1
|
Li X, Edén A, Malwade S, Cunningham JL, Bergquist J, Weidenfors JA, Sellgren CM, Engberg G, Piehl F, Gisslen M, Kumlien E, Virhammar J, Orhan F, Rostami E, Schwieler L, Erhardt S. Central and peripheral kynurenine pathway metabolites in COVID-19: Implications for neurological and immunological responses. Brain Behav Immun 2025; 124:163-176. [PMID: 39615604 DOI: 10.1016/j.bbi.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024] Open
Abstract
Long-term symptoms such as pain, fatigue, and cognitive impairments are commonly observed in individuals affected by coronavirus disease 2019 (COVID-19). Metabolites of the kynurenine pathway have been proposed to account for cognitive impairment in COVID-19 patients. Here, cerebrospinal fluid (CSF) and plasma levels of kynurenine pathway metabolites in 53 COVID-19 patients and 12 non-inflammatory neurological disease controls in Sweden were measured with an ultra-performance liquid chromatography-tandem mass spectrometry system (UPLC-MS/MS) and correlated with immunological markers and neurological markers. Single cell transcriptomic data from a previous study of 130 COVID-19 patients was used to investigate the expression of key genes in the kynurenine pathway. The present study reveals that the neuroactive kynurenine pathway metabolites quinolinic acid (QUIN) and kynurenic acid (KYNA) are increased in CSF in patients with acute COVID-19. In addition, CSF levels of kynurenine, ratio of kynurenine/tryptophan (rKT) and QUIN correlate with neurodegenerative markers. Furthermore, tryptophan is significantly decreased in plasma but not in the CSF. In addition, the kynurenine pathway is strongly activated in the plasma and correlates with the peripheral immunological marker neopterin. Single-cell transcriptomics revealed upregulated gene expressions of the rate-limiting enzyme indoleamine 2,3- dioxygenase1 (IDO1) in CD14+ and CD16+ monocytes that correlated with type II-interferon response exclusively in COVID-19 patients. In summary, our study confirms significant activation of the peripheral kynurenine pathway in patients with acute COVID-19 and, notably, this is the first study to identify elevated levels of kynurenine metabolites in the central nervous system associated with the disease. Our findings suggest that peripheral inflammation, potentially linked to overexpression of IDO1 in monocytes, activates the kynurenine pathway. Increased plasma kynurenine, crossing the blood-brain barrier, serves as a source for elevated brain KYNA and neurotoxic QUIN. We conclude that blocking peripheral-to-central kynurenine transport could be a promising strategy to protect against neurotoxic effects of QUIN in COVID-19 patients.
Collapse
Affiliation(s)
- Xueqi Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41685, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Disease, Gothenburg, 41685, Sweden
| | - Susmita Malwade
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Janet L Cunningham
- Department of Medical Science, Psychiatry, Uppsala University, Uppsala 75185, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry─BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden; The ME/CFS Collaborative Research Centre at Uppsala University, 751 24 Uppsala, Sweden
| | | | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Fredrik Piehl
- Unit of Neuroimmunology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm 17177, Sweden; Division of Neurology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41685, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Disease, Gothenburg, 41685, Sweden; Public Health Agency of Sweden, Solna, Sweden
| | - Eva Kumlien
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Johan Virhammar
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Elham Rostami
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
2
|
Lu J, Zhang Y, Hao Q, Zhou H, Zong Y. IDO-Kynurenine pathway mediates NLRP3 inflammasome activation-induced postoperative cognitive impairment in aged mice. Int J Neurosci 2024; 134:1309-1319. [PMID: 37746906 DOI: 10.1080/00207454.2023.2262741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
AIM Postoperative cognitive dysfunction (POCD) is a common postoperative complication, especially in elderly patients. It extends hospital stay, increases the mortality rate and are heavy burdens to the family and society. Accumulating research has indicated that overactivation of pyrin domain-containing protein 3 (NLRP3) inflammasomes is related to POCD andplays a critical role in activating pro-inflammatory cytokines. According to existing studies, indoleamine 2,3-dioxygenase (IDO) is potently up-regulated by inflammatory factors, tryptophan in brain is mainly catalyzed by IDO to kynurenine (KYN), KYN metabolism may contribute to the development of depressive disorder and memory deficits. Hence, this study elucidated whether IDO-Kynurenine pathway mediates NLRP3 inflammasome activation-induced postoperative cognitive impairment in aged mice. MATERIAL AND METHODS POCD model was established in aged C57BL/6J mice by exploratory laparotomy under isoflurane anesthesia. Learning and memory were determined using Morris water maze. RESULTS The data showed that IDO and kynurenine aminotransferase-II (KAT-II) mRNA in hippocampus was up-regulated, and NLRP3, caspase recruitment domain (ASC), interleukin-1b (IL-1b) and IDO overexpressed, KYN levels increased after anesthesia and surgery. NLRP3 inflammasome inhibitor (MCC950) reversed NLRP3, ASC, IL-1b and IDO overexpression, and the elevation of KYN levels. To clarify the role of IDO-Kynurenine pathway in postoperative cognitive impairment, IDO inhibitor (1-methyl-Ltryptophan 1-MT) reduced the elevation of KYN and kynurenic acid (KYNA) levels, reduction of tryptophan (TRP), as well as improved learning and memory abilities. Finally, KAT-II inhibitor (PF-04859989) reduced brain KYNA levels and restored the cognitive impairment. CONCLUSION These results reveal that IDO-Kynurenine pathway mediates NLRP3 inflammasome activation-induced postoperative cognitive impairment.
Collapse
Affiliation(s)
- Jian Lu
- Department of Anesthesiology, the Second Hospital of Jiaxing, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Ye Zhang
- Department of Anesthesiology, the Second Hospital of Jiaxing, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Qian Hao
- Department of Anesthesiology, the Second Hospital of Jiaxing, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Hongmei Zhou
- Department of Anesthesiology, the Second Hospital of Jiaxing, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Youming Zong
- Department of Anesthesiology, the Second Hospital of Jiaxing, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| |
Collapse
|
3
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 PMCID: PMC11549936 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
4
|
Stone TW, Williams RO. Tryptophan metabolism as a 'reflex' feature of neuroimmune communication: Sensor and effector functions for the indoleamine-2, 3-dioxygenase kynurenine pathway. J Neurochem 2024; 168:3333-3357. [PMID: 38102897 DOI: 10.1111/jnc.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Collins JM, Keane JM, Deady C, Khashan AS, McCarthy FP, O'Keeffe GW, Clarke G, Cryan JF, Caputi V, O'Mahony SM. Prenatal stress impacts foetal neurodevelopment: Temporal windows of gestational vulnerability. Neurosci Biobehav Rev 2024; 164:105793. [PMID: 38971516 DOI: 10.1016/j.neubiorev.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Prenatal maternal stressors ranging in severity from everyday occurrences/hassles to the experience of traumatic events negatively impact neurodevelopment, increasing the risk for the onset of psychopathology in the offspring. Notably, the timing of prenatal stress exposure plays a critical role in determining the nature and severity of subsequent neurodevelopmental outcomes. In this review, we evaluate the empirical evidence regarding temporal windows of heightened vulnerability to prenatal stress with respect to motor, cognitive, language, and behavioural development in both human and animal studies. We also explore potential temporal windows whereby several mechanisms may mediate prenatal stress-induced neurodevelopmental effects, namely, excessive hypothalamic-pituitary-adrenal axis activity, altered serotonin signalling and sympathetic-adrenal-medullary system, changes in placental function, immune system dysregulation, and alterations of the gut microbiota. While broadly defined developmental windows are apparent for specific psychopathological outcomes, inconsistencies arise when more complex cognitive and behavioural outcomes are considered. Novel approaches to track molecular markers reflective of the underlying aetiologies throughout gestation to identify tractable biomolecular signatures corresponding to critical vulnerability periods are urgently required.
