1
|
Oketch DJA, Giulietti M, Piva F. Copy Number Variations in Pancreatic Cancer: From Biological Significance to Clinical Utility. Int J Mol Sci 2023; 25:391. [PMID: 38203561 PMCID: PMC10779192 DOI: 10.3390/ijms25010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, characterized by high tumor heterogeneity and a poor prognosis. Inter- and intra-tumoral heterogeneity in PDAC is a major obstacle to effective PDAC treatment; therefore, it is highly desirable to explore the tumor heterogeneity and underlying mechanisms for the improvement of PDAC prognosis. Gene copy number variations (CNVs) are increasingly recognized as a common and heritable source of inter-individual variation in genomic sequence. In this review, we outline the origin, main characteristics, and pathological aspects of CNVs. We then describe the occurrence of CNVs in PDAC, including those that have been clearly shown to have a pathogenic role, and further highlight some key examples of their involvement in tumor development and progression. The ability to efficiently identify and analyze CNVs in tumor samples is important to support translational research and foster precision oncology, as copy number variants can be utilized to guide clinical decisions. We provide insights into understanding the CNV landscapes and the role of both somatic and germline CNVs in PDAC, which could lead to significant advances in diagnosis, prognosis, and treatment. Although there has been significant progress in this field, understanding the full contribution of CNVs to the genetic basis of PDAC will require further research, with more accurate CNV assays such as single-cell techniques and larger cohorts than have been performed to date.
Collapse
Affiliation(s)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
2
|
Grave-to-cradle: human embryonic lineage tracing from the postmortem body. Exp Mol Med 2023; 55:13-21. [PMID: 36599930 PMCID: PMC9898511 DOI: 10.1038/s12276-022-00912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 01/06/2023] Open
Abstract
Curiosity concerning the process of human creation has been around for a long time. Relevant questions seemed to be resolved with the knowledge of how cells divide after fertilization obtained through in vitro fertilization experiments. However, we still do not know how human life is created at the cellular level. Recently, the value of cadavers as a resource from which to obtain "normal" cells and tissues has been established, and human research using postmortem bodies has attracted growing scientific attention. As the human genome can be analyzed at the level of nucleotides through whole-genome sequencing, individual cells in a postmortem body can be traced back to determine what developmental processes have transpired from fertilization. These retrospective lineage tracing studies have answered several unsolved questions on how humans are created. This review covers the methodologies utilized in lineage tracing research in a historical context and the conceptual basis for reconstructing the division history of cells in a retrospective manner using postzygotic somatic variants in postmortem tissue. We further highlight answers that postmortem research could potentially address and discuss issues that wait to be solved in the future.
Collapse
|
3
|
Chousakos E, Kose K, Kurtansky NR, Dusza SW, Halpern AC, Marghoob AA. Analyzing the Spatial Randomness in the Distribution of Acquired Melanocytic Neoplasms. J Invest Dermatol 2022; 142:3274-3281. [PMID: 35841946 PMCID: PMC10475172 DOI: 10.1016/j.jid.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 01/05/2023]
Abstract
On the basis of the clinical impression and current knowledge, acquired melanocytic nevi and melanomas may not occur in random localizations. The goal of this study was to identify whether their distribution on the back is random and whether the location of melanoma correlates with its adjacent lesions. Therefore, patient-level and lesion-level spatial analyses were performed using the Clark‒Evans test for complete spatial randomness. A total of 311 patients with three-dimensional total body photography (average age of 40.08 [30‒49] years; male/female ratio: 128/183) with 5,108 eligible lesions in total were included in the study (mean sum of eligible lesions per patient of 16.42 [3‒199]). The patient-level analysis revealed that the distributions of acquired melanocytic neoplasms were more likely to deviate toward clustering than dispersion (average z-score of ‒0.55 [95% confidence interval = ‒0.69 to ‒0.41; P < 0.001]). The lesion-level analysis indicated a higher portion of melanomas (n = 57 of 72, 79.2% [95% confidence interval = 69.4‒88.9%]) appearing in proximity to neighboring melanocytic neoplasms than to nevi (n = 2,281 of 5,036, 45.3% [95% confidence interval = 43.9‒46.7%]). In conclusion, the nevi and melanomas' distribution on the back tends toward clustering as opposed to dispersion. Furthermore, melanomas are more likely to appear proximally to their neighboring neoplasms than to nevi. These findings may justify various oncogenic theories and improve diagnostic methodology.
Collapse
Affiliation(s)
- Emmanouil Chousakos
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; 1(st) Department of Pathology, Medical School, National & Kapodistrian University of Athens, Athens, Greece.
| | - Kivanc Kose
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nicholas R Kurtansky
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stephen W Dusza
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Allan C Halpern
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ashfaq A Marghoob
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Dvir E, Shohat S, Flint J, Shifman S. Identification of genetic mechanisms for tissue-specific genetic effects based on CRISPR screens. Genetics 2022; 222:iyac134. [PMID: 36063051 PMCID: PMC9630981 DOI: 10.1093/genetics/iyac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 11/12/2022] Open
Abstract
A major challenge in genetic studies of complex diseases is to determine how the action of risk genes is restricted to a tissue or cell type. Here, we investigate tissue specificity of gene action using CRISPR screens from 786 cancer cell lines originating from 24 tissues. We find that the expression pattern of the gene across tissues explains only a minority of cases of tissue-specificity (9%), while gene amplification and the expression levels of paralogs account for 39.5% and 15.5%, respectively. In addition, the transfer of small molecules to mutant cells explains tissue-specific gene action in blood. The tissue-specific genes we found are not specific just for human cancer cell lines: we found that the tissue-specific genes are intolerant to functional mutations in the human population and are associated with human diseases more than genes that are essential across all cell types. Our findings offer important insights into genetic mechanisms for tissue specificity of human diseases.
Collapse
Affiliation(s)
- Elad Dvir
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shahar Shohat
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jonathan Flint
- Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sagiv Shifman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
5
|
Özaltun MF, Geyik S, Yılmaz ŞG. Screening for Copy Number Variations of the 15q13.3 Hotspot in CHRNA7 Gene and Expression in Patients with Migraines. Curr Issues Mol Biol 2021; 43:1090-1113. [PMID: 34563047 PMCID: PMC8929100 DOI: 10.3390/cimb43020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/02/2022] Open
Abstract
Background: a migraine is a neurological disease. Copy number variation (CNV) is a phenomenon in which parts of the genome are repeated. We investigated the effects of the CNV and gene expression at the location 15q13.3 in the Cholinergic Receptor Nicotinic Alpha 7 Subunit (CHRNA7) gene, which we believe to be effective in the migraine clinic. Methods: we evaluated changes in CHRNA7 gene expression levels and CNV of 15q13.3 in patients with migraine (n = 102, with aura, n = 43; without aura, n = 59) according to healthy controls (n = 120) by q-PCR. The data obtained were analyzed against the reference telomerase reverse transcriptase (TERT) gene with the double copy number by standard curve analysis. Copy numbers were graded as a normal copy (2), gain (2>), and loss (<2). Results: we analyzed using the 2−ΔΔCT calculation method. The CHRNA7 gene was significantly downregulated in patients (p < 0.05). The analysis of CNV in the CHRNA7 gene was statistically significant in the patient group, according to healthy controls (p < 0.05). A decreased copy number indicates a dosage loss. However, no significant difference was observed among gain, normal, and loss copy numbers and expression values in patients (p > 0.05). The change in CNV was not associated with the downregulation of the CHRNA7 gene. Conclusion: Downregulation of the CHRNA7 gene may contribute to the formation of migraine by inactivation of the alpha-7 nicotinic receptor (α7nAChR). The association of CNV gains and losses with migraines will lead to better understanding of the molecular mechanisms and pathogenesis, to better define the disease, to be used as a treatment target.
Collapse
Affiliation(s)
- Mehmet Fatih Özaltun
- Department of Neurology, Gaziantep University, Gaziantep 27310, Turkey; (M.F.Ö.); (S.G.)
| | - Sırma Geyik
- Department of Neurology, Gaziantep University, Gaziantep 27310, Turkey; (M.F.Ö.); (S.G.)
| | - Şenay Görücü Yılmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep 27310, Turkey
- Correspondence: or ; Tel.: +90-(342)-360-1200; Fax: +90-(342)-360-8795
| |
Collapse
|
6
|
Costantino I, Nicodemus J, Chun J. Genomic Mosaicism Formed by Somatic Variation in the Aging and Diseased Brain. Genes (Basel) 2021; 12:1071. [PMID: 34356087 PMCID: PMC8305509 DOI: 10.3390/genes12071071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past 20 years, analyses of single brain cell genomes have revealed that the brain is composed of cells with myriad distinct genomes: the brain is a genomic mosaic, generated by a host of DNA sequence-altering processes that occur somatically and do not affect the germline. As such, these sequence changes are not heritable. Some processes appear to occur during neurogenesis, when cells are mitotic, whereas others may also function in post-mitotic cells. Here, we review multiple forms of DNA sequence alterations that have now been documented: aneuploidies and aneusomies, smaller copy number variations (CNVs), somatic repeat expansions, retrotransposons, genomic cDNAs (gencDNAs) associated with somatic gene recombination (SGR), and single nucleotide variations (SNVs). A catch-all term of DNA content variation (DCV) has also been used to describe the overall phenomenon, which can include multiple forms within a single cell's genome. A requisite step in the analyses of genomic mosaicism is ongoing technology development, which is also discussed. Genomic mosaicism alters one of the most stable biological molecules, DNA, which may have many repercussions, ranging from normal functions including effects of aging, to creating dysfunction that occurs in neurodegenerative and other brain diseases, most of which show sporadic presentation, unlinked to causal, heritable genes.
