1
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01005-z. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Moise G, Jîjie AR, Moacă EA, Predescu IA, Dehelean CA, Hegheș A, Vlad DC, Popescu R, Vlad CS. Plants' Impact on the Human Brain-Exploring the Neuroprotective and Neurotoxic Potential of Plants. Pharmaceuticals (Basel) 2024; 17:1339. [PMID: 39458980 PMCID: PMC11510325 DOI: 10.3390/ph17101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Plants have long been recognized for their potential to influence neurological health, with both neuroprotective and neurotoxic properties. This review explores the dual nature of plant-derived compounds and their impact on the human brain. DISCUSSION Numerous studies have highlighted the neuroprotective effects of various phytoconstituents, such as those found in Ginkgo biloba, Centella asiatica, Panax ginseng, Withania somnifera, and Curcuma longa. The neuroprotective compounds have demonstrated antioxidant, anti-inflammatory, and cognitive-enhancing properties, making them promising candidates for combating neurodegenerative diseases and improving brain function. Polyphenolic compounds, triterpenic acids, and specific phytocompounds like the ones from EGb 761 extract have shown interactions with key enzymes and receptors in the brain, leading to neuroprotective outcomes. However, this review also acknowledges the neurotoxic potential of certain plants, such as the Veratrum species, which contains steroidal alkaloids that can cause DNA damage and disrupt neurological function, or Atropa belladonna, which interfere with the normal functioning of the cholinergic system in the body, leading to a range of symptoms associated with anticholinergic toxicity. CONSLUSIONS This review also emphasizes the need for further research to elucidate the complex mechanisms underlying the neuroprotective and neurotoxic effects of plant-derived compounds, as well as to identify novel phytoconstituents with therapeutic potential. Understanding the complex relationship between plants and the human brain is crucial for harnessing the benefits of neuroprotective compounds while mitigating the risks associated with neurotoxic substances. This review provides a comprehensive overview of the knowledge on the neurological properties of plants and highlights the importance of continued research in this field for the development of novel therapeutic strategies targeting brain health and neurological disorders.
Collapse
Affiliation(s)
- Georgiana Moise
- Department of Clinical Pharmacology, The Doctoral School of Medicine, “Pius Brînzeu” County Emergency Clinical Hospital Timisoara, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Iasmina-Alexandra Predescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Alina Hegheș
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliborca Cristina Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department II—Department of Microscopic Morphology, Division of Cell and Molecular Biology II, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
| |
Collapse
|
3
|
Trius-Soler M, Moreno JJ. Bitter taste receptors: Key target to understand the effects of polyphenols on glucose and body weight homeostasis. Pathophysiological and pharmacological implications. Biochem Pharmacol 2024; 228:116192. [PMID: 38583811 DOI: 10.1016/j.bcp.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Experimental and clinical research has reported beneficial effects of polyphenol intake on high prevalent diseases such as type 2 diabetes and obesity. These phytochemicals are ligands of taste 2 receptors (T2Rs) that have been recently located in a variety of organs and extra-oral tissues. Therefore, the interaction between polyphenol and T2Rs in brain structures can play a direct effect on appetite/satiety regulation and food intake. T2Rs are also expressed along the digestive tract, and their interaction with polyphenols can induce the release of gastrointestinal hormones (e.g., ghrelin, GLP-1, CCK) influencing appetite, gastrointestinal functionally, and glycemia control. Intestinal microbiota can also influence on network effects of polyphenols-T2Rs interaction and vice versa, impacting innate immune responses and consequently on gut functionally. Furthermore, polyphenols binding to T2Rs present important effects on adipose tissue metabolism. Interestingly, T2R polymorphism could, at least partially, explain the inter-individual variability of the effects of polyphenols on glucose and body weight homeostasis. Together, these factors can contribute to understand the beneficial effects of polyphenol-rich diets but also might aid in identifying new pharmacological pathway targets for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Moreno
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute for Nutrition and Food Safety Research, University of Barcelona, Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Leonti M, Cabras S, Castellanos Nueda ME, Casu L. Food drugs as drivers of therapeutic knowledge and the role of chemosensory qualities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118012. [PMID: 38447614 DOI: 10.1016/j.jep.2024.118012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemosensory qualities of botanical drugs are important cues for anticipating physiologic consequences. Whether a botanical drug is used for both, food and medicine, or only as medicine depends on taste preferences, nutritional content, cultural background, and the individual and overall epidemiological context. MATERIAL AND METHODS We subjected 540 botanical drugs described in De Materia Medica having at least one oral medical application to a tasting panel. The 540 drugs were grouped into those only used for medicine (388) and those also used for food (152). The associations with chemosensory qualities and therapeutic indications were compared across the two groups. We considered 22 experimentally assessed chemosensory qualities and 39 categories of therapeutic use groups. We wanted to know, 1): which chemosensory qualities increase the probability of an orally applied botanical drug to be also used for food ? 2): which chemosensory qualities augment the probability of an orally applied botanical drug to be only used for medicine? and 3): whether there are differences in therapeutic indications between orally applied botanical drugs also used for food (food drugs) and botanical drugs applied exclusively for medicinal purposes (non-food drugs) and, if yes, how the differences can be explained. RESULTS Chemosensory qualities augmenting the probability of an orally applied botanical drug to be also used for food were sweet, starchy, salty, burning/hot, fruity, nutty, and cooling. Therapeutics used for diarrhoea, as libido modulators, purgatives, laxatives, for expelling parasites, breast and lactation and increasing diuresis, were preferentially sourced from food drugs while drugs used for liver and jaundice, vaginal discharge and humoral management showed significant negative associations with food dugs in ancient Greek-Roman materia medica. CONCLUSION Therapeutics used for ailments of body organs involved in the digestion of food and the excretion of waste products showed a tendency to be sourced from food drugs. Arguably, the daily consumption of food offered the possibility for observing post-prandial physiologic and pharmacologic effects which led to a high therapeutic versatility of food drugs and the possibility to understand benefits of taste and flavour qualities. The difference in chemosensory qualities between food drugs and non-food drugs is demarcating the organoleptic requirements of food rather than that of medicine.
Collapse
Affiliation(s)
- Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, (CA), Italy.
| | - Stefano Cabras
- Department of Statistics, Carlos III University of Madrid, C/Madrid, 126, 28903, Getafe, (MA), Spain
| | | | - Laura Casu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, (CA), Italy
| |
Collapse
|
5
|
Morini G. The taste for health: the role of taste receptors and their ligands in the complex food/health relationship. Front Nutr 2024; 11:1396393. [PMID: 38873558 PMCID: PMC11169839 DOI: 10.3389/fnut.2024.1396393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Taste, food, and health are terms that have since always accompanied the act of eating, but the association was simple: taste serves to classify a food as good or bad and therefore influences food choices, which determine the nutritional status and therefore health. The identification of taste receptors, particularly, the G protein-coupled receptors that mediate sweet, umami, and bitter tastes, in the gastrointestinal tract has assigned them much more relevant tasks, from nutrient sensing and hormone release to microbiota composition and immune response and finally to a rationale for the gut-brain axis. Particularly interesting are bitter taste receptors since most of the times they do not mediate macronutrients (energy). The relevant roles of bitter taste receptors in the gut indicate that they could become new drug targets and their ligands new medications or components in nutraceutical formulations. Traditional knowledge from different cultures reported that bitterness intensity was an indicator for distinguishing plants used as food from those used as medicine, and many non-cultivated plants were used to control glucose level and treat diabetes, modulate hunger, and heal gastrointestinal disorders caused by pathogens and parasites. This concept represents a means for the scientific integration of ancient wisdom with advanced medicine, constituting a possible boost for more sustainable food and functional food innovation and design.
