1
|
Chen X, Geng Y, Wei G, He D, Lv J, Wen W, Xiang F, Tao K, Wu C. Neural Circuitries between the Brain and Peripheral Solid Tumors. Cancer Res 2024; 84:3509-3521. [PMID: 39226520 PMCID: PMC11532784 DOI: 10.1158/0008-5472.can-24-1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The recent discovery of the pivotal role of the central nervous system in controlling tumor initiation and progression has opened a new field of research. Increasing evidence suggests a bidirectional interaction between the brain and tumors. The brain influences the biological behavior of tumor cells through complex neural networks involving the peripheral nervous system, the endocrine system, and the immune system, whereas tumors can establish local autonomic and sensory neural networks to transmit signals into the central nervous system, thereby affecting brain activity. This review aims to summarize the latest research in brain-tumor cross-talk, exploring neural circuitries between the brain and various peripheral solid tumors, analyzing the roles in tumor development and the related molecular mediators and pathologic mechanisms, and highlighting the critical impact on the understanding of cancer biology. Enhanced understanding of reciprocal communication between the brain and tumors will establish a solid theoretical basis for further research and could open avenues for repurposing psychiatric interventions in cancer treatment.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Wei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danzeng He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialong Lv
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhao Wen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Xiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Singh A, Anjum B, Naz Q, Raza S, Sinha RA, Ahmad MK, Mehdi AA, Verma N. Night shift-induced circadian disruption: links to initiation of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and risk of hepatic cancer. HEPATOMA RESEARCH 2024:2394-5079.2024.88. [PMID: 39525867 PMCID: PMC7616786 DOI: 10.20517/2394-5079.2024.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The circadian system plays a crucial role in regulating metabolic homeostasis at both systemic and tissue levels by synchronizing the central and peripheral clocks with exogenous time cues, known as zeitgebers (such as the light/dark cycle). Our body's behavioral rhythms, including sleep-wake cycles and feeding-fasting patterns, align with these extrinsic time cues. The body cannot effectively rest and repair itself when circadian rhythms are frequently disrupted. In many shift workers, the internal rhythms fail to fully synchronize with the end and start times of their shifts. Additionally, exposure to artificial light at night (LAN), irregular eating patterns, and sleep deprivation contribute to circadian disruption and misalignment. Shift work and jet lag disrupt the normal circadian rhythm of liver activity, resulting in a condition known as "circadian disruption". This disturbance adversely affects the metabolism and homeostasis of the liver, contributing to excessive fat accumulation and abnormal liver function. Additionally, extended working hours, such as prolonged night shifts, may worsen the progression of non-alcoholic fatty liver disease (NAFLD) toward non-alcoholic steatohepatitis (NASH) and increase disease severity. Studies have demonstrated a positive correlation between night shift work (NSW) and elevated liver enzymes, indicative of hepatic metabolic dysfunction, potentially increasing the risk of hepatocellular carcinoma (HCC) related to NAFLD. This review consolidates research findings on circadian disruption caused by NSW, late chronotype, jet lag, and social jet lag, drawing insights from studies involving both humans and animal models that investigate the effects of these factors on circadian rhythms in liver metabolism.
Collapse
Affiliation(s)
- Anjali Singh
- Department of Physiology, King George’s Medical University, Lucknow226003, India
| | - Baby Anjum
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Qulsoom Naz
- Department of Medicine, King George’s Medical University, Lucknow226003, India
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | | | | | - Narsingh Verma
- Hind Institute of Medical Sciences, Sitapur 261304, India
| |
Collapse
|
3
|
You KL, Wang Y, Zhang Y, Bender CM, Fennimore LA, Rosenzweig MQ, Dierkes A, Terry MA, Raina K, Thomas TH. Nurses' returning to work after cancer: A focus group study. Nurs Outlook 2024; 72:102290. [PMID: 39388798 DOI: 10.1016/j.outlook.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Nurses diagnosed with cancer face unique challenges when returning to work, yet there is limited understanding of their transition. PURPOSE To explore nurses' return-to-work experiences post cancer diagnosis and clarify related facilitators and challenges. METHODS This focus group study employed a content analysis with constant comparative approach and member checking. This study recruited nurses treated for any type of cancer who had experience returning to clinical positions. FINDINGS Five focus groups with 17 female nurses (mean age=51.8) were performed; 47.1% had breast cancer. Four main themes were identified: (a) motivation, incentives, and the need to return to work; (b) setbacks hindering the return; (c) navigating new work dynamics; and (d) evolving professional role during the return to work. DISCUSSION This study illustrates personal and professional growth and struggles that attend returning to work as a nurse with cancer. This insight informs strategies to support continuing these nurses' careers.
Collapse
Affiliation(s)
- Kai-Lin You
- School of Nursing, University of Pittsburgh, Pittsburgh, PA.
| | - Youjia Wang
- School of Nursing, University of Pittsburgh, Pittsburgh, PA
| | - Yuchen Zhang
- School of Nursing, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | - Andrew Dierkes
- School of Nursing, University of Pittsburgh, Pittsburgh, PA
| | - Martha Ann Terry
- Department of Behavioral and Community Health Sciences, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Ketki Raina
- Department of Occupational Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
4
|
Bieuville M, Dujon A, Raven N, Ujvari B, Pujol P, Eslami‐S Z, Alix Panabières C, Capp J, Thomas F. When Do Tumours Develop? Neoplastic Processes Across Different Timescales: Age, Season and Round the Circadian Clock. Evol Appl 2024; 17:e70024. [PMID: 39444444 PMCID: PMC11496201 DOI: 10.1111/eva.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
While it is recognised that most, if not all, multicellular organisms harbour neoplastic processes within their bodies, the timing of when these undesirable cell proliferations are most likely to occur and progress throughout the organism's lifetime remains only partially documented. Due to the different mechanisms implicated in tumourigenesis, it is highly unlikely that this probability remains constant at all times and stages of life. In this article, we summarise what is known about this variation, considering the roles of age, season and circadian rhythm. While most studies requiring that level of detail be done on humans, we also review available evidence in other animal species. For each of these timescales, we identify mechanisms or biological functions shaping the variation. When possible, we show that evolutionary processes likely played a role, either directly to regulate the cancer risk or indirectly through trade-offs. We find that neoplastic risk varies with age in a more complex way than predicted by early epidemiological models: rather than resulting from mutations alone, tumour development is dictated by tissue- and age-specific processes. Similarly, the seasonal cycle can be associated with risk variation in some species with life-history events such as sexual competition or mating being timed according to the season. Lastly, we show that the circadian cycle influences tumourigenesis in physiological, pathological and therapeutic contexts. We also highlight two biological functions at the core of these variations across our three timescales: immunity and metabolism. Finally, we show that our understanding of the entanglement between tumourigenic processes and biological cycles is constrained by the limited number of species for which we have extensive data. Improving our knowledge of the periods of vulnerability to the onset and/or progression of (malignant) tumours is a key issue that deserves further investigation, as it is key to successful cancer prevention strategies.
Collapse
Affiliation(s)
- Margaux Bieuville
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Institute of Organismic and Molecular Evolution (iomE)Johannes Gutenberg‐UniversitätMainzGermany
- Institute for Quantitative and Computational Biosciences (IQCB)Johannes Gutenberg‐UniversitätMainzGermany
| | - Antoine M. Dujon
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Nynke Raven
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Beata Ujvari
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Pascal Pujol
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Oncogenetic DepartmentUniversity Medical Centre of MontpellierMontpellierFrance
| | - Zahra Eslami‐S
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH)University Medical Centre of MontpellierMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Catherine Alix Panabières
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH)University Medical Centre of MontpellierMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Jean‐Pascal Capp
- Toulouse Biotechnology InstituteUniversity of Toulouse, INSA, CNRS, INRAEToulouseFrance
| | - Frédéric Thomas
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
| |
Collapse
|
5
|
Ferrell JM. Chronobiology of Cancers in the Liver and Gut. Cancers (Basel) 2024; 16:2925. [PMID: 39272783 PMCID: PMC11394324 DOI: 10.3390/cancers16172925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Circadian rhythms dictate the timing of cellular and organismal physiology to maintain homeostasis. Within the liver and gut, circadian rhythms influence lipid and glucose homeostasis, xenobiotic metabolism, and nutrient absorption. Disruption of this orchestrated timing is known to negatively impact human health and contribute to disease progression, including carcinogenesis. Dysfunctional core clock timing has been identified in malignant growths and may be used as a molecular signature of disease progression. Likewise, the circadian clock and its downstream effectors also represent potential for novel therapeutic targets. Here, the role of circadian rhythms in the pathogenesis of cancers of the liver and gut will be reviewed, and chronotherapy and chronopharmacology will be explored as potential treatment options.
Collapse
Affiliation(s)
- Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
6
|
Czyż-Szypenbejl K, Mędrzycka-Dąbrowska W. The Impact of Night Work on the Sleep and Health of Medical Staff-A Review of the Latest Scientific Reports. J Clin Med 2024; 13:4505. [PMID: 39124771 PMCID: PMC11313391 DOI: 10.3390/jcm13154505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Introduction: Employees working in shifts are exposed to many threats affecting their health, quality of life and safety at work. Those who perform their work only at night are particularly vulnerable. The purpose of the review is to identify risks to the health, quality of life and sleep of shift health workers. Method: A systematic review (SR) was used in the analysis. Electronic databases were searched. The search was limited to the latest studies published in the last five years: 2019-2023. Results: Finally, 36 articles were included in the review. Most authors have shown a link between sleep disturbance or its quality and shift work/night work. Moreover, a three-shift schedule was the most significant factor for poorer subjective sleep quality when compared to other work schedules. Furthermore, many authors have shown a link between shift/night work and health problems, which include cardiometabolic risk, glucose intolerance, breast cancer and immune vulnerability. Conclusions: The research results clearly show a significant impact of night work on the increased risk of sleep disorders and health disturbance. Healthcare workers should be aware of the risks associated with night work in order to take measures preventing sleep/health problems. Shift/night workers should have the opportunity to be screened for disorders linked with their work.