Collapse
Affiliation(s)
- Isabel Costantino
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juliet Nicodemus
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
| |
Collapse
|
7
|
Wang Y, Bae T, Thorpe J, Sherman MA, Jones AG, Cho S, Daily K, Dou Y, Ganz J, Galor A, Lobon I, Pattni R, Rosenbluh C, Tomasi S, Tomasini L, Yang X, Zhou B, Akbarian S, Ball LL, Bizzotto S, Emery SB, Doan R, Fasching L, Jang Y, Juan D, Lizano E, Luquette LJ, Moldovan JB, Narurkar R, Oetjens MT, Rodin RE, Sekar S, Shin JH, Soriano E, Straub RE, Zhou W, Chess A, Gleeson JG, Marquès-Bonet T, Park PJ, Peters MA, Pevsner J, Walsh CA, Weinberger DR, Vaccarino FM, Moran JV, Urban AE, Kidd JM, Mills RE, Abyzov A. Comprehensive identification of somatic nucleotide variants in human brain tissue. Genome Biol 2021; 22:92. [PMID: 33781308 PMCID: PMC8006362 DOI: 10.1186/s13059-021-02285-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Taejeong Bae
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jeremy Thorpe
- Program in Biochemistry, Cellular and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Maxwell A Sherman
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- MIT Department of Electrical Engineering and Computer Science, Cambridge, MA, USA
| | - Attila G Jones
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sean Cho
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Present Address: Arcus Biosciences, Hayward, CA, 94545, USA
| | | | - Yanmei Dou
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Javier Ganz
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Alon Galor
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Irene Lobon
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, 08003, Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chaggai Rosenbluh
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Simone Tomasi
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Livia Tomasini
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurel L Ball
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Sara Bizzotto
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ryan Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Yeongjun Jang
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - David Juan
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, 08003, Barcelona, Catalonia, Spain
| | - Esther Lizano
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, 08003, Barcelona, Catalonia, Spain
| | - Lovelace J Luquette
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - John B Moldovan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Rujuta Narurkar
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Matthew T Oetjens
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Rachel E Rodin
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Shobana Sekar
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
- Vall d'Hebron Institut de Recerca, 08035, Barcelona, Spain
- Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- ICREA Academia, 08010 Barcelona, Spain
| | - Richard E Straub
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Andrew Chess
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technologies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Tomas Marquès-Bonet
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, 08003, Barcelona, Catalonia, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08036, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Daniel R Weinberger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT, 06520, USA
- Department of Neuroscience, Yale University, New Haven, 06520, CT, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Tashia and John Morgridge Faculty Scholar, Stanford Child Health Research Institute, Stanford, CA, 94305, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Ryan E Mills
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Ershova ES, Malinovskaya EM, Golimbet VE, Lezheiko TV, Zakharova NV, Shmarina GV, Veiko RV, Umriukhin PE, Kostyuk GP, Kutsev SI, Izhevskaya VL, Veiko NN, Kostyuk SV. Copy number variations of satellite III (1q12) and ribosomal repeats in health and schizophrenia. Schizophr Res 2020; 223:199-212. [PMID: 32773342 DOI: 10.1016/j.schres.2020.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/16/2020] [Accepted: 07/26/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Earlier we studied the copy number variations (CNVs) of ribosomal repeat (rDNA) and the satellite III fragment (1q12) (f-SatIII) in the cells of schizophrenia patients (SZ) and healthy controls (HC). In the present study we pursued two main objectives: (1) to confirm the increased rDNA and decreased f-SatIII content in the genomes of enlarged SZ and HC samples and (2) to compare the rDNA and f-SatIII content in the same DNA samples of SZ and HC individuals. METHODS We determined the rDNA CN and f-SatIII content in the genomes of leukocytes of 1770 subjects [HC (N = 814) and SZ (N = 956)]. Non-radioactive quantitative hybridization method (NQH) was applied for analysis of the various combinations of the two repeats sizes in SZ and HC groups. RESULTS f-SatIII in human leukocytes (N = 1556) varies between 5.7 and 44.7 pg/ng DNA. RDNA CN varies between 200 and 896 (N = 1770). SZ group significantly differ from the HC group by lower f-SatIII content and by rDNA abundance. The f-SatIII and rDNA CN are not randomly combined in the genome. Higher rDNA CN values are associated with higher f-SatIII index values in SZ and HC. The f-SatIII variation interval in SZ group increases significantly in the subgroup with the high rDNA CN index values (>300 copies). CONCLUSION Schizophrenia patients' genomes contain low number of f-SatIII copies corresponding with a large ribosomal repeats CN. A scheme is proposed to explain the low f-SatIII content in SZ group against the background of high rDNA CN.
Collapse
Affiliation(s)
- E S Ershova
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - E M Malinovskaya
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia
| | - V E Golimbet
- Mental Health Research Center, Department of Clinical Genetics, Moscow, Russia
| | - T V Lezheiko
- Mental Health Research Center, Department of Clinical Genetics, Moscow, Russia
| | - N V Zakharova
- N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow Healthcare Department, Moscow, Russia
| | - G V Shmarina
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - R V Veiko
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia
| | - P E Umriukhin
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; P.K. Anokhin Institute of Normal Physiology, Moscow, Russia.
| | - G P Kostyuk
- N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow Healthcare Department, Moscow, Russia
| | - S I Kutsev
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia
| | - V L Izhevskaya
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia
| | - N N Veiko
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia
| | - S V Kostyuk
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
9
|
Chronister WD, Burbulis IE, Wierman MB, Wolpert MJ, Haakenson MF, Smith ACB, Kleinman JE, Hyde TM, Weinberger DR, Bekiranov S, McConnell MJ. Neurons with Complex Karyotypes Are Rare in Aged Human Neocortex. Cell Rep 2020; 26:825-835.e7. [PMID: 30673605 DOI: 10.1016/j.celrep.2018.12.107] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022] Open
Abstract
A subset of human neocortical neurons harbors complex karyotypes wherein megabase-scale copy-number variants (CNVs) alter allelic diversity. Divergent levels of neurons with complex karyotypes (CNV neurons) are reported in different individuals, yet genome-wide and familial studies implicitly assume a single brain genome when assessing the genetic risk architecture of neurological disease. We assembled a brain CNV atlas using a robust computational approach applied to a new dataset (>800 neurons from 5 neurotypical individuals) and to published data from 10 additional neurotypical individuals. The atlas reveals that the frequency of neocortical neurons with complex karyotypes varies widely among individuals, but this variability is not readily accounted for by tissue quality or CNV detection approach. Rather, the age of the individual is anti-correlated with CNV neuron frequency. Fewer CNV neurons are observed in aged individuals than in young individuals.
Collapse
Affiliation(s)
- William D Chronister
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Universidad San Sebastian, Escuela de Medicina, Sede de la Patagonia, Puerto Montt, Chile
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Matthew J Wolpert
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark F Haakenson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Aiden C B Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
10
|
SATB2-associated syndrome: first report of a gonadal and somatic mosaicism for an intragenic copy number variation. Clin Dysmorphol 2020; 28:205-210. [PMID: 31425298 DOI: 10.1097/mcd.0000000000000293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gonadal mosaicism has been reported in a variety of dominant or X-linked conditions and should be considered in all cases of apparent de-novo variation. Recently, some cases of supposed parental germline mosaicism have been shown to result from low-level somatic mosaicism. In most of the cases, mosaicism has been reported for pathogenic single nucleotide variants with only a few cases of copy number variation mosaicism described so far. Herein, we present the first case of parental somatic and gonadal copy number variation mosaicism in the SATB2 gene. We report three brothers presenting with the SATB2-associated syndrome. They all carry the same 121-kb heterozygous intragenic deletion of SATB2. Parental somatic mosaicism was detected by array-comparative genomic hybridization on a maternal blood sample and confirmed by Fluorescence in situ hybridization analysis on blood and buccal cells. This clinical report highlights the importance of investigating for parental somatic mosaicism to estimate the proper recurrence risk for subsequent pregnancy.
Collapse
|
11
|
Jakubek YA, Chang K, Sivakumar S, Yu Y, Giordano MR, Fowler J, Huff CD, Kadara H, Vilar E, Scheet P. Large-scale analysis of acquired chromosomal alterations in non-tumor samples from patients with cancer. Nat Biotechnol 2020; 38:90-96. [PMID: 31685958 PMCID: PMC8082517 DOI: 10.1038/s41587-019-0297-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/25/2019] [Indexed: 01/21/2023]
Abstract
Mosaicism, the presence of subpopulations of cells bearing somatic mutations, is associated with disease and aging and has been detected in diverse tissues, including apparently normal cells adjacent to tumors. To analyze mosaicism on a large scale, we surveyed haplotype-specific somatic copy number alterations (sCNAs) in 1,708 normal-appearing adjacent-to-tumor (NAT) tissue samples from 27 cancer sites and in 7,149 blood samples from The Cancer Genome Atlas. We find substantial variation across tissues in the rate, burden and types of sCNAs, including those spanning entire chromosome arms. We document matching sCNAs in the NAT tissue and the adjacent tumor, suggesting a shared clonal origin, as well as instances in which both NAT tissue and tumor tissue harbor a gain of the same oncogene arising in parallel from distinct parental haplotypes. These results shed light on pan-tissue mutations characteristic of field cancerization, the presence of oncogenic processes adjacent to cancer cells.
Collapse
Affiliation(s)
- Y A Jakubek
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - K Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Sivakumar
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Yu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M R Giordano
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Fowler
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C D Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Winberg J, Gustavsson P, Sahlin E, Larsson M, Ehrén H, Fossum M, Wester T, Nordgren A, Nordenskjöld A. Pathogenic copy number variants are detected in a subset of patients with gastrointestinal malformations. Mol Genet Genomic Med 2019; 8:e1084. [PMID: 31837127 PMCID: PMC7005659 DOI: 10.1002/mgg3.1084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Background Gastrointestinal atresias and urological defects are main causes of pediatric surgery in infants. As copy number variants (CNVs) have been shown to be involved in the development of congenital malformations, the aim of our study was to investigate the presence of CNVs in patients with gastrointestinal and urological malformations as well as the possibility of tissue‐specific mosaicism for CNVs in the cohort. Methods We have collected tissue and/or blood samples from 25 patients with anorectal malformations, esophageal atresia, or hydronephrosis, and screened for pathogenic CNVs using array comparative genomic hybridization (array‐CGH). Results We detected pathogenic aberrations in 2/25 patients (8%) and report a novel possible susceptibility region for esophageal atresia on 15q26.3. CNV analysis in different tissues from the same patients did not reveal evidence of tissue‐specific mosaicism. Conclusion Our study shows that it is important to perform clinical genetic investigations, including CNV analysis, in patients with congenital gastrointestinal malformations since this leads to improved information to families as well as an increased understanding of the pathogenesis.