Collapse
|
6
|
Schaefer S, Ziegler F, Lang T, Steuer A, Di Pizio A, Behrens M. Membrane-bound chemoreception of bitter bile acids and peptides is mediated by the same subset of bitter taste receptors. Cell Mol Life Sci 2024; 81:217. [PMID: 38748186 PMCID: PMC11096235 DOI: 10.1007/s00018-024-05202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/18/2024]
Abstract
The vertebrate sense of taste allows rapid assessment of the nutritional quality and potential presence of harmful substances prior to ingestion. Among the five basic taste qualities, salty, sour, sweet, umami, and bitter, bitterness is associated with the presence of putative toxic substances and elicits rejection behaviors in a wide range of animals including humans. However, not all bitter substances are harmful, some are thought to be health-beneficial and nutritious. Among those compound classes that elicit a bitter taste although being non-toxic and partly even essential for humans are bitter peptides and L-amino acids. Using functional heterologous expression assays, we observed that the 5 dominant human bitter taste receptors responsive to bitter peptides and amino acids are activated by bile acids, which are notorious for their extreme bitterness. We further demonstrate that the cross-reactivity of bitter taste receptors for these two different compound classes is evolutionary conserved and can be traced back to the amphibian lineage. Moreover, we show that the cross-detection by some receptors relies on "structural mimicry" between the very bitter peptide L-Trp-Trp-Trp and bile acids, whereas other receptors exhibit a phylogenetic conservation of this trait. As some bile acid-sensitive bitter taste receptor genes fulfill dual-roles in gustatory and non-gustatory systems, we suggest that the phylogenetic conservation of the rather surprising cross-detection of the two substance classes could rely on a gene-sharing-like mechanism in which the non-gustatory function accounts for the bitter taste response to amino acids and peptides.
Collapse
Affiliation(s)
- Silvia Schaefer
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Florian Ziegler
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Alexandra Steuer
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
- Chemoinformatics and Protein Modelling, Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany.
| |
Collapse
|
7
|
Ziaikin E, Tello E, Peterson DG, Niv MY. BitterMasS: Predicting Bitterness from Mass Spectra. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10537-10547. [PMID: 38685906 PMCID: PMC11082931 DOI: 10.1021/acs.jafc.3c09767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Bitter compounds are common in nature and among drugs. Previously, machine learning tools were developed to predict bitterness from the chemical structure. However, known structures are estimated to represent only 5-10% of the metabolome, and the rest remain unassigned or "dark". We present BitterMasS, a Random Forest classifier that was trained on 5414 experimental mass spectra of bitter and nonbitter compounds, achieving precision = 0.83 and recall = 0.90 for an internal test set. Next, the model was tested against spectra newly extracted from the literature 106 bitter and nonbitter compounds and for additional spectra measured for 26 compounds. For these external test cases, BitterMasS exhibited 67% precision and 93% recall for the first and 58% accuracy and 99% recall for the second. The spectrum-bitterness prediction strategy was more effective than the spectrum-structure-bitterness prediction strategy and covered more compounds. These encouraging results suggest that BitterMasS can be used to predict bitter compounds in the metabolome without the need for structural assignment of individual molecules. This may enable identification of bitter compounds from metabolomics analyses, for comparing potential bitterness levels obtained by different treatments of samples and for monitoring bitterness changes overtime.
Collapse
Affiliation(s)
- Evgenii Ziaikin
- Food
Science and Nutrition, The Robert H. Smith Faculty of Agriculture,
Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Edisson Tello
- Department
of Food Science and Technology, College of Food, Agriculture, and
Environmental Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Devin G. Peterson
- Department
of Food Science and Technology, College of Food, Agriculture, and
Environmental Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Masha Y. Niv
- Food
Science and Nutrition, The Robert H. Smith Faculty of Agriculture,
Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| |
Collapse
|
8
|
Chu X, Zhu W, Li X, Su E, Wang J. Bitter flavors and bitter compounds in foods: identification, perception, and reduction techniques. Food Res Int 2024; 183:114234. [PMID: 38760147 DOI: 10.1016/j.foodres.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
Bitterness is one of the five basic tastes generally considered undesirable. The widespread presence of bitter compounds can negatively affect the palatability of foods. The classification and sensory evaluation of bitter compounds have been the focus in recent research. However, the rigorous identification of bitter tastes and further studies to effectively mask or remove them have not been thoroughly evaluated. The present paper focuses on identification of bitter compounds in foods, structural-based activation of bitter receptors, and strategies to reduce bitter compounds in foods. It also discusses the roles of metabolomics and virtual screening analysis in bitter taste. The identification of bitter compounds has seen greater success through metabolomics with multivariate statistical analysis compared to conventional chromatography, HPLC, LC-MS, and NMR techniques. However, to avoid false positives, sensory recognition should be combined. Bitter perception involves the structural activation of bitter taste receptors (TAS2Rs). Only 25 human TAS2Rs have been identified as responsible for recognizing numerous bitter compounds, showcasing their high structural diversity to bitter agonists. Thus, reducing bitterness can be achieved through several methods. Traditionally, the removal or degradation of bitter substances has been used for debittering, while the masking of bitterness presents a new effective approach to improving food flavor. Future research in food bitterness should focus on identifying unknown bitter compounds in food, elucidating the mechanisms of activation of different receptors, and developing debittering techniques based on the entire food matrix.
Collapse
Affiliation(s)
- Xinyu Chu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wangsheng Zhu
- Engineering Technology Research Center for Plant Cell of Anhui Province, West Anhui University, Anhui 237012, China
| | - Xue Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahong Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Nolden AA, Behrens M, McGeary JE, Meyerhof W, Hayes JE. Differential Activation of TAS2R4 May Recover Ability to Taste Propylthiouracil for Some TAS2R38 AVI Homozygotes. Nutrients 2024; 16:1357. [PMID: 38732607 PMCID: PMC11085076 DOI: 10.3390/nu16091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bitterness from phenylthiocarbamide and 6-n-propylthiouracil (PROP) varies with polymorphisms in the TAS2R38 gene. Three SNPs form two common (AVI, PAV) and four rare haplotypes (AAI, AAV, PVI, and PAI). AVI homozygotes exhibit higher detection thresholds and lower suprathreshold bitterness for PROP compared to PAV homozygotes and heterozygotes, and these differences may influence alcohol and vegetable intake. Within a diplotype, substantial variation in suprathreshold bitterness persists, and some AVI homozygotes report moderate bitterness at high concentrations. A second receptor encoded by a gene containing a functional polymorphism may explain this. Early work has suggested that PROP might activate TAS2R4 in vitro, but later work did not replicate this. Here, we identify three TAS2R4 SNPs that result in three diplotypes-SLN/SLN, FVS/SLN, and FVS/FVS-which make up 25.1%, 44.9%, and 23.9% of our sample. These TAS2R4 haplotypes show minimal linkage disequilibrium with TAS2R38, so we examined the suprathreshold bitterness as a function of both. The participants (n = 243) rated five PROP concentrations in duplicate, interleaved with other stimuli. As expected, the TAS2R38 haplotypes explained ~29% (p < 0.0001) of the variation in the bitterness ratings, with substantial variation within the haplotypes (AVI/AVI, PAV/AVI, and PAV/PAV). Notably, the TAS2R4 diplotypes (independent of the TAS2R38 haplotypes) explained ~7-8% of the variation in the bitterness ratings (p = 0.0001). Given this, we revisited if PROP could activate heterologously expressed TAS2R4 in HEK293T cells, and calcium imaging indicated 3 mM PROP is a weak TAS2R4 agonist. In sum, our data are consistent with the second receptor hypothesis and may explain the recovery of the PROP tasting phenotype in some AVI homozygotes; further, this finding may potentially help explain the conflicting results on the TAS2R38 diplotype and food intake.
Collapse
Affiliation(s)
- Alissa A. Nolden
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Sensory Evaluation Center, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maik Behrens
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department Molecular Genetics, 14558 Nuthetal, Germany; (M.B.); (W.M.)
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - John E. McGeary
- Center of Innovation in Long Term Services & Supports, VA Providence Healthcare, Providence, RI 02908, USA;
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department Molecular Genetics, 14558 Nuthetal, Germany; (M.B.); (W.M.)