Collapse
Affiliation(s)
| | - Wioletta Mędrzycka-Dąbrowska
- Department of Anaesthesiology Nursing & Inte and Intensive Care, Faculty of Health Sciences, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
7
|
Gołąbek KD, Chmielewska A, Karoluk E, Kujawa K, Regulska-Ilow B. Assessment of Diet Quality Based on Selected Dietary Quality Indices and Consumption of Specific Food Items of Midwives Working on a Shift Schedule in Wroclaw, Poland. Nutrients 2024; 16:2409. [PMID: 39125290 PMCID: PMC11314451 DOI: 10.3390/nu16152409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The aim of this study was to assess the quality of diets among midwives working in a shift system and to analyze variations in their dietary habits according to their working hours. In a group of fifty midwives employed in four public hospitals in Wrocław, the HDI-2015, HEI-2015, AHEI-2010, and Mellen's DASH diet index were calculated. The significance of differences in terms of the prevalence of selected dietary habits, meal frequency, average content of selected food items, and the percentage of energy obtained from them was assessed. Over half of the diets of the participants exhibited low adherence to the selected dietary indices. Only the scores on Mellen's DASH diet index were significantly associated with other components of the diet. Diets scoring ≥ 4.5 points were characterized by significantly lower processed meat content, meal frequency, and energy value, as well as lower sugar content and lower dietary energy value, compared to diets scoring < 4.5 points. Regardless of their working hours, the diets of midwives are characterized by low quality. Therefore, it appears essential to introduce targeted educational programs and provide guidance on appropriate dietary models, such as the DASH diet.
Collapse
Affiliation(s)
- Katarzyna Daria Gołąbek
- Department of Dietetics and Bromatology, Pharmacy Faculty, Wroclaw Medical University, ul. Borowska 211, 50-556 Wrocław, Poland; (A.C.); (B.R.-I.)
| | - Anna Chmielewska
- Department of Dietetics and Bromatology, Pharmacy Faculty, Wroclaw Medical University, ul. Borowska 211, 50-556 Wrocław, Poland; (A.C.); (B.R.-I.)
| | - Ewa Karoluk
- Department of Obstetrics and Gynecological and Obstetric Nursing, Health Sciences Faculty, Wroclaw Medical University, 51-618 Wrocław, Poland;
| | - Krzysztof Kujawa
- Statistical Analysis Centre, Wroclaw Medical University, 50-368 Wrocław, Poland;
| | - Bożena Regulska-Ilow
- Department of Dietetics and Bromatology, Pharmacy Faculty, Wroclaw Medical University, ul. Borowska 211, 50-556 Wrocław, Poland; (A.C.); (B.R.-I.)
| |
Collapse
|
8
|
Savvidis C, Kallistrou E, Kouroglou E, Dionysopoulou S, Gavriiloglou G, Ragia D, Tsiama V, Proikaki S, Belis K, Ilias I. Circadian rhythm disruption and endocrine-related tumors. World J Clin Oncol 2024; 15:818-834. [PMID: 39071458 PMCID: PMC11271730 DOI: 10.5306/wjco.v15.i7.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This review delved into the intricate relationship between circadian clocks and physiological processes, emphasizing their critical role in maintaining homeostasis. Orchestrated by interlocked clock genes, the circadian timekeeping system regulates fundamental processes like the sleep-wake cycle, energy metabolism, immune function, and cell proliferation. The central oscillator in the hypothalamic suprachiasmatic nucleus synchronizes with light-dark cycles, while peripheral tissue clocks are influenced by cues such as feeding times. Circadian disruption, linked to modern lifestyle factors like night shift work, correlates with adverse health outcomes, including metabolic syndrome, cardiovascular diseases, infections, and cancer. We explored the molecular mechanisms of circadian clock genes and their impact on metabolic disorders and cancer pathogenesis. Specific associations between circadian disruption and endocrine tumors, spanning breast, ovarian, testicular, prostate, thyroid, pituitary, and adrenal gland cancers, are highlighted. Shift work is associated with increased breast cancer risk, with PER genes influencing tumor progression and drug resistance. CLOCK gene expression correlates with cisplatin resistance in ovarian cancer, while factors like aging and intermittent fasting affect prostate cancer. Our review underscored the intricate interplay between circadian rhythms and cancer, involving the regulation of the cell cycle, DNA repair, metabolism, immune function, and the tumor microenvironment. We advocated for integrating biological timing into clinical considerations for personalized healthcare, proposing that understanding these connections could lead to novel therapeutic approaches. Evidence supports circadian rhythm-focused therapies, particularly chronotherapy, for treating endocrine tumors. Our review called for further research to uncover detailed connections between circadian clocks and cancer, providing essential insights for targeted treatments. We emphasized the importance of public health interventions to mitigate lifestyle-related circadian disruptions and underscored the critical role of circadian rhythms in disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Christos Savvidis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Efthymia Kallistrou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Eleni Kouroglou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Sofia Dionysopoulou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | | | - Dimitra Ragia
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Vasiliki Tsiama
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Stella Proikaki
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Konstantinos Belis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Ioannis Ilias
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| |
Collapse
|
9
|
Chen Y, Yang H, Zhang Y, Zhou L, Lin J, Wang Y. Night shift work, genetic risk, and the risk of depression: A prospective cohort study. J Affect Disord 2024; 354:735-742. [PMID: 38548197 DOI: 10.1016/j.jad.2024.03.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Genetic factors and night shift work both contribute to the risk of depression, but whether the association of night shift work with depression varies by genetic predisposition remains unclear. OBJECTIVES To assess whether night shift work is associated with a higher risk of depression regardless of genetic predisposition. METHODS We used data from the UK biobank of 247,828 adults aged 38-71 free of depression at baseline from March 13, 2006, to October 1, 2010. Genetic predisposition to depression was assessed using polygenic risk scores (PRS) weighted sums of genetic variant indicator variables and classified as low (lowest tertile), intermediate (tertile 2), and high (highest tertile). Night shift work exposures were collected using a touchscreen questionnaire and were divided into four categories. RESULTS After a median follow-up of 12.7 years, 7315 participants developed depression. Compared with day workers, HRs (95 % CIs) of depression were 1.28 (1.19-1.38) for shift work, but never or rarely night shifts, 1.32 (1.20-1.45) for irregular night shifts, and 1.20 (1.07-1.34) for permanent night shifts. Considering lifetime employment and compared with never shift workers, >8 nights/month (HR: 1.40; 95 % CI: 1.19-1.66) and <10 years (HR: 1.30; 95 % CI: 1.09-1.54) of night shift work were associated with a higher risk of depression. In joint effect analyses, compared to participants with low genetic predisposition and day workers, the HRs (95 % CIs) of depression were 1.49 (1.32-1.69) in those with high genetic predisposition and shift work, but never or rarely night shifts, and 1.36 (1.20-1.55) for those with high genetic predisposition and irregular/permanent night shifts. In addition, there was neither multiplicative nor additive interaction between genetic predisposition and night shift work on the risk of depression. CONCLUSIONS Night shift work was associated with an increased risk of depression regardless of genetic risk.
Collapse
Affiliation(s)
- Yanchun Chen
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hongxi Yang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Lihui Zhou
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Lin
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaogang Wang
- School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Pourali G, Ahmadzade AM, Arastonejad M, Pourali R, Kazemi D, Ghasemirad H, Khazaei M, Fiuji H, Nassiri M, Hassanian SM, Ferns GA, Avan A. The circadian clock as a potential biomarker and therapeutic target in pancreatic cancer. Mol Cell Biochem 2024; 479:1243-1255. [PMID: 37405534 DOI: 10.1007/s11010-023-04790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer (PC) has a very high mortality rate globally. Despite ongoing efforts, its prognosis has not improved significantly over the last two decades. Thus, further approaches for optimizing treatment are required. Various biological processes oscillate in a circadian rhythm and are regulated by an endogenous clock. The machinery controlling the circadian cycle is tightly coupled with the cell cycle and can interact with tumor suppressor genes/oncogenes; and can therefore potentially influence cancer progression. Understanding the detailed interactions may lead to the discovery of prognostic and diagnostic biomarkers and new potential targets for treatment. Here, we explain how the circadian system relates to the cell cycle, cancer, and tumor suppressor genes/oncogenes. Furthermore, we propose that circadian clock genes may be potential biomarkers for some cancers and review the current advances in the treatment of PC by targeting the circadian clock. Despite efforts to diagnose pancreatic cancer early, it still remains a cancer with poor prognosis and high mortality rates. While studies have shown the role of molecular clock disruption in tumor initiation, development, and therapy resistance, the role of circadian genes in pancreatic cancer pathogenesis is not yet fully understood and further studies are required to better understand the potential of circadian genes as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Mahmoud Ahmadzade
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Hamidreza Ghasemirad
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, 37 Kent Street, QLD, 4102, Australia.
| |
Collapse
|
11
|
Langford AT, Andreadis K, Ellis KR, Buderer N. Correlates of U.S. Adults Aged 50-75 Years Having Had a Colorectal Cancer Screening Test. AJPM FOCUS 2024; 3:100187. [PMID: 38327655 PMCID: PMC10847606 DOI: 10.1016/j.focus.2024.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Introduction Colorectal cancer is a leading cause of cancer death in the U.S. Until 2021, the U.S. Preventive Services Task Force recommended colorectal cancer screening for all adults aged 50-75 years. Using a nationally representative sample, we explored the associations between having colorectal cancer screening and key sociodemographic and health-related factors among U.S. adults aged 50-75 years. Methods We analyzed self-reported data from the National Cancer Institute's Health Information National Trends Survey 5 (Cycle 4) collected from February to June 2020. A multivariable weighted logistic regression model was conducted using all of the factors that were univariably significant with p<0.10. Using backward elimination, factors that were not significant with p>0.05 were removed one at a time until the remaining factors were all significant collectively with p<0.05. Results Complete data were available for 1,649 respondents: 1,384 (81.2% weighted) had a colorectal cancer screening test, and 265 (18.8% weighted) did not. Multivariably, the odds of having had a colorectal cancer screening test increased with age (OR=1.07) and were higher for participants who identified as Black/African American than for White participants (OR=2.4), participants who had a family member who ever had cancer (OR=1.7), participants who believed that being overweight and obese influences development of cancer a lot than those who believed not at all (OR=2.0), and participants who had friends or family to talk with about health (OR=2.3). Conclusions Age, race, family history, weight-related beliefs about the causes of cancer, and having someone to talk with about health were associated with having colorectal cancer screening test.
