute for Minamata Disease, Kumamoto, Japan
| |
Collapse
|
32
|
Oude Elferink RP, Meijer DK, Kuipers F, Jansen PL, Groen AK, Groothuis GM. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:215-68. [PMID: 7640297 DOI: 10.1016/0304-4157(95)00006-d] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R P Oude Elferink
- Department of Gastrointestinal and Liver Diseases, Academic Medical Center, AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Drori S, Eytan GD, Assaraf YG. Potentiation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:1020-9. [PMID: 7737146 DOI: 10.1111/j.1432-1033.1995.tb20352.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We are studying the mechanism underlying chemosensitization of anticancer-drug cytotoxicity in wild-type and multidrug-resistant (MDR) mammalian cells. We show here that the chemosensitizers, reserpine and verapamil, display a dramatic potentiation of taxol, anthracycline and Vinca alkaloids cytotoxicity in P-glycoprotein-(P-gp)-deficient hamster and human nasopharyngeal carcinoma cells. We have therefore utilized this phenomenon to probe for the putative P-gp-independent component of cytotoxicity chemosensitization. These chemosensitizers yielded a marked increase in the accumulation of taxol in parental hamster and human carcinoma cells that are devoid of P-gp. These chemosensitizers and non-ionic detergents brought about a pronounced increase in the accumulation of structurally and mechanistically diverse lipophilic chromophores in parental and MDR hamster cells. Furthermore, non-toxic concentrations of these non-ionic detergents yielded a marked potentiation of taxol cytotoxicity in parental cells. These findings were consistent with a chemosensitizer-mediated, P-gp-independent increase in membrane permeability. Thus, several aspects of chemosensitizers' interaction with lipid bilayers and biomembranes were studied. In this respect, like various mild detergents, chemosensitizers induced a dose-dependent leakage of carboxyfluorescein encapsulated in liposomes. Like specialized membrane fluidizers, various chemosensitizers induced a dose-dependent membrane fluidization (and sometimes rigidification) in both liposomes and various wild-type and MDR animal and human cells, as revealed by diphenylhexatriene fluorescence polarization. Furthermore, a favorable correlation was observed between the ability of chemosensitizers to permeabilize lipid bilayers and their capacity to potentiate anticancer-drug cytotoxicity. Thus, we propose that chemosensitizer-mediated changes in the physical properties of biomembranes, including altered fluidity and increased permeability, may be important factors in achieving potentiation of anticancer-drug cytotoxicity in wild-type and MDR mammalian cells. This study offers a basis for the chemosensitizer-mediated potentiation of drug toxicity to healthy tissues, thus emphasizing the importance of a prior evaluation of the potential untoward toxicity when simultaneously using MDR chemosensitizers and cytotoxic agents in the clinic.
Collapse
Affiliation(s)
- S Drori
- Department of Biology, Technion-Israel Institute of Technology, Haifa
| | | | | |
Collapse
|
34
|
Eytan GD, Borgnia MJ, Regev R, Assaraf YG. Transport of polypeptide ionophores into proteoliposomes reconstituted with rat liver P-glycoprotein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47159-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
35
|
Rahmani-Jourdheuil D, Coloma F, Placidi M, Rahmani R. Human hepatic uptake of two vinca alkaloids: navelbine and vincristine. J Pharm Sci 1994; 83:468-71. [PMID: 8046598 DOI: 10.1002/jps.2600830404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A human liver plasma membrane model for the evaluation of the specific binding and transport processes of drugs presenting high hepatic clearance such as vinca alkaloids was developed. Uptake of the two structural antitumor analogs, navelbine (NVB) and vincristine (VCR), which exhibit wide variabilities in their respective pharmacokinetic parameters and antitumor spectra, was investigated. The high yield, the enzymatic profile and the retention of physiologic transport capacities, as demonstrated by taurocholate uptake, revealed that this membrane preparation was well suited for studies of hepatic drug transport systems. For both drugs two distinct processes were observed: mainly membrane binding and transport. NVB was found to bind to the membrane vesicles more intensively than VCR, but the transport processes were almost identical. However only NVB uptake seems to involve Na(+)-dependent processes. These significant differences may be related to the respective lipophilicity of the drugs. The more lipophilic molecule (NVB) presents the highest uptake, which is presumably at the origin of its greatest distribution volume in vivo.