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424 Homburg, Germany
| | - John E. Hayes
- Sensory Evaluation Center, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Lamond E, Saluja S, Hislop C, J. Stevenson R. Differential involvement of the senses in disgust memories. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231156. [PMID: 38550756 PMCID: PMC10977387 DOI: 10.1098/rsos.231156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 04/26/2024]
Abstract
One prediction derived from the disease avoidance account of disgust is that proximal disgust cues (smells, tastes and touches) should elicit this emotion more intensely than distal disgust cues (sights and sounds). If correct, then memories of disgusting experiences should involve smelling, tasting or touching to a greater degree than seeing or hearing. Two surveys were conducted on university students to test this idea, drawing upon their naturalistic experiences. Survey 1 (N = 127) asked participants to detail their most memorable disgusting, fear-provoking, morally repulsive and yucky/gross experience, with each recollection self-rated for sensory involvement. Survey 2 (N = 89) employed the same task, but this time, participants recollected their most common disgusting, fear-provoking, morally repulsive and yucky/gross experience in the preceding week. The majority of disgusting experiences were core disgusts-i.e. related to disease/pathogen presence or stimuli. The proximal and distal sensory cues contributed equally to individuals' most memorable core disgust experiences, but the proximal senses were more involved than the distal senses in individuals' most common core disgust experiences. Further, the proximal sensory cues, as compared with the distal sensory cues, were signficantly more involved in core disgust experiences than in morally repulsive and fear-provoking experiences. The implications of these findings for a disease avoidance account of disgust, for multi-sensory disgust research, and core disgust's classification as an emotion or a drive, are discussed.
Collapse
Affiliation(s)
- Elliott Lamond
- Department of Psychology, Macquarie University, Sydney, New South Wales2109, Australia
| | - Supreet Saluja
- Department of Psychology, Macquarie University, Sydney, New South Wales2109, Australia
- Department of Clinical Neuroscience, Karolinska Universitet, Stockholm171 76, Sweden
| | - Chloe Hislop
- Department of Psychology, Macquarie University, Sydney, New South Wales2109, Australia
| | - Richard J. Stevenson
- Department of Psychology, Macquarie University, Sydney, New South Wales2109, Australia
| |
Collapse
|
11
|
Leonti M, Baker J, Staub P, Casu L, Hawkins J. Taste shaped the use of botanical drugs. eLife 2024; 12:RP90070. [PMID: 38265283 PMCID: PMC10945733 DOI: 10.7554/elife.90070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
The perception of taste and flavour (a combination of taste, smell, and chemesthesis), here also referred to as chemosensation, enables animals to find high-value foods and avoid toxins. Humans have learned to use unpalatable and toxic substances as medicines, yet the importance of chemosensation in this process is poorly understood. Here, we generate tasting-panel data for botanical drugs and apply phylogenetic generalised linear mixed models to test whether intensity and complexity of chemosensory qualities as well as particular tastes and flavours can predict ancient Graeco-Roman drug use. We found chemosensation to be strongly predictive of therapeutic use: botanical drugs with high therapeutic versatility have simple yet intense tastes and flavours, and 21 of 22 chemosensory qualities predicted at least one therapeutic use. In addition to the common notion of bitter tasting medicines, we also found starchy, musky, sweet, and soapy drugs associated with versatility. In ancient Greece and Rome, illness was thought to arise from imbalance in bodily fluids or humours, yet our study suggests that uses of drugs were based on observed physiological effects that are often consistent with modern understanding of chemesthesis and taste receptor pharmacology.
Collapse
Affiliation(s)
- Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Joanna Baker
- School of Biological Sciences, University of ReadingReadingUnited Kingdom
| | - Peter Staub
- Department of Biomedical Sciences, University of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Laura Casu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Julie Hawkins
- School of Biological Sciences, University of ReadingReadingUnited Kingdom
| |
Collapse
|
12
|
Bast A, Semen KO. Exploring health and toxicity in food choices: 10 examples navigating the gray area. Front Nutr 2024; 10:1301757. [PMID: 38249610 PMCID: PMC10797837 DOI: 10.3389/fnut.2023.1301757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
People's perception on what is healthy and what is toxic food, determines food preferences and eating behavior. The difference between heathy and toxic food and food ingredients is however not always clear. This is illustrated with 10 examples. Unjustly, all-natural food is regarded as safe. Regulation on health claims on food and food risks is not balanced. Biphasic responses of the physiological effect of food ingredients show that mild toxicity of these substances results in health promotion. Nutritional substances with drugs may have either a negative or a positive effect on health. New toxicological methodologies can be brought into play, to better understand the dynamics of health and disease. Unfortunately, we still cannot taste toxicity.
Collapse
Affiliation(s)
- Aalt Bast
- University College Venlo, Maastricht University, Venlo, Netherlands
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
13
|
Zushi N, Perusquía-Hernández M, Ayabe-Kanamura S. The effects of anxiety on taste perception: The role of awareness. Iperception 2023; 14:20416695231216370. [PMID: 38025964 PMCID: PMC10668578 DOI: 10.1177/20416695231216370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Prior research indicate that emotional states can alter taste perception, but the underlying mechanisms remain unclear. This study explores whether taste perception changes due to the mere evocation of emotions or the cognitive awareness of emotions. The first experiment investigated how anxiety affects taste perception when individuals are aware of their anxiety. Participants watched videos inducing relaxation or anxiety, then were divided into groups focusing on their emotions and those who did not, and the taste perception was measure. The second experiment investigated the influence of awareness directed toward emotions on taste evaluation, without manipulating emotional states. This focused on cognitive processing of taste through evaluations of visual stimuli. Results showed that sweetness perception is suppressed by the evocation of anxiety, whereas bitterness perception is enhanced only by anxiety with awareness. These findings indicate that the mechanisms by which emotional states affect taste perception may differ depending on taste quality.
Collapse
Affiliation(s)
| | - Monica Perusquía-Hernández
- Nara Institute of Science and Technology, Ikoma, Japan; NTT Communication Science Laboratories, Atsugi, Japan
| | | |
Collapse
|
14
|
Ziegler F, Steuer A, Di Pizio A, Behrens M. Physiological activation of human and mouse bitter taste receptors by bile acids. Commun Biol 2023; 6:612. [PMID: 37286811 DOI: 10.1038/s42003-023-04971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Beside the oral cavity, bitter taste receptors are expressed in several non-gustatory tissues. Whether extra-oral bitter taste receptors function as sensors for endogenous agonists is unknown. To address this question, we devised functional experiments combined with molecular modeling approaches to investigate human and mouse receptors using a variety of bile acids as candidate agonists. We show that five human and six mouse receptors are responsive to an array of bile acids. Moreover, their activation threshold concentrations match published data of bile acid concentrations in human body fluids, suggesting a putative physiological activation of non-gustatory bitter receptors. We conclude that these receptors could serve as sensors for endogenous bile acid levels. These results also indicate that bitter receptor evolution may not be driven solely by foodstuff or xenobiotic stimuli, but also depend on endogenous ligands. The determined bitter receptor activation profiles of bile acids now enable detailed physiological model studies.
Collapse
Affiliation(s)
- Florian Ziegler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
15
|
Margulis E, Lang T, Tromelin A, Ziaikin E, Behrens M, Niv MY. Bitter Odorants and Odorous Bitters: Toxicity and Human TAS2R Targets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37263600 DOI: 10.1021/acs.jafc.3c00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Flavor is perceived through the olfactory, taste, and trigeminal systems, mediated by designated GPCRs and channels. Signal integration occurs mainly in the brain, but some cross-reactivities occur at the receptor level. Here, we predict potential bitterness and taste receptors targets for thousands of odorants. BitterPredict and BitterIntense classifiers suggest that 3-9% of flavor and food odorants have bitter taste, but almost none are intensely bitter. About 14% of bitter molecules are expected to have an odor. Bitterness is more common for unpleasant smells such as fishy, amine, and ammoniacal, while non-bitter odorants often have pleasant smells. Experimental toxicity values suggest that fishy ammoniac smells are more toxic than pleasant smells, regardless of bitterness. TAS2R14 is predicted as the main bitter receptor for odorants, confirmed by in vitro profiling of 10 odorants. The activity of bitter odorants may have implications for physiology due to ectopic expression of taste and smell receptors.