Collapse
Affiliation(s)
- James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - James M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Fergus P McCarthy
- The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | |
Collapse
|
6
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
7
|
Frescura F, Stark T, Tiziani E, Di Martino S, Ruda-Kucerova J, Drago F, Ferraro L, Micale V, Beggiato S. Prenatal MAM exposure raises kynurenic acid levels in the prefrontal cortex of adult rats. Pharmacol Rep 2024; 76:887-894. [PMID: 38789891 DOI: 10.1007/s43440-024-00604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Elevated brain levels of kynurenic acid (KYNA), a metabolite in the kynurenine pathway, are associated with cognitive dysfunctions, which are nowadays often considered as fundamental characteristics of several psychopathologies; however, the role of KYNA in mental illnesses, such as schizophrenia, is not fully elucidated. This study aimed to assess KYNA levels in the prefrontal cortex (PFC) of rats prenatally treated with methylazoxymethanol (MAM) acetate, i.e., a well-validated neurodevelopmental animal model of schizophrenia. The effects of an early pharmacological modulation of the endogenous cannabinoid system were also evaluated. METHODS Pregnant Sprague-Dawley rats were treated with MAM (22 mg/kg, ip) or its vehicle at gestational day 17. Male offspring were treated with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day, ip) or with the typical antipsychotic haloperidol (0.6 mg/kg/day, ip) from postnatal day (PND) 19 to PND39. The locomotor activity and cognitive performance were assessed in the novel object recognition test and the open field test in adulthood. KYNA levels in the PFC of prenatally MAM-treated rats were also assessed. RESULTS A significant cognitive impairment was observed in prenatally MAM-treated rats (p < 0.01), which was associated with enhanced PFC KYNA levels (p < 0.05). The peripubertal AM251, but not haloperidol, treatment ameliorated the cognitive deficit (p < 0.05), by normalizing the PFC KYNA content in MAM rats. CONCLUSIONS The present findings suggest that the cognitive deficit observed in MAM rats may be related to enhanced PFC KYNA levels which could be, in turn, mediated by the activation of cannabinoid CB1 receptor. These results further support the modulation of brain KYNA levels as a potential therapeutic strategy to ameliorate the cognitive dysfunctions in schizophrenia.
Collapse
Affiliation(s)
- Francesca Frescura
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tibor Stark
- Department Emotion Research, Max Planck Institute of Psychiatry, 80807, Munich, Germany
| | - Edoardo Tiziani
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
- LTTA Centre, University of Ferrara, Ferrara, Italy.
- Psychiatric Department, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
- Psychiatric Department, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
8
|
Osnaya-Brizuela N, Valenzuela-Peraza A, Santamaría-del Ángel D, García-Martínez Y, Pacheco-Rosado J, Pérez-Sánchez G, Sánchez-Huerta K. Is the acquired hypothyroidism a risk factor for developing psychiatric disorders? Front Psychiatry 2024; 15:1429255. [PMID: 39100850 PMCID: PMC11294236 DOI: 10.3389/fpsyt.2024.1429255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
Hypothyroidism is a prevalent thyroid condition in which the thyroid gland fails to secrete an adequate amount of thyroid hormone into the bloodstream. This condition may develop due to genetic or acquired factors. The most frequent cause of acquired hypothyroidism is chronic autoimmune thyroiditis, also known as Hashimoto's disease. Acquired hypothyroidism is diagnosed when patients present with overt hypothyroidism (also known as clinical hypothyroidism), as they exhibit increased TSH and decreased T3 and T4 serum levels. This article examines the prevalence of psychiatric disorders among patients diagnosed with acquired hypothyroidism with or without Levothyroxine treatment. We discuss the available evidence indicating that acquired hypothyroidism may be a risk factor for psychiatric disorders, and the effectiveness of thyroid treatment in relieving psychiatric symptoms. Additionally, we provide critical details on thyroid hormone cutoff values reported in the literature, their potential clinical importance, and their correlation with psychiatric symptoms. Finally, we examined the various mechanisms by which acquired hypothyroidism can lead to depression. The high rate of comorbidity between hypothyroidism and psychiatric disorders deserves special attention, indicating the importance of consistent monitoring and timely identification of psychiatric symptoms to prevent disease exacerbation and facilitate therapeutic management. On the other hand, several mechanisms underlie the strong association between depression and acquired hypothyroidism. Deeper research into these mechanisms will allow knowledge of the pathophysiology of depression in patients with acquired hypothyroidism and will provide clues to design more precise therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Norma Osnaya-Brizuela
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Armando Valenzuela-Peraza
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Daniel Santamaría-del Ángel
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Yuliana García-Martínez
- Departamento de Fisiología “Mauricio Russek”, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge Pacheco-Rosado
- Departamento de Fisiología “Mauricio Russek”, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
| | - Karla Sánchez-Huerta
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| |
Collapse
|
9
|
Rebai R, Carmena-Bargueño M, Toumi ME, Derardja I, Jasmin L, Pérez-Sánchez H, Boudah A. Identification of potent inhibitors of kynurenine-3-monooxygenase from natural products: In silico and in vitro approaches. Heliyon 2024; 10:e30287. [PMID: 38726174 PMCID: PMC11079110 DOI: 10.1016/j.heliyon.2024.e30287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/31/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Existing inhibitors of kynurenine-3-monooxygenase (KMO) have side effects and poorly cross the blood-brain barrier. Therefore, the discovery of new molecules targeting KMO isnecessary.This study aims to develop a novel therapeutic drug targeting KMO using computational methods and experimental validation of natural compounds.The results of our study show that the top four compounds, namely, 3'-Hydroxy-alpha-naphthoflavone exhibited the best docking scores with KMO (-10.0 kcal/mol), followed by 3'-Hydroxy-ss-naphthoflavone (-9.9 kcal/mol), genkwanin (-9.2 kcal/mol) and apigenin(-9.1 kcal/mol) respectively. Molecular dynamics was used to assess the stability of the primary target, KMO, and inhibitor complexes. We found stable interactions of 3'-Hydroxy-ss-naphthoflavone and apigenin with KMO up to 100 ns. Further, kinetic measurements showed that 3'-Hydroxy-alpha-naphthoflavone and 3'-Hydroxy-ss-naphthoflavone induce competitive inhibition with a good IC50 activity (15.85 ± 0.98 μM and 18.71 ± 0.78, respectively), while Genkwanin and Apigenin exhibit non-competitive inhibition mechanism (21.61 ± 0.97 μM and 24.14 ± 1.00 μM, respectively).Drug-likeness features and ADME analysis features also showed that the top four compounds could be used as potential candidates to replace the synthetic KMO inhibitor drugs with known side effects and poor brain-blood barrier penetration.
Collapse
Affiliation(s)
- Redouane Rebai
- Department of Natural and Life Sciences, University Mohamed Khider of Biskra, BP 145 RP, 07000, Biskra, Algeria
- Laboratory of biotechnology, National Higher School of Biotechnology, Ville universitaire (university of Constantine 3) Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107, Guadalupe, Spain
| | - Mohammed Esseddik Toumi
- Laboratory of Microbiological Engineering and Application, Biochemistry and Molecular and Cellular Biology Department, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine, 25017, Algeria
| | - Imene Derardja
- Department of Natural and Life Sciences, University Mohamed Khider of Biskra, BP 145 RP, 07000, Biskra, Algeria
| | - Luc Jasmin
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, 707 Parnassus Ave Suite D-1201, San Francisco, CA, 94143, USA
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107, Guadalupe, Spain
| | - Abdennacer Boudah
- Laboratory of biotechnology, National Higher School of Biotechnology, Ville universitaire (university of Constantine 3) Ali Mendjeli, BP E66 25100, Constantine, Algeria
| |
Collapse
|
10
|
Bednarz K, Kozieł K, Urbańska EM. Novel Activity of Oral Hypoglycemic Agents Linked with Decreased Formation of Tryptophan Metabolite, Kynurenic Acid. Life (Basel) 2024; 14:127. [PMID: 38255742 PMCID: PMC10820136 DOI: 10.3390/life14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Kynurenic acid is a tryptophan (Trp) metabolite formed along the kynurenine (KYN) pathway in the brain and in peripheral tissues. The disturbed formation of kynurenic acid, which targets glutamate-mediated neurotransmission, GPR35, and aryl hydrocarbon receptors of immune or redox status, was implicated in the development of neuropsychiatric and metabolic disorders among others. Kynurenic acid exerts neuroprotective and immunomodulatory effects, yet its high brain levels may negatively impact cognition. Changes in the Trp-KYN pathway are also linked with the pathogenesis of diabetes mellitus, which is an established risk factor for cardiovascular and neurological diseases or cognitive deficits. Here, the effects of metformin and glibenclamide on the brain synthesis of kynurenic acid were evaluated. Acute exposure of rat cortical slices in vitro to either of the drugs reduced kynurenic acid production de novo. Glibenclamide, but not metformin, inhibited the activity of kynurenic acid biosynthetic enzymes, kynurenine aminotransferases (KATs) I and II, in semi-purified cortical homogenates. The reduced availability of kynurenic acid may be regarded as an unwanted effect, possibly alleviating the neuroprotective action of oral hypoglycemic agents. On the other hand, considering that both compounds ameliorate the cognitive deficits in animal and human studies and that high brain kynurenic acid may hamper learning and memory, its diminished synthesis may improve cognition.