Collapse
|
36
|
Isolation of sinusoidal and canalicular liver plasma membranes: Effects of frozen storage of human material. Toxicol In Vitro 1994; 8:173-80. [DOI: 10.1016/0887-2333(94)90180-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/1993] [Revised: 07/23/1993] [Indexed: 11/21/2022]
|
37
|
Furuyashiki S, Sumimoto K, Oku J, Kimura A, Fukuda Y, Dohi K, Kawasaki T. The significance of bile secretion after the transplantation of long-preserved livers in the rat. Surg Today 1994; 24:59-62. [PMID: 8054777 DOI: 10.1007/bf01676887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although one of the simplest indicators for predicting liver viability is bile secretion, it has never been proven whether it could be a good index for the viability of grafts in liver transplantation after cold ischemia. The present study, conducted on male Wistar rats, was undertaken to determine whether bile secretion reflects the viability of livers which have been preserved long-term. Livers were stored for up to 24 h in Euro-Collins (EC) or University of Wisconsin (UW) solution at 4 degrees C, and transplanted orthotopically. The correlation between 1-week survival, bile flow, and the tissue adenosine triphosphate (ATP) level 4 h after transplantation was then investigated for each subgroup. The survival rates of the animals in the UW subgroups were much higher than those in the EC subgroups. In the rats transplanted with livers preserved for 6 h in EC solution (EC-6), in which 100% survival was observed, both bile flow and ATP recovered sufficiently. Conversely, in the EC-12 group, in which only 10% survival was seen, restoration of bile flow, in ml/h per kg body weight, and ATP resynthesis, in mumol/g wet weight, were severely suppressed, with levels of 1.35 +/- 1.05 and 0.77 +/- 0.34, respectively. Moreover, in the EC-18 group, with 0% survival, neither bile flow nor ATP recovered. In the rats transplanted with livers preserved for 18 h in UW solution (UW-18), bile flow and ATP, being 1.03 +/- 0.56 and 1.12 +/- 0.59, respectively, were much higher than those in the EC-18 group.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Furuyashiki
- Department of Surgery, Hiroshima University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Petzinger E. Transport of organic anions in the liver. An update on bile acid, fatty acid, monocarboxylate, anionic amino acid, cholephilic organic anion, and anionic drug transport. Rev Physiol Biochem Pharmacol 1994; 123:47-211. [PMID: 8209137 DOI: 10.1007/bfb0030903] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E Petzinger
- Institute of Pharmacology and Toxicology, University Giessen, Germany
| |
Collapse
|
39
|
Accatino L, Hono J, Koenig C, Pizarro M, Rodriguez L. Adaptive changes of hepatic bile salt transport in a model of reversible interruption of the enterohepatic circulation in the rat. J Hepatol 1993; 19:95-104. [PMID: 8301050 DOI: 10.1016/s0168-8278(05)80182-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The reversibility and time course of the adaptive changes in hepatic bile salt transport related to modifications of the bile salt enterohepatic circulation and bile salt pool size have not been previously studied. For this reason a model of reversible interruption of entero-hepatic circulation was characterized in unrestrained rats, which allowed the study of changes in hepatic bile salt transport following bile salt pool depletion and subsequent restoration by either the de novo synthesis of bile acids or i.v. administration of exogenous taurocholate. Rats subjected to biliary drainage for 24 h through a transduodenal common bile duct cannula, followed by removal of the cannula and restoration of the enterohepatic circulation were studied at 24, 48 and 72 h. Neither light and electron microscopy examination nor plasma biochemical parameters showed evidence of necrosis, fibrosis, cholestasis or inflammatory changes. Maximum taurocholate secretory rate decreased to 50% following 24-h bile salt depletion. After restoration of the enterohepatic circulation maximum taurocholate secretory rate progressively increased to normal values at 72 h, following the normalization of the bile salt pool size, which had a similar composition compared with controls. The same effect was obtained when the native bile salt pool was substituted with exogenous taurocholate. Thus, adaptive down-regulation of hepatic bile salt transport capacity is a reversible process, related to restoration of entero-hepatic circulation and normalization of bile salt pool size.