Collapse
Affiliation(s)
- Aisha T. Langford
- Department of Family Medicine and Public Health Sciences, School of Medicine, Wayne State University, Detroit, Michigan
| | | | - Katrina R. Ellis
- School of Social Work, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
12
|
Mishra A, Giuliani G, Longo VD. Nutrition and dietary restrictions in cancer prevention. Biochim Biophys Acta Rev Cancer 2024; 1879:189063. [PMID: 38147966 DOI: 10.1016/j.bbcan.2023.189063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The composition and pattern of dietary intake have emerged as key factors influencing aging, regeneration, and consequently, healthspan and lifespan. Cancer is one of the major diseases more tightly linked with aging, and age-related mortality. Although the role of nutrition in cancer incidence is generally well established, we are far from a consensus on how diet influences tumour development in different tissues. In this review, we will discuss how diet and dietary restrictions affect cancer risk and the molecular mechanisms potentially responsible for their effects. We will cover calorie restriction, intermittent fasting, prolonged fasting, fasting-mimicking diet, time-restricted eating, ketogenic diet, high protein diet, Mediterranean diet, and the vegan and vegetarian diets.
Collapse
Affiliation(s)
- Amrendra Mishra
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Giacomo Giuliani
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano, Italy.
| |
Collapse
|
13
|
Frias-Gomez J, Alemany L, Benavente Y, Clarke MA, de Francisco J, De Vivo I, Du M, Goodman MT, Lacey J, Liao LM, Lipworth L, Lu L, Merritt MA, Michels KA, O'Connell K, Paytubi S, Pelegrina B, Peremiquel-Trillas P, Petruzella S, Ponce J, Risch H, Setiawan VW, Schouten LJ, Shu XO, Trabert B, Van den Brandt PA, Wentzensen N, Wilkens LR, Yu H, Costas L. Night shift work, sleep duration and endometrial cancer risk: A pooled analysis from the Epidemiology of Endometrial Cancer Consortium (E2C2). Sleep Med Rev 2023; 72:101848. [PMID: 37716022 PMCID: PMC10840870 DOI: 10.1016/j.smrv.2023.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Data on the role of circadian related factors in the etiology of endometrial cancer are scarce. We collected individual data on night shift work or daily sleep duration from 7,207 cases and 22,027 controls participating in 11 studies from the Epidemiology of Endometrial Cancer Consortium (E2C2). Main analyses were performed among postmenopausal women: 6,335 endometrial cancer cases and 18,453 controls. Using individual data, study-specific odd ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated with logistic regression and pooled analyses were conducted using random-effects meta-analyses. A non-significant inverse association was observed between endometrial cancer and night shift work (OR=0.89, 95%CI=0.72-1.09; I2=0.0%, Pheterogeneity=0.676). Associations did not vary by shift type (permanent or rotating), or duration of night work. Categorizations of short (<7h) or long (≥9h) sleep duration were not associated with endometrial cancer risk (ORshort=1.02, 95%CI=0.95-1.10; I2=55.3%, Pheterogeneity=0.022; ORlong=0.93, 95%CI=0.81-1.06; I2=11.5%, Pheterogeneity=0.339). No associations were observed per 1-h increment of sleep (OR=0.98, 95%CI=0.95-1.01; I2=46.1%, Pheterogeneity=0.063), but an inverse association was identified among obese women (OR=0.93, 95%CI=0.89-0.98 per 1-h increment; I2=12.7%, Pheterogeneity=0.329). Overall, these pooled analyses provide evidence that night shift work and sleep duration are not strong risk factors for endometrial cancer in postmenopausal women.
Collapse
Affiliation(s)
- Jon Frias-Gomez
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; University of Barcelona (UB), Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Laia Alemany
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Megan A Clarke
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Rockville, MD, USA
| | - Javier de Francisco
- Department of Anesthesiology. Hospital Universitari de Bellvitge, IDIBELL. Hospitalet de Llobregat, Barcelona, Spain
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc T Goodman
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James Lacey
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope National Medical Center, Duarte, CA, USA
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, Metabolic Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lingeng Lu
- Chronic Disease Epidemiology Department, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Melissa A Merritt
- The Daffodil Centre, The University of Sydney, Joint Venture with Cancer Council NSW, Sydney, NSW, Australia; Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Kara A Michels
- Division of Cancer Epidemiology and Genetics, Metabolic Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kelli O'Connell
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonia Paytubi
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Beatriz Pelegrina
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain
| | - Paula Peremiquel-Trillas
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; University of Barcelona (UB), Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Stacey Petruzella
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jordi Ponce
- Department of Gynecology, Hospital Universitari de Bellvitge, IDIBELL. Hospitalet de Llobregat, Barcelona, Spain
| | - Harvey Risch
- Chronic Disease Epidemiology Department, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Veronica Wendy Setiawan
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Leo J Schouten
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Britton Trabert
- Department of Obstetrics and Gynecology, University of Utah, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | - Piet A Van den Brandt
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Rockville, MD, USA
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Laura Costas
- Cancer Epidemiology Research Programme. IDIBELL. Catalan Institute of Oncology. Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
14
|
Machado GDS, Menezes-Júnior LAAD, Neto RMDN, Freitas SND, Oliveira FLPD, Pimenta FAP, Machado-Coelho GLL, Ribeiro SMLT. Arterial hypertension in rotating shift workers: The role of hypertriglyceridemic waist and hypertriglyceridemic waist-to-height ratio phenotypes. Clin Nutr ESPEN 2023; 58:235-241. [PMID: 38057012 DOI: 10.1016/j.clnesp.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE To examine the association of arterial hypertension and the hypertriglyceridemic waist phenotype (HWP) and hypertriglyceridemic waist-to-height phenotype (HWHP). METHODOLOGY This cross-sectional study was conducted with 1422 male rotating shift workers in Brazil. The HWP was defined as having a waist circumference ≥94 cm and serum triglycerides ≥150 mg/dL, whereas the HWHP was determined by having a waist-to-height ratio ≥0.5 and serum triglycerides ≥150 mg/dL. To provide a characterization of the sample, data were presented in both absolute and relative values, and Pearson's chi-square test was employed. To investigate the potential association between arterial hypertension and the presence of HWP or HWHP, multivariate logistic regression was conducted, accounting for sociodemographic, behavioral, and clinical variables. Furthermore, we conducted a stratified multivariate logistic regression analysis, considering the duration of shift work, to assess whether the results remained consistent depending on the length of work experience in shifts. RESULTS A noteworthy association was observed between arterial hypertension and both HWP and HWHP, with HWHP exhibiting a stronger association with the disease. Furthermore, a positive association between arterial hypertension and these phenotypes was identified in workers with five or more years of shift work. CONCLUSION We recommend the utilization of HWHP as a screening tool, as it indicates a stronger association with arterial hypertension compared to HWP. Additionally, the duration of time spent working in shifts emerged as a significant factor influencing the presence of these phenotypes.
Collapse
Affiliation(s)
| | - Luiz Antônio Alves de Menezes-Júnior
- School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil; Post-Graduate in Health and Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil.
| | | | | | | | | | - George Luiz Lins Machado-Coelho
- Post-Graduate in Health and Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil; School of Medicine, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | | |
Collapse
|
15
|
Zhu H, Chen J, Wen Z, Li J, Yu Q, Liao W, Luo X. The role of circadian clock genes in colorectal carcinoma: Novel insights into regulatory mechanism and implications in clinical therapy. Life Sci 2023; 333:122145. [PMID: 37797685 DOI: 10.1016/j.lfs.2023.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Colorectal cancer (CRC) is a lethal malignancy with limited treatment strategies. Accumulating evidence indicates that CRC tumorigenesis, progression and metastasis are intimately associated with circadian clock, an inherent 24-h cycle oscillation of biochemical, physiological functions in almost every eukaryote. In the present review, we summarize the altered expression level of circadian genes in CRC and the prognosis associated with gene abundance switch. We illustrate the function and potential mechanisms of circadian genes in CRC pathogenesis and progression. Moreover, circadian based-therapeutic strategies including chronotherapy, therapeutics targeting potential circadian components, and melatonin treatment in CRC are also highlighted.
Collapse
Affiliation(s)
- Haodong Zhu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Jiawei Chen
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Jinfei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Qinyang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Weihua Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, PR China.
| |
Collapse
|
16
|
Turner MC, Cogliano V, Guyton K, Madia F, Straif K, Ward EM, Schubauer-Berigan MK. Research Recommendations for Selected IARC-Classified Agents: Impact and Lessons Learned. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:105001. [PMID: 37902675 PMCID: PMC10615125 DOI: 10.1289/ehp12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer (IARC) Monographs program assembles expert working groups who publish a critical review and evaluation of data on agents of interest. These comprehensive reviews provide a unique opportunity to identify research needs to address classification uncertainties. A multidisciplinary expert review and workshop held in 2009 identified research gaps and needs for 20 priority occupational chemicals, metals, dusts, and physical agents, with the goal of stimulating advances in epidemiological studies of cancer and carcinogen mechanisms. Overarching issues were also described. OBJECTIVES In this commentary we review the current status of the evidence for the 20 priority agents identified in 2009. We examine whether identified Research Recommendations for each agent were addressed and their potential impact on resolving classification uncertainties. METHODS We reviewed the IARC classifications of each of the 20 priority agents and identified major new epidemiological and human mechanistic studies published since the last evaluation. Information sources were either the published Monograph for agents that have been reevaluated or, for agents not yet reevaluated, Advisory Group reports and literature searches. Findings are described in view of recent methodological developments in Monographs evidence evaluation processes. DISCUSSION The majority of the 20 priority agents were reevaluated by IARC since 2009. The overall carcinogen classifications of 9 agents advanced, and new cancer sites with either "sufficient" or "limited" evidence of carcinogenicity were also identified for 9 agents. Examination of published findings revealed whether evidence gaps and Research Recommendations have been addressed and highlighted remaining uncertainties. During the past decade, new research addressed a range of the 2009 recommendations and supported updated classifications for priority agents. This supports future efforts to systematically apply findings of Monograph reviews to identify research gaps and priorities relevant to evaluation criteria established in the updated IARC Monograph Preamble. https://doi.org/10.1289/EHP12547.