Collapse
Affiliation(s)
- Johanna Winberg
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Larsson
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Ehrén
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Fossum
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Wester
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Ershova ES, Agafonova ON, Zakharova NV, Bravve LV, Jestkova EM, Golimbet VE, Lezheiko TV, Morozova AY, Martynov AV, Veiko RV, Umriukhin PE, Kostyuk GP, Kutsev SI, Veiko NN, Kostyuk SV. Copy Number Variation of Satellite III (1q12) in Patients With Schizophrenia. Front Genet 2019; 10:1132. [PMID: 31850056 PMCID: PMC6902095 DOI: 10.3389/fgene.2019.01132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: It was shown that copy number variations (CNVs) of human satellite III (1q12) fragment (f-SatIII) reflects the human cells response to stress of different nature and intensity. Patients with schizophrenia (SZ) experience chronic stress. The major research question: What is the f-SatIII CNVs in human leukocyte as a function of SZ? Materials and Methods: Biotinylated pUC1.77 probe was used for f-SatIII quantitation in leukocyte DNA by the non-radioactive quantitative hybridization for SZ patients (N = 840) and healthy control (HC, N = 401). SZ-sample included four groups. Two groups: first-episode drug-naïve patients [SZ (M-)] and medicated patients [SZ (M+)]. The medical history of these patients did not contain reliable confirmed information about fetal hypoxia and obstetric complications (H/OCs). Two other groups: medicated patients with documented H/OCs [hypoxia group (H-SZ (M+)] and medicated patients with documented absence of H/OCs [non-hypoxia group (NH-SZ (M+)]. The content of f-SatIII was also determined in eight post-mortem brain tissues of one SZ patient. Results: f-SatIII in human leukocyte varies between 5.7 to 44 pg/ng DNA. f-SatIII CNVs in SZ patients depends on the patient’s history of H/OCs. f-SatIII CN in NH-SZ (M+)-group was significantly reduced compared to H-SZ (M+)-group and HC-group (p < 10-30). f-SatIII CN in SZ patients negatively correlated with the index reflecting the seriousness of the disease (Positive and Negative Syndrome Scale). Antipsychotic therapy increases f-SatIII CN in the untreated SZ patients with a low content of the repeat and reduces the f-SatIII CN in SZ patients with high content of the repeat. In general, the SZ (M+) and SZ (M-) groups do not differ in the content of f-SatIII, but significantly differ from the HC-group by lower values of the repeat content. f-SatIII CN in the eight regions of the brain of the SZ patient varies significantly. Conclusion: The content of f-SatIII repeat in leukocytes of the most patients with SZ is significantly reduced compared to the HC. Two hypotheses were put forward: (1) the low content of the repeat is a genetic feature of SZ; and/or (2) the genomes of the SZ patients respond to chronic oxidative stress reducing the repeats copies number.
Collapse
Affiliation(s)
- Elizaveta S Ershova
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Oksana N Agafonova
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia V Zakharova
- Moscow Healthcare Department, N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow, Russia
| | - Lidia V Bravve
- Moscow Healthcare Department, N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow, Russia
| | - Elizaveta M Jestkova
- Moscow Healthcare Department, P.B. Ganushkin Clinical Psychiatric Hospital №4, Moscow, Russia
| | - Vera E Golimbet
- Department of Clinical Genetics, Mental Health Research Center, Moscow, Russia
| | - Tatiana V Lezheiko
- Department of Clinical Genetics, Mental Health Research Center, Moscow, Russia
| | - Anna Y Morozova
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Andrey V Martynov
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Roman V Veiko
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Pavel E Umriukhin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Georgiy P Kostyuk
- Moscow Healthcare Department, N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow, Russia
| | - Sergey I Kutsev
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia N Veiko
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Svetlana V Kostyuk
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
14
|
Steichen C, Hannoun Z, Luce E, Hauet T, Dubart-Kupperschmitt A. Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World J Stem Cells 2019; 11:729-747. [PMID: 31692979 PMCID: PMC6828592 DOI: 10.4252/wjsc.v11.i10.729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Ten years after the initial generation of induced pluripotent stem cells (hiPSCs) from human tissues, their potential is no longer questioned, with over 15000 publications listed on PubMed, covering various fields of research; including disease modeling, cell therapy strategies, pharmacology/toxicology screening and 3D organoid systems. However, despite evidences that the presence of mutations in hiPSCs should be a concern, publications addressing genomic integrity of these cells represent less than 1% of the literature. After a first overview of the mutation types currently reported in hiPSCs, including karyotype abnormalities, copy number variations, single point mutation as well as uniparental disomy, this review will discuss the impact of reprogramming parameters such as starting cell type and reprogramming method on the maintenance of the cellular genomic integrity. Then, a specific focus will be placed on culture conditions and subsequent differentiation protocols and how their may also trigger genomic aberrations within the cell population of interest. Finally, in a last section, the impact of genomic alterations on the possible usages of hiPSCs and their derivatives will also be exemplified and discussed. We will also discuss which techniques or combination of techniques should be used to screen for genomic abnormalities with a particular focus on the necessary quality controls and the potential alternatives.
Collapse
Affiliation(s)
- Clara Steichen
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Eléanor Luce
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
- Service de Biochimie, Pôle Biospharm, CHU de Poitiers, Poitiers F-86021, France
- Fédération Hospitalo-Universitaire SUPORT, CHU de Poitiers, Poitiers F-86021, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| |
Collapse
|
15
|
Graham EJ, Vermeulen M, Vardarajan B, Bennett D, De Jager P, Pearse RV, Young-Pearse TL, Mostafavi S. Somatic mosaicism of sex chromosomes in the blood and brain. Brain Res 2019; 1721:146345. [PMID: 31348909 PMCID: PMC6717667 DOI: 10.1016/j.brainres.2019.146345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022]
Abstract
In the blood, mosaic somatic aneuploidy (mSA) of all chromosomes has been found to be associated with adverse health outcomes, including hematological cancer. Sex chromosome mSA in the blood has been found to occur at a higher rate than autosomal mSA. Mosaic loss of the Y chromosome is the most common copy number alteration in males, and has been found to be associated with Alzheimer's disease (AD) in blood lymphocytes. mSA of the sex chromosomes has also been identified in the brain; however, little is known about its frequency across individuals. Using WGS data from 362 males and 719 females from the ROSMAP cohort, we quantified the relative rate of sex chromosome mSA in the dorsolateral prefrontal cortex (DLPFC), cerebellum and whole blood. To ascertain the functionality of observed sex chromosome mosaicism in the DLPFC, we examined its correlation with chromosome X and Y gene expression as well as neuropathological and clinical characteristics of AD and cognitive ageing. In males, we found that mSA of the Y chromosome occurs more frequently in blood than in the DLPFC or cerebellum. In the DLPFC, the presence of at least one APOE4 allele was associated with a reduction in read depth of the Y chromosome (p = 1.9e-02). In the female DLPFC, a reduction in chromosome X read depth was associated with reduced cognition at the last clinical visit and faster rate of cognitive decline (p = 7.8e-03; p = 1.9e-02). mSA of all sex chromosomes in the DLPFC were associated with aggregate measures of gene expression, implying functional impact. Our results provide insight into the relative rate of mSA between tissues and suggest that Y and female X chromosome read depth in the DLPFC is modestly associated with late AD risk factors and cognitive pathologies.
Collapse
Affiliation(s)
- Emma J Graham
- Department of Bioinformatics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Michael Vermeulen
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Badri Vardarajan
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Phil De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York City, NY, United States; Cell Circuits Program, Broad Institute, Cambridge, MA, United States; Neurodegeneration Program, New York Genome Center, New York, NY, United States
| | - Richard V Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Tracy L Young-Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sara Mostafavi
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Department of Statistics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Thunström S, Landin-Wilhelmsen K, Bryman I, Hanson C. Side differences in the degree of mosaicism of the buccal mucosa in Turner syndrome. Mol Genet Genomic Med 2019; 7:e00938. [PMID: 31466136 PMCID: PMC6785436 DOI: 10.1002/mgg3.938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background The aim was to investigate if there were any differences in the degree of mosaicism between the left‐ and right‐hand sides of the buccal mucosa in women with Turner syndrome. Methods Buccal smears were taken on the left‐ and right‐hand sides at the same time for genetic analyses with fluorescence in situ hybridization in women with Turner syndrome, n = 20; 10 with and 10 without mosaicism based on the blood karyotype, and one control. A difference in the degree of mosaicism ≥5% between the sides was considered as an actual difference and <5% as equivalent. Results Of 20, 10 (50%) had ≥ 5% difference in the degree of mosaicism between the left‐ and right‐hand sides of the buccal mucosa. The mean difference was 9.1% and the median was 4.5%, range 1%–38%. The control with ordinary female karyotype had no side difference. Conclusion There was an intraorganic mosaicism of the buccal mucosa with a side difference in the degree of mosaicism of up to 38% in women with Turner syndrome. When mosaicism is strongly suspected, but not confirmed by the blood karyotype, it is recommended that buccal smears from both sides of the oral cavity should be analyzed.
Collapse
Affiliation(s)
- Sofia Thunström
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Institution of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Landin-Wilhelmsen
- Department of Internal Medicine and Clinical Nutrition, Institution of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine, Section for Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inger Bryman
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charles Hanson
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Nishioka M, Bundo M, Iwamoto K, Kato T. Somatic mutations in the human brain: implications for psychiatric research. Mol Psychiatry 2019; 24:839-856. [PMID: 30087451 PMCID: PMC6756205 DOI: 10.1038/s41380-018-0129-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/27/2018] [Accepted: 05/25/2018] [Indexed: 01/18/2023]
Abstract
Psychiatric disorders such as schizophrenia and bipolar disorder are caused by complex gene-environment interactions. While recent advances in genomic technologies have enabled the identification of several risk variants for psychiatric conditions, including single-nucleotide variants and copy-number variations, these factors can explain only a portion of the liability to these disorders. Although non-inherited factors had previously been attributed to environmental causes, recent genomic analyses have demonstrated that de novo mutations are among the main non-inherited risk factors for several psychiatric conditions. Somatic mutations in the brain may also explain how stochastic developmental events and environmental insults confer risk for a psychiatric disorder following fertilization. Here, we review evidence regarding somatic mutations in the brains of individuals with and without neuropsychiatric diseases. We further discuss the potential biological mechanisms underlying somatic mutations in the brain as well as the technical issues associated with the detection of somatic mutations in psychiatric research.