Collapse
Affiliation(s)
- L Accatino
- Department of Gastroenterology and Clinical Laboratory, Faculty of Medicine, Catholic University of Chile, Santiago
| | | | | | | | | |
Collapse
|
40
|
Wehner F. Taurocholate depolarizes rat hepatocytes in primary culture by increasing cell membrane Na+ conductance. Pflugers Arch 1993; 424:145-51. [PMID: 8414903 DOI: 10.1007/bf00374605] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rat hepatocytes in primary culture were impaled with conventional microelectrodes. Addition of 5-100 mumol/l taurocholate led to a slowly developing depolarization that was maximal at 50 mumol/l (10.5 +/- 1.5 mV, n = 15) and not reversible. The effect was Na+ dependent and decreased in cells preincubated with 1 mumol/l taurocholate. Increasing external K+ tenfold depolarized the cells by 12.3 +/- 2.3 mV under control conditions and by 6.3 +/- 1.2 mV with 50 mumol/l taurocholate present (n = 7). Depolarization by 1 mmol/l Ba2+ was 7.6 +/- 0.8 mV and 6.0 +/- 0.7 mV (n = 9) before and after addition of taurocholate, respectively. Cable analysis and Na+ substitution experiments reveal that this apparent decrease in K+ conductance reflects an actual increase in Na+ conductance: in the presence of taurocholate, specific cell membrane resistance decreased from 2.8 to 2.3 k omega x cm2 x Na+ substitution by 95% depolarized cell membranes by 8.9 +/- 2.9 mV (n = 9), probably due to indirect effects on K+ conductance via changes in cell pH. With taurocholate present, the same manoeuvre changed membrane voltages by -0.8 +/- 2.6 mV. When Na+ concentration was restored to 100% from solutions containing 5% Na+, cells hyperpolarized by 3.5 +/- 3.6 mV (n = 7) under control conditions and depolarized by 4.4 +/- 2.9 mV in the presence of taurocholate, respectively. In Cl- substitution experiments, there was no evidence for changes in Cl- conductance by taurocholate. These results show that taurocholate-induced membrane depolarization is due to an increase in Na+ conductance probably via uptake of the bile acid.
Collapse
Affiliation(s)
- F Wehner
- Max-Planck-Institut für molekulare Physiologie, Dortmund, Germany
| |
Collapse
|
41
|
Boyer JL, Hagenbuch B, Ananthanarayanan M, Suchy F, Stieger B, Meier PJ. Phylogenic and ontogenic expression of hepatocellular bile acid transport. Proc Natl Acad Sci U S A 1993; 90:435-8. [PMID: 8421672 PMCID: PMC45677 DOI: 10.1073/pnas.90.2.435] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The phylogenic and ontogenic expression of mRNA for the Na+/bile acid cotransporter was determined by Northern analysis utilizing a full-length cDNA probe recently cloned from rat liver. mRNA was detected in several mammalian species, including rat, mouse, and man, but could not be found in livers from nonmammalian species, including chicken, turtle, frog, and small skate. When expression of the bile acid transporter in developing rat liver was studied, mRNA was detected between 18 and 21 days of gestation, at the time when Na(+)-dependent bile acid transport is first detected. Two hepatoma cell lines (HTC and HepG2), the latter of which is known to have lost the Na+/bile acid cotransport system, also did not express mRNA for this transporter. Finally, when mRNA from the lower vertebrate (the small skate) was injected into Xenopus oocytes, only a sodium-independent, chloride-dependent transport system for bile acids was expressed, confirming the integrity of the mRNA and consistent with prior functional studies of bile acid transport in this species. These findings establish that the Na+/bile acid cotransport mRNA is first transcribed in mammalian species, a process that is recapitulated late during mammalian fetal development in rat liver, and that this mRNA is lost in dedifferentiated hepatocytes. In contrast, the mRNA for a multispecific Na+/independent organic anion transport system is transcribed earlier in vertebrate evolution.
Collapse
Affiliation(s)
- J L Boyer
- Mt. Desert Island Biological Laboratory, Salsbury Cove, ME 04672
| | | | | | | | | | | |
Collapse
|
42
|
Gatmaitan ZC, Arias IM. Structure and function of P-glycoprotein in normal liver and small intestine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1993; 24:77-97. [PMID: 8099292 DOI: 10.1016/s1054-3589(08)60934-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Z C Gatmaitan
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
43
|
Wolters H, Kuipers F, Slooff MJ, Vonk RJ. Adenosine triphosphate-dependent taurocholate transport in human liver plasma membranes. J Clin Invest 1992; 90:2321-6. [PMID: 1469089 PMCID: PMC443385 DOI: 10.1172/jci116120] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transport systems involved in uptake and biliary secretion of bile salts have been extensively studied in rat liver; however, little is known about these systems in the human liver. In this study, we investigated taurocholate (TC) transport in canalicular and basolateral plasma membrane vesicles isolated from 15 human livers (donor age 6-64 yr). ATP stimulated the uptake of TC into both canalicular and basolateral human liver plasma membrane vesicles (cLPM and blLPM, respectively). Considerable interindividual variations in the transport velocity were observed in the different membrane preparations used: 9.0 +/- 1.3 (mean +/- SEM, n = 17; range 1.6-18.0) and 9.3 +/- 2.0 (range 1.1-29.8) pmol TC.mg protein-1.min-1 at 1.0 microM TC for cLPM and blLPM, respectively. TC transport was temperature sensitive and showed saturation kinetics with a high affinity for TC (Km 4.2 +/- 0.7 microM and 3.7 +/- 0.5 microM for cLPM and blLPM, respectively). Transport was dependent on the ATP concentration and saturable (Km 0.25 +/- 0.03 mM, n = 3). Neither nitrate, which reduces membrane potential, nor the protonophore FCCP strongly inhibited ATP-dependent TC transport, indicating that membrane potential and proton gradient are not involved in this process. TC transport was significantly inhibited by the classical anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate (250 microM) and the glutathione conjugate S-(2,4-dinitrophenyl)glutathione (100 microM). In conclusion, high affinity ATP-dependent TC transport is present in human liver at both the canalicular and the basolateral sides of the hepatocyte.