Collapse
Affiliation(s)
- Eitan Margulis
- Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Anne Tromelin
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Evgenii Ziaikin
- Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Masha Y Niv
- Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| |
Collapse
|
16
|
Rosa A, Pinna I, Piras A, Porcedda S, Masala C. Sex Differences in the Bitterness Perception of an Aromatic Myrtle Bitter Liqueur and Bitter Compounds. Nutrients 2023; 15:2030. [PMID: 37432169 DOI: 10.3390/nu15092030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
We evaluated sex differences in the perception of bitter compounds and an aromatic bitter herbal liqueur (Mirtamaro) obtained by the infusion of myrtle leaves/berries together with a mixture of Mediterranean herbs/plants as flavoring/bittering ingredients. In a healthy population (n = 231 participants), using bivariate correlations and multivariate linear regression analyses, significant sex differences emerged in quinine bitterness perception, with women showing a higher bitter taste intensity rating than men. Among all participants, 40 subjects (subpopulation) were randomly selected for the evaluation of sex differences in Mirtamaro gustatory and olfactory perception using a hedonic Likert-type scale. Women showed higher ratings in Mirtamaro aroma (odor intensity) and bitterness (taste intensity) perception than men, with a superior capacity to perceive/describe its sensory attributes. 1,8-Cineole and methyl chavicol were the main contributors to the bitter liqueur aroma. A significant correlation (r = 0.564, p < 0.01) between Mirtamaro odor pleasantness/taste pleasantness was observed in women, indicating a positive contribution of aromatic herbs to bitter taste acceptability. Moreover, a higher bitter intensity rating of 6-n-propylthiouracil was evidenced in women than men. Our results highlighted sex differences in bitter taste acuity and the role of aromatic herbs/plants in modulating bitter taste acceptance, which is useful information in the field of precision nutrition and medicine.
Collapse
Affiliation(s)
- Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy
| | - Ilenia Pinna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy
| | - Alessandra Piras
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy
| | - Silvia Porcedda
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy
| | - Carla Masala
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Italy
| |
Collapse
|
17
|
Yan J, Tong H. An overview of bitter compounds in foodstuffs: Classifications, evaluation methods for sensory contribution, separation and identification techniques, and mechanism of bitter taste transduction. Compr Rev Food Sci Food Saf 2023; 22:187-232. [PMID: 36382875 DOI: 10.1111/1541-4337.13067] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/24/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
The bitter taste is generally considered an undesirable sensory attribute. However, bitter-tasting compounds can significantly affect the overall flavor of many foods and beverages and endow them with various beneficial effects on human health. To better understand the relationship between chemical structure and bitterness, this paper has summarized the bitter compounds in foodstuffs and classified them based on the basic skeletons. Only those bitter compounds that are confirmed by human sensory evaluation have been included in this paper. To develop food products that satisfy consumer preferences, correctly ranking the key bitter compounds in foodstuffs according to their contributions to the overall bitterness intensity is the precondition. Generally, three methods were applied to screen out the key bitter compounds in foods and beverages and evaluate their sensory contributions, including dose-over-threshold factors, taste dilution analysis, and spectrum descriptive analysis method. This paper has discussed in detail the mechanisms and applications of these three methods. Typical procedures for separating and identifying the main bitter compounds in foodstuffs have also been summarized. Additionally, the activation of human bitter taste receptors (TAS2Rs) and the mechanisms of bitter taste transduction are outlined. Ultimately, a conclusion has been drawn to highlight the current problems and propose potential directions for further research.
Collapse
Affiliation(s)
- Jingna Yan
- College of Food Science, Southwest University, Chongqing, China
| | - Huarong Tong
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Silva L, Antunes A. Omics and Remote Homology Integration to Decipher Protein Functionality. Methods Mol Biol 2023; 2627:61-81. [PMID: 36959442 DOI: 10.1007/978-1-0716-2974-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the recent years, several "omics" technologies based on specific biomolecules (from DNA, RNA, proteins, or metabolites) have won growing importance in the scientific field. Despite each omics possess their own laboratorial protocols, they share a background of bioinformatic tools for data integration and analysis. A recent subset of bioinformatic tools, based on available templates or remote homology protocols, allow computational fast and high-accuracy prediction of protein structures. The quickly predict of actually unsolved protein structures, together with late omics findings allow a boost of scientific advances in multiple fields such as cancer, longevity, immunity, mitochondrial function, toxicology, drug design, biosensors, and recombinant protein engineering. In this chapter, we assessed methodological approaches for the integration of omics and remote homology inferences to decipher protein functionality, opening the door to the next era of biological knowledge.
Collapse
Affiliation(s)
- Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
19
|
Chen S, Zhou X, Lu Y, Xu K, Wen J, Cui M. Anti-HIV drugs lopinavir/ritonavir activate bitter taste receptors. Chem Senses 2023; 48:bjad035. [PMID: 37625013 PMCID: PMC10486187 DOI: 10.1093/chemse/bjad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 08/27/2023] Open
Abstract
Lopinavir and ritonavir (LPV/r) are the primary anti-human immunodeficiency virus (HIV) drugs recommended by the World Health Organization for treating children aged 3 years and above who are infected with the HIV. These drugs are typically available in liquid formulations to aid in dosing for children who cannot swallow tablets. However, the strong bitter taste associated with these medications can be a significant obstacle to adherence, particularly in young children, and can jeopardize the effectiveness of the treatment. Studies have shown that poor palatability can affect the survival rate of HIV-infected children. Therefore, developing more child-friendly protease inhibitor formulations, particularly those with improved taste, is critical for children with HIV. The molecular mechanism by which lopinavir and ritonavir activate bitter taste receptors, TAS2Rs, is not yet clear. In this study, we utilized a calcium mobilization assay to characterize the activation of bitter taste receptors by lopinavir and ritonavir. We discovered that lopinavir activates TAS2R1 and TAS2R13, while ritonavir activates TAS2R1, TAS2R8, TAS2R13, and TAS2R14. The development of bitter taste blockers that target these receptors with a safe profile would be highly desirable in eliminating the unpleasant bitter taste of these anti-HIV drugs.
Collapse
Affiliation(s)
- Shurui Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Xinyi Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Yongcheng Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Keman Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Jiao Wen
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
20
|
Lang R, Lang T, Dunkel A, Ziegler F, Behrens M. Overlapping activation pattern of bitter taste receptors affect sensory adaptation and food perception. Front Nutr 2022; 9:1082698. [PMID: 36601079 PMCID: PMC9806268 DOI: 10.3389/fnut.2022.1082698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The composition of menus and the sequence of foodstuffs consumed during a meal underlies elaborate rules. However, the molecular foundations for the observed taste- and pleasure-raising effects of complex menus are obscure. The molecular identification and characterization of taste receptors can help to gain insight into the complex interrelationships of food items and beverages during meals. In our study, we quantified important bitter compounds in chicory and chicory-based surrogate coffee and used them to identify responsive bitter taste receptors. The two receptors, TAS2R43 and TAS2R46, are exquisitely sensitive to lactucin, lactucopicrin, and 11β,13-dihydrolactucin. Sensory testing demonstrated a profound influence of the sequence of consumption of chicory, surrogate coffee, and roasted coffee on the perceived bitterness by human volunteers. These findings pave the way for a molecular understanding of some of the mixture effects underlying empirical meal compositions.
Collapse
|
21
|
Vaikma H, Metsoja G, Bljahhina A, Rosenvald S. Individual differences in sensitivity to bitterness focusing on oat and pea preparations. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Gibbs M, Winnig M, Riva I, Dunlop N, Waller D, Klebansky B, Logan DW, Briddon SJ, Holliday ND, McGrane SJ. Bitter taste sensitivity in domestic dogs (Canis familiaris) and its relevance to bitter deterrents of ingestion. PLoS One 2022; 17:e0277607. [PMID: 36449493 PMCID: PMC9710775 DOI: 10.1371/journal.pone.0277607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
As the most favoured animal companion of humans, dogs occupy a unique place in society. Understanding the senses of the dog can bring benefits to both the dogs themselves and their owners. In the case of bitter taste, research may provide useful information on sensitivity to, and acceptance of, diets containing bitter tasting materials. It may also help to protect dogs from the accidental ingestion of toxic substances, as in some instances bitter tasting additives are used as deterrents to ingestion. In this study we examined the receptive range of dog bitter taste receptors (Tas2rs). We found that orthologous dog and human receptors do not always share the same receptive ranges using in vitro assays. One bitter chemical often used as a deterrent, denatonium benzoate, is only moderately active against dTas2r4, and is almost completely inactive against other dog Tas2rs, including dTas2r10, a highly sensitive receptor in humans. We substituted amino acids to create chimeric dog-human versions of the Tas2r10 receptor and found the ECL2 region partly determined denatonium sensitivity. We further confirmed the reduced sensitivity of dogs to this compound in vivo. A concentration of 100μM (44.7ppm) denatonium benzoate was effective as a deterrent to dog ingestion in a two-bottle choice test indicating higher concentrations may increase efficacy for dogs. These data can inform the choice and concentration of bitter deterrents added to toxic substances to help reduce the occurrence of accidental dog poisonings.