Collapse
Affiliation(s)
- Michelle C. Turner
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Vincent Cogliano
- California Environmental Protection Agency Office of Environmental Health Hazard Assessment, Oakland, California, USA
| | - Kathryn Guyton
- National Academies of Sciences, Engineering, and Medicine, Washington, District of Columbia, USA
| | - Federica Madia
- International Agency for Research on Cancer, Lyon, France
| | - Kurt Straif
- Barcelona Institute for Global Health, Barcelona, Spain
- Boston College, Massachusetts, USA
| | | | | |
Collapse
|
17
|
Cheng WY, Desmet L, Depoortere I. Time-restricted eating for chronodisruption-related chronic diseases. Acta Physiol (Oxf) 2023; 239:e14027. [PMID: 37553828 DOI: 10.1111/apha.14027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
The circadian timing system enables organisms to adapt their physiology and behavior to the cyclic environmental changes including light-dark cycle or food availability. Misalignment between the endogenous circadian rhythms and external cues is known as chronodisruption and is closely associated with the development of metabolic and gastrointestinal disorders, cardiovascular diseases, and cancer. Time-restricted eating (TRE, in human) is an emerging dietary approach for weight management. Recent studies have shown that TRE or time-restricted feeding (TRF, when referring to animals) has several beneficial health effects, which, however, are not limited to weight management. This review summarizes the effects of TRE/TRF on regulating energy metabolism, gut microbiota and homeostasis, development of cardiovascular diseases and cancer. Furthermore, we will address the role of circadian clocks in TRE/TRF and propose ways to optimize TRE as a dietary strategy to obtain maximal health benefits.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Louis Desmet
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Diamantopoulou Z, Gvozdenovic A, Aceto N. A new time dimension in the fight against metastasis. Trends Cell Biol 2023; 33:736-748. [PMID: 36967300 DOI: 10.1016/j.tcb.2023.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Despite advances in uncovering vulnerabilities, identifying biomarkers, and developing more efficient treatments, cancer remains a threat because of its ability to progress while acquiring resistance to therapy. The circadian rhythm governs most of the cellular functions implicated in cancer progression, and its exploitation therefore opens new promising directions in the fight against metastasis. In this review we summarize the role of the circadian rhythm in tumor development and progression, with emphasis on the circadian rhythm-regulated elements that control the generation of circulating tumor cells (CTCs) and metastasis. We then present data on chronotherapy and discuss how circadian rhythm investigations may open new paths to more effective anticancer treatments.
Collapse
Affiliation(s)
- Zoi Diamantopoulou
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Barber LE, VoPham T, White LF, Roy HK, Palmer JR, Bertrand KA. Circadian Disruption and Colorectal Cancer Incidence in Black Women. Cancer Epidemiol Biomarkers Prev 2023; 32:927-935. [PMID: 36409509 PMCID: PMC10199956 DOI: 10.1158/1055-9965.epi-22-0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Animal and experimental studies suggest circadian disruption increases colorectal cancer risk, but evidence in humans is limited. We examined night shift work, chronotype, and residential position within a time zone, proxies for circadian disruption, in relation to colorectal cancer risk. METHODS Participants in the Black Women's Health Study, a prospective cohort of 59,000 Black American women established in 1995, reported history of night shift work and chronotype on follow-up questionnaires. Residential position within a time zone was estimated using participant addresses at each questionnaire cycle. Number of colorectal cancer cases and follow-up duration varied by analysis depending on timing of exposure assessment, ranging from 204 over the 2005 to 2018 night shift work study period to 452 over the 1995 to 2018 residential position study period. Cox proportional hazards regression was used to estimate multivariable-adjusted HRs and 95% confidence intervals (CI). RESULTS Compared with never having worked a night shift, working a night shift for ≥10 years was associated with increased colorectal cancer risk (HR = 1.64; 95% CI, 1.01-2.66). However, shorter duration was not. The HR for evening versus morning chronotype was 0.96 (95% CI, 0.73-1.27). Westward position of residence within a time zone was not associated with colorectal cancer risk (HR per 5-degree longitude increase: 0.92; 95% CI, 0.82-1.03). CONCLUSIONS Our findings suggest a possible increased risk of colorectal cancer associated with long duration night shift work; however, results require confirmation in larger studies. IMPACT Circadian disruption from long-term night shift work may contribute to colorectal cancer development in Black women.
Collapse
Affiliation(s)
- Lauren E. Barber
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
- Slone Epidemiology Center at Boston University, Boston, MA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
| | - Trang VoPham
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Laura F. White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Hemant K. Roy
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | | | | |
Collapse
|
20
|
Gatti V, De Domenico S, Melino G, Peschiaroli A. Senataxin and R-loops homeostasis: multifaced implications in carcinogenesis. Cell Death Discov 2023; 9:145. [PMID: 37147318 PMCID: PMC10163015 DOI: 10.1038/s41420-023-01441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
R-loops are inherent byproducts of transcription consisting of an RNA:DNA hybrid and a displaced single-stranded DNA. These structures are of key importance in controlling numerous physiological processes and their homeostasis is tightly controlled by the activities of several enzymes deputed to process R-loops and prevent their unproper accumulation. Senataxin (SETX) is an RNA/DNA helicase which catalyzes the unwinding of RNA:DNA hybrid portion of the R-loops, promoting thus their resolution. The key importance of SETX in R-loops homeostasis and its relevance with pathophysiological events is highlighted by the evidence that gain or loss of function SETX mutations underlie the pathogenesis of two distinct neurological disorders. Here, we aim to describe the potential impact of SETX on tumor onset and progression, trying to emphasize how dysregulation of this enzyme observed in human tumors might impact tumorigenesis. To this aim, we will describe the functional relevance of SETX in regulating gene expression, genome integrity, and inflammation response and discuss how cancer-associated SETX mutations might affect these pathways, contributing thus to tumor development.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy
| | - Sara De Domenico
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy.
| |
Collapse
|
21
|
Abstract
The recently uncovered key role of the peripheral and central nervous systems in controlling tumorigenesis and metastasis has opened a new area of research to identify innovative approaches against cancer. Although the 'neural addiction' of cancer is only partially understood, in this Perspective we discuss the current knowledge and perspectives on peripheral and central nerve circuitries and brain areas that can support tumorigenesis and metastasis and the possible reciprocal influence that the brain and peripheral tumours exert on one another. Tumours can build up local autonomic and sensory nerve networks and are able to develop a long-distance relationship with the brain through circulating adipokines, inflammatory cytokines, neurotrophic factors or afferent nerve inputs, to promote cancer initiation, growth and dissemination. In turn, the central nervous system can affect tumour development and metastasis through the activation or dysregulation of specific central neural areas or circuits, as well as neuroendocrine, neuroimmune or neurovascular systems. Studying neural circuitries in the brain and tumours, as well as understanding how the brain communicates with the tumour or how intratumour nerves interplay with the tumour microenvironment, can reveal unrecognized mechanisms that promote cancer development and progression and open up opportunities for the development of novel therapeutic strategies. Targeting the dysregulated peripheral and central nervous systems might represent a novel strategy for next-generation cancer treatment that could, in part, be achieved through the repurposing of neuropsychiatric drugs in oncology.
Collapse
Affiliation(s)
- Claire Magnon
- Laboratory of Cancer and Microenvironment-National Institute of Health and Medical Research (INSERM), Institute of Biology François Jacob-Atomic Energy Commission (CEA), University of Paris Cité, University of Paris-Saclay, Paris, France.
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
22
|
Šmon J, Kočar E, Pintar T, Dolenc-Grošelj L, Rozman D. Is obstructive sleep apnea a circadian rhythm disorder? J Sleep Res 2023:e13875. [PMID: 36922163 DOI: 10.1111/jsr.13875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Obstructive sleep apnea is the most common sleep-related breathing disorder worldwide and remains underdiagnosed. Its multiple associated comorbidities contribute to a decreased quality of life and work performance as well as an increased risk of death. Standard treatment seems to have limited effects on cardiovascular and metabolic aspects of the disease, emphasising the need for early diagnosis and additional therapeutic approaches. Recent evidence suggests that the dysregulation of circadian rhythms, processes with endogenous rhythmicity that are adjusted to the environment through various cues, is involved in the pathogenesis of comorbidities. In patients with obstructive sleep apnea, altered circadian gene expression patterns have been demonstrated. Obstructive respiratory events may promote circadian dysregulation through the effects of sleep disturbance and intermittent hypoxia, with subsequent inflammation and disruption of neural and hormonal homeostasis. In this review, current knowledge on obstructive sleep apnea, circadian rhythm regulation, and circadian rhythm sleep disorders is summarised. Studies that connect obstructive sleep apnea to circadian rhythm abnormalities are critically evaluated. Furthermore, pathogenetic mechanisms that may underlie this association, most notably hypoxia signalling, are presented. A bidirectional relationship between obstructive sleep apnea and circadian rhythm dysregulation is proposed. Approaching obstructive sleep apnea as a circadian rhythm disorder may prove beneficial for the development of new, personalised diagnostic, therapeutic and prognostic tools. However, further studies are needed before the clinical approach to obstructive sleep apnea includes targeting the circadian system.