Collapse
Affiliation(s)
- Masaki Nishioka
- 0000 0001 2151 536Xgrid.26999.3dDivision for Counseling and Support, The University of Tokyo, Tokyo, Japan
| | - Miki Bundo
- 0000 0001 0660 6749grid.274841.cDepartment of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan ,0000 0004 1754 9200grid.419082.6PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
18
|
Yurov YB, Vorsanova SG, Demidova IA, Kravets VS, Vostrikov VM, Soloviev IV, Uranova NA, Iourov IY. [Genomic instability in the brain: chromosomal mosaicism in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 116:86-91. [PMID: 28091506 DOI: 10.17116/jnevro201611611186-91] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM Experimental verification of the hypothesis about the possible involvement of the mosaic genome variations (mosaic aneuploidy) in the pathogenesis of a number of mental illnesses, including schizophrenia and autism: a genetic study of the level of mosaic genome variations in cells of the brain autopsy tissues in healthy controls and schizophrenia. MATERIAL AND METHODS Autopsy brain tissues of 15 unaffected controls and 15 patients with schizophrenia were analyzed by molecular cytogenetic methods to determine the frequency of chromosomal mutations (the mosaic aneuploidy) in neural human cells. The original collection of chromosome-enumeration DNA probes to autosomes 1, 9, 15, 16, 18 and the sex chromosomes X and Y was used for the interphase cytogenetic analysis of chromosomes in the cells of the brain. RESULTS AND CONCLUSION The frequency of low-level aneuploidy per individual chromosome was 0.54% (median - 0.53%; 95% confidence interval (CI) CI - 0.41-1.13%) in controls and 1.66% (median - 1.55%; 95% CI -1.32-2.12%) in schizophrenia (p=0.000013). Thus, the three-fold increase in aneuploidy frequency in the brain in schizophrenia was detected. It is suggested that mosaic aneuploidy, as a significant biological marker of genomic instability, may lead to genеtic imbalance and abnormal functional activity of neural cells and neural networks in schizophrenia.
Collapse
Affiliation(s)
- Y B Yurov
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | - S G Vorsanova
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | - I A Demidova
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | - V S Kravets
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | | | | | - N A Uranova
- Mental Health Research Center, Moscow, Russia
| | - I Y Iourov
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia; Moscow State University of Psychology and Education, Moscow, Russia
| |
Collapse
|
19
|
Bazrgar M, Gourabi H, Karimpour-Fard A, Boroujeni PB, Anisi K, Movaghar B, Valojerdi MR. Origins of Intraindividual Genetic Variation in Human Fetuses. Reprod Sci 2018; 26:1139-1145. [PMID: 30453833 DOI: 10.1177/1933719118808919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Intraindividual copy number variation (CNV) origin is largely unknown. They might be due to aging and/or common genome instability at the preimplantation stage while contribution of preimplantation in human intraindividual CNVs occurrence is unknown. To address this question, we investigated mosaicism and its origin in the fetuses of natural conception. METHODS We studied normal fetuses following therapeutic abortion due to maternal indications. We analyzed the genome of 22 tissues of each fetus by array comparative genomic hybridization for intraindividual CNVs. Each tissue was studied in 2 microarray experiments; the reciprocal aberrations larger than 40 Kb, identified by comparing tissues of each fetus, were subsequently validated using quantitative polymerase chain reaction. RESULTS Through intraindividual comparison, frequency of reciprocal events varied from 2 to 9. According to the distribution pattern of the frequent CNV in derivatives of different germ layers, we found that its origin is early development including preimplantation, whereas CNVs with low frequency have occurred in later stages. Shared CNVs in both fetuses were belonged to thymus and related to the functional role of genes located in these CNVs. CONCLUSIONS The origin of some of fetal CNVs is preimplantation stage. Each organ might inherit CNVs with an unpredictable pattern due to the extensive cell mixing/migration in embryonic development.
Collapse
Affiliation(s)
- Masood Bazrgar
- 1 Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, Tehran, Iran
- authors share the first authorship for this article
| | - Hamid Gourabi
- 1 Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, Tehran, Iran
- authors share the first authorship for this article
| | - Anis Karimpour-Fard
- 2 Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Parnaz Borjian Boroujeni
- 1 Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Khadije Anisi
- 1 Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Bahar Movaghar
- 3 Department of Embryology, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- 3 Department of Embryology, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
20
|
Zubakov D, Chamier-Ciemińska J, Kokmeijer I, Maciejewska A, Martínez P, Pawłowski R, Haas C, Kayser M. Introducing novel type of human DNA markers for forensic tissue identification: DNA copy number variation allows the detection of blood and semen. Forensic Sci Int Genet 2018; 36:112-118. [DOI: 10.1016/j.fsigen.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 12/28/2022]
|
21
|
Shebanits K, Andersson-Assarsson JC, Larsson I, Carlsson LMS, Feuk L, Larhammar D. Copy number of pancreatic polypeptide receptor gene NPY4R correlates with body mass index and waist circumference. PLoS One 2018; 13:e0194668. [PMID: 29621259 PMCID: PMC5886410 DOI: 10.1371/journal.pone.0194668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/07/2018] [Indexed: 01/14/2023] Open
Abstract
Multiple genetic studies have linked copy number variation (CNV) in different genes to body mass index (BMI) and obesity. A CNV on chromosome 10q11.22 has been associated with body weight. This CNV region spans NPY4R, the gene encoding the pancreatic polypeptide receptor Y4, which has been described as a satiety-stimulating receptor. We have investigated CNV of the NPY4R gene and analysed its relationship to BMI, waist circumference and self-reported dietary intake from 558 individuals (216 men and 342 women) representing a wide BMI range. The copy number for NPY4R ranged from 2 to 8 copies (average 4.6±0.8). Rather than the expected negative correlation, we observed a positive correlation between NPY4R copy number and BMI as well as waist circumference in women (Pearson’s r = 0.267, p = 2.65×10−7 and r = 0.256, p = 8×10−7, respectively). Each additional copy of NPY4R correlated with 2.6 kg/m2 increase in BMI and 5.67 cm increase in waist circumference (p = 2.8×10−5 and p = 6.2×10−5, respectively) for women. For men, there was no statistically significant correlation between CNV and BMI. Our results suggest that NPY4R genetic variation influences body weight in women, but the exact role of this receptor appears to be more complex than previously proposed.
Collapse
Affiliation(s)
| | | | - Ingrid Larsson
- Dept. of Gastroenterology and Hepatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lena M. S. Carlsson
- Dept. of Molecular and Clinical Medicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Lars Feuk
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Dept. of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
22
|
Yurov YB, Vorsanova SG, Demidova IA, Kolotii AD, Soloviev IV, Iourov IY. Mosaic Brain Aneuploidy in Mental Illnesses: An Association of Low-level Post-zygotic Aneuploidy with Schizophrenia and Comorbid Psychiatric Disorders. Curr Genomics 2018; 19:163-172. [PMID: 29606903 PMCID: PMC5850504 DOI: 10.2174/1389202918666170717154340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/18/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Postzygotic chromosomal variation in neuronal cells is hypothesized to make a substantial contribution to the etiology and pathogenesis of neuropsychiatric disorders. However, the role of somatic genome instability and mosaic genome variations in common mental illnesses is a matter of conjecture. MATERIALS AND METHODS To estimate the pathogenic burden of somatic chromosomal mutations, we determined the frequency of mosaic aneuploidy in autopsy brain tissues of subjects with schizophrenia and other psychiatric disorders (intellectual disability comorbid with autism spectrum disorders). Recently, post-mortem brain tissues of subjects with schizophrenia, intellectual disability and unaffected controls were analyzed by Interphase Multicolor FISH (MFISH), Quantitative Fluorescent in situ Hybridization (QFISH) specially designed to register rare mosaic chromosomal mutations such as lowlevel aneuploidy (whole chromosome mosaic deletion/duplication). The low-level mosaic aneuploidy in the diseased brain demonstrated significant 2-3-fold frequency increase in schizophrenia (p=0.0028) and 4-fold increase in intellectual disability comorbid with autism (p=0.0037) compared to unaffected controls. Strong associations of low-level autosomal/sex chromosome aneuploidy (p=0.001, OR=19.0) and sex chromosome-specific mosaic aneuploidy (p=0.006, OR=9.6) with schizophrenia were revealed. CONCLUSION Reviewing these data and literature supports the hypothesis suggesting that an association of low-level mosaic aneuploidy with common and, probably, overlapping psychiatric disorders does exist. Accordingly, we propose a pathway for common neuropsychiatric disorders involving increased burden of rare de novo somatic chromosomal mutations manifesting as low-level mosaic aneuploidy mediating local and general brain dysfunction.
Collapse
Affiliation(s)
- Yuri B. Yurov
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Svetlana G. Vorsanova
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Irina A. Demidova
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Alexei D. Kolotii
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | | | - Ivan Y. Iourov
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Ministry of Health, Moscow, Russian Federation
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW DNA copy number variations (CNVs) are quantitative structural rearrangements that include deletions, duplications, and higher order amplifications. Because of technical limitations, the contribution of this common form of genetic variation to regulation of lipid metabolism and dyslipidemia has been underestimated. RECENT FINDINGS Recent literature involving CNVs and dyslipidemias has focused mainly on rare CNVs causing familial hypercholesterolemia, and a common CNV polymorphism as the major determinant of lipoprotein(a) plasma concentrations. Additionally, there is tantalizing evidence of largely uninvestigated but plausible presence of CNVs underlying other dyslipidemias. We also discuss the future role of improved technologies in facilitating more economic, routine CNV assessment in dyslipidemias. SUMMARY CNVs account for large proportion of human genetic variation and are already known to contribute to susceptibility of dyslipidemias, particularly in about 10% of familial hypercholesterolemia patients. Increasing availability of clinical next-generation sequencing and bioinformatics presents a cost-effective opportunity for novel CNV discoveries in dyslipidemias.
Collapse
|
24
|
De novo vs. inherited copy number variations in multiple sclerosis susceptibility. Cell Mol Immunol 2018; 15:812-814. [PMID: 29429997 DOI: 10.1038/cmi.2017.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 11/08/2022] Open
|
25
|
Manheimer KB, Richter F, Edelmann LJ, D'Souza SL, Shi L, Shen Y, Homsy J, Boskovski MT, Tai AC, Gorham J, Yasso C, Goldmuntz E, Brueckner M, Lifton RP, Chung WK, Seidman CE, Seidman JG, Gelb BD. Robust identification of mosaic variants in congenital heart disease. Hum Genet 2018; 137:183-193. [PMID: 29417219 PMCID: PMC5997246 DOI: 10.1007/s00439-018-1871-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Mosaicism due to somatic mutations can cause multiple diseases including cancer, developmental and overgrowth syndromes, neurodevelopmental disorders, autoinflammatory diseases, and atrial fibrillation. With the increased use of next generation sequencing technology, multiple tools have been developed to identify low-frequency variants, specifically from matched tumor-normal tissues in cancer studies. To investigate whether mosaic variants are implicated in congenital heart disease (CHD), we developed a pipeline using the cancer somatic variant caller MuTect to identify mosaic variants in whole-exome sequencing (WES) data from a cohort of parent/affected child trios (n = 715) and a cohort of healthy individuals (n = 416). This is a novel application of the somatic variant caller designed for cancer to WES trio data. We identified two cases with mosaic KMT2D mutations that are likely pathogenic for CHD, but conclude that, overall, mosaicism detectable in peripheral blood or saliva does not account for a significant portion of CHD etiology.