Collapse
Affiliation(s)
- Matthew Gibbs
- Waltham Petcare Science Institute, Waltham on the Wolds, Melton Mowbray, Leicestershire, United Kingdom
- School of Life Sciences, The Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| | | | - Irene Riva
- AXXAM SpA, IMAX Discovery Unit, Bresso, Milan, Italy
| | - Nicola Dunlop
- Waltham Petcare Science Institute, Waltham on the Wolds, Melton Mowbray, Leicestershire, United Kingdom
| | - Daniel Waller
- Waltham Petcare Science Institute, Waltham on the Wolds, Melton Mowbray, Leicestershire, United Kingdom
| | | | - Darren W. Logan
- Waltham Petcare Science Institute, Waltham on the Wolds, Melton Mowbray, Leicestershire, United Kingdom
| | - Stephen J. Briddon
- School of Life Sciences, The Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Nicholas D. Holliday
- School of Life Sciences, The Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Scott J. McGrane
- Waltham Petcare Science Institute, Waltham on the Wolds, Melton Mowbray, Leicestershire, United Kingdom
| |
Collapse
|
23
|
Xu Y, Sun Q, Chen W, Han Y, Gao Y, Ye J, Wang H, Gao L, Liu Y, Yang Y. The Taste-Masking Mechanism of Chitosan at the Molecular Level on Bitter Drugs of Alkaloids and Flavonoid Glycosides from Traditional Chinese Medicine. Molecules 2022; 27:7455. [PMID: 36364280 PMCID: PMC9658633 DOI: 10.3390/molecules27217455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 09/16/2023] Open
Abstract
Taste masking of traditional Chinese medicines (TCMs) containing multiple bitter components remains an important challenge. In this study, berberine (BER) in alkaloids and phillyrin (PHI) in flavonoid glycosides, which are common bitter components in traditional Chinese medicines, were selected as model drugs. Chitosan (CS) was used to mask their unfriendly taste. Firstly, from the molecular level, we explained the taste-masking mechanism of CS on those two bitter components in detail. Based on those taste-masking mechanisms, the bitter taste of a mixture of BER and PHI was easily masked by CS in this work. The physicochemical characterization results showed the taste-masking compounds formed by CS with BER (named as BER/CS) and PHI (named as PHI/CS) were uneven in appearance. The drug binding efficiency of BER/CS and PHI/CS was 50.15 ± 2.63% and 67.10 ± 2.52%, respectively. The results of DSC, XRD, FTIR and molecular simulation further indicated that CS mainly masks the bitter taste by disturbing the binding site of bitter drugs and bitter receptors in the oral cavity via forming hydrogen bonds between its hydroxyl or amine groups and the nucleophilic groups of BER and PHI. The taste-masking evaluation results by the electronic tongue test confirmed the excellent taste-masking effects on alkaloids, flavonoid glycosides or a mixture of the two kinds of bitter components. The in vitro release as well as in vivo pharmacokinetic results suggested that the taste-masked compounds in this work could achieve rapid drug release in the gastric acid environment and did not influence the in vivo pharmacokinetic results of the drug. The taste-masking method in this work may have potential for the taste masking of traditional Chinese medicine compounds containing multiple bitter components.
Collapse
Affiliation(s)
- Yaqi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Wooding SP, Ramirez VA. Global population genetics and diversity in the TAS2R bitter taste receptor family. Front Genet 2022; 13:952299. [PMID: 36303543 PMCID: PMC9592824 DOI: 10.3389/fgene.2022.952299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) are noted for their role in perception, and mounting evidence suggests that they mediate responses to compounds entering airways, gut, and other tissues. The importance of these roles suggests that TAS2Rs have been under pressure from natural selection. To determine the extent of variation in TAS2Rs on a global scale and its implications for human evolution and behavior, we analyzed patterns of diversity in the complete 25 gene repertoire of human TAS2Rs in ∼2,500 subjects representing worldwide populations. Across the TAS2R family as a whole, we observed 721 single nucleotide polymorphisms (SNPs) including 494 nonsynonymous SNPs along with 40 indels and gained and lost start and stop codons. In addition, computational predictions identified 169 variants particularly likely to affect receptor function, making them candidate sources of phenotypic variation. Diversity levels ranged widely among loci, with the number of segregating sites ranging from 17 to 41 with a mean of 32 among genes and per nucleotide heterozygosity (π) ranging from 0.02% to 0.36% with a mean of 0.12%. FST ranged from 0.01 to 0.26 with a mean of 0.13, pointing to modest differentiation among populations. Comparisons of observed π and FST values with their genome wide distributions revealed that most fell between the 5th and 95th percentiles and were thus consistent with expectations. Further, tests for natural selection using Tajima’s D statistic revealed only two loci departing from expectations given D’s genome wide distribution. These patterns are consistent with an overall relaxation of selective pressure on TAS2Rs in the course of recent human evolution.
Collapse
Affiliation(s)
- Stephen P. Wooding
- Department of Anthropology, University of California, Merced, Merced, CA, United States
- *Correspondence: Stephen P. Wooding,
| | - Vicente A. Ramirez
- Department of Public Health, University of California, Merced, Merced, CA, United States
| |
Collapse
|
25
|
Delompré T, Belloir C, Martin C, Salles C, Briand L. Detection of Bitterness in Vitamins Is Mediated by the Activation of Bitter Taste Receptors. Nutrients 2022; 14:nu14194141. [PMID: 36235793 PMCID: PMC9571608 DOI: 10.3390/nu14194141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Vitamins are known to generate bitterness, which may contribute to an off-taste or aftertaste for some nutritional supplements. This negative sensation can lead to a reduction in their consumption. Little is known about the bitter taste threshold and taste sensing system for the bitter taste detection of vitamins. To better understand the mechanisms involved in bitterness perception, we combined taste receptor functional assays and sensory analysis. In humans, bitter taste detection is mediated by 25 G-protein-coupled receptors belonging to the TAS2R family. First, we studied the bitterness of thirteen vitamins using a cellular-based functional taste receptor assay. We found four vitamins that can stimulate one or more TAS2Rs. For each positive molecule-receptor combination, we tested seven increasing concentrations to determine the half-maximal effective concentration (EC50) and the cellular bitter taste threshold. Second, we measured the bitter taste detection threshold for four vitamins that exhibit a strong bitter taste using a combination of ascending series and sensory difference tests. A combination of sensory and biological data can provide useful results that explain the perception of vitamin bitterness and its real contribution to the off-taste of nutritional supplements.
Collapse
|
26
|
Dubovski N, Fierro F, Margulis E, Ben Shoshan-Galeczki Y, Peri L, Niv MY. Taste GPCRs and their ligands. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:177-193. [PMID: 36357077 DOI: 10.1016/bs.pmbts.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Taste GPCRs are expressed in taste buds on the tongue and play a key role in food choice and consumption. They are also expressed extra-orally, with various physiological roles that are currently under study. Unraveling the roles of these receptors relies on the knowledge of their ligands. Combining sensory, cell-based and computational approaches enabled the discovery of numerous agonists and several antagonists. Here we provide a short overview of taste receptor families, main recent methods for ligands discovery, and current sources of information about known ligands. The future directions that are likely to impact the taste GPCR field include focus on ligand interactions with naturally occurring polymorphisms, as well as harnessing the power of CryoEM and of multiple signaling readout techniques.