Collapse
Affiliation(s)
- Julija Šmon
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kočar
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadeja Pintar
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc-Grošelj
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Miro C, Docimo A, Barrea L, Verde L, Cernea S, Sojat AS, Marina LV, Docimo G, Colao A, Dentice M, Muscogiuri G. "Time" for obesity-related cancer: The role of the circadian rhythm in cancer pathogenesis and treatment. Semin Cancer Biol 2023; 91:99-109. [PMID: 36893964 DOI: 10.1016/j.semcancer.2023.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
The circadian rhythm is regulated by an intrinsic time-tracking system, composed both of a central and a peripheral clock, which influences the cycles of activities and sleep of an individual over 24 h. At the molecular level, the circadian rhythm begins when two basic helix-loop-helix/Per-ARNT-SIM (bHLH-PAS) proteins, BMAL-1 and CLOCK, interact with each other to produce BMAL-1/CLOCK heterodimers in the cytoplasm. The BMAL-1/CLOCK target genes encode for the repressor components of the clock, cryptochrome (Cry1 and Cry2) and the Period proteins (Per1, Per2 and Per3). It has been recently demonstrated that the disruption of circadian rhythm is associated with an increased risk of developing obesity and obesity-related diseases. In addition, it has been demonstrated that the disruption of the circadian rhythm plays a key role in tumorigenesis. Further, an association between the circadian rhythm disruptions and an increased incidence and progression of several types of cancer (e.g., breast, prostate, colorectal and thyroid cancer) has been found. As the perturbation of circadian rhythm has adverse metabolic consequences (e.g., obesity) and at the same time tumor promoter functions, this manuscript has the aim to report how the aberrant circadian rhythms affect the development and prognosis of different types of obesity-related cancers (breast, prostate, colon rectal and thyroid cancer) focusing on both human studies and on molecular aspects.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Annamaria Docimo
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia ed Andrologia, Università Federico II, Naples, Italy
| | - Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, 80143 Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Federico II, 80131 Naples, Italy
| | - Simona Cernea
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures/Internal Medicine I, Târgu Mureş, Romania; Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania
| | - Antoan Stefan Sojat
- National Centre for Infertility and Endocrinology of Gender, Clinic for Endocrinology Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Serbia
| | - Ljiljana V Marina
- National Centre for Infertility and Endocrinology of Gender, Clinic for Endocrinology Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Serbia
| | - Giovanni Docimo
- Department of Medical and Advanced Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia ed Andrologia, Università Federico II, Naples, Italy; UNESCO Chair "Education for Health and Sustainable Development", University of Naples "Federico II", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia ed Andrologia, Università Federico II, Naples, Italy; UNESCO Chair "Education for Health and Sustainable Development", University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
24
|
Deciphering the Role of Melatonin-Related Signatures in Tumor Immunity and the Prognosis of Clear Cell Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3077091. [PMID: 36825082 PMCID: PMC9943605 DOI: 10.1155/2023/3077091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
Methods Adopting multiomics data from TCGA and other public datasets, we analysed the expression, mutation, and prognostic evaluation in multiple cancers. ccRCC patients were categorized into two subgroups by an unsupervised cluster algorithm: melatonin-pattern cancer subtype 1 (MPCS1) and subtype 2 (MPCS2). We then explored the immune microenvironment, immune therapy response, and tumor metabolic pathways between the two subtypes. The clinical characteristics, genomic mutation landscape, and molecular inhibitor response were further investigated. Finally, a melatonin regulator-related prognostic model was constructed to predict patient prognosis in ccRCC. Results We found that melatonin regulators were dysregulated depending on distinct cancer types, which were associated with genomic variation. The two subtypes indicated different clinical characteristics and biological processes in ccRCC. MPCS2, an aggressive subtype, led an advanced clinical stage and poorer survival of ccRCC patients. The activated oncogenic signaling pathway and metabolic signatures were responsible for cancer progression in the MPCS2 subtype. The MPCS2 subgroup suggested a higher tumor mutational burden and immune dysfunction state, resulting in a lower response to immunotherapy. The copy number variations of MPCS2 were significantly more frequent than those of MPCS1. In addition, the two subgroups exhibited distinct drug responsiveness, with MPCS2 being less responsive to multiple drugs. Finally, we established a subtype biomarker-based prognostic risk model that exhibited satisfactory performance in ccRCC patients. Conclusion Melatonin regulator-related features could remodel functional pathways and the tumor immune microenvironment through genomic mutations and pathway regulation. Melatonin regulator-associated molecular subtypes enhance the understanding of the molecular characteristics of renal cancer and can guide clinical treatment. Activating the melatonergic system axis may improve the effect of immunotherapy for ccRCC.
Collapse
|
25
|
Chronobiology and Nanotechnology for Personalized Cancer Therapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
26
|
Lee KW, Yang CC, Chen CH, Hung CH, Chuang HY. Shift work is significantly and positively associated with dementia: A meta-analysis study. Front Public Health 2023; 11:998464. [PMID: 36875407 PMCID: PMC9978382 DOI: 10.3389/fpubh.2023.998464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Background Shift work may disrupt the sleep and wake cycles and negatively affect physical and mental health. Dementia is a neurodegenerative disorder with progressively declining cognition that is receiving increasing attention. Studies on the association between shift work and dementia are rare. Herein, we conducted a meta-analysis to investigate the association between shift work and dementia. Materials and methods This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched the PubMed, Embase, and Web of Science databases using a related set of keywords. The inclusion criteria were as follows: (1) adult employees working in a factory, company, or organization; (2) exposure to shift work/non-shift work; and (3) outcome of dementia based on examination or assessment. A meta-analysis using a fixed-effects model was performed. The hazard ratio of dementia was compared between shift workers and non-shift workers. Results Five studies were included in the quantitative synthesis, and two were selected for further meta-analysis. A random-effects model showed a modest association between shift work and an increase in dementia cases (pooled hazard ratio = 1.13; 95% confidence interval: 1.04-1.23; p = 0.04). This association also occurred in night workers for more than 1 year. Conclusion Shift work and long-term night work were modestly associated with a higher risk of developing dementia. Avoiding long-term night shifts may be effective in reducing dementia risk. Further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Cheng Yang
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Occupational and Environmental Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hung Chen
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Environmental and Occupational Medicine Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Public Health and Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Pedersen JE, Hansen J. Colorectal cancer and occupational exposure to solar ultraviolet B radiation in Denmark. ENVIRONMENTAL RESEARCH 2022; 215:114260. [PMID: 36084677 DOI: 10.1016/j.envres.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Solar ultraviolet B radiation (UV) may reduce the risk of cancer, including colorectal cancer (CRC), although the evidence is inconclusive. To contribute with evidence, the present largescale register-based nested case-control study aimed to investigate the association between occupational UV exposure and CRC in Denmark. METHODS The Danish Cancer Registry was used to identify a total of 12,268 men and women diagnosed with primary CRC before age 70. Five controls matched on year of birth and sex, alive and free of CRC at the time of diagnosis of the index case were randomly selected from The Danish Civil Registration System. Occupational UV exposure was assessed by obtainment of full employment history from the Danish Supplementary Pension Fund Register, which was linked to a job exposure matrix. Conditional logistic regression was used to estimate odds ratios (ORs) with corresponding 95% confidence intervals. RESULTS We observed an inverse association between longer duration of UV exposure and CRC in women (≥20 years: OR = 0.84, 95% CI: 0.69-1.03), while no noteworthy associations were observed in men. When focusing on colon cancer only, longer duration of UV exposure (>20 years: OR = 0.92, 95% CI: 0.83-1.01) and higher cumulative UV exposure (highest exposure category: OR = 0.90, 95% CI: 0.83-0.99) were indicated to lower the risk in the study population including both men and women, although the risk reduction appeared to be more evident for women. No consistent risk patterns were observed for rectal cancer. CONCLUSIONS The present study suggests a modest protective effect from long-term occupational UV exposure on the risk of colon cancer. The effect may be greater in women and these findings need further attention in future large-scale studies.
Collapse
Affiliation(s)
| | - Johnni Hansen
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
28
|
Artificial Dim Light at Night during Pregnancy Can Affect Hormonal and Metabolic Rhythms in Rat Offspring. Int J Mol Sci 2022; 23:ijms232314544. [PMID: 36498872 PMCID: PMC9740453 DOI: 10.3390/ijms232314544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Artificial light at night (ALAN) is considered an environmental risk factor that can interfere with the circadian control of the endocrine system and metabolism. We studied the impact of ALAN during pregnancy on the hormonal and biochemical parameters in rat pups at postnatal (P) days P3, P10, and P20. Control dams (CTRL) were kept in a standard light-dark regime, and ALAN dams were exposed to dim ALAN (<2 lx) during the whole pregnancy. A plasma melatonin rhythm was found in all CTRL groups, whereas in ALAN pups, melatonin was not rhythmic at P3, and its amplitude was lowered at P10; no differences were found between groups at P20. Plasma corticosterone was rhythmic at P20 in both groups, with decreased mesor in ALAN pups. Plasma thyroid hormones exhibited an inconsistent developmental pattern, and vasopressin levels were suppressed at the beginning of the dark phase at P20 in ALAN compared to CTRL. Glucose and cholesterol showed significant daily rhythms in CTRL but not in ALAN offspring at P3. Exposure to ALAN during pregnancy disturbed the development of daily rhythms in measured hormones and metabolites, suggesting that ALAN during pregnancy can act as an endocrine disruptor that can interfere with the normal development of the progeny.
Collapse
|
29
|
Liao CW, Wei CF, Chen MH, Hsieh WS, Lin CC, Chen PC. Association between maternal shift work during pregnancy child overweight and metabolic outcomes in early childhood. Front Public Health 2022; 10:1006332. [PMID: 36249262 PMCID: PMC9565036 DOI: 10.3389/fpubh.2022.1006332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023] Open
Abstract
Background Previous studies found that maternal shift work during pregnancy was associated with many reproductive hazards, including small for gestational age, preterm birth, stillbirth, and neurodevelopmental impairment. Some studies also showed that these children are more likely to become overweight in early childhood. However, the association with metabolic factors, such as insulin resistance and dyslipidemia, was less studied. Hence, we aimed to understand better the relationship between maternal shift work during pregnancy and the risk of childhood overweight and metabolic outcomes. Confounding factors were also discussed, including diet, exercise, and demographical factors. Methods We enrolled pregnant women before delivery in the Taiwan Birth Panel Study (TBPS) II conducted between 2010 and 2012, and followed the children of these participants in 2018. The objective of this study is to investigate the influence of prenatal and postnatal factors on infant and early childhood health. During the follow-up in 2018, we checked children's demographic data, obtained blood specimens, and checked their blood sugar, blood insulin, and lipid profiles. Structured questionnaires were used to evaluate demographic data. Multiple linear and logistic regressions were used to examine the associations between maternal shift work during pregnancy and child overweight, metabolic disorders, such as HOMA-IR, and lipid profiles. Results In this study, we included 407 mother-children pairs with different work shifts (350 day workers and 57 shift workers), and a sub-population without underweight children was also created (290 day workers and 47 shift workers). Shift work during pregnancy was associated with a higher Homeostasis Model Assessment-Insulin Resistance index (HOMA-IR) and a higher odds ratio for overweight in children born from mothers doing shift work during pregnancy after adjustment. The findings were attenuated when we investigated the effect of shift work before pregnancy. Conclusion Our study suggested that maternal shift work during pregnancy was associated with child overweight and insulin resistance in early childhood.