Collapse
Affiliation(s)
| | | | - Ewa M. Urbańska
- Laboratory of Cellular and Molecular Pharmacology, Chair and Department of Clinical and Experimental Pharmacology, Medical University, 20-090 Lublin, Poland; (K.B.)
| |
Collapse
|
11
|
Marszalek-Grabska M, Gawel K, Kosheva N, Kocki T, Turski WA. Developmental Exposure to Kynurenine Affects Zebrafish and Rat Behavior. Cells 2023; 12:2224. [PMID: 37759447 PMCID: PMC10526278 DOI: 10.3390/cells12182224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Proper nutrition and supplementation during pregnancy and breastfeeding are crucial for the development of offspring. Kynurenine (KYN) is the central metabolite of the kynurenine pathway and a direct precursor of other metabolites that possess immunoprotective or neuroactive properties, with the ultimate effect on fetal neurodevelopment. To date, no studies have evaluated the effects of KYN on early embryonic development. Thus, the aim of our study was to determine the effect of incubation of larvae with KYN in different developmental periods on the behavior of 5-day-old zebrafish. Additionally, the effects exerted by KYN administered on embryonic days 1-7 (ED 1-7) on the behavior of adult offspring of rats were elucidated. Our study revealed that the incubation with KYN induced changes in zebrafish behavior, especially when zebrafish embryos or larvae were incubated with KYN from 1 to 72 h post-fertilization (hpf) and from 49 to 72 hpf. KYN administered early during pregnancy induced subtle differences in the neurobehavioral development of adult offspring. Further research is required to understand the mechanism of these changes. The larval zebrafish model can be useful for studying disturbances in early brain development processes and their late behavioral consequences. The zebrafish-medium system may be applicable in monitoring drug metabolism in zebrafish.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland; (K.G.); (N.K.); (T.K.); (W.A.T.)
| | | | | | | | | |
Collapse
|
12
|
Battaglia MR, Di Fazio C, Battaglia S. Activated Tryptophan-Kynurenine metabolic system in the human brain is associated with learned fear. Front Mol Neurosci 2023; 16:1217090. [PMID: 37575966 PMCID: PMC10416643 DOI: 10.3389/fnmol.2023.1217090] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Affiliation(s)
- Maria Rita Battaglia
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
| | - Chiara Di Fazio
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Simone Battaglia
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Milosavljevic S, Smith AK, Wright CJ, Valafar H, Pocivavsek A. Kynurenine aminotransferase II inhibition promotes sleep and rescues impairments induced by neurodevelopmental insult. Transl Psychiatry 2023; 13:106. [PMID: 37002202 PMCID: PMC10066394 DOI: 10.1038/s41398-023-02399-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Dysregulated sleep is commonly reported in individuals with neuropsychiatric disorders, including schizophrenia (SCZ) and bipolar disorder (BPD). Physiology and pathogenesis of these disorders points to aberrant metabolism, during neurodevelopment and adulthood, of tryptophan via the kynurenine pathway (KP). Kynurenic acid (KYNA), a neuroactive KP metabolite derived from its precursor kynurenine by kynurenine aminotransferase II (KAT II), is increased in the brains of individuals with SCZ and BPD. We hypothesize that elevated KYNA, an inhibitor of glutamatergic and cholinergic neurotransmission, contributes to sleep dysfunction. Employing the embryonic kynurenine (EKyn) paradigm to elevate fetal brain KYNA, we presently examined pharmacological inhibition of KAT II to reduce KYNA in adulthood to improve sleep quality. Pregnant Wistar rats were fed either kynurenine (100 mg/day)(EKyn) or control (ECon) diet from embryonic day (ED) 15 to ED 22. Adult male (N = 24) and female (N = 23) offspring were implanted with devices to record electroencephalogram (EEG) and electromyogram (EMG) telemetrically for sleep-wake data acquisition. Each subject was treated with either vehicle or PF-04859989 (30 mg/kg, s.c.), an irreversible KAT II inhibitor, at zeitgeber time (ZT) 0 or ZT 12. KAT II inhibitor improved sleep architecture maintaining entrainment of the light-dark cycle; ZT 0 treatment with PF-04859989 induced transient improvements in rapid eye movement (REM) and non-REM (NREM) sleep during the immediate light phase, while the impact of ZT 12 treatment was delayed until the subsequent light phase. PF-04859989 administration at ZT 0 enhanced NREM delta spectral power and reduced activity and body temperature. In conclusion, reducing de novo KYNA production alleviated sleep disturbances and increased sleep quality in EKyn, while also improving sleep outcomes in ECon offspring. Our findings place attention on KAT II inhibition as a novel mechanistic approach to treating disrupted sleep behavior with potential translational implications for patients with neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Snezana Milosavljevic
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Andrew K Smith
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Courtney J Wright
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Homayoun Valafar
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
14
|
Shen H, Xu X, Bai Y, Wang X, Wu Y, Zhong J, Wu Q, Luo Y, Shang T, Shen R, Xi M, Sun H. Therapeutic potential of targeting kynurenine pathway in neurodegenerative diseases. Eur J Med Chem 2023; 251:115258. [PMID: 36917881 DOI: 10.1016/j.ejmech.2023.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Kynurenine pathway (KP), the primary pathway of L-tryptophan (Trp) metabolism in mammals, contains several neuroactive metabolites such as kynurenic acid (KA) and quinolinic acid (QA). Its imbalance involved in aging and neurodegenerative diseases (NDs) has attracted much interest in therapeutically targeting KP enzymes and KP metabolite-associated receptors, especially kynurenine monooxygenase (KMO). Currently, many agents have been discovered with significant improvement in animal models but only one aryl hydrocarbon receptor (AHR) agonist 30 (laquinimod) has entered clinical trials for treating Huntington's disease (HD). In this review, we describe neuroactive KP metabolites, discuss the dysregulation of KP in aging and NDs and summarize the development of KP regulators in preclinical and clinical studies, offering an outlook of targeting KP for NDs treatment in future.
Collapse
Affiliation(s)
- Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xinde Xu
- Zhejiang Medicine Co. Ltd., Shaoxing, 312500, China
| | - Yalong Bai
- Zhejiang Medicine Co. Ltd., Shaoxing, 312500, China
| | | | - Yibin Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jia Zhong
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Qiyi Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanjuan Luo
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tianbo Shang
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Kim SS, Kim JL, Hwang KS, Park HC, Bae MA, Kim KT, Cho SH. Mechanism of action and neurotoxic effects of chronic exposure to bisphenol F in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158258. [PMID: 36030852 DOI: 10.1016/j.scitotenv.2022.158258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Although bisphenol F (BPF), the main replacement for bisphenol A, has been commonly used in polycarbonate production, its neurotoxicity and the underlying mechanisms remain poorly understood. To address this knowledge gap, this study aimed to assess the neurotoxicity caused by chronic exposure to BPF and to identify its underlying mechanisms. We exposed adult zebrafish chronically to BPF at environmentally relevant concentrations (0.001, 0.01, and 0.1 mg/L) for 4 weeks. The results revealed that with BPF crossing the blood-brain barrier and bioaccumulating in brain tissues, chronic exposure to BPF resulted in anxiety-like behaviors and disruptions in learning and memory function in adult zebrafish. Furthermore, BPF toxicity in the zebrafish brain involved the dysregulation of metabolic pathways for choline and kynurenine in neurotransmitter systems and for 17β-estradiol, cortisol, pregnenolone-sulfate, and Dehydroepiandrosterone (DHEA)-sulfate in neurosteroid systems. RNA-seq analysis revealed that BPF exposure affected metabolic pathways, calcium signaling pathways, neuroactive ligand-receptor interactions, tight junctions, gap junctions, and the gonadotropin-releasing hormone signaling pathway. Our results indicate that chronic exposure to BPF alters the neurochemical profile of the brain and causes neurobehavioral effects, such as anxiety and cognitive decline. Overall, the multimodal approach, including behavioral and neurochemical profiling technologies, has great potential for the comprehensive assessment of potential risks posed by environmental pollutants to human and ecosystem health.