Collapse
Affiliation(s)
- Nitzan Dubovski
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Fabrizio Fierro
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eitan Margulis
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
27
|
El-Mawgoud H, Radwan H, Fouda AM, El-Mariah F, Elhenawy AA, Amr A, Almehizia AA, Ghabbour H, El-Agrody A. Synthesis, cytotoxic activity, crystal structure, DFT, molecular docking study of some heterocyclic compounds incorporating benzo[f]chromene moieties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Malavolta M, Pallante L, Mavkov B, Stojceski F, Grasso G, Korfiati A, Mavroudi S, Kalogeras A, Alexakos C, Martos V, Amoroso D, Di Benedetto G, Piga D, Theofilatos K, Deriu MA. A survey on computational taste predictors. Eur Food Res Technol 2022; 248:2215-2235. [PMID: 35637881 PMCID: PMC9134981 DOI: 10.1007/s00217-022-04044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
Taste is a sensory modality crucial for nutrition and survival, since it allows the discrimination between healthy foods and toxic substances thanks to five tastes, i.e., sweet, bitter, umami, salty, and sour, associated with distinct nutritional or physiological needs. Today, taste prediction plays a key role in several fields, e.g., medical, industrial, or pharmaceutical, but the complexity of the taste perception process, its multidisciplinary nature, and the high number of potentially relevant players and features at the basis of the taste sensation make taste prediction a very complex task. In this context, the emerging capabilities of machine learning have provided fruitful insights in this field of research, allowing to consider and integrate a very large number of variables and identifying hidden correlations underlying the perception of a particular taste. This review aims at summarizing the latest advances in taste prediction, analyzing available food-related databases and taste prediction tools developed in recent years. Supplementary Information The online version contains supplementary material available at 10.1007/s00217-022-04044-5.
Collapse
Affiliation(s)
- Marta Malavolta
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Lorenzo Pallante
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Bojan Mavkov
- GIPSA-lab, F-38000, Université Grenoble Alpes, Grenoble, France
| | - Filip Stojceski
- Dalle Molle Institute for Artificial Intelligence (IDSIA-USI/SUPSI), Lugano-Viganello, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA-USI/SUPSI), Lugano-Viganello, Switzerland
| | | | - Seferina Mavroudi
- InSyBio PC, Patras, Greece
- Department of Nursing, School of Rehabilitation Sciences, University of Patras, Patras, Greece
| | | | - Christos Alexakos
- Athena Research Center, Industrial Systems Institute, Patras, Greece
| | - Vanessa Martos
- Department of Plant Physiology, Institute of Biotechnology, University of Granada, Granada, Spain
| | - Daria Amoroso
- Enginlife Engineering Solutions, Turin, Italy
- 7hc srl, Rome, Italy
| | | | - Dario Piga
- Dalle Molle Institute for Artificial Intelligence (IDSIA-USI/SUPSI), Lugano-Viganello, Switzerland
| | | | - Marco Agostino Deriu
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
29
|
Grau-Bové C, Grau-Bové X, Terra X, Garcia-Vallve S, Rodríguez-Gallego E, Beltran-Debón R, Blay MT, Ardévol A, Pinent M. Functional and genomic comparative study of the bitter taste receptor family TAS2R: Insight into the role of human TAS2R5. FASEB J 2022; 36:e22175. [PMID: 35107858 DOI: 10.1096/fj.202101128rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/11/2022]
Abstract
Bitterness is perceived in humans by 25 subtypes of bitter taste receptors (hTAS2R) that range from broadly tuned to more narrowly tuned receptors. hTAS2R5 is one of the most narrowly tuned bitter taste receptors in humans. In this study, we review the literature on this receptor and show there is no consensus about its role. We then compare the possible role of hTAS2R5 with that of the proteins of the TAS2R family in rat, mouse, and pig. A phylogenetic tree of all mammalian TAS2R domain-containing proteins showed that human hTAS2R5 has no ortholog in pig, mouse, or rat genomes. By comparing the agonists that are common to hTAS2R5 and other members of the family, we observed that hTAS2R39 is the receptor that shares most agonists with hTAS2R5. In mouse, some of these agonists activate mTas2r105 and mTas2r144, which are distant paralogs of hTAS2R5. mTas2r144 seems to be the receptor that is most similar to hTAS2R5 because they are both activated by the same agonists and have affinities in the same range of values. Then, we can conclude that hTAS2R5 has a unique functional specificity in humans as it is activated by selective agonists and that its closest functional homolog in mouse is the phylogenetically distant mTas2r144.
Collapse
Affiliation(s)
- Carme Grau-Bové
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Santi Garcia-Vallve
- Research Group in Cheminformatics & Nutrition, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Raúl Beltran-Debón
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
30
|
Jalševac F, Terra X, Rodríguez-Gallego E, Beltran-Debón R, Blay MT, Pinent M, Ardévol A. The Hidden One: What We Know About Bitter Taste Receptor 39. Front Endocrinol (Lausanne) 2022; 13:854718. [PMID: 35345470 PMCID: PMC8957101 DOI: 10.3389/fendo.2022.854718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Over thousands of years of evolution, animals have developed many ways to protect themselves. One of the most protective ways to avoid disease is to prevent the absorption of harmful components. This protective function is a basic role of bitter taste receptors (TAS2Rs), a G protein-coupled receptor family, whose presence in extraoral tissues has intrigued many researchers. In humans, there are 25 TAS2Rs, and although we know a great deal about some of them, others are still shrouded in mystery. One in this latter category is bitter taste receptor 39 (TAS2R39). Besides the oral cavity, it has also been found in the gastrointestinal tract and the respiratory, nervous and reproductive systems. TAS2R39 is a relatively non-selective receptor, which means that it can be activated by a range of mostly plant-derived compounds such as theaflavins, catechins and isoflavones. On the other hand, few antagonists for this receptor are available, since only some flavones have antagonistic properties (all of them detailed in the document). The primary role of TAS2R39 is to sense the bitter components of food and protect the organism from harmful compounds. There is also some indication that this bitter taste receptor regulates enterohormones and in turn, regulates food intake. In the respiratory system, it may be involved in the congestion process of allergic rhinitis and may stimulate inflammatory cytokines. However, more thorough research is needed to determine the precise role of TAS2R39 in these and other tissues.
Collapse
|
31
|
Bayer S, Mayer AI, Borgonovo G, Morini G, Di Pizio A, Bassoli A. Chemoinformatics View on Bitter Taste Receptor Agonists in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13916-13924. [PMID: 34762411 PMCID: PMC8630789 DOI: 10.1021/acs.jafc.1c05057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Food compounds with a bitter taste have a role in human health, both for their capability to influence food choice and preferences and for their possible systemic effect due to the modulation of extra-oral bitter taste receptors (TAS2Rs). Investigating the interaction of bitter food compounds with TAS2Rs is a key step to unravel their complex effects on health and to pave the way to rationally design new additives for food formulation or drugs. Here, we propose a collection of food bitter compounds, for which in vitro activity data against TAS2Rs are available. The patterns of TAS2R subtype-specific agonists were analyzed using scaffold decomposition and chemical space analysis, providing a detailed characterization of the associations between food bitter tastants and TAS2Rs.
Collapse
Affiliation(s)
- Sebastian Bayer
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner Str. 34, D-85354 Freising, Germany
- Faculty
of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ariane Isabell Mayer
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
| | - Gigliola Borgonovo
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
| | - Gabriella Morini
- University
of Gastronomic Sciences, piazza Vittorio Emanuele 9, 12042 Pollenzo, (Bra, CN), Italy
| | - Antonella Di Pizio
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner Str. 34, D-85354 Freising, Germany
- . Phone: +49(0)8161716516
| | - Angela Bassoli
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
- . Phone: +39(0)250316815
| |
Collapse
|
32
|
Zehentner S, Reiner AT, Grimm C, Somoza V. The Role of Bitter Taste Receptors in Cancer: A Systematic Review. Cancers (Basel) 2021; 13:5891. [PMID: 34885005 PMCID: PMC8656863 DOI: 10.3390/cancers13235891] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Since it is known that bitter taste receptors (TAS2Rs) are expressed and functionally active in various extra-oral cells, their genetic variability and functional response initiated by their activation have become of broader interest, including in the context of cancer. METHODS A systematic research was performed in PubMed and Google Scholar to identify relevant publications concerning the role of TAS2Rs in cancer. RESULTS While the findings on variations of TAS2R genotypes and phenotypes and their association to the risk of developing cancer are still inconclusive, gene expression analyses revealed that TAS2Rs are expressed and some of them are predominately downregulated in cancerous compared to non-cancerous cell lines and tissue samples. Additionally, receptor-specific, agonist-mediated activation induced various anti-cancer effects, such as decreased cell proliferation, migration, and invasion, as well as increased apoptosis. Furthermore, the overexpression of TAS2Rs resulted in a decreased tumour incidence in an in vivo study and TAS2R activation could even enhance the therapeutic effect of chemotherapeutics in vitro. Finally, higher expression levels of TAS2Rs in primary cancerous cells and tissues were associated with an improved prognosis in humans. CONCLUSION Since current evidence demonstrates a functional role of TAS2Rs in carcinogenesis, further studies should exploit their potential as (co-)targets of chemotherapeutics.