Collapse
Affiliation(s)
- Che-Wei Liao
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan,Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan,Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Wu-Shiun Hsieh
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan,Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan,*Correspondence: Ching-Chun Lin
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan,Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan,Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan,Pau-Chung Chen
| |
Collapse
|
30
|
Velasco-Garrido M, Herold R, Rohwer E, Mache S, Terschürenm C, Preisser AM, Harth V. Evolution of work ability, quality of life and self-rated health in a police department after remodelling shift schedule. BMC Public Health 2022; 22:1670. [PMID: 36056324 PMCID: PMC9439718 DOI: 10.1186/s12889-022-14098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background There exists a great diversity of schedules concerning the way shift work is organized and implemented with ample agreement regarding recommendable features of a shift system. In order to adapt the shift schedule of a metropolitan police department to current recommendations, a remodelled shift schedule was introduced in 2015. The aim of this study was to evaluate the potential associations between the remodelled shift schedule and work ability, quality of life and self-rated health after one and five years. Methods A controlled before-and- after study was conducted during the piloting phase (2015–2016) as well as a 5-year follow-up using paper questionnaires. Outcome parameters included work ability, quality of life and self-rated health. Results Work ability, quality of life and self-rated health improved after the first year of the newly implemented shift schedule among police officers working in the piloting police stations compared to those working according to the former schedule. In 5-year follow-up differences between indicators diminished. Conclusions The implementation of a remodelled shift schedule including more 12-h shifts accompanied by more days off and a coherent weekend off duty was not associated with detrimental effects to work ability, quality of life or self-reported health among police officers. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-14098-5.
Collapse
Affiliation(s)
- Marcial Velasco-Garrido
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Robert Herold
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Rohwer
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Mache
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Terschürenm
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandra M Preisser
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Harth
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Wang G, Wang JJ, Lin CH, Zhou Q, Wang WL, Qin T, Li X, Wang ZJ. Association of sleep duration, sleep apnea, and shift work with risk of colorectal neoplasms: a systematic review and meta-analysis. J Gastrointest Oncol 2022; 13:1805-1817. [PMID: 36092341 PMCID: PMC9459215 DOI: 10.21037/jgo-22-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background Although studies have reported that certain sleep characteristics, such as sleep duration and sleep apnea, are linked to the risk of colorectal cancer (CRC), this link remains contentious because of the limited evidence from individual studies. Furthermore, evidence indicated that shift work involving circadian disruption as a probable human carcinogen. This systematic review and meta-analysis aimed to examine the associations between sleep duration, sleep apnea, and shift work with the risk of colorectal neoplasms, including CRC and colorectal adenoma (CRA). Methods We conducted a comprehensive literature search in PubMed, Embase, and Web of Science databases. The inclusion criteria were determined using PICOS principles. Observational studies reporting associations of sleep duration, sleep apnea, or shift work with risk of CRC or CRA were included. We assessed the risk of bias on the basis of the Newcastle-Ottawa Scale. Results A total of 18 observational studies were included. Of these studies, nine studies reported the effect of sleep duration on risk of colorectal neoplasms, five reported the effect of sleep apnea, and six reported the effect of shift work. The relative risk (RR) for colorectal neoplasms was 1.06 [95% confidence interval (CI): 0.94, 1.20] in the short sleep duration group compared with the moderate sleep duration group. Long sleep duration was associated with an increased risk of colorectal neoplasms (RR: 1.33, 95% CI: 1.07, 1.65). The pooled results showed that sleep apnea was associated with an increased risk of colorectal neoplasms (RR: 1.75, 95% CI: 1.56, 1.97). Furthermore, results showed that the association between shift work and the risk of colorectal neoplasms was not significant (RR: 1.06, 95% CI: 0.95, 1.17). No publication bias was observed in all the analyses (all P>0.05). The sensitivity analysis showed that no individual study substantially influenced the pooled RRs for colorectal neoplasms and CRC. Conclusions Our findings suggest the significant positive association of long sleep duration and sleep apnea with risk of colorectal neoplasms and CRC. Given that sleep characteristics may be a potentially modifiable risk factor for colorectal neoplasms, further understanding of its role in carcinogenesis will provide valuable insight for cancer prevention.
Collapse
Affiliation(s)
- Gang Wang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Gastrointestinal surgery, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Jian-Jiang Wang
- Department of General Surgery, People's Hospital of Yinjiang Autonomous County, Tongren, China
| | - Chao-Huang Lin
- Department of Gastrointestinal surgery, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Qing Zhou
- Department of Gastrointestinal surgery, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Wei-Long Wang
- Department of Gastrointestinal surgery, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Qin
- Department of Gastrointestinal surgery, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Xin Li
- Department of General Surgery, People's Hospital of Yinjiang Autonomous County, Tongren, China
| | - Ze-Jun Wang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Gastrointestinal surgery, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
32
|
Neves AR, Albuquerque T, Quintela T, Costa D. Circadian rhythm and disease: Relationship, new insights, and future perspectives. J Cell Physiol 2022; 237:3239-3256. [PMID: 35696609 DOI: 10.1002/jcp.30815] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
The circadian system is responsible for internal functions and regulation of the organism according to environmental cues (zeitgebers). Circadian rhythm dysregulation or chronodisruption has been associated with several diseases, from mental to autoimmune diseases, and with life quality change. Following this, some therapies have been developed to correct circadian misalignments, such as light therapy and chronobiotics. In this manuscript, we describe the circadian-related diseases so far investigated, and studies reporting relevant data on this topic, evidencing this relationship, are included. Despite the actual limitations in published work, there is clear evidence of the correlation between circadian rhythm dysregulation and disease origin/development, and, in this way, clock-related therapies emerge as great progress in the clinical field. Future improvements in such interventions can lead to the development of successful chronotherapy strategies, deeply contributing to enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Ana R Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,Unidade de Investigação para o Desenvolvimento do Interior (UDI-IPG), Instituto Politécnico da Guarda, Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
33
|
Liu C, Tang X, Gong Z, Zeng W, Hou Q, Lu R. Circadian Rhythm Sleep Disorders: Genetics, Mechanisms, and Adverse Effects on Health. Front Genet 2022; 13:875342. [PMID: 35571019 PMCID: PMC9099045 DOI: 10.3389/fgene.2022.875342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Nearly all living organisms, from cyanobacteria to humans, have an internal circadian oscillation with a periodicity of approximately 24 h. In mammals, circadian rhythms regulate diverse physiological processes including the body temperature, energy metabolism, immunity, hormone secretion, and daily sleep-wake cycle. Sleep is tightly regulated by circadian rhythms, whereas a misalignment between the circadian rhythms and external environment may lead to circadian rhythm sleep disorders (CRSD). CRSD includes four main kinds of disorders: the advanced sleep-wake phase disorder (ASPD), the delayed sleep-wake phase disorder (DSPD), the irregular sleep-wake rhythm disorder and the non-24-h sleep-wake rhythm disorder. Recent studies have begun to shed light on the genetic basis of CRSD. Deciphering the genetic codes for ASPD and DSPD has so far been more successful than the other CRSDs, which allow for the development of animal models and understanding of the pathological mechanisms for these disorders. And studies from humans or animal models implicate CRSDs are associated with adverse health consequences, such as cancer and mental disorders. In this review, we will summarize the recent advances in the genetics, underlying mechanisms and the adverse effects on health of ASPD and DSPD.
Collapse
Affiliation(s)
| | - Xiangrong Tang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zishan Gong
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Wang Zeng
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Qiao Hou
- Department of Rehabilitation Medicine, Xiangya Third Hospital, Central South University, Changsha, China
- *Correspondence: Renbin Lu, ; Qiao Hou,
| | - Renbin Lu
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Renbin Lu, ; Qiao Hou,
| |
Collapse
|
34
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
35
|
Liu W, Zhang H. Do sleep quality and psychological factors link precancerous conditions of colorectal cancer? A retrospective case-control study. Expert Rev Gastroenterol Hepatol 2022; 16:173-179. [PMID: 35043737 DOI: 10.1080/17474124.2022.2029701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Little is known about the effect of sleep quality on the risk of precancerous conditions of colorectal cancer (PCRC). The role of psychological factors, including stress, resilience, and social support as closely related factors of sleep quality, was also discussed. RESEARCH DESIGN AND METHODS Fifty-one patients with PCRC were compared with two control groups during the previous year in a retrospective case-control analysis: 74 patients with colorectal cancer and 145 healthy controls. Participants completed questionnaires measuring sleep quality, perceived stress, resilience, and social support one year prior to disease diagnosis. Univariate and multivariate logistic regression models were used to analyze the data. RESULTS Increased risk of PCRC was associated with sleep disturbance≥2 and the negative factors of stress ≥14 compared with healthy controls. Decreased risk of PCRC was associated with resilience ≥31 and family support ≥18. In a multivariate model, sleep disturbance≥2 was significantly associated with an elevated risk of PCRC (OR = 20.15, 95% CI: 4.22 to 96.26). CONCLUSIONS Physicians should be aware of the strong association between sleep disturbance≥2 and the increased risk for PCRC and explain the need for colonoscopy in patients with sleep disturbance≥2.
Collapse
Affiliation(s)
- Wei Liu
- Department of Gastroenterology in the First Affiliated Hospital, Zhengzhou University, Zhengzhou Henan, China
| | - Huijie Zhang
- Department of Gastroenterology in the First Affiliated Hospital, Zhengzhou University, Zhengzhou Henan, China
| |
Collapse
|
36
|
Xian H, Li Y, Zou B, Chen Y, Yin H, Li X, Pan Y. Identification of TIMELESS and RORA as key clock molecules of non-small cell lung cancer and the comprehensive analysis. BMC Cancer 2022; 22:107. [PMID: 35078435 PMCID: PMC8788117 DOI: 10.1186/s12885-022-09203-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
Background The incidence rate of non-small cell lung cancer (NSCLC) has been increasing worldwide, and the correlation of circadian rhythm disruption with a raised risk of cancer and worse prognosis has been shown by accumulating evidences recently. On the other hand, drug resistance and the impact of tumor heterogeneity have been inevitable in NSCLC therapy. These both lead to an urgent need to identify more useful prognostic and predictive markers for NSCLC diagnosis and treatment, especially on the aspect of circadian clock genes. Methods The expression of the main clock genes in cancer was probed with TIMER and Oncomine databases. The prognostic value of key clock genes was probed systematically with the Kaplan–Meier estimate and Cox regression on samples from TCGA database. RT-qPCR was performed on patient tissue samples to further validate the results from databases. The functional enrichment analysis was performed using the “ClusterProfiler” R package, and the correlation of key clock genes with tumor mutation burden, immune checkpoint, and immune infiltration levels were also assessed using multiple algorithms including TIDE, TIMER2.0, and XCELL. Results TIMELESS was significantly upregulated in lung tissue of clinical lung cancer patients as well as TCGA and Oncomine databases, while RORA was downregulated. Multivariate Cox regression analysis indicated that TIMELESS (P = 0.004, HR = 1.21 [1.06, 1.38]) and RORA (P = 0.047, HR = 0.868 [0.755, 0.998]) has a significant correlation with overall survival in NSCLC. Genes related to TIMELESS were enriched in the cell cycle and immune system, and the function of RORA was mainly focused on oncogenic signaling pathways or glycosylation and protein activation. Also, TIMELESS was positively correlated with tumor mutation burden while RORA was negatively correlated with it. TIMELESS and RORA were also significantly correlated with immune checkpoint and immune infiltration levels in NSCLC. Additionally, TIMELESS showed a significant positive relationship with lipid metabolism. Conclusions TIMELESS and RORA were identified as key clock genes in NSCLC, and were independent prognostic factors for overall survival in NSCLC. The function of them were assessed in many aspects, indicating the strong potential of the two genes to serve as biomarkers for NSCLC progression and prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09203-1.