Collapse
Affiliation(s)
- Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jiwon L Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyu-Seok Hwang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido 425-707, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| |
Collapse
|
16
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Intson K, Geissah S, McCullumsmith RE, Ramsey AJ. A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr Res 2022; 249:63-73. [PMID: 33189520 PMCID: PMC11740474 DOI: 10.1016/j.schres.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Numerous genetic and postmortem studies link N-methyl-d-aspartate receptor (NMDAR) dysfunction with schizophrenia, forming the basis of the popular glutamate hypothesis. Neuronal NMDAR abnormalities are consistently reported from both basic and clinical experiments, however, non-neuronal cells also contain NMDARs, and are rarely, if ever, considered in the discussion of glutamate action in schizophrenia. We offer an examination of recent discoveries elucidating the actions and consequences of NMDAR activation in the neuroendothelium. While there has been mixed literature regarding blood flow alterations in the schizophrenia brain, in this review, we posit that some common findings may be explained by neuroendothelial NMDAR dysfunction. In particular, we emphasize that endothelial NMDARs are key mediators of neurovascular coupling, where increased neuronal activity leads to increased blood flow. Based on the broad conclusions that hypoperfusion is a neuroanatomical finding in schizophrenia, we discuss potential mechanisms by which endothelial NMDARs contribute to this disorder. We propose that endothelial NMDAR dysfunction can be a primary cause of neurovascular abnormalities in schizophrenia. Importantly, functional MRI studies using BOLD signal as a proxy for neuron activity should be considered in a new light if neurovascular coupling is impaired in schizophrenia. This review is the first to propose that NMDARs in non-excitable cells play a role in schizophrenia.
Collapse
Affiliation(s)
- Katheron Intson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Salma Geissah
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Tryptophan Challenge in Healthy Controls and People with Schizophrenia: Acute Effects on Plasma Levels of Kynurenine, Kynurenic Acid and 5-Hydroxyindoleacetic Acid. Pharmaceuticals (Basel) 2022; 15:ph15081003. [PMID: 36015151 PMCID: PMC9416551 DOI: 10.3390/ph15081003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022] Open
Abstract
The pivotal tryptophan (TRP) metabolite kynurenine is converted to several neuroactive compounds, including kynurenic acid (KYNA), which is elevated in the brain and cerebrospinal fluid of people with schizophrenia (SZ) and may contribute to cognitive abnormalities in patients. A small proportion of TRP is metabolized to serotonin and further to 5-hydroxyindoleacetic acid (5-HIAA). Notably, KP metabolism is readily affected by immune stimulation. Here, we assessed the acute effects of an oral TRP challenge (6 g) on peripheral concentrations of kynurenine, KYNA and 5-HIAA, as well as the cytokines interferon-γ, TNF-α and interleukin-6, in 22 participants with SZ and 16 healthy controls (HCs) using a double-blind, placebo-controlled, crossover design. TRP raised the levels of kynurenine, KYNA and 5-HIAA in a time-dependent manner, causing >20-fold, >130-fold and 1.5-fold increases in kynurenine, KYNA and 5-HIAA concentrations, respectively, after 240 min. According to multivariate analyses, neither baseline levels nor the stimulating effects of TRP differed between participants with SZ and HC. Basal cytokine levels did not vary between groups, and remained unaffected by TRP. Although unlikely to be useful diagnostically, measurements of circulating metabolites following an acute TRP challenge may be informative for assessing the in vivo efficacy of drugs that modulate the neosynthesis of KYNA and other products of TRP degradation.
Collapse
|
19
|
Tanaka M, Spekker E, Szabó Á, Polyák H, Vécsei L. Modelling the neurodevelopmental pathogenesis in neuropsychiatric disorders. Bioactive kynurenines and their analogues as neuroprotective agents-in celebration of 80th birthday of Professor Peter Riederer. J Neural Transm (Vienna) 2022; 129:627-642. [PMID: 35624406 DOI: 10.1007/s00702-022-02513-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Following introduction of the monoamine oxidase type B inhibitor selegiline for the treatment of Parkinson's disease (PD), discovery of the action mechanism of Alzheimer's disease-modifying agent memantine, the role of iron in PD, and the loss of electron transport chain complex I in PD, and development of the concept of clinical neuroprotection, Peter Riederer launched one of the most challenging research project neurodevelopmental aspects of neuropsychiatric disorders. The neurodevelopmental theory holds that a disruption of normal brain development in utero or during early life underlies the subsequent emergence of neuropsychiatric symptoms during later life. Indeed, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Classification of Diseases, 11th Revision categorize autism spectrum disorder and attention deficit hyperactivity disorder in neurodevelopmental disorders (NDDs). More and more evidence, especially from preclinical studies, is revealing that neurodevelopmental pathology is not limited to the diagnostic class above, but also contributes to the development of other psychiatric disorders such as schizophrenia, bipolar disorder, and obsessive-compulsive disorder as well as neurodegenerative diseases such as PD and Huntington's disease. Preclinical animal research is taking a lead in understanding the pathomechanisms of NDDs, searching for novel targets, and developing new neuroprotective agents against NDDs. This narrative review discusses emerging evidence of the neurodevelopmental etiology of neuropsychiatric disorders, recent advances in modelling neurodevelopmental pathogenesis, potential strategies of clinical neuroprotection using novel kynurenine metabolites and analogues, and future research direction for NDDs.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary
| | - Eleonóra Spekker
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary. .,Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.
| |
Collapse
|
20
|
Beggiato S, Ieraci A, Zuccarini M, Di Iorio P, Schwarcz R, Ferraro L. Alterations in rat prefrontal cortex kynurenic acid levels are involved in the enduring cognitive dysfunctions induced by tetrahydrocannabinol exposure during the adolescence. Front Psychiatry 2022; 13:996406. [PMID: 36483135 PMCID: PMC9722723 DOI: 10.3389/fpsyt.2022.996406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Cannabis abuse during adolescence is a risk factor for cognitive impairments in psychiatric disorders later in life. To date, the possible causal relationship between cannabinoids, kynurenic acid (KYNA; i.e., a neuroactive metabolite of tryptophan degradation) and cognition has not been investigated in adolescence. Early exposure to delta 9-tetrahydrocannabinol (THC; i.e., the main psychotropic component of cannabis) causes enduring cognitive deficits, which critically involve impaired glutamatergic function in the prefrontal cortex (PFC). In addition, prenatal cannabis exposure results in enduring increases in PFC KYNA levels. Based on these findings, the effects of chronic THC exposure in rats, during another critical period of neurodevelopment particularly sensitive to perturbation by exogenous stimuli, such as adolescence, have been investigated. METHODS Male Wistar rats were chronically treated with vehicle or ascending intraperitoneal (i.p.) doses of THC starting on postnatal day (PND) 35 until PND 45. In adulthood (PND 75), cognitive assessment (Y-maze) and extracellular KYNA/glutamate levels were measured in the PFC by in vivo microdialysis, before and after a challenge with KYN (5 mg/kg i.p., the biological precursor of KYNA). By using the selective, brain-penetrable KAT II inhibitor PF-04859989, we then examined whether blockade of KYNA neosynthesis prevents the cognitive impairment. RESULTS Compared to vehicle-treated controls, extracellular basal KYNA levels were higher in the PFC of adult rats chronically exposed to THC in adolescence (p < 0.01). No changes were observed in extracellular glutamate levels. Following a challenge with KYN, extracellular KYNA levels similarly increased in both groups (i.e., vehicle- and THC-treated; p < 0.001 and p < 0.01, respectively). Chronic adolescent THC exposure negatively affected short-term memory (reduced spontaneous alternation), in adult animals (p < 0.001), while PF-04859989 (30 mg/kg i.p.) restored the cognitive impairment (p < 0.05). DISCUSSION We propose that the observed alterations in PFC KYNA signaling might be involved in the cognitive dysfunction induced by the exposure to THC during the adolescence. In the translational realm, these experiments raise the prospect of prevention of KYNA neosynthesis as a possible novel approach to counteract some of the detrimental long-term effects of adolescence cannabis use.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.,Department of Theoretical and Applied Science, eCampus University, Novedrate, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Robert Schwarcz
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Luca Ferraro
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy.,Laboratory for the Technology of Advanced Therapies (LTTA Centre), University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Maryška M, Svobodová L, Dehaen W, Hrabinová M, Rumlová M, Soukup O, Kuchař M. Heterocyclic Cathinones as Inhibitors of Kynurenine Aminotransferase II-Design, Synthesis, and Evaluation. Pharmaceuticals (Basel) 2021; 14:ph14121291. [PMID: 34959692 PMCID: PMC8708382 DOI: 10.3390/ph14121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Kynurenic acid is a neuroprotective metabolite of tryptophan formed by kynurenine aminotransferase (KAT) catalyzed transformation of kynurenine. However, its high brain levels are associated with cognitive deficit and with the pathophysiology of schizophrenia. Although several classes of KAT inhibitors have been published, the search for new inhibitor chemotypes is crucial for the process of finding suitable clinical candidates. Therefore, we used pharmacophore modeling and molecular docking, which predicted derivatives of heterocyclic amino ketones as new potential irreversible inhibitors of kynurenine aminotransferase II. Thiazole and triazole-based amino ketones were synthesized within a SAR study and their inhibitory activities were evaluated in vitro. The observed activities confirmed our computational model and, moreover, the best compounds showed sub-micromolar inhibitory activity with 2-alaninoyl-5-(4-fluorophenyl)thiazole having IC50 = 0.097 µM.