Collapse
Affiliation(s)
- H Wolters
- Department of Pediatrics, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
44
|
Nishida T, Gatmaitan Z, Roy-Chowdhry J, Arias IM. Two distinct mechanisms for bilirubin glucuronide transport by rat bile canalicular membrane vesicles. Demonstration of defective ATP-dependent transport in rats (TR-) with inherited conjugated hyperbilirubinemia. J Clin Invest 1992; 90:2130-5. [PMID: 1430236 PMCID: PMC443282 DOI: 10.1172/jci116098] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bilirubin is conjugated with glucuronic acid in hepatocytes and subsequently secreted in bile. The major conjugate is bilirubin diglucuronide. Using sealed vesicles which are primarily derived from the canalicular (CMV) and sinusoidal (SMV) membrane vesicle domains of the plasma membrane of hepatocytes, we demonstrated that bilirubin glucuronides are transported by CMV by both ATP- and membrane potential-dependent transport systems. In CMV from normal rats, these processes are additive. In CMV from TR- rats, which have an autosomal recessively inherited defect in biliary secretion of nonbile acid organic anions, ATP-dependent transport of bilirubin diglucuronide was absent whereas the membrane potential driven system was retained. Other canalicular ATP-dependent transport systems, which were previously described for organic cations and bile acids, are functionally retained in TR- rats. Our study indicates that bilirubin glucuronides are primarily secreted into the bile canaliculus by an ATP-dependent mechanism which is defective in an animal model of the human Dubin-Johnson syndrome.
Collapse
Affiliation(s)
- T Nishida
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | |
Collapse
|
45
|
Buschman E, Arceci R, Croop J, Che M, Arias I, Housman D, Gros P. mdr2 encodes P-glycoprotein expressed in the bile canalicular membrane as determined by isoform-specific antibodies. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37157-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Che M, Nishida T, Gatmaitan Z, Arias I. A nucleoside transporter is functionally linked to ectonucleotidases in rat liver canalicular membrane. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50144-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Elsner R, Ziegler K. Radiation inactivation of multispecific transport systems for bile acids and xenobiotics in basolateral rat liver plasma membrane vesicles. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50162-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Hallbrucker C, Lang F, Gerok W, Häussinger D. Cell swelling increases bile flow and taurocholate excretion into bile in isolated perfused rat liver. Biochem J 1992; 281 ( Pt 3):593-5. [PMID: 1536640 PMCID: PMC1130729 DOI: 10.1042/bj2810593] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of aniso-osmotically and amino-acid-induced cell-volume changes on bile flow and biliary taurocholate excretion were studied in isolated perfused rat liver. With taurocholate (100 microM) in the influent perfusate, hypo-osmotic exposure (225 mosmol/l) increased taurocholate excretion into bile and bile flow by 42 and 27% respectively, whereas inhibition by 32 and 47% respectively was observed after hyperosmotic (385 mosmol/l) exposure. The effects of aniso-moticity on taurocholate excretion into bile was observed throughout aniso-osmotic exposure, even after completion of volume-regulatory ion fluxes and were fully reversible upon re-exposure to normo-osmotic media. Hypo-osmotic cell swelling (225 mosmol/l) increased the Vmax. of taurocholate translocation from the sinusoidal compartment into bile about 2-fold. Also, cell swelling induced by glutamine and glycine stimulated both bile flow and biliary taurocholate excretion. There was a close relationship between the aniso-osmotically and amino-acid-induced change of cell volume and taurocholate excretion into bile. The data suggest that liver cell volume plays an important role in regulating bile-acid-dependent bile flow and biliary taurocholate excretion.