Collapse
Affiliation(s)
- Kathryn B Manheimer
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Felix Richter
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa J Edelmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sunita L D'Souza
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisong Shi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Cardiovscular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Marko T Boskovski
- Division of Cardiac Surgery, The Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angela C Tai
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Elizabeth Goldmuntz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiology, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Martina Brueckner
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- Yale Center for Mendelian Genomics, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Medicine (Cardiology), Brigham and Women's Hospital, Boston, MA, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Castellani CA, Melka MG, Gui JL, Gallo AJ, O'Reilly RL, Singh SM. Post-zygotic genomic changes in glutamate and dopamine pathway genes may explain discordance of monozygotic twins for schizophrenia. Clin Transl Med 2017; 6:43. [PMID: 29181591 PMCID: PMC5704032 DOI: 10.1186/s40169-017-0174-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/05/2017] [Indexed: 01/06/2023] Open
Abstract
Background Monozygotic twins are valuable in assessing the genetic vs environmental contribution to diseases. In the era of complete genome sequences, they allow identification of mutational mechanisms and specific genes and pathways that offer predisposition to the development of complex diseases including schizophrenia. Methods We sequenced the complete genomes of two pairs of monozygotic twins discordant for schizophrenia (MZD), including one representing a family tetrad. The family specific complete sequences have allowed identification of post zygotic mutations between MZD genomes. It allows identification of affected genes including relevant network and pathways that may account for the diseased state in pair specific patient. Results We found multiple twin specific sequence differences between co-twins that included small nucleotides [single nucleotide variants (SNV), small indels and block substitutions], copy number variations (CNVs) and structural variations. The genes affected by these changes belonged to a number of canonical pathways, the most prominent ones are implicated in schizophrenia and related disorders. Although these changes were found in both twins, they were more frequent in the affected twin in both pairs. Two specific pathway defects, glutamate receptor signaling and dopamine feedback in cAMP signaling pathways, were uniquely affected in the two patients representing two unrelated families. Conclusions We have identified genome-wide post zygotic mutations in two MZD pairs affected with schizophrenia. It has allowed us to use the threshold model and propose the most likely cause of this disease in the two patients studied. The results support the proposition that each schizophrenia patient may be unique and heterogeneous somatic de novo events may contribute to schizophrenia threshold and discordance of the disease in monozygotic twins. Electronic supplementary material The online version of this article (10.1186/s40169-017-0174-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C A Castellani
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - M G Melka
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - J L Gui
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - A J Gallo
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - R L O'Reilly
- Department of Psychiatry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - S M Singh
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada.,Department of Psychiatry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
27
|
In vivo and in vitro ageing results in accumulation of de novo copy number variations in bulls. Sci Rep 2017; 7:1631. [PMID: 28487564 PMCID: PMC5431667 DOI: 10.1038/s41598-017-01793-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/03/2017] [Indexed: 11/24/2022] Open
Abstract
We have identified de novo copy number variations (CNVs) generated in bulls as they age. Blood samples from eight bulls were collected and SNP arrayed in a prospective design over 30 months allowing us to differentiate de novo CNVs from constant CNVs that are present throughout the sampling period. Quite remarkably, the total number of CNVs doubled over the 30-month period, as we observed an almost equal number of de novo and constant CNVs (107 and 111, respectively, i.e. 49% and 51%). Twice as many de novo CNVs emerged during the second half of the sampling schedule as in the first part. It suggests a dynamic generation of de novo CNVs in the bovine genome that becomes more frequent as the age of the animal progresses. In a second experiment de novo CNVs were detected through in vitro ageing of bovine fibroblasts by sampling passage #5, #15 and #25. De novo CNVs also became more frequent, but the proportion of them was only ~25% of the total number of CNVs (21 out of 85). Temporal generation of de novo CNVs resulted in increasing genome coverage. Genes and quantitative trait loci overlapping de novo CNVs were further investigated for ageing related functions.
Collapse
|
28
|
McConnell MJ, Moran JV, Abyzov A, Akbarian S, Bae T, Cortes-Ciriano I, Erwin JA, Fasching L, Flasch DA, Freed D, Ganz J, Jaffe AE, Kwan KY, Kwon M, Lodato MA, Mills RE, Paquola ACM, Rodin RE, Rosenbluh C, Sestan N, Sherman MA, Shin JH, Song S, Straub RE, Thorpe J, Weinberger DR, Urban AE, Zhou B, Gage FH, Lehner T, Senthil G, Walsh CA, Chess A, Courchesne E, Gleeson JG, Kidd JM, Park PJ, Pevsner J, Vaccarino FM. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 2017; 356:356/6336/eaal1641. [PMID: 28450582 DOI: 10.1126/science.aal1641] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders.
Collapse
|
29
|
He J, Xie Y, Kong S, Qiu W, Wang X, Wang D, Sun X, Sun D. Psychomotor retardation with a 1q42.11-q42.12 deletion. Hereditas 2017; 154:6. [PMID: 28286461 PMCID: PMC5340030 DOI: 10.1186/s41065-016-0022-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/12/2016] [Indexed: 01/06/2023] Open
Abstract
A 1q42 deletion is a rare structure variation that commonly harbours various deletion breakpoints along with diversified phenotypes. In our study, we found a de novo 1q42 deletion in a boy who did not have a cleft palate or a congenital diaphragmatic hernia but presented with psychomotor retardation. A 1.9 Mb deletion located within 1q42.11-q42.12 was validated at the molecular cytogenetic level. This is the first report of a 1q42.11-q42.12 deletion in a patient with onlypsychomotor retardation. The precise break points could facilitate the discovery of potential causative genes, such as LBR, EPHX1, etc. The correlation between the psychomotor retardation and the underlying genetic factors could not only shed light on the diagnosis of psychomotor retardation at the genetic level but also provide potential therapeutic targets.
Collapse
Affiliation(s)
- Jialing He
- Experimental Animal Center, Research Institute for National Health and Family Planning Commission, Tai hui temple road, NO. 12, Haidian District, Beijing, 100081 People's Republic of China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Shu Kong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Wenjun Qiu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Xiaoman Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Ding Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Deming Sun
- Experimental Animal Center, Research Institute for National Health and Family Planning Commission, Tai hui temple road, NO. 12, Haidian District, Beijing, 100081 People's Republic of China
| |
Collapse
|
30
|
One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic mutational load with patterns that suggest proliferative origin. Genome Res 2017; 27:512-523. [PMID: 28235832 PMCID: PMC5378170 DOI: 10.1101/gr.215517.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/24/2017] [Indexed: 01/01/2023]
Abstract
Few studies have been conducted to understand post-zygotic accumulation of mutations in cells of the healthy human body. We reprogrammed 32 skin fibroblast cells from families of donors into human induced pluripotent stem cell (hiPSC) lines. The clonal nature of hiPSC lines allows a high-resolution analysis of the genomes of the founder fibroblast cells without being confounded by the artifacts of single-cell whole-genome amplification. We estimate that on average a fibroblast cell in children has 1035 mostly benign mosaic SNVs. On average, 235 SNVs could be directly confirmed in the original fibroblast population by ultradeep sequencing, down to an allele frequency (AF) of 0.1%. More sensitive droplet digital PCR experiments confirmed more SNVs as mosaic with AF as low as 0.01%, suggesting that 1035 mosaic SNVs per fibroblast cell is the true average. Similar analyses in adults revealed no significant increase in the number of SNVs per cell, suggesting that a major fraction of mosaic SNVs in fibroblasts arises during development. Mosaic SNVs were distributed uniformly across the genome and were enriched in a mutational signature previously observed in cancers and in de novo variants and which, we hypothesize, is a hallmark of normal cell proliferation. Finally, AF distribution of mosaic SNVs had distinct narrow peaks, which could be a characteristic of clonal cell selection, clonal expansion, or both. These findings reveal a large degree of somatic mosaicism in healthy human tissues, link de novo and cancer mutations to somatic mosaicism, and couple somatic mosaicism with cell proliferation.
Collapse
|
31
|
Sharma A, Ansari AH, Kumari R, Pandey R, Rehman R, Mehani B, Varma B, Desiraju BK, Mabalirajan U, Agrawal A, Mukhopadhyay A. Human brain harbors single nucleotide somatic variations in functionally relevant genes possibly mediated by oxidative stress. F1000Res 2017; 5:2520. [PMID: 28149503 DOI: 10.12688/f1000research.9495.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 12/11/2022] Open
Abstract
Somatic variation in DNA can cause cells to deviate from the preordained genomic path in both disease and healthy conditions. Here, using exome sequencing of paired tissue samples, we show that the normal human brain harbors somatic single base variations measuring up to 0.48% of the total variations. Interestingly, about 64% of these somatic variations in the brain are expected to lead to non-synonymous changes, and as much as 87% of these represent G:C>T:A transversion events. Further, the transversion events in the brain were mostly found in the frontal cortex, whereas the corpus callosum from the same individuals harbors the reference genotype. We found a significantly higher amount of 8-OHdG (oxidative stress marker) in the frontal cortex compared to the corpus callosum of the same subjects (p<0.01), correlating with the higher G:C>T:A transversions in the cortex. We found significant enrichment for axon guidance and related pathways for genes harbouring somatic variations. This could represent either a directed selection of genetic variations in these pathways or increased susceptibility of some loci towards oxidative stress. This study highlights that oxidative stress possibly influence single nucleotide somatic variations in normal human brain.