Collapse
Affiliation(s)
- Michal Maryška
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (M.M.); (L.S.)
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Lucie Svobodová
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (M.M.); (L.S.)
| | - Wim Dehaen
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Martina Hrabinová
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Kralové, Czech Republic; (M.H.); (O.S.)
- Department of Toxicology and Military Pharmacy, University of Defense, Třebešská 1575, 50005 Hradec Králové, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Ondřej Soukup
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Kralové, Czech Republic; (M.H.); (O.S.)
- Department of Toxicology and Military Pharmacy, University of Defense, Třebešská 1575, 50005 Hradec Králové, Czech Republic
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (M.M.); (L.S.)
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
- Correspondence: ; Tel.: +420-220-444-431
| |
Collapse
|
22
|
Büki A, Kekesi G, Horvath G, Vécsei L. A Potential Interface between the Kynurenine Pathway and Autonomic Imbalance in Schizophrenia. Int J Mol Sci 2021; 22:10016. [PMID: 34576179 PMCID: PMC8467675 DOI: 10.3390/ijms221810016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms including autonomic imbalance. These disturbances involve almost all autonomic functions and might contribute to poor medication compliance, worsened quality of life and increased mortality. Therefore, it has a great importance to find a potential therapeutic solution to improve the autonomic disturbances. The altered level of kynurenines (e.g., kynurenic acid), as tryptophan metabolites, is almost the most consistently found biochemical abnormality in schizophrenia. Kynurenic acid influences different types of receptors, most of them involved in the pathophysiology of schizophrenia. Only few data suggest that kynurenines might have effects on multiple autonomic functions. Publications so far have discussed the implication of kynurenines and the alteration of the autonomic nervous system in schizophrenia independently from each other. Thus, the coupling between them has not yet been addressed in schizophrenia, although their direct common points, potential interfaces indicate the consideration of their interaction. The present review gathers autonomic disturbances, the impaired kynurenine pathway in schizophrenia, and the effects of kynurenine pathway on autonomic functions. In the last part of the review, the potential interaction between the two systems in schizophrenia, and the possible therapeutic options are discussed.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
| |
Collapse
|
23
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
24
|
Rentschler KM, Baratta AM, Ditty AL, Wagner NTJ, Wright CJ, Milosavljevic S, Mong JA, Pocivavsek A. Prenatal Kynurenine Elevation Elicits Sex-Dependent Changes in Sleep and Arousal During Adulthood: Implications for Psychotic Disorders. Schizophr Bull 2021; 47:1320-1330. [PMID: 33823027 PMCID: PMC8379538 DOI: 10.1093/schbul/sbab029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dysregulation of the kynurenine pathway (KP) of tryptophan catabolism has been implicated in psychotic disorders, including schizophrenia and bipolar disorder. Kynurenic acid (KYNA) is a KP metabolite synthesized by kynurenine aminotransferases (KATs) from its biological precursor kynurenine and acts as an endogenous antagonist of N-methyl-D-aspartate and α7-nicotinic acetylcholine receptors. Elevated KYNA levels found in postmortem brain tissue and cerebrospinal fluid of patients are hypothesized to play a key role in the etiology of cognitive symptoms observed in psychotic disorders. Sleep plays an important role in memory consolidation, and sleep disturbances are common among patients. Yet, little is known about the effect of altered KP metabolism on sleep-wake behavior. We presently utilized a well-established experimental paradigm of embryonic kynurenine (EKyn) exposure wherein pregnant dams are fed a diet laced with kynurenine the last week of gestation and hypothesized disrupted sleep-wake behavior in adult offspring. We examined sleep behavior in adult male and female offspring using electroencephalogram and electromyogram telemetry and determined sex differences in sleep and arousal in EKyn offspring. EKyn males displayed reduced rapid eye movement sleep, while female EKyn offspring were hyperaroused compared to controls. We determined that EKyn males maintain elevated brain KYNA levels, while KYNA levels were unchanged in EKyn females, yet the activity levels of KAT I and KAT II were reduced. Our findings indicate that elevated prenatal kynurenine exposure elicits sex-specific changes in sleep-wake behavior, arousal, and KP metabolism.
Collapse
Affiliation(s)
- Katherine M Rentschler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - Audrey L Ditty
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Nathan T J Wagner
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Courtney J Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
25
|
Notarangelo FM, Schwarcz R. A single prenatal lipopolysaccharide injection has acute, but not long-lasting, effects on cerebral kynurenine pathway metabolism in mice. Eur J Neurosci 2021; 54:5968-5981. [PMID: 34363411 DOI: 10.1111/ejn.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
In rodents, a single injection of lipopolysaccharide (LPS) during gestation causes chemical and functional abnormalities in the offspring. These effects may involve changes in the kynurenine pathway (KP) of tryptophan degradation and may provide insights into the pathophysiology of psychiatric diseases. Using CD1 mice, we examined acute and long-term effects of prenatal LPS treatment on the levels of kynurenine and its neuroactive downstream products kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and quinolinic acid. To this end, LPS (100 μg/kg, i.p.) was administered on gestational day 15, and KP metabolites were measured 4 and 24 h later or in adulthood. After 4 h, kynurenine, KYNA and 3-HK levels were elevated in the fetal brain, 3-HK and KYNA levels were increased in the maternal plasma, and kynurenine was increased in the maternal brain, whereas no changes were seen in the placenta. These effects were less prominent after 24 h, and prenatal LPS did not affect the basal levels of KP metabolites in the forebrain of adult animals. In addition, a second LPS injection (1 mg/kg) in adulthood in the offspring of prenatally saline- and LPS-treated mice caused a similar elevation in 3-HK levels in both groups after 24 h, but the effect was significantly more pronounced in male mice. Thus, acute immune activation during pregnancy has only short-lasting effects on KP metabolism and does not cause cerebral KP metabolites to be disproportionally affected by a second immune challenge in adulthood. However, prenatal KYNA elevations still contribute to functional abnormalities in the offspring.
Collapse
Affiliation(s)
- Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
27
|
Collier ME, Zhang S, Scrutton NS, Giorgini F. Inflammation control and improvement of cognitive function in COVID-19 infections: is there a role for kynurenine 3-monooxygenase inhibition? Drug Discov Today 2021; 26:1473-1481. [PMID: 33609782 PMCID: PMC7889466 DOI: 10.1016/j.drudis.2021.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
The novel respiratory virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), emerged during late 2019 and spread rapidly across the world. It is now recognised that the nervous system can be affected in COVID-19, with several studies reporting long-term cognitive problems in patients. The metabolic pathway of tryptophan degradation, known as the kynurenine pathway (KP), is significantly activated in patients with COVID-19. KP metabolites have roles in regulating both inflammatory/immune responses and neurological functions. In this review, we speculate on the effects of KP activation in patients with COVID-19, and how modulation of this pathway might impact inflammation and reduce neurological symptoms.
Collapse
Affiliation(s)
- Mary Ew Collier
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
28
|
Beggiato S, Zuccarini M, Cassano T, Borroto-Escuela DO, Di Iorio P, Schwarcz R, Fuxe K, Ferraro L. Adenosine and Kynurenic Acid Interactions: Possible Relevance for Schizophrenia Treatment? Front Pharmacol 2021; 12:654426. [PMID: 33935767 PMCID: PMC8080066 DOI: 10.3389/fphar.2021.654426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Robert Schwarcz
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Subchronic N-acetylcysteine Treatment Decreases Brain Kynurenic Acid Levels and Improves Cognitive Performance in Mice. Antioxidants (Basel) 2021; 10:antiox10020147. [PMID: 33498402 PMCID: PMC7909398 DOI: 10.3390/antiox10020147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
The tryptophan (Trp) metabolite kynurenic acid (KYNA) is an α7-nicotinic and N-methyl-d-aspartate receptor antagonist. Elevated brain KYNA levels are commonly seen in psychiatric disorders and neurodegenerative diseases and may be related to cognitive impairments. Recently, we showed that N-acetylcysteine (NAC) inhibits kynurenine aminotransferase II (KAT II), KYNA's key biosynthetic enzyme, and reduces KYNA neosynthesis in rats in vivo. In this study, we examined if repeated systemic administration of NAC influences brain KYNA and cognitive performance in mice. Animals received NAC (100 mg/kg, i.p.) daily for 7 days. Redox markers, KYNA levels, and KAT II activity were determined in the brain. We also assessed the effect of repeated NAC treatment on Trp catabolism using brain tissue slices ex vivo. Finally, learning and memory was evaluated with and without an acute challenge with KYNA's bioprecursor L-kynurenine (Kyn; 100 mg/kg). Subchronic NAC administration protected against an acute pro-oxidant challenge, decreased KYNA levels, and lowered KAT II activity and improved memory both under basal conditions and after acute Kyn treatment. In tissue slices from these mice, KYNA neosynthesis from Trp or Kyn was reduced. Together, our data indicate that prolonged treatment with NAC may enhance memory at least in part by reducing brain KYNA levels.