Collapse
Affiliation(s)
- C Hallbrucker
- Medizinische Universitätsklinik, Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
49
|
Veith CM, Thalhammer T, Felberbauer FX, Graf J. Relationship of hepatic cholate transport to regulation of intracellular pH and potassium. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1103:51-61. [PMID: 1730021 DOI: 10.1016/0005-2736(92)90056-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Modulation of hepatic cholate transport by transmembrane pH-gradients and during interferences with the homeostatic regulation of intracellular pH and K+ was studied in the isolated perfused rat liver. Within the concentration range studied uptake into the liver was saturable and appeared to be associated with release of OH- and uptake of K+. Perfusate acidification ineffectually stimulated uptake. Application of NH4Cl caused intracellular alkalinization, release of K+ and stimulation of cholate uptake, withdrawal of NH4Cl resulted in intracellular acidification, regain of K+ and inhibition of cholate uptake. Inhibition of Na+/H(+)-exchange with amiloride reduced basal release of acid equivalents into the perfusate, initiated K(+)-release, and inhibited both, control cholate uptake and its recovery following intracellular acidification. K(+)-free perfusion caused K(+)-release and inhibited cholate uptake. K(+)-readmission resulted in brisk K(+)-uptake and recovery of cholate transport. Both effects were inhibited by amiloride. Interference with cholate transport through modulation of pH homeostasis by diisothiocyanostilbenedisulfonate (DIDS) could not be demonstrated because DIDS affected bile acid transport directly. Biliary bile acid secretion was stimulated by intracellular alkalinization and by activation of K(+)-transport. Uncoupling of the mutual interference between pH-dependent cholate uptake and K(+)-transport by amiloride indicates tertiary active transport of cholate. In this, Na+/K(+)-ATPase provides the transmembrane Na(+)-gradient to sustain Na+/H(+)-exchange which maintains the transmembrane pH-gradient and thus supports cholate uptake. Effects of canalicular bile acid secretion are consistent with a saturable, electrogenic transport.
Collapse
Affiliation(s)
- C M Veith
- Department of General and Experimental Pathology, University of Vienna, Austria
| | | | | | | |
Collapse
|
50
|
Yamazaki M, Sugiyama Y, Suzuki H, Iga T, Hanano M. Utilization of ATP-depleted cells in the analysis of taurocholate uptake by isolated rat hepatocytes. J Hepatol 1992; 14:54-63. [PMID: 1737916 DOI: 10.1016/0168-8278(92)90131-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The usefulness of ATP-depleted rat hepatocytes in transport studies was examined. ATP-depleted hepatocytes were prepared by incubating cell suspensions with 30 microM rotenone. In ATP-depleted hepatocytes, plasma membrane permeability was increased and mitochondrial membrane potential decreased, while both intracellular volume and pH remained normal. Furthermore, in the presence of valinomycin, the initial uptake rates of 3H-tetraphenyl phosphonium (TPP+) with varied medium concentrations of potassium were predicted according to the Goldman-Hodgkin-Katz equation, which demonstrated that a potassium diffusion potential could be produced in this system. Using the thus-characterized ATP-depleted cells, the uptake mechanism of taurocholate was investigated. In the presence of an inwardly directed Na gradient, the taurocholate uptake was markedly stimulated and bile acid was transiently accumulated at a concentration 3-times higher than at equilibrium ('overshoot') in ATP-depleted cells. No overshoot was observed in viable cells, however, which suggests that in ATP-depleted cells the Na gradient, a driving force for taurocholate uptake, decreased with time. In both viable and ATP-depleted cells, the relationship between medium concentrations of Na and the Na-dependent initial uptake rate were sigmoidal, and the Hill coefficients were close to 2. The Na-dependent initial uptake rate of taurocholate was stimulated by a valinomycin-induced inside negative potassium-diffusion potential in ATP-depleted cells, and the movement of a 'one plus' (as a net) charge was revealed by fitting the data to the Goldman-Hodgkin-Katz equation. These results support the hypothesis that sodium-coupled hepatic uptake of taurocholate occuthrough an electrogenic process with the stoichiometry of 2 Na: 1 taurocholate, although this issue is controversial. In the presence of an outwardly directed sodium gradient, efflux of taurocholate from ATP-depleted cells was not stimulated. Consequently, the physiological transport vector of taurocholate from blood to cell is not only due to the direction of the sodium gradient (blood to cell) but also to membraneous orientation of transport carriers. In conclusion, kinetic analysis using ATP-depleted hepatocytes allowed the formulation of a new approach to clarify the as yet unresolved issues concerning transport stoichiometry and the mechanism for vectorial transport of taurocholate.
Collapse
Affiliation(s)
- M Yamazaki
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|