Collapse
Affiliation(s)
- Anchal Sharma
- Genomics & Molceular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India; Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India
| | - Asgar Hussain Ansari
- Genomics & Molceular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India; Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India
| | - Renu Kumari
- Genomics & Molceular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India; Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India
| | - Rajesh Pandey
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Rakhshinda Rehman
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India; Molecular Immunogenetics Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Bharati Mehani
- Genomics & Molceular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India; Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India
| | - Binuja Varma
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Bapu K Desiraju
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India; Molecular Immunogenetics Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Ulaganathan Mabalirajan
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India; Molecular Immunogenetics Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Anurag Agrawal
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India; Molecular Immunogenetics Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Arijit Mukhopadhyay
- Genomics & Molceular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India; Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India; School of Environment and Life Sciences, University of Salford, Manchester, UK
| |
Collapse
|
32
|
Ooi DSQ, Tan VMH, Ong SG, Chan YH, Heng CK, Lee YS. Differences in AMY1 Gene Copy Numbers Derived from Blood, Buccal Cells and Saliva Using Quantitative and Droplet Digital PCR Methods: Flagging the Pitfall. PLoS One 2017; 12:e0170767. [PMID: 28125683 PMCID: PMC5268653 DOI: 10.1371/journal.pone.0170767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/10/2017] [Indexed: 11/18/2022] Open
Abstract
Introduction The human salivary (AMY1) gene, encoding salivary α-amylase, has variable copy number variants (CNVs) in the human genome. We aimed to determine if real-time quantitative polymerase chain reaction (qPCR) and the more recently available Droplet Digital PCR (ddPCR) can provide a precise quantification of the AMY1 gene copy number in blood, buccal cells and saliva samples derived from the same individual. Methods Seven participants were recruited and DNA was extracted from the blood, buccal cells and saliva samples provided by each participant. Taqman assay real-time qPCR and ddPCR were conducted to quantify AMY1 gene copy numbers. Statistical analysis was carried out to determine the difference in AMY1 gene copy number between the different biological specimens and different assay methods. Results We found significant within-individual difference (p<0.01) in AMY1 gene copy number between different biological samples as determined by qPCR. However, there was no significant within-individual difference in AMY1 gene copy number between different biological samples as determined by ddPCR. We also found that AMY1 gene copy number of blood samples were comparable between qPCR and ddPCR, while there is a significant difference (p<0.01) between AMY1 gene copy numbers measured by qPCR and ddPCR for both buccal swab and saliva samples. Conclusions Despite buccal cells and saliva samples being possible sources of DNA, it is pertinent that ddPCR or a single biological sample, preferably blood sample, be used for determining highly polymorphic gene copy numbers like AMY1, due to the large within-individual variability between different biological samples if real time qPCR is employed.
Collapse
Affiliation(s)
- Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore
| | - Verena Ming Hui Tan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Siong Gim Ong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chew Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore
| | - Yung Seng Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- * E-mail:
| |
Collapse
|
33
|
Genomic structural variations for cardiovascular and metabolic comorbidity. Sci Rep 2017; 7:41268. [PMID: 28120895 PMCID: PMC5264603 DOI: 10.1038/srep41268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
The objective of this study was to identify genes targeted by both copy number and copy-neutral changes in the right coronary arteries in the area of advanced atherosclerotic plaques and intact internal mammary arteries derived from the same individuals with comorbid coronary artery disease and metabolic syndrome. The artery samples from 10 patients were screened for genomic imbalances using array comparative genomic hybridization. Ninety high-confidence, identical copy number variations (CNVs) were detected. We also identified eight copy-neutral changes (cn-LOHs) > 1.5 Mb in paired arterial samples in 4 of 10 individuals. The frequencies of the two gains located in the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions were evaluated in 33 paired arteries and blood samples. Two patients contained the gain in 10q24.31 (ERLIN1) and one patient contained the gain in 12q24.11 (UNG, ACACB) that affected only the blood DNA. An additional two patients harboured these CNVs in both the arteries and blood. In conclusion, we discovered and confirmed a gain of the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions in patients with coronary artery disease and metabolic comorbidity. Analysis of DNA extracted from blood indicated a possible somatic origin for these CNVs.
Collapse
|
34
|
Abstract
Post-zygotic variation refers to genetic changes that arise in the soma of an individual and that are not usually inherited by the next generation. Although there is a paucity of research on such variation, emerging studies show that it is common: individuals are complex mosaics of genetically distinct cells, to such an extent that no two somatic cells are likely to have the exact same genome. Although most types of mutation can be involved in post-zygotic variation, structural genetic variants are likely to leave the largest genomic footprint. Somatic variation has diverse physiological roles and pathological consequences, particularly when acquired variants influence the clonal trajectories of the affected cells. Post-zygotic variation is an important confounder in medical genetic testing and a promising avenue for research: future studies could involve analyses of sorted and single cells from multiple tissue types to fully explore its potential.
Collapse
|
35
|
Sharma A, Ansari AH, Kumari R, Pandey R, Rehman R, Mehani B, Varma B, Desiraju BK, Mabalirajan U, Agrawal A, Mukhopadhyay A. Human brain harbors single nucleotide somatic variations in functionally relevant genes possibly mediated by oxidative stress. F1000Res 2016; 5:2520. [PMID: 28149503 PMCID: PMC5265704 DOI: 10.12688/f1000research.9495.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
Somatic variation in DNA can cause cells to deviate from the preordained genomic
path in both disease and healthy conditions. Here, using exome sequencing of
paired tissue samples, we show that the normal human brain harbors somatic
single base variations measuring up to 0.48% of the total variations.
Interestingly, about 64% of these somatic variations in the brain are expected
to lead to non-synonymous changes, and as much as 87% of these represent
G:C>T:A transversion events. Further, the transversion events in the brain
were mostly found in the frontal cortex, whereas the corpus callosum from the
same individuals harbors the reference genotype. We found a significantly higher
amount of 8-OHdG (oxidative stress marker) in the frontal cortex compared to the
corpus callosum of the same subjects (p<0.01), correlating with the higher
G:C>T:A transversions in the cortex. We found significant enrichment for axon
guidance and related pathways for genes harbouring somatic variations. This
could represent either a directed selection of genetic variations in these
pathways or increased susceptibility of some loci towards oxidative stress. This
study highlights that oxidative stress possibly influence single nucleotide
somatic variations in normal human brain.
Collapse
Affiliation(s)
- Anchal Sharma
- Genomics & Molceular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India; Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India
| | - Asgar Hussain Ansari
- Genomics & Molceular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India; Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India
| | - Renu Kumari
- Genomics & Molceular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India; Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India
| | - Rajesh Pandey
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Rakhshinda Rehman
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India; Molecular Immunogenetics Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Bharati Mehani
- Genomics & Molceular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India; Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India
| | - Binuja Varma
- CSIR Ayurgenomics Unit- TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Bapu K Desiraju
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India; Molecular Immunogenetics Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Ulaganathan Mabalirajan
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India; Molecular Immunogenetics Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Anurag Agrawal
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India; Molecular Immunogenetics Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India
| | - Arijit Mukhopadhyay
- Genomics & Molceular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Delhi, 110020, India; Academy of Scientific and Innovative Research, CSIR-Institute of Genomics & Integrative Biology (AcSIR-IGIB), Delhi, 110020, India; School of Environment and Life Sciences, University of Salford, Manchester, UK
| |
Collapse
|
36
|
Mademont-Soler I, Pinsach-Abuin M, Riuró H, Mates J, Pérez-Serra A, Coll M, Porres JM, del Olmo B, Iglesias A, Selga E, Picó F, Pagans S, Ferrer-Costa C, Sarquella-Brugada G, Arbelo E, Cesar S, Brugada J, Campuzano Ó, Brugada R. Large Genomic Imbalances in Brugada Syndrome. PLoS One 2016; 11:e0163514. [PMID: 27684715 PMCID: PMC5042553 DOI: 10.1371/journal.pone.0163514] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 01/01/2023] Open
Abstract
Purpose Brugada syndrome (BrS) is a form of cardiac arrhythmia which may lead to sudden cardiac death. The recommended genetic testing (direct sequencing of SCN5A) uncovers disease-causing SNVs and/or indels in ~20% of cases. Limited information exists about the frequency of copy number variants (CNVs) in SCN5A in BrS patients, and the role of CNVs in BrS-minor genes is a completely unexplored field. Methods 220 BrS patients with negative genetic results were studied to detect CNVs in SCN5A. 63 cases were also screened for CNVs in BrS-minor genes. Studies were performed by Multiplex ligation-dependent probe amplification or Next-Generation Sequencing (NGS). Results The detection rate for CNVs in SCN5A was 0.45% (1/220). The detected imbalance consisted of a duplication from exon 15 to exon 28, and could potentially explain the BrS phenotype. No CNVs were found in BrS-minor genes. Conclusion CNVs in current BrS-related genes are uncommon among BrS patients. However, as these rearrangements may underlie a portion of cases and they undergo unnoticed by traditional sequencing, an appealing alternative to conventional studies in these patients could be targeted NGS, including in a single experiment the study of SNVs, indels and CNVs in all the known BrS-related genes.
Collapse
Affiliation(s)
| | | | - Helena Riuró
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Jesus Mates
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | | | - Mònica Coll
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | | | - Bernat del Olmo
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Elisabet Selga
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Ferran Picó
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Sara Pagans
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | | | | | - Elena Arbelo
- Arrhythmia Unit, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Sergi Cesar
- Arrhythmia Unit, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Josep Brugada
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Arrhythmia Unit, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Óscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Unit, Hospital Josep Trueta, Girona, Spain
- * E-mail:
| |
Collapse
|
37
|
Oluwole OA, Revay T, Mahboubi K, Favetta LA, King WA. Somatic Mosaicism in Bulls Estimated from Genome-Wide CNV Array and TSPY Gene Copy Numbers. Cytogenet Genome Res 2016; 149:176-181. [DOI: 10.1159/000448368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
Somatic mosaicism has become a focus in human research due to the implications of individual genetic variability in disease. Here, we assessed somatic copy number variations (CNVs) in Holstein bulls in 2 respects. We estimated genome-wide CNVs and assayed CNVs of the TSPY gene, the most variable bovine gene from the Y chromosome. Somatic tissues (blood, lung, heart, muscle, testis, and brain) of 4 bulls were arrayed on the Illumina Bovine SNP50k chip and qPCR tested for TSPY copy numbers. Our results showed extensive copy number divergence in tissues within the same animal as well as significant copy number alterations of TSPY. We detected a mean of 31 CNVs per animal among which 14 were of germline origin, as they were constantly present in all investigated tissues of the animal, while 18 were specific to 1 tissue. Thus, 57% of the total number of detected CNVs was the result of de novo somatic events. Further, TSPY copy number was found to vary significantly among tissues as well as among the same tissue type from different animals in a wide range from 7 to 224% of the calibrator. Our study shows significant autosomal and Y-chromosomal de novo somatic CNV in bulls.