Collapse
Affiliation(s)
- Sofie Zehentner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.Z.); (A.T.R.)
| | - Agnes T. Reiner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.Z.); (A.T.R.)
| | - Christoph Grimm
- Comprehensive Cancer Center Vienna, Gynecologic Cancer Unit, Department of General Gynecology and Gynecologic Oncology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.Z.); (A.T.R.)
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Chair of Nutritional Systems Biology, School of Life Science, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
33
|
Activation of specific bitter taste receptors by olive oil phenolics and secoiridoids. Sci Rep 2021; 11:22340. [PMID: 34785711 PMCID: PMC8595653 DOI: 10.1038/s41598-021-01752-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Extra-virgin olive oil (EVOO) is a critical component of the Mediterranean diet, which has been found beneficial to human health. Bitterness is often positively associated with the presence of phenolic compounds in EVOO. There are twenty-five bitter taste receptors (TAS2Rs) in humans, each of which responds to specific bitter tastants. The identity of phenolic compounds and the bitter taste receptors they stimulate remain unknown. In this study, we isolated 12 phenolic and secoiridoid compounds from the olive fruit and the oil extracted from it, and tested their ability to stimulate bitter taste receptor activity, using a calcium mobilization functional assay. Our results showed that seven out of twelve studied compounds activated TAS2R8, and five of them activated TAS2R1, TAS2R8, and TAS2R14. The phenolic compounds oleuropein aglycon and ligstroside aglycon were the most potent bitter tastants in olive oil. TAS2R1 and TAS2R8 were the major bitter taste receptors activated most potently by these phenolic compounds. The results obtained here could be utilized to predict and control the bitterness of olive oil based on the concentration of specific bitter phenolics produced during the milling process of olives.
Collapse
|
34
|
Winters AE, Lommi J, Kirvesoja J, Nokelainen O, Mappes J. Multimodal Aposematic Defenses Through the Predation Sequence. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.657740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aposematic organisms warn predators of their unprofitability using a combination of defenses, including visual warning signals, startling sounds, noxious odors, or aversive tastes. Using multiple lines of defense can help prey avoid predators by stimulating multiple senses and/or by acting at different stages of predation. We tested the efficacy of three lines of defense (color, smell, taste) during the predation sequence of aposematic wood tiger moths (Arctia plantaginis) using blue tit (Cyanistes caeruleus) predators. Moths with two hindwing phenotypes (genotypes: WW/Wy = white, yy = yellow) were manipulated to have defense fluid with aversive smell (methoxypyrazines), body tissues with aversive taste (pyrrolizidine alkaloids) or both. In early predation stages, moth color and smell had additive effects on bird approach latency and dropping the prey, with the strongest effect for moths of the white morph with defense fluids. Pyrrolizidine alkaloid sequestration was detrimental in early attack stages, suggesting a trade-off between pyrrolizidine alkaloid sequestration and investment in other defenses. In addition, pyrrolizidine alkaloid taste alone did not deter bird predators. Birds could only effectively discriminate toxic moths from non-toxic moths when neck fluids containing methoxypyrazines were present, at which point they abandoned attack at the consumption stage. As a result, moths of the white morph with an aversive methoxypyrazine smell and moths in the treatment with both chemical defenses had the greatest chance of survival. We suggest that methoxypyrazines act as context setting signals for warning colors and as attention alerting or “go-slow” signals for distasteful toxins, thereby mediating the relationship between warning signal and toxicity. Furthermore, we found that moths that were heterozygous for hindwing coloration had more effective defense fluids compared to other genotypes in terms of delaying approach and reducing the latency to drop the moth, suggesting a genetic link between coloration and defense that could help to explain the color polymorphism. Conclusively, these results indicate that color, smell, and taste constitute a multimodal warning signal that impedes predator attack and improves prey survival. This work highlights the importance of understanding the separate roles of color, smell and taste through the predation sequence and also within-species variation in chemical defenses.
Collapse
|
35
|
Wei X, Jiang D, Chen C, Wu J, Qin C, Yuan Q, Xue Y, Xiong Y, Zhuang L, Hu N, Wang P. Hybrid Integrated Cardiomyocyte Biosensors for Bitter Detection and Cardiotoxicity Assessment. ACS Sens 2021; 6:2593-2604. [PMID: 34253023 DOI: 10.1021/acssensors.1c00158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among basic taste sensations, bitter taste is vital to the survival of mammals due to its indispensable role in toxin prediction or identification, so the identification of bitter compounds is of great value in the pharmaceutical and food industry. Recently, bitter taste receptor (T2Rs)-based biosensors have been developed for specific bitter detection. However, the taste biosensors based on taste cells/tissues suffer from simple function, low sensitivity, low content, and limited parameters. Here, to establish a high-content, highly sensitive, and multifunctional taste biosensor, we developed a multifunctional hybrid integrated cardiomyocyte biosensor (HICB) for bitter detection. Due to the expression of bitter taste receptors in cardiomyocytes, the HICB can recognize the specific bitter agonists by synchronously recording the extracellular field potential (EFP) and mechanical beating (MB) signals from the cultured cardiomyocytes in vitro. Multiple feature parameters were defined and extracted from the electromechanical signals of cardiomyocytes to analyze the specific responses to four typical bitter compounds. The radar map, heat map, and principal component analysis (PCA) were used to visualize and classify the specific responses. Moreover, bitter-induced cardiotoxicity also was chronically evaluated, and these bitter compounds presented an inhibition effect on the electrophysiological and contractile activities of cardiomyocytes. This high-content HICB offers an alternative platform for both bitter detection and cardiotoxicity assessment, showing promising applications in the fields of taste detection and toxicity screening.
Collapse
Affiliation(s)
- Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changming Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianguo Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chunlian Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Xue
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yizhou Xiong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
Alfonso-Prieto M. Bitter Taste and Olfactory Receptors: Beyond Chemical Sensing in the Tongue and the Nose. J Membr Biol 2021; 254:343-352. [PMID: 34173018 PMCID: PMC8231087 DOI: 10.1007/s00232-021-00182-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022]
Abstract
Abstract The Up-and-Coming-Scientist section of the current issue of the Journal of Membrane Biology features the invited essay by Dr. Mercedes Alfonso-Prieto, Assistant Professor at the Forschungszentrum Jülich (FZJ), Germany, and the Heinrich-Heine University Düsseldorf, Vogt Institute for Brain Research.
Dr. Alfonso-Prieto completed her doctoral degree in chemistry at the Barcelona Science Park, Spain, in 2009, pursued post-doctoral research in computational molecular sciences at Temple University, USA, and then, as a Marie Curie post-doctoral fellow at the University of Barcelona, worked on computations of enzyme reactions and modeling of photoswitchable ligands targeting neuronal receptors. In 2016, she joined the Institute for Advanced Science and the Institute for Computational Biomedicine at the FZJ, where she pursues research on modeling and simulation of chemical senses.