Collapse
|
30
|
Wright CJ, Rentschler KM, Wagner NTJ, Lewis AM, Beggiato S, Pocivavsek A. Time of Day-Dependent Alterations in Hippocampal Kynurenic Acid, Glutamate, and GABA in Adult Rats Exposed to Elevated Kynurenic Acid During Neurodevelopment. Front Psychiatry 2021; 12:734984. [PMID: 34603109 PMCID: PMC8484637 DOI: 10.3389/fpsyt.2021.734984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Hypofunction of glutamatergic signaling is causally linked to neurodevelopmental disorders, including psychotic disorders like schizophrenia and bipolar disorder. Kynurenic acid (KYNA) has been found to be elevated in postmortem brain tissue and cerebrospinal fluid of patients with psychotic illnesses and may be involved in the hypoglutamatergia and cognitive dysfunction experienced by these patients. As insults during the prenatal period are hypothesized to be linked to the pathophysiology of psychotic disorders, we presently utilized the embryonic kynurenine (EKyn) paradigm to induce a prenatal hit. Pregnant Wistar dams were fed chow laced with kynurenine to stimulate fetal brain KYNA elevation from embryonic day 15 to embryonic day 22. Control dams (ECon) were fed unlaced chow. Plasma and hippocampal tissue from young adult (postnatal day 56) ECon and EKyn male and female offspring were collected at the beginning of the light (Zeitgeber time, ZT 0) and dark (ZT 12) phases to assess kynurenine pathway metabolites. Hippocampal tissue was also collected at ZT 6 and ZT 18. In separate animals, in vivo microdialysis was conducted in the dorsal hippocampus to assess extracellular KYNA, glutamate, and γ-aminobutyric acid (GABA). Biochemical analyses revealed no changes in peripheral metabolites, yet hippocampal tissue KYNA levels were significantly impacted by EKyn treatment, and increased in male EKyn offspring at ZT 6. Interestingly, extracellular hippocampal KYNA levels were only elevated in male EKyn offspring during the light phase. Decreases in extracellular glutamate levels were found in the dorsal hippocampus of EKyn male and female offspring, while decreased GABA levels were present only in males during the dark phase. The current findings suggest that the EKyn paradigm may be a useful tool for investigation of sex- and time-dependent changes in hippocampal neuromodulation elicited by prenatal KYNA elevation, which may influence behavioral phenotypes and have translational relevance to psychotic disorders.
Collapse
Affiliation(s)
- Courtney J Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Katherine M Rentschler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nathan T J Wagner
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Ashley M Lewis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
31
|
Tryptophan Metabolism as a Pharmacological Target. Trends Pharmacol Sci 2020; 42:60-73. [PMID: 33256987 DOI: 10.1016/j.tips.2020.11.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
L-Tryptophan is an essential amino acid required for protein synthesis. It undergoes an extensive and complex metabolism along several pathways, resulting in many bioactive molecules acting in various organs through different action mechanisms. Enzymes involved in its metabolism, metabolites themselves, or their receptors, represent potential therapeutic targets, which are the subject of dynamic research. Disruptions in L-tryptophan metabolism are reported in several neurological, metabolic, psychiatric, and intestinal disorders, paving the way to develop drugs to target it. This review will briefly describe L-tryptophan metabolism and present and discuss the most recent pharmacological developments targeting it.
Collapse
|
32
|
Buck SA, Baratta AM, Pocivavsek A. Exposure to elevated embryonic kynurenine in rats: Sex-dependent learning and memory impairments in adult offspring. Neurobiol Learn Mem 2020; 174:107282. [PMID: 32738461 PMCID: PMC7506508 DOI: 10.1016/j.nlm.2020.107282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
Distinct abnormalities in kynurenine pathway (KP) metabolism have been reported in various psychiatric disorders, including schizophrenia (SZ). Kynurenic acid (KYNA), a neuroactive metabolite of the KP, is elevated in individuals diagnosed with SZ and has been linked to cognitive impairments seen in the disorder. To further understand the role of KYNA in SZ etiology, we developed a prenatal insult model where kynurenine (100 mg/day) is fed to pregnant Wistar rats from embryonic day (ED) 15 to ED 22. As sex differences in the prevalence and severity of SZ have been observed, we presently investigated the impact of prenatal kynurenine exposure on KP metabolism and spatial learning and memory in male and female offspring. Specifically, brain tissue and plasma from offspring (control: ECon; kynurenine-treated: EKyn) in prepuberty (postnatal day (PD) 21), adolescence (PD 32-35), and adulthood (PD 56-85) were collected. Separate cohorts of adult offspring were tested in the Barnes maze to assess hippocampus- and prefrontal cortex-mediated learning and memory. Plasma tryptophan, kynurenine, and KYNA were unchanged between ECon and EKyn offspring across all three ages. Hippocampal and frontal cortex KYNA were elevated in male EKyn offspring only in adulthood, compared to ECon, while brain KYNA levels were unchanged in adult females. Male EKyn offspring were significantly impaired during acquisition of the Barnes maze and during reversal learning in the task. In female EKyn offspring, learning and memory remained relatively intact. Taken together, our data demonstrate that exposure to elevated kynurenine during the last week of gestation results in intriguing sex differences and further support the EKyn model as an attractive tool to study the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Silas A Buck
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Annalisa M Baratta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
33
|
Mor A, Kalaska B, Pawlak D. Kynurenine Pathway in Chronic Kidney Disease: What’s Old, What’s New, and What’s Next? Int J Tryptophan Res 2020; 13:1178646920954882. [PMID: 35210786 PMCID: PMC8862190 DOI: 10.1177/1178646920954882] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
Impaired kidney function and increased inflammatory process occurring in the course of Chronic Kidney Disease (CKD) contribute to the development of complex amino-acid alterations. The essential amino-acid tryptophan (TRP) undergoes extensive metabolism along several pathways, resulting in the production of many biologically active compounds. The results of many studies have shown that its metabolism via the kynurenine pathway is potently increased in the course of CKD. Metabolites of this pathway exhibit differential, sometimes opposite, roles in several biological processes. Their accumulation in the course of CKD may induce oxidative cell damage which stimulates inflammatory processes. They can also modulate the activity of numerous cellular signaling pathways through activation of the aryl hydrocarbon receptor, leading to the disruption of homeostasis of various organs. As a result, they can contribute to the development of the systemic disorders accompanying the course of chronic renal failure. This review gathers and systematizes reports concerning the knowledge connecting the kynurenine pathway metabolites to systemic disorders accompanying the development of CKD.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
34
|
Tomczyk T, Urbańska EM. Experimental hypothyroidism raises brain kynurenic acid - Novel aspect of thyroid dysfunction. Eur J Pharmacol 2020; 883:173363. [PMID: 32663543 DOI: 10.1016/j.ejphar.2020.173363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Hypothyroidism frequently manifests with altered mood and disturbed cognition. Kynurenic acid may influence cognition through antagonism of N-methyl-d-aspartate receptors (NMDA) and α7 nicotinic receptors. In here, thyroid hormones effects on kynurenic acid synthesis in rat cortical slices and on kynurenine aminotransferases (KATs) activity in semi-purified cortical homogenates were studied. Furthermore, brain kynurenic acid levels and KATs activities were evaluated in experimental model of hypothyroidism, induced by chronic administration of 0.05% propylthiouracil in drinking water. In vitro, L-thyroxine (T4) and 3,3,5-triiodothyronine (T3), reduced kynurenic acid synthesis and KATs activities (IC50 ~ 50-150 μM). In vivo, propylthiouracil increased cortical, hippocampal and striatal, but not cerebellar kynurenic acid content (192%, 142% and 124% of control, respectively), despite uniformly decreased KAT II activity and lower cortical and striatal KAT I activity. T4 application to hypothyroid animals restored kynurenic acid levels to control values and reversed enzymatic changes. T4 alone did not change brain kynurenic acid levels, despite increased activities of brain KATs. Hence, thyroid hormones modulate kynurenic acid levels by two opposing mechanisms, stimulation of KATs activity, most probably transcriptional, and direct, post-translational inhibition of KATs. Lack of correlation between KATs activity and kynurenic acid level may reflect the influence of T4 on organic anion transporter and result from impaired removal of kynurenic acid from the brain during hypothyroidism. Our data reveal novel mechanism linked with thyroid hormones deficiency and imply the potential involvement of increased brain kynurenic acid in the hypothyroidism-related cognitive disturbance.