Collapse
|
37
|
The interplay of pineal hormones and socioeconomic status leading to colorectal cancer disparity. Transl Oncol 2022; 16:101330. [PMID: 34990909 PMCID: PMC8741600 DOI: 10.1016/j.tranon.2021.101330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the United States. Despite increased screening options and state-of-art treatments offered in clinics, racial differences remain in CRC. African Americans (AAs) are disproportionately affected by the disease; the incidence and mortality are higher in AAs than Caucasian Americans (CAs). At the time of diagnosis, AAs more often present with advanced stages and aggressive CRCs, primarily accounting for the racial differences in therapeutic outcomes and mortality. The early incidence of CRC in AAs could be attributed to race-specific gene polymorphisms and lifestyle choices associated with socioeconomic status (SES). Altered melatonin-serotonin signaling, besides the established CRC risk factors (age, diet, obesity, alcoholism, and tobacco use), steered by SES, glucocorticoid, and Vitamin D status in AAs could also account for the early incidence in this racial group. This review focuses on how the lifestyle factors, diet, allelic variants, and altered expression of specific genes could lead to atypical serotonin and melatonin signaling by modulating the synthesis, secretion, and signaling of these pineal hormones in AAs and predisposing them to develop more aggressive CRC earlier than CAs. Crosstalk between gut microbiota and pineal hormones and its impact on CRC pathobiology is addressed from a race-specific perspective. Lastly, the status of melatonin-focused CRC treatments, the need to better understand the perturbed melatonin signaling, and the potential of pineal hormone-directed therapeutic interventions to reduce CRC-associated disparity are discussed.
Collapse
|
38
|
Boivin DB, Boudreau P, Kosmadopoulos A. Disturbance of the Circadian System in Shift Work and Its Health Impact. J Biol Rhythms 2021; 37:3-28. [PMID: 34969316 PMCID: PMC8832572 DOI: 10.1177/07487304211064218] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The various non-standard schedules required of shift workers force abrupt changes in the timing of sleep and light-dark exposure. These changes result in disturbances of the endogenous circadian system and its misalignment with the environment. Simulated night-shift experiments and field-based studies with shift workers both indicate that the circadian system is resistant to adaptation from a day- to a night-oriented schedule, as determined by a lack of substantial phase shifts over multiple days in centrally controlled rhythms, such as those of melatonin and cortisol. There is evidence that disruption of the circadian system caused by night-shift work results not only in a misalignment between the circadian system and the external light-dark cycle, but also in a state of internal desynchronization between various levels of the circadian system. This is the case between rhythms controlled by the central circadian pacemaker and clock genes expression in tissues such as peripheral blood mononuclear cells, hair follicle cells, and oral mucosa cells. The disruptive effects of atypical work schedules extend beyond the expression profile of canonical circadian clock genes and affects other transcripts of the human genome. In general, after several days of living at night, most rhythmic transcripts in the human genome remain adjusted to a day-oriented schedule, with dampened group amplitudes. In contrast to circadian clock genes and rhythmic transcripts, metabolomics studies revealed that most metabolites shift by several hours when working nights, thus leading to their misalignment with the circadian system. Altogether, these circadian and sleep-wake disturbances emphasize the all-encompassing impact of night-shift work, and can contribute to the increased risk of various medical conditions. Here, we review the latest scientific evidence regarding the effects of atypical work schedules on the circadian system, sleep and alertness of shift-working populations, and discuss their potential clinical impacts.
Collapse
Affiliation(s)
- Diane B Boivin
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Philippe Boudreau
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Anastasi Kosmadopoulos
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
39
|
Cable J, Schernhammer E, Hanlon EC, Vetter C, Cedernaes J, Makarem N, Dashti HS, Shechter A, Depner C, Ingiosi A, Blume C, Tan X, Gottlieb E, Benedict C, Van Cauter E, St-Onge MP. Sleep and circadian rhythms: pillars of health-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:18-34. [PMID: 34341993 PMCID: PMC8688158 DOI: 10.1111/nyas.14661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The human circadian system consists of the master clock in the suprachiasmatic nuclei of the hypothalamus as well as in peripheral molecular clocks located in organs throughout the body. This system plays a major role in the temporal organization of biological and physiological processes, such as body temperature, blood pressure, hormone secretion, gene expression, and immune functions, which all manifest consistent diurnal patterns. Many facets of modern life, such as work schedules, travel, and social activities, can lead to sleep/wake and eating schedules that are misaligned relative to the biological clock. This misalignment can disrupt and impair physiological and psychological parameters that may ultimately put people at higher risk for chronic diseases like cancer, cardiovascular disease, and other metabolic disorders. Understanding the mechanisms that regulate sleep circadian rhythms may ultimately lead to insights on behavioral interventions that can lower the risk of these diseases. On February 25, 2021, experts in sleep, circadian rhythms, and chronobiology met virtually for the Keystone eSymposium "Sleep & Circadian Rhythms: Pillars of Health" to discuss the latest research for understanding the bidirectional relationships between sleep, circadian rhythms, and health and disease.
Collapse
Affiliation(s)
| | - Eva Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Erin C Hanlon
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Nour Makarem
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| | - Hassan S Dashti
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado
- Center for Genomic Medicine, Massachusetts General Hospital, and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ari Shechter
- Department of Medicine and Sleep Center of Excellence, Columbia University Irving Medical Center, New York, New York
| | - Christopher Depner
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah
| | - Ashley Ingiosi
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, and Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Xiao Tan
- Department of Neuroscience (Sleep Science, BMC), Uppsala University, Uppsala, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Elie Gottlieb
- The Florey Institute of Neuroscience and Mental Health, and University of Melbourne, Melbourne, Victoria, Australia
| | - Christian Benedict
- Department of Neuroscience (Sleep Science, BMC), Uppsala University, Uppsala, Sweden
| | - Eve Van Cauter
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois
| | - Marie-Pierre St-Onge
- Sleep Center of Excellence, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
40
|
Lu Q, Kim JY. Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J 2021; 289:6589-6604. [PMID: 34657394 DOI: 10.1111/febs.16233] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
The brain has a complex structure composed of hundreds of regions, forming networks to cooperate body functions. Therefore, understanding how various brain regions communicate with each other and with peripheral organs is important to understand human physiology. The suprachiasmatic nucleus (SCN) in the brain is the circadian pacemaker. The SCN receives photic information from the environment and conveys this to other parts of the brain and body to synchronize all circadian clocks. The circadian clock is an endogenous oscillator that generates daily rhythms in metabolism and physiology in almost all cells via a conserved transcriptional-translational negative feedback loop. So, the information flow from the environment to the SCN to other tissues synchronizes locally distributed circadian clocks to maintain homeostasis. Thus, understanding the circadian networks and how they adjust to environmental changes will better understand human physiology. This review will focus on circadian networks mediated by the SCN to understand how the environment, brain, and peripheral tissues form networks for cooperation.
Collapse
Affiliation(s)
- Qingqing Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Tung Foundation Biomedical Sciences Centre, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
41
|
Zhang J, Jiang H, Du K, Xie T, Wang B, Chen C, Reiter RJ, Cen B, Yuan Y. Pan-cancer analyses reveal genomics and clinical characteristics of the melatonergic regulators in cancer. J Pineal Res 2021; 71:e12758. [PMID: 34289167 DOI: 10.1111/jpi.12758] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
Melatonin, an endogenous hormone, plays protective roles in cancer. In addition to regulating circadian rhythms, sleep, and neuroendocrine activity, melatonin functions in various survival pathways. However, the mechanisms of melatonin regulation in cancer remain unknown. In the present study, we performed a comprehensive characterization of melatonin regulators in 9125 tumor samples across 33 cancer types using multi-omic data from The Cancer Genome Atlas and Cancer Cell Line Encyclopedia. In the genomic landscape, we identified the heterozygous amplification of AANAT and GPR50, and heterozygous deletion of PER3, CYP2C19, and MTNR1A as the dominant alteration events. Expression analysis revealed methylation-mediated downregulation of melatonergic regulator expression. In addition, we found that melatonergic regulator expression could be used to predict patient survival in various cancers. In depth, microRNA (miRNA) analysis revealed an miRNA-mRNA interaction network, and the deregulated miRNAs were involved in melatonin secretion and metabolism by targeting circadian clock genes. Pathway analysis showed that melatonergic regulators were associated with inhibition of apoptosis, the cell cycle, the DNA damage response, and activation of RAS/MAPK and RTK signaling pathways. Importantly, by mining the Genomics of Drug Sensitivity in Cancer database, we discovered a number of potential drugs that might target melatonergic regulators. In summary, this study revealed the genomic alteration and clinical characteristics of melatonergic regulators across 33 cancers, which might clarify the relationship between melatonin and tumorigenesis. Our findings also might provide a novel approach for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Huali Jiang
- Department of Cardiovascularology, Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Kunpeng Du
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, USA
| | - Bohong Cen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| |
Collapse
|
42
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
43
|
Duijster J, Mughini-Gras L, Neefjes J, Franz E. Occupational exposure and risk of colon cancer: a nationwide registry study with emphasis on occupational exposure to zoonotic gastrointestinal pathogens. BMJ Open 2021; 11:e050611. [PMID: 34376453 PMCID: PMC8356182 DOI: 10.1136/bmjopen-2021-050611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES While colon cancer (CC) risk is associated with several lifestyle-related factors, including physical inactivity, smoking and diet, the contribution of occupation to CC morbidity remains largely unclear. Growing evidence indicates that gastrointestinal infections like salmonellosis could contribute to CC development. We performed a nationwide registry study to assess potential associations between occupation (history) and CC, including also those occupations with known increased exposure to gastrointestinal pathogens like Salmonella. METHODS: Person-level occupational data for all residents in The Netherlands were linked to CC diagnosis data. Differences in the incidence of (overall, proximal and distal) CC among occupational sectors and risk groups were tested for significance by calculating standardised incidence ratios (SIRs) with 95% CIs using the general population as reference group. Effects of gender, age, exposure duration and latency were also assessed. RESULTS Significant differences in CC incidence were observed only for a few occupational sectors, including the manufacturing of rubber and plastics, machinery and leather, the printing sector and the information service sector (SIRs 1.06-1.88). No elevated risk of CC was observed among people with increased salmonellosis risk through occupational exposure to live animals, manure or among those working in the sale of animal-derived food products (SIRs 0.93-0.95, 0.81-0.95 and 0.93-1.09 for overall, proximal and distal CC, respectively). CONCLUSIONS The results of this study suggest that occupation in itself provides a relatively small contribution to CC incidence. This is consistent with previous studies where a similar degree of variation in risk estimates was observed. The lack of an association with the high-risk occupations for salmonellosis might be due to higher levels of physical activity, a known protective factor for CC and other diseases, of people working in the agricultural sector, which might outweigh the potential Salmonella-associated risk of CC.