Collapse
|
38
|
Conconi D, Redaelli S, Bovo G, Leone BE, Filippi E, Ambrosiani L, Cerrito MG, Grassilli E, Giovannoni R, Dalprà L, Lavitrano M. Unexpected frequency of genomic alterations in histologically normal colonic tissue from colon cancer patients. Tumour Biol 2016; 37:13831-13842. [PMID: 27481518 PMCID: PMC5097093 DOI: 10.1007/s13277-016-5181-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023] Open
Abstract
As shown by genomic studies, colorectal cancer (CRC) is a highly heterogeneous disease, where copy number alterations (CNAs) may greatly vary among different patients. To explore whether CNAs may be present also in histologically normal tissues from patients affected by CRC, we performed CGH + SNP Microarray on 15 paired tumoral and normal samples. Here, we report for the first time the occurrence of CNAs as a common feature of the histologically normal tissue from CRC patients, particularly CNAs affecting different oncogenes and tumor-suppressor genes, including some not previously reported in CRC and others known as being involved in tumor progression. Moreover, from the comparison of normal vs paired tumoral tissue, we were able to identify three groups: samples with an increased number of CNAs in tumoral vs normal tissue, samples with a similar number of CNAs in both tissues, and samples with a decrease of CNAs in tumoral vs normal tissue, which may be likely due to a selection of the cell population within the tumor. In conclusion, our approach allowed us to uncover for the first time an unexpected frequency of genetic alteration in normal tissue, suggesting that tumorigenic genetic lesions are already present in histologically normal colonic tissue and that the use in array comparative genomic hybridization (CGH) studies of normal samples as reference for the paired tumors can lead to misrepresented genomic data, which may be incomplete or limited, especially if used for the research of target molecules for personalized therapy and for the possible correlation with clinical outcome.
Collapse
Affiliation(s)
- Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Giorgio Bovo
- Unit of Pathology, San Gerardo Hospital, Monza, Italy
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.,Section of Pathology, Desio Hospital, Desio, Italy
| | | | | | - Maria Grazia Cerrito
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Emanuela Grassilli
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.,Medical Genetics Laboratory, San Gerardo Hospital, Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| |
Collapse
|
39
|
Peng R, Zhou Y, Xie HN, Zheng J, Xie YJ, Yang JB. MCDA twins with discordant malformations: submicroscopic chromosomal anomalies detected by chromosomal microarray analysis and clinical outcomes. Prenat Diagn 2016; 36:766-74. [PMID: 27315788 DOI: 10.1002/pd.4859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Ruan Peng
- Department of Ultrasonic Medicine; Fetal Medical Center, The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Yi Zhou
- Department of Obstetrics and Gynecology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Hong-Ning Xie
- Department of Ultrasonic Medicine; Fetal Medical Center, The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Ju Zheng
- Department of Ultrasonic Medicine; Fetal Medical Center, The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Ying-Jun Xie
- Department of Ultrasonic Medicine; Fetal Medical Center, The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Jian-Bo Yang
- Department of Obstetrics and Gynecology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| |
Collapse
|
40
|
Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol 2016; 65:182-199. [PMID: 26916529 DOI: 10.1016/j.jhep.2016.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/12/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers.
Collapse
Affiliation(s)
- Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Clara Steichen
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Noushin Dianat
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Weber
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France.
| |
Collapse
|
41
|
Classification of cancers based on copy number variation landscapes. Biochim Biophys Acta Gen Subj 2016; 1860:2750-5. [PMID: 27266344 DOI: 10.1016/j.bbagen.2016.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
Abstract
Genomic alterations in DNA can cause human cancer. DNA copy number variants (CNV), as one of the types of DNA mutations, have been considered to be associated with various human cancers. CNVs vary in size from 1bp up to one complete chromosome arm. In order to understand the difference between different human cancers on CNVs, in this study, we developed a method to computationally classify six human cancer types by using only CNV level values. The CNVs of 23,082 genes were used as features to construct the classifier. Then the features are carefully selected by mRMR (minimum Redundancy Maximum Relevance Feature Selection) and IFS (Incremental Feature Selection) methods. An accuracy of over 0.75 was reached by using only the CNVs of 19 genes based on Dagging method in 10-fold cross validation. It was indicated that these 19 genes may play important roles in differentiating cancer types. We also analyzed the biological functions of several top genes within the 19 gene list. The statistical results and biological analysis of these genes from this work might further help understand different human cancer types and provide guidance for related validation experiments. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
|
42
|
Valind A, Haikal C, Klasson MEK, Johansson MC, Gullander J, Soller M, Baldetorp B, Gisselsson D. The fetal thymus has a unique genomic copy number profile resulting from physiological T cell receptor gene rearrangement. Sci Rep 2016; 6:23500. [PMID: 27009469 PMCID: PMC4806331 DOI: 10.1038/srep23500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022] Open
Abstract
Somatic mosaicism, the presence of genetically distinct cells within an organism, has been increasingly associated with human morbidity, ranging from being a cause of rare syndromes to a risk factor for common disorders such as malignancy and cardiovascular disease. Previous studies interrogating the normal prevalence of somatic mosaicism have focused on adults. We here present an estimate of the baseline frequency of somatic mosaic copy number variation (CNV) at the time around birth, by sampling eight different organs from a total of five fetuses and newborns. Overall we find a significantly lower frequency of organ specific (i.e. mosaic) CNVs as compared to adults (p = 0.003; Mann-Whitney U-test). The rate of somatic CNV in adults has been estimated to around 2.2 CNV per organ assayed. In contrast, after stringent filtering, we found no organ-private CNVs in fetuses or newborns with exception of the thymus. This organ exhibited a specific genome profile in the form of deletions resulting from polyclonal T-cell receptor rearrangements. This implies that somatic non-immune related CNVs, if present at birth, are typically confined to very small cell populations within organs.
Collapse
Affiliation(s)
- Anders Valind
- Department of Clinical Genetics, Lund University BMC C13, Lund University, SE 221 84, Lund, Sweden
| | - C. Haikal
- Department of Clinical Genetics, Lund University BMC C13, Lund University, SE 221 84, Lund, Sweden
| | - M. E. K. Klasson
- Department of Clinical Genetics, Lund University BMC C13, Lund University, SE 221 84, Lund, Sweden
| | - M. C. Johansson
- Department of Oncology, Lund University University Hospital, SE 221 85, Lund, Sweden
| | - J. Gullander
- Department of Clinical Genetics, Lund University BMC C13, Lund University, SE 221 84, Lund, Sweden
| | - M. Soller
- Department of Clinical Genetics, Skåne Regional and University Laboratories University Hospital, SE 221 85, Lund, Sweden
| | - B. Baldetorp
- Department of Oncology, Lund University University Hospital, SE 221 85, Lund, Sweden
| | - David Gisselsson
- Department of Clinical Genetics, Lund University BMC C13, Lund University, SE 221 84, Lund, Sweden
- Department of Pathology, Skåne Regional and University Laboratories University Hospital, SE 221 85, Lund, Sweden
| |
Collapse
|
43
|
Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet 2016; 17:175-88. [PMID: 26806412 DOI: 10.1038/nrg.2015.16] [Citation(s) in RCA: 862] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of single-cell genomics is advancing rapidly and is generating many new insights into complex biological systems, ranging from the diversity of microbial ecosystems to the genomics of human cancer. In this Review, we provide an overview of the current state of the field of single-cell genome sequencing. First, we focus on the technical challenges of making measurements that start from a single molecule of DNA, and then explore how some of these recent methodological advancements have enabled the discovery of unexpected new biology. Areas highlighted include the application of single-cell genomics to interrogate microbial dark matter and to evaluate the pathogenic roles of genetic mosaicism in multicellular organisms, with a focus on cancer. We then attempt to predict advances we expect to see in the next few years.
Collapse
Affiliation(s)
- Charles Gawad
- Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Winston Koh
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, California 94304, USA.,Howard Hughes Medical Institute, Stanford University, California 94304, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, California 94304, USA.,Howard Hughes Medical Institute, Stanford University, California 94304, USA
| |
Collapse
|
44
|
Chappell G, Silva GO, Uehara T, Pogribny IP, Rusyn I. Characterization of copy number alterations in a mouse model of fibrosis-associated hepatocellular carcinoma reveals concordance with human disease. Cancer Med 2016; 5:574-85. [PMID: 26778414 PMCID: PMC4799957 DOI: 10.1002/cam4.606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/22/2015] [Accepted: 11/16/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent human cancer with rising incidence worldwide. Human HCC is frequently associated with chronic liver inflammation and cirrhosis, pathophysiological processes that are a consequence of chronic viral infection, disturbances in metabolism, or exposure to chemical toxicants. To better characterize the pathogenesis of HCC, we used a human disease‐relevant mouse model of fibrosis‐associated hepatocarcinogenesis. In this model, marked liver tumor response caused by the promutagenic chemical N‐nitrosodiethylamine in the presence of liver fibrosis was associated with epigenetic events indicative of genomic instability. Therefore, we hypothesized that DNA copy number alterations (CNAs), a feature of genomic instability and a common characteristic of cancer, are concordant between human HCC and mouse models of fibrosis‐associated hepatocarcinogenesis. We evaluated DNA CNAs and changes in gene expression in the mouse liver (normal, tumor, and nontumor fibrotic tissues). Additionally, we compared our findings to DNA CNAs in human HCC cases (tumor and nontumor cirrhotic/fibrotic tissues) using publicly available data from The Cancer Genome Atlas (TCGA). We observed that while fibrotic liver tissue is largely devoid of DNA CNAs, highly frequently occurring DNA CNAs are found in mouse tumors, which is indicative of a profound increase in chromosomal instability in HCC. The cross‐species gene‐level comparison of CNAs identified shared regions of CNAs between human fibrosis‐ and cirrhosis‐associated liver tumors and mouse fibrosis‐associated HCC. Our results suggest that CNAs most commonly arise in neoplastic tissue rather than in fibrotic or cirrhotic liver, and demonstrate the utility of this mouse model in replicating the molecular features of human HCC.
Collapse
Affiliation(s)
- Grace Chappell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843.,Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Grace O Silva
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, 27599.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina, 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Takeki Uehara
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas, 72079
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843
| |
Collapse
|
45
|
Abstract
Chromosomal copy number changes are frequently associated with harmful consequences and are thought of as an underlying mechanism for the development of diseases. However, changes in copy number are observed during development and occur during normal biological processes. In this review, we highlight the causes and consequences of copy number changes in normal physiologic processes as well as cover their associations with cancer and acquired drug resistance. We discuss the permanent and transient nature of copy number gains and relate these observations to a new mechanism driving transient site-specific copy gains (TSSGs). Finally, we discuss implications of TSSGs in generating intratumoral heterogeneity and tumor evolution and how TSSGs can influence the therapeutic response in cancer.