Collapse
Affiliation(s)
- Tomasz Tomczyk
- Department of Experimental and Clinical Pharmacology, Medical University in Lublin, Poland
| | - Ewa M Urbańska
- Laboratory of Cellular and Molecular Pharmacology, Department of Experimental and Clinical Pharmacology, Medical University in Lublin, Poland.
| |
Collapse
|
35
|
Klausing AD, Fukuwatari T, Bucci DJ, Schwarcz R. Stress-induced impairment in fear discrimination is causally related to increased kynurenic acid formation in the prefrontal cortex. Psychopharmacology (Berl) 2020; 237:1931-1941. [PMID: 32215686 PMCID: PMC7308198 DOI: 10.1007/s00213-020-05507-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE Stress is related to cognitive impairments which are observed in most major brain diseases. Prior studies showed that the brain concentration of the tryptophan metabolite kynurenic acid (KYNA) is modulated by stress, and that changes in cerebral KYNA levels impact cognition. However, the link between these phenomena has not been tested directly so far. OBJECTIVES To investigate a possible causal relationship between acute stress, KYNA, and fear discrimination. METHODS Adult rats were exposed to one of three acute stressors-predator odor, restraint, or inescapable foot shocks (ISS)-and KYNA in the prefrontal cortex was measured using microdialysis. Corticosterone was analyzed in a subset of rats. Another cohort underwent a fear discrimination procedure immediately after experiencing stress. Different auditory conditioned stimuli (CSs) were either paired with foot shock (CS+) or were non-reinforced (CS-). One week later, fear was assessed by re-exposing rats to each CS. Finally, to test whether stress-induced changes in KYNA causally impacted fear discrimination, a group of rats that received ISS were pre-treated with the selective KYNA synthesis inhibitor PF-04859989. RESULTS ISS caused the greatest increase in circulating corticosterone levels and raised extracellular KYNA levels by ~ 85%. The two other stressors affected KYNA much less (< 25% increase). Moreover, only rats that received ISS were unable to discriminate between CS+ and CS-. PF-04859989 abolished the stress-induced KYNA increase and also prevented the impairment in fear discrimination in animals that experienced ISS. CONCLUSIONS These findings demonstrate a causal connection between stress-induced KYNA increases and cognitive deficits. Pharmacological manipulation of KYNA synthesis therefore offers a novel approach to modulate cognitive processes in stress-related disorders.
Collapse
Affiliation(s)
- Alex D Klausing
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Baltimore, MD, 21228, USA
| | - Tsutomu Fukuwatari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Baltimore, MD, 21228, USA
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Baltimore, MD, 21228, USA.
| |
Collapse
|
36
|
Prenatal THC exposure raises kynurenic acid levels in the prefrontal cortex of adult rats. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109883. [PMID: 32032697 PMCID: PMC7260707 DOI: 10.1016/j.pnpbp.2020.109883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
Cannabis remains one of the most widely used illicit drugs during pregnancy. The main psychoactive component of marijuana (Δ9-tetrahydrocannabinol, THC) is correlated with untoward physiological effects in the offspring. Neurobehavioral and cognitive impairments have been reported in longitudinal studies on children and adolescents prenatally exposed to marijuana, and a link to psychiatric disorders has been proposed. Interestingly, the deleterious effects of prenatal cannabis use are similar to those observed in adult rats prenatally exposed to (L)-kynurenine, the direct bioprecursor of the neuroactive metabolite kynurenic acid (KYNA). We therefore investigated whether alterations in KYNA levels in the rat brain might play a role in the long-term consequences of prenatal cannabinoid exposure. Pregnant Wistar rats were treated daily with THC [5 mg/kg, p.o.] from gestational day (GD)5 through GD20. Using in vivo microdialysis in the medial prefrontal cortex, adult animals were then used to determine the extracellular levels of KYNA and glutamate. Compared to controls, extracellular basal KYNA levels were higher, and basal glutamate levels were lower, in prenatally THC-exposed rats. These rats also showed abnormal short-term memory. Following an additional acute challenge with a low dose of kynurenine (5 mg/kg i.p.) in adulthood, the increase in extracellular KYNA levels in the mPFC was more pronounced in in prenatally THC-exposed rats. These effects could be causally related to the cognitive dysfunction seen in prenatally THC-exposed rats. In the translational realm, these experiments raise the prospect of prevention of KYNA neosynthesis as a promising novel approach to combat some of the detrimental long-term effects of prenatal cannabis use.
Collapse
|
37
|
Huang YS, Ogbechi J, Clanchy FI, Williams RO, Stone TW. IDO and Kynurenine Metabolites in Peripheral and CNS Disorders. Front Immunol 2020; 11:388. [PMID: 32194572 PMCID: PMC7066259 DOI: 10.3389/fimmu.2020.00388] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
The importance of the kynurenine pathway in normal immune system function has led to an appreciation of its possible contribution to autoimmune disorders such as rheumatoid arthritis. Indoleamine-2,3-dioxygenase (IDO) activity exerts a protective function, limiting the severity of experimental arthritis, whereas deletion or inhibition exacerbates the symptoms. Other chronic disorder with an inflammatory component, such as atherosclerosis, are also suppressed by IDO activity. It is suggested that this overall anti-inflammatory activity is mediated by a change in the relative production or activity of Th17 and regulatory T cell populations. Kynurenines may play an anti-inflammatory role also in CNS disorders such as Huntington's disease, Alzheimer's disease and multiple sclerosis, in which signs of inflammation and neurodegeneration are involved. The possibility is discussed that in Huntington's disease kynurenines interact with other anti-inflammatory molecules such as Human Lymphocyte Antigen-G which may be relevant in other disorders. Kynurenine involvement may account for the protection afforded to animals with cerebral malaria and trypanosomiasis when they are treated with an inhibitor of kynurenine-3-monoxygenase (KMO). There is some evidence that changes in IL-10 may contribute to this protection and the relationship between kynurenines and IL-10 in arthritis and other inflammatory conditions should be explored. In addition, metabolites of kynurenine downstream of KMO, such as anthranilic acid and 3-hydroxy-anthranilic acid can influence inflammation, and the ratio of these compounds is a valuable biomarker of inflammatory status although the underlying molecular mechanisms of the changes require clarification. Hence it is essential that more effort be expended to identify their sites of action as potential targets for drug development. Finally, we discuss increasing awareness of the epigenetic regulation of IDO, for example by DNA methylation, a phenomenon which may explain differences between individuals in their susceptibility to arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Felix I Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Kynurenine Pathway as a New Target of Cognitive Impairment Induced by Lead Toxicity During the Lactation. Sci Rep 2020; 10:3184. [PMID: 32081969 PMCID: PMC7035386 DOI: 10.1038/s41598-020-60159-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
The immature brain is especially vulnerable to lead (Pb2+) toxicity, which is considered an environmental neurotoxin. Pb2+ exposure during development compromises the cognitive and behavioral attributes which persist even later in adulthood, but the mechanisms involved in this effect are still unknown. On the other hand, the kynurenine pathway metabolites are modulators of different receptors and neurotransmitters related to cognition; specifically, high kynurenic acid levels has been involved with cognitive impairment, including deficits in spatial working memory and attention process. The aim of this study was to evaluate the relationship between the neurocognitive impairment induced by Pb2+ toxicity and the kynurenine pathway. The dams were divided in control group and Pb2+ group, which were given tap water or 500 ppm of lead acetate in drinking water ad libitum, respectively, from 0 to 23 postnatal day (PND). The poison was withdrawn, and tap water was given until 60 PND of the progeny. The locomotor activity in open field, redox environment, cellular function, kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) levels as well as kynurenine aminotransferase (KAT) and kynurenine monooxygenase (KMO) activities were evaluated at both 23 and 60 PND. Additionally, learning and memory through buried food location test and expression of KAT and KMO, and cellular damage were evaluated at 60 PND. Pb2+ group showed redox environment alterations, cellular dysfunction and KYNA and 3-HK levels increased. No changes were observed in KAT activity. KMO activity increased at 23 PND and decreased at 60 PND. No changes in KAT and KMO expression in control and Pb2+ group were observed, however the number of positive cells expressing KMO and KAT increased in relation to control, which correlated with the loss of neuronal population. Cognitive impairment was observed in Pb2+ group which was correlated with KYNA levels. These results suggest that the increase in KYNA levels could be a mechanism by which Pb2+ induces cognitive impairment in adult mice, hence the modulation of kynurenine pathway represents a potential target to improve behavioural alterations produced by this environmental toxin.