Collapse
Affiliation(s)
- Janneke Duijster
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
44
|
Wagner PM, Prucca CG, Caputto BL, Guido ME. Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
Affiliation(s)
- Paula M. Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - César G. Prucca
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Beatriz L. Caputto
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mario E. Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
45
|
Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
|
46
|
Zhang Y, Song M, Chan AT, Schernhammer ES, Wolpin BM, Stampfer MJ, Meyerhardt JA, Fuchs CS, Roberts SB, Willett WC, Hu FB, Giovannucci EL, Ng K. Unrestrained eating behavior and risk of digestive system cancers: a prospective cohort study. Am J Clin Nutr 2021; 114:1612-1624. [PMID: 34293086 PMCID: PMC8588850 DOI: 10.1093/ajcn/nqab235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Unrestrained eating behavior, as a potential proxy for diet frequency, timing, and caloric intake, has been questioned as a plausible risk factor for digestive system cancers, but epidemiological evidence remains sparse. OBJECTIVES We investigated prospectively the associations between unrestrained eating behavior and digestive system cancer risk. METHODS Participants in the Nurses' Health Study who were free of cancer and reported dietary information in 1994 were followed for ≤18 y. Cox models were used to estimate HRs and 95% CIs for unrestrained eating (eating anything at any time, no concern with figure change, or both) and risk of digestive system cancers. RESULTS During follow-up, 2064 digestive system cancer cases were documented among 70,450 eligible participants in analyses of eating anything at any time, In total, 2081 digestive system cancer cases were documented among 72,468 eligible participants in analyses of no concern with figure change. In fully adjusted analyses, women with the behavior of eating anything at any time had a higher risk of overall digestive system cancer (HR: 1.22; 95% CI: 1.10, 1.35), overall gastrointestinal tract cancer ((HR: 1.33; 95% CI: 1.18, 1.50), buccal cavity and pharynx cancer (HR: 1.50; 95% CI: 1.02, 2.21), esophageal cancer (HR: 1.62; 95% CI: 1.01, 2.62), small intestine cancer (HR: 1.92; 95% CI: 1.02,3. 59), and colorectal cancer (HR: 1.20; 95% CI: 1.04, 1.38), and a non-statistically significant increased risk of stomach cancer (HR: 1.54; 95% CI: 0.96,2.48), compared with women without this behavior. No statistically significant association was observed for pancreatic cancer and liver and gallbladder cancer. The combined effect of eating anything at any time and having no concern with figure change was associated with a significantly increased risk of overall digestive system cancer (HR: 1.27; 95% CI: 1.10, 1.46), overall gastrointestinal tract cancer (HR: 1.45; 95% CI: 1.23, 1.71), and colorectal cancer (HR: 1.34; 95% CI: 1.11, 1.63), compared with women exhibiting the opposite. CONCLUSIONS Unrestrained eating behavior was independently associated with increased risk of gastrointestinal tract cancers. The potential importance of unrestrained eating behavior modification in preventing gastrointestinal tract cancers should be noted.
Collapse
Affiliation(s)
- Yin Zhang
- Address correspondence to YZ (emails: and )
| | - Mingyang Song
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Center of Public Health, Medical University of Vienna, Vienna, Austria
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Meir J Stampfer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Department of Medical Oncology, Smilow Cancer Hospital and Yale Cancer Center, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Susan B Roberts
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Walter C Willett
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Exploring the link between chronobiology and drug delivery: effects on cancer therapy. J Mol Med (Berl) 2021; 99:1349-1371. [PMID: 34213595 DOI: 10.1007/s00109-021-02106-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/01/2023]
Abstract
Circadian clock is an impressive timing system responsible for the control of several metabolic, physiological and behavioural processes. Nowadays, the connection between the circadian clock and cancer occurrence and development is consensual. Therefore, the inclusion of circadian timing into cancer therapy may potentially offer a more effective and less toxic approach. This way, chronotherapy has been shown to improve cancer treatment efficacy. Despite this relevant finding, its clinical application is poorly exploited. The conception of novel anticancer drug delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy, instigating the incorporation of the circadian timing into clinical practice towards a more personalized drug delivery. This review focuses on the recent advances in the field of cancer chronobiology, on the link between cancer and the disruption of circadian rhythms and on the promising targeted drug nanodelivery approaches aiming the clinical application of cancer chronotherapy.
Collapse
|
48
|
Associations between sleep duration, shift work, and infectious illness in the United States: Data from the National Health Interview Survey. Sleep Health 2021; 7:638-643. [PMID: 34193397 DOI: 10.1016/j.sleh.2021.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Insufficient sleep and circadian disruption have been linked to immune system dysregulation. The aim of this study was to examine the associations between self-reported sleep duration and work schedule with reports of head and chest colds among adults 18 years and older in the United States. METHODS Associations between self-reported habitual sleep duration and work schedule (regular daytime, regular evening, regular nighttime, rotating, other) with reports head and chest colds in the past 2 weeks were examined using data from the 2010 and 2015 National Health Interview Survey. Adults who slept 7-8 hours or reported a regular daytime work schedule were considered the reference group. Multivariate logistic regressions, incorporating sampling weights, were computed adjusting for sociodemographic and health characteristics. RESULTS Analyses revealed in fully adjusted models that compared to 7- 8 hours sleepers, those sleeping 5 or fewer hours were 44% more likely to report a cold (odds ratio [OR] = 1.44, 95% confidence interval [CI] 1.29-1.61) while those sleeping 9 or more hours were 20% more likely (OR = 1.20, 95% CI 1.06-1.36). Participants who reported a rotating work schedule were 20% more likely to report a cold (OR = 1.20, 95% CI 1.07-1.36) than those reporting a regular daytime work schedule. CONCLUSIONS Short and long sleep duration, as well as a rotating shift work schedule, were associated with increased reports of head and chest colds in a nationally representative sample of US adults. Sleep and circadian function may serve as relevant targets to reduce susceptibility to infectious illness.
Collapse
|
49
|
Daghlas I, Richmond RC, Lane JM, Dashti HS, Ollila HM, Schernhammer ES, Smith GD, Rutter MK, Saxena R, Vetter C. Selection into shift work is influenced by educational attainment and body mass index: a Mendelian randomization study in the UK Biobank. Int J Epidemiol 2021; 50:1229-1240. [PMID: 33712841 DOI: 10.1093/ije/dyab031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Shift work is associated with increased cardiometabolic disease risk. This observation may be partly explained by cardiometabolic risk factors having a role in the selection of individuals into or out of shift work. We performed Mendelian randomization (MR) analyses in the UK Biobank (UKB) to test this hypothesis. METHODS We used genetic risk scores (GRS) to proxy nine cardiometabolic risk factors and diseases (including educational attainment, body mass index (BMI), smoking, and alcohol consumption), and tested associations of each GRS with self-reported frequency of current shift work among employed UKB participants of European ancestry (n = 190 573). We used summary-level MR sensitivity analyses to assess robustness of the identified effects, and we tested whether effects were mediated through sleep timing preference. RESULTS Genetically instrumented liability to lower educational attainment (odds ratio (OR) per 3.6 fewer years in educational attainment = 2.40, 95% confidence interval (CI) = 2.22-2.59, P = 4.84 × 10-20) and higher body mass index (OR per 4.7 kg/m2 higher BMI = 1.30, 95% CI = 1.14-1.47, P = 5.85 × 10-5) increased odds of reporting participation in frequent shift work. Results were unchanged in sensitivity analyses allowing for different assumptions regarding horizontal pleiotropy. No selection effects were evident for the remaining exposures, nor for any exposures on selection out of shift work. Sleep timing preference did not mediate the effects of BMI and educational attainment on selection into shift work. CONCLUSIONS Liability to lower educational attainment and higher BMI may influence selection into shift work. This phenomenon may bias epidemiological studies of shift work that are performed in the UKB.
Collapse
Affiliation(s)
- Iyas Daghlas
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jacqueline M Lane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hassan S Dashti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanna M Ollila
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Martin K Rutter
- Division of Endocrinology, Diabetes and Gastroenterology, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, UK.,Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richa Saxena
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Céline Vetter
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
50
|
Astone M, Santoro MM. Time to fight: targeting the circadian clock molecular machinery in cancer therapy. Drug Discov Today 2021; 26:1164-1184. [PMID: 33549826 DOI: 10.1016/j.drudis.2021.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The circadian clock regulates a wide range of molecular pathways and biological processes. The expression of clock genes is often altered in cancer, fostering tumor initiation and progression. Inhibition and activation of core circadian clock genes, as well as treatments that restore circadian rhythmicity, have been successful in counteracting tumor growth in different experimental models. Here, we provide an up-to-date overview of studies that show the therapeutic effects of targeting the clock molecular machinery in cancer, both genetically and pharmacologically. We also highlight future areas for progress that offer a promising path towards innovative anticancer strategies. Substantial limitations in the current understanding of the complex interplay between the circadian clock and cancer in vivo need to be addressed in order to allow clock-targeting therapies in cancer.
Collapse
Affiliation(s)
- Matteo Astone
- Department of Biology, University of Padova, I-35131, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padova, I-35131, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy.
| |
Collapse
|