The invited essay by Dr. Alfonso-Prieto discusses state-of-the-art modeling of molecular receptors involved in chemical sensing – the senses of taste and smell. These receptors, and computational methods to study them, are the focus of Dr. Alfonso-Prieto’s research. Recently, Dr. Alfonso-Prieto and colleagues have presented a new methodology to predict ligand binding poses for GPCRs, and extensive computations that deciphered the ligand selectivity determinants of bitter taste receptors. These developments inform our current understanding of how taste occurs at the molecular level. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, Germany. .,Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
37
|
Schmid C, Brockhoff A, Shoshan-Galeczki YB, Kranz M, Stark TD, Erkaya R, Meyerhof W, Niv MY, Dawid C, Hofmann T. Comprehensive structure-activity-relationship studies of sensory active compounds in licorice (Glycyrrhiza glabra). Food Chem 2021; 364:130420. [PMID: 34182369 DOI: 10.1016/j.foodchem.2021.130420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Licorice saponins, the main constituents of Glycyrrhiza glabra L. roots, are highly appreciated by the consumer for their pleasant sweet and long lasting licorice taste. The objective of the present study was to understand the molecular features that contribute to bitter, sweet and licorice sensation of licorice roots, and whether individual compounds elicit more than one of these sensations. Therefore, a sensomics approach was conducted, followed by purification of the compounds with highest sensory impact, and by synthesis as well as full characterization via HRESIMS, ESIMS/MS and 1D/2D-NMR experiments. This led to the discovery and structure determination of 28 sweet, bitter and licorice tasting key phytochemicals, including two unknown compounds. A combination of sensorial, cell-based and computational analysis revealed distinct structural features, such as spatial arrangement of functional groups in the triterpenoid E-ring, driving to different taste sensations and sweet receptor hTAS1R2/R3 stimulation.
Collapse
Affiliation(s)
- Christian Schmid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Anne Brockhoff
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot and The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Maximilian Kranz
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Timo D Stark
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Rukiye Erkaya
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Center for Integrative Physiology and Molecular Medicine, Saarland University, Kirrberger Straße 100, 66421 Homburg, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot and The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Thomas Hofmann
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| |
Collapse
|
38
|
Itoigawa A, Fierro F, Chaney ME, Lauterbur ME, Hayakawa T, Tosi AJ, Niv MY, Imai H. Lowered sensitivity of bitter taste receptors to β-glucosides in bamboo lemurs: an instance of parallel and adaptive functional decline in TAS2R16? Proc Biol Sci 2021; 288:20210346. [PMID: 33849315 PMCID: PMC8059561 DOI: 10.1098/rspb.2021.0346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bitter taste facilitates the detection of potentially harmful substances and is perceived via bitter taste receptors (TAS2Rs) expressed on the tongue and oral cavity in vertebrates. In primates, TAS2R16 specifically recognizes β-glucosides, which are important in cyanogenic plants' use of cyanide as a feeding deterrent. In this study, we performed cell-based functional assays for investigating the sensitivity of TAS2R16 to β-glucosides in three species of bamboo lemurs (Prolemur simus, Hapalemur aureus and H. griseus), which primarily consume high-cyanide bamboo. TAS2R16 receptors from bamboo lemurs had lower sensitivity to β-glucosides, including cyanogenic glucosides, than that of the closely related ring-tailed lemur (Lemur catta). Ancestral reconstructions of TAS2R16 for the bamboo-lemur last common ancestor (LCA) and that of the Hapalemur LCA showed an intermediate sensitivity to β-glucosides between that of the ring-tailed lemurs and bamboo lemurs. Mutagenetic analyses revealed that P. simus and H. griseus had separate species-specific substitutions that led to reduced sensitivity. These results indicate that low sensitivity to β-glucosides at the cellular level—a potentially adaptive trait for feeding on cyanogenic bamboo—evolved independently after the Prolemur–Hapalemur split in each species.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan.,Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Fabrizio Fierro
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Morgan E Chaney
- Department of Anthropology, Kent State University, Kent, OH 44242, USA
| | - M Elise Lauterbur
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, N10W5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Japan Monkey Centre, 26 Inuyamakanrin, Inuyama, Aichi 484-0081, Japan
| | - Anthony J Tosi
- Department of Anthropology, Kent State University, Kent, OH 44242, USA
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Hiroo Imai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| |
Collapse
|
39
|
Ziegler F, Behrens M. Bitter taste receptors of the common vampire bat are functional and show conserved responses to metal ions in vitro. Proc Biol Sci 2021; 288:20210418. [PMID: 33784867 DOI: 10.1098/rspb.2021.0418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The bitter taste sensation is important to warn mammals of the ingestion of potentially toxic food compounds. For mammals, whose nutrition relies on highly specific food sources, such as blood in the case of vampire bats, it is unknown if bitter sensing is involved in prey selection. By contrast to other bat species, vampire bats exhibit numerous bitter taste receptor pseudogenes, which could point to a decreased importance of bitter taste. However, electrophysiological and behavioural studies suggest the existence of functional bitter taste transmission. To determine the agonist spectra of the three bitter taste receptors that are conserved in all three vampire bat species, we investigated the in vitro activation of Desmodus rotundus T2R1, T2R4 and T2R7. Using a set of 57 natural and synthetic bitter compounds, we were able to identify agonists for all three receptors. Hence, we confirmed a persisting functionality and, consequently, a putative biological role of bitter taste receptors in vampire bats. Furthermore, the activation of the human TAS2R7 by metal ions is shown to be conserved in D. rotundus.
Collapse
Affiliation(s)
- Florian Ziegler
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
40
|
Integrative analysis of the microbiome and metabolome in understanding the causes of sugarcane bitterness. Sci Rep 2021; 11:6024. [PMID: 33727648 PMCID: PMC7966368 DOI: 10.1038/s41598-021-85433-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Plant–microbe interactions can modulate the plant metabolome, but there is no information about how different soil microbiomes could affect the sugarcane metabolome and its quality. Here, we collected soil and stalk samples from bitter sugarcane (BS) and sweet sugarcane (SS) to conduct chemical analysis, microbiome and metabolome analysis. Our data revealed lower species diversity in the BS group than in the SS group, and 18 discriminatory OTUs (relative abundance ≥ 0.01%) were identified. Sugarcane metabolomic analysis indicated the different abundances of 247 metabolites between the two groups in which 22 distinct metabolites involved in two flavonoid biosynthesis pathways were revealed. Integrated analysis between soil microbial taxa, stalk chemical components, and soil properties showed that the flavonoid content in stalks and the nitrogen concentration in soil were highly correlated with the soil microbiome composition. Bacteria at the genus level exhibited greater associations with distinct metabolites, and six genera were independently associated with 90.9% of the sugarcane metabolites that play a major metabolic role in sugarcane. In conclusion, this study provided evidences that the interaction between plant–microbiome can change the plant metabolome.
Collapse
|
41
|
Wüpper S, Lüersen K, Rimbach G. Cyclodextrins, Natural Compounds, and Plant Bioactives-A Nutritional Perspective. Biomolecules 2021; 11:biom11030401. [PMID: 33803150 PMCID: PMC7998733 DOI: 10.3390/biom11030401] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
Cyclodextrins (CDs) are a group of cyclic oligosaccharides produced from starch or starch derivatives. They contain six (αCD), seven (βCD), eight (γCD), or more glucopyranose monomers linked via α-1,4-glycosidic bonds. CDs have a truncated cone shape with a hydrophilic outer wall and a less hydrophilic inner wall, the latter forming a more apolar internal cavity. Because of this special architecture, CDs are soluble in water and can simultaneously host lipophilic guest molecules. The major advantage of inclusion into CDs is increased aqueous solubility of such lipophilic substances. Accordingly, we present studies where the complexation of natural compounds such as propolis and dietary plant bioactives (e.g., tocotrienol, pentacyclic triterpenoids, curcumin) with γCD resulted in improved stability, bioavailability, and bioactivity in various laboratory model organisms and in humans. We also address safety aspects that may arise from increased bioavailability of plant extracts or natural compounds owing to CD complexation. When orally administered, α- and βCD—which are inert to intestinal digestion—are fermented by the human intestinal flora, while γCD is almost completely degraded to glucose units by α-amylase. Hence, recent reports indicate that empty γCD supplementation exhibits metabolic activity on its own, which may provide opportunities for new applications.
Collapse
|
42
|
Glendinning JI. What Does the Taste System Tell Us About the Nutritional