Collapse
Affiliation(s)
- Sweta Mishra
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
46
|
Abstract
Diversity is the basis of fitness selection. Although the genome of an individual is considered to be largely stable, there is theoretical and experimental evidence--both in model organisms and in humans--that genetic mosaicism is the rule rather than the exception. The continuous generation of cell variants, their interactions and selective pressures lead to life-long tissue dynamics. Individuals may thus enjoy 'clonal health', defined as a clonal composition that supports healthy morphology and physiology, or suffer from clonal configurations that promote disease, such as cancer. The contribution of mosaicism to these processes starts during embryonic development. In this Opinion article, we argue that the road to cancer might begin during these early stages.
Collapse
Affiliation(s)
- Luis C Fernández
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre-CNIO, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miguel Torres
- Centro Nacional de Investigaciones Cardiovasculares-CNIC, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco X Real
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, and at the Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre-CNIO, 28029 Madrid, Spain
| |
Collapse
|
47
|
Somatic mosaicism for copy-neutral loss of heterozygosity and DNA copy number variations in the human genome. BMC Genomics 2015; 16:703. [PMID: 26376747 PMCID: PMC4573927 DOI: 10.1186/s12864-015-1916-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised oocyte. Mosaicism may result from a mutation that occurs during postzygotic development and is propagated to only a subset of the adult cells. Our aim was to investigate both somatic mosaicism for copy-neutral loss of heterozygosity (cn-LOH) events and DNA copy number variations (CNVs) in fully differentiated tissues. RESULTS We studied panels of tissue samples (11-12 tissues per individual) from four autopsy subjects using high-resolution Illumina HumanOmniExpress-12 BeadChips to reveal the presence of possible intra-individual tissue-specific cn-LOH and CNV patterns. We detected five mosaic cn-LOH regions >5 Mb in some tissue samples in three out of four individuals. We also detected three CNVs that affected only a portion of the tissues studied in one out of four individuals. These three somatic CNVs range from 123 to 796 kb and are also found in the general population. An attempt was made to explain the succession of genomic events that led to the observed somatic genetic mosaicism under the assumption that the specific mosaic patterns of CNV and cn-LOH changes reflect their formation during the postzygotic embryonic development of germinal layers and organ systems. CONCLUSIONS Our results give further support to the idea that somatic mosaicism for CNVs, and also cn-LOHs, is a common phenomenon in phenotypically normal humans. Thus, the examination of only a single tissue might not provide enough information to diagnose potentially deleterious CNVs within an individual. During routine CNV and cn-LOH analysis, DNA derived from a buccal swab can be used in addition to blood DNA to get information about the CNV/cn-LOH content in tissues of both mesodermal and ectodermal origin. Currently, the real frequency and possible phenotypic consequences of both CNVs and cn-LOHs that display somatic mosaicism remain largely unknown. To answer these questions, future studies should involve larger cohorts of individuals and a range of tissues.
Collapse
|
48
|
Genomic Copy Number Variation Affecting Genes Involved in the Cell Cycle Pathway: Implications for Somatic Mosaicism. Int J Genomics 2015; 2015:757680. [PMID: 26421275 PMCID: PMC4569762 DOI: 10.1155/2015/757680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022] Open
Abstract
Somatic genome variations (mosaicism) seem to represent a common mechanism for human intercellular/interindividual diversity in health and disease. However, origins and mechanisms of somatic mosaicism remain a matter of conjecture. Recently, it has been hypothesized that zygotic genomic variation naturally occurring in humans is likely to predispose to nonheritable genetic changes (aneuploidy) acquired during the lifetime through affecting cell cycle regulation, genome stability maintenance, and related pathways. Here, we have evaluated genomic copy number variation (CNV) in genes implicated in the cell cycle pathway (according to Kyoto Encyclopedia of Genes and Genomes/KEGG) within a cohort of patients with intellectual disability, autism, and/or epilepsy, in which the phenotype was not associated with genomic rearrangements altering this pathway. Benign CNVs affecting 20 genes of the cell cycle pathway were detected in 161 out of 255 patients (71.6%). Among them, 62 individuals exhibited >2 CNVs affecting the cell cycle pathway. Taking into account the number of individuals demonstrating CNV of these genes, a support for this hypothesis appears to be presented. Accordingly, we speculate that further studies of CNV burden across the genes implicated in related pathways might clarify whether zygotic genomic variation generates somatic mosaicism in health and disease.
Collapse
|
49
|
Ronowicz A, Janaszak-Jasiecka A, Skokowski J, Madanecki P, Bartoszewski R, Bałut M, Seroczyńska B, Kochan K, Bogdan A, Butkus M, Pęksa R, Ratajska M, Kuźniacka A, Wasąg B, Gucwa M, Krzyżanowski M, Jaśkiewicz J, Jankowski Z, Forsberg L, Ochocka JR, Limon J, Crowley MR, Buckley PG, Messiaen L, Dumanski JP, Piotrowski A. Concurrent DNA Copy-Number Alterations and Mutations in Genes Related to Maintenance of Genome Stability in Uninvolved Mammary Glandular Tissue from Breast Cancer Patients. Hum Mutat 2015. [PMID: 26219265 DOI: 10.1002/humu.22845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Somatic mosaicism for DNA copy-number alterations (SMC-CNAs) is defined as gain or loss of chromosomal segments in somatic cells within a single organism. As cells harboring SMC-CNAs can undergo clonal expansion, it has been proposed that SMC-CNAs may contribute to the predisposition of these cells to genetic disease including cancer. Herein, the gross genomic alterations (>500 kbp) were characterized in uninvolved mammary glandular tissue from 59 breast cancer patients and matched samples of primary tumors and lymph node metastases. Array-based comparative genomic hybridization showed 10% (6/59) of patients harbored one to 359 large SMC-CNAs (mean: 1,328 kbp; median: 961 kbp) in a substantial portion of glandular tissue cells, distal from the primary tumor site. SMC-CNAs were partially recurrent in tumors, albeit with considerable contribution of stochastic SMC-CNAs indicating genomic destabilization. Targeted resequencing of 301 known predisposition and somatic driver loci revealed mutations and rare variants in genes related to maintenance of genomic integrity: BRCA1 (p.Gln1756Profs*74, p.Arg504Cys), BRCA2 (p.Asn3124Ile), NCOR1 (p.Pro1570Glnfs*45), PALB2 (p.Ser500Pro), and TP53 (p.Arg306*). Co-occurrence of gross SMC-CNAs along with point mutations or rare variants in genes responsible for safeguarding genomic integrity highlights the temporal and spatial neoplastic potential of uninvolved glandular tissue in breast cancer patients.
Collapse
Affiliation(s)
- Anna Ronowicz
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Jarosław Skokowski
- The Central Bank of Tissues and Genetic Specimens, Medical University of Gdansk, Gdansk, Poland.,Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Madanecki
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Magdalena Bałut
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Seroczyńska
- The Central Bank of Tissues and Genetic Specimens, Medical University of Gdansk, Gdansk, Poland
| | - Kinga Kochan
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Adam Bogdan
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Alina Kuźniacka
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Wasąg
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gucwa
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Krzyżanowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Jaśkiewicz
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Lars Forsberg
- Department of Immunology, Genetics and Pathology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - J Renata Ochocka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Michael R Crowley
- Heflin Center for Genomic Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jan P Dumanski
- Department of Immunology, Genetics and Pathology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
50
|
Sakai M, Watanabe Y, Someya T, Araki K, Shibuya M, Niizato K, Oshima K, Kunii Y, Yabe H, Matsumoto J, Wada A, Hino M, Hashimoto T, Hishimoto A, Kitamura N, Iritani S, Shirakawa O, Maeda K, Miyashita A, Niwa SI, Takahashi H, Kakita A, Kuwano R, Nawa H. Assessment of copy number variations in the brain genome of schizophrenia patients. Mol Cytogenet 2015; 8:46. [PMID: 26136833 PMCID: PMC4487564 DOI: 10.1186/s13039-015-0144-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022] Open
Abstract
Background Cytogenomic mutations and chromosomal abnormality are implicated in the neuropathology of several brain diseases. Cell heterogeneity of brain tissues makes their detection and validation difficult, however. In the present study, we analyzed gene dosage alterations in brain DNA of schizophrenia patients and compared those with the copy number variations (CNVs) identified in schizophrenia patients as well as with those in Asian lymphocyte DNA and attempted to obtain hints at the pathological contribution of cytogenomic instability to schizophrenia. Results Brain DNA was extracted from postmortem striatum of schizophrenia patients and control subjects (n = 48 each) and subjected to the direct two color microarray analysis that limits technical data variations. Disease-associated biases of relative DNA doses were statistically analyzed with Bonferroni’s compensation on the premise of brain cell mosaicism. We found that the relative gene dosage of 85 regions significantly varied among a million of probe sites. In the candidate CNV regions, 26 regions had no overlaps with the common CNVs found in Asian populations and included the genes (i.e., ANTXRL, CHST9, DNM3, NDST3, SDK1, STRC, SKY) that are associated with schizophrenia and/or other psychiatric diseases. The majority of these candidate CNVs exhibited high statistical probabilities but their signal differences in gene dosage were less than 1.5-fold. For test evaluation, we rather selected the 10 candidate CNV regions that exhibited higher aberration scores or larger global effects and were thus confirmable by PCR. Quantitative PCR verified the loss of gene dosage at two loci (1p36.21 and 1p13.3) and confirmed the global variation of the copy number distributions at two loci (11p15.4 and 13q21.1), both indicating the utility of the present strategy. These test loci, however, exhibited the same somatic CNV patterns in the other brain region. Conclusions The present study lists the candidate regions potentially representing cytogenomic CNVs in the brain of schizophrenia patients, although the significant but modest alterations in their brain genome doses largely remain to be characterized further. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0144-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miwako Sakai
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan ; Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Kazuaki Araki
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | | | | | - Yasuto Kunii
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Hirooki Yabe
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Junya Matsumoto
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Akira Wada
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Mizuki Hino
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Takeshi Hashimoto
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Akitoyo Hishimoto
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Noboru Kitamura
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Shuji Iritani
- Matsuzawa Hospital, Setagaya-ku, 156-0057 Tokyo, Japan ; Department of Mental Health, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Aichi Japan
| | - Osamu Shirakawa
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan ; Department of Neuropsychiatry, Kinki University Faculty of Medicine, 589-8511 Osaka-Sayama, Osaka Japan
| | - Kiyoshi Maeda
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan ; Department of Social Rehabilitation, Kobe University School of Medicine, 654-0142 Hyogo, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Shin-Ichi Niwa
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Hitoshi Takahashi
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Akiyoshi Kakita
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan
| |
Collapse
|