Collapse
|
39
|
Ogbechi J, Clanchy FI, Huang YS, Topping LM, Stone TW, Williams RO. IDO activation, inflammation and musculoskeletal disease. Exp Gerontol 2019; 131:110820. [PMID: 31884118 DOI: 10.1016/j.exger.2019.110820] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
The IDO/kynurenine pathway is now established as a major regulator of immune system function. The initial enzyme, indoleamine 2,3-dioxygenase (IDO1) is induced by IFNγ, while tryptophan-2,3-dioxygenase (TDO) is induced by corticosteroids. The pathway is therefore positioned to mediate the effects of systemic inflammation or stress-induced steroids on tissue function and its expression increases with age. Disorders of the musculoskeletal system are a common feature of ageing and many of these conditions are characterized by an inflammatory state. In inflammatory arthritis and related disorders, kynurenine protects against the development of disease, while inhibition or deletion of IDO1 increases its severity. The long-term regulation of autoimmune disorders may be influenced by the epigenetic modulation of kynurenine pathway genes, with recent data suggesting that methylation of IDO may be involved. Osteoporosis is also associated with abnormalities of the kynurenine pathway, reflected in an inversion of the ratio between blood levels of the metabolites anthranilic acid and 3-hydroxy-anthranilic acid. This review discusses evidence to date on the role of the IDO/kynurenine pathway and the highly prevalent age-related disorders of osteoporosis and rheumatoid arthritis and identifies key areas that require further research.
Collapse
Affiliation(s)
- Joy Ogbechi
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Felix I Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Louise M Topping
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
40
|
Baratta AM, Kanyuch NR, Cole CA, Valafar H, Deslauriers J, Pocivavsek A. Acute sleep deprivation during pregnancy in rats: Rapid elevation of placental and fetal inflammation and kynurenic acid. Neurobiol Stress 2019; 12:100204. [PMID: 32258253 PMCID: PMC7109515 DOI: 10.1016/j.ynstr.2019.100204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023] Open
Abstract
The kynurenine pathway (KP) is the dominant pathway for tryptophan degradation in the mammalian body and emerging evidence suggests that acute episodes of sleep deprivation (SD) disrupt tryptophan metabolism via the KP. Increases in the neuroactive KP metabolite kynurenic acid (KYNA) during pregnancy may lead to a higher risk for disrupted neurodevelopment in the offspring. As pregnancy is a critical period during which several factors, including sleep disruptions, could disrupt the fetal environment, we presently explored the relationship between maternal SD and KP metabolism and immune pathways in maternal, placenta, and fetal tissues. Pregnant Wistar rat dams were sleep deprived by gentle handling for 5 h from zeitgeber time (ZT) 0 to ZT 5. Experimental cohorts included: i) controls, ii) one session of SD on embryonic day (ED) 18 or iii) three sessions of SD occurring daily on ED 16, ED 17 and ED 18. Maternal (plasma, brain), placental and fetal (plasma, brain) tissues were collected immediately after the last session of SD or after 24 h of recovery from SD. Respective controls were euthanized at ZT 5 on ED 18 or ED 19. Maternal plasma corticosterone and fetal brain KYNA were significantly elevated only after one session of SD on ED 18. Importantly, maternal plasma corticosterone levels correlated significantly with fetal brain KYNA levels. In addition, placental levels of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) were increased following maternal SD, suggesting a relationship between placental immune response to SD and fetal brain KYNA accumulation. Collectively, our results demonstrate that sleep loss during the last week of gestation can adversely impact maternal stress, placental immune function, and fetal brain KYNA levels. We introduce KYNA as a novel molecular target influenced by sleep loss during pregnancy. Prenatal sleep deprivation influences kynurenine pathway metabolism in utero. Fetal brain kynurenic acid (KYNA) is elevated after maternal sleep deprivation. Maternal plasma corticosterone is increased after sleep deprivation. Prenatal sleep deprivation induces placental and fetal brain cytokines. These data support an interplay with stress, in utero inflammation, and KYNA.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nickole R Kanyuch
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Casey A Cole
- College of Engineering and Computing, University of South Carolina, Columba, South Carolina, USA
| | - Homayoun Valafar
- College of Engineering and Computing, University of South Carolina, Columba, South Carolina, USA
| | - Jessica Deslauriers
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
41
|
Kynurenines and the Endocannabinoid System in Schizophrenia: Common Points and Potential Interactions. Molecules 2019; 24:molecules24203709. [PMID: 31619006 PMCID: PMC6832375 DOI: 10.3390/molecules24203709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia, which affects around 1% of the world’s population, has been described as a complex set of symptoms triggered by multiple factors. However, the exact background mechanisms remain to be explored, whereas therapeutic agents with excellent effectivity and safety profiles have yet to be developed. Kynurenines and the endocannabinoid system (ECS) play significant roles in both the development and manifestation of schizophrenia, which have been extensively studied and reviewed previously. Accordingly, kynurenines and the ECS share multiple features and mechanisms in schizophrenia, which have yet to be reviewed. Thus, the present study focuses on the main common points and potential interactions between kynurenines and the ECS in schizophrenia, which include (i) the regulation of glutamatergic/dopaminergic/γ-aminobutyric acidergic neurotransmission, (ii) their presence in astrocytes, and (iii) their role in inflammatory mechanisms. Additionally, promising pharmaceutical approaches involving the kynurenine pathway and the ECS will be reviewed herein.
Collapse
|
42
|
Yoshida Y, Fujigaki H, Kato K, Yamazaki K, Fujigaki S, Kunisawa K, Yamamoto Y, Mouri A, Oda A, Nabeshima T, Saito K. Selective and competitive inhibition of kynurenine aminotransferase 2 by glycyrrhizic acid and its analogues. Sci Rep 2019; 9:10243. [PMID: 31308447 PMCID: PMC6629613 DOI: 10.1038/s41598-019-46666-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
The enzyme kynurenine aminotransferase (KAT) catalyses the conversion of kynurenine (KYN) to kynurenic acid (KYNA). Although the isozymes KAT1–4 have been identified, KYNA is mainly produced by KAT2 in brain tissues. KNYA is an antagonist of N-methyl-D-aspartate and α-7-nicotinic acetylcholine receptors, and accumulation of KYNA in the brain has been associated with the pathology of schizophrenia. Therefore, KAT2 could be exploited as a therapeutic target for the management of schizophrenia. Although currently available KAT2 inhibitors irreversibly bind to pyridoxal 5′-phosphate (PLP), inhibition via this mechanism may cause adverse side effects because of the presence of other PLP-dependent enzymes. Therefore, we identified novel selective KAT2 inhibitors by screening approximately 13,000 molecules. Among these, glycyrrhizic acid (GL) and its analogues, glycyrrhetinic acid (GA) and carbenoxolone (CBX), were identified as KAT2 inhibitors. These compounds were highly selective for KAT2 and competed with its substrate KYN, but had no effects on the other 3 KAT isozymes. Furthermore, we demonstrated that in complex structures that were predicted in docking calculations, GL, GA and CBX were located on the same surface as the aromatic ring of KYN. These results indicate that GL and its analogues are highly selective and competitive inhibitors of KAT2.
Collapse
Affiliation(s)
- Yukihiro Yoshida
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Hidetsugu Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.
| | - Koichi Kato
- College of Pharmacy, Kinjo Gakuin University, Aichi, 463-8521, Japan.,Faculty of Pharmacy, Meijo University, Aichi, 468-8503, Japan
| | - Kyoka Yamazaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Suwako Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Kazuo Kunisawa
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Akihiro Mouri
- Department of Regulatory Science, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, 468-0069, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, Aichi, 468-8503, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, 468-0069, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.,Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, 468-0069, Japan.,Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
43
|
The ‘Yin’ and the ‘Yang’ of the kynurenine pathway: excitotoxicity and neuroprotection imbalance in stress-induced disorders. Behav Pharmacol 2019; 30:163-186. [DOI: 10.1097/fbp.0000000000000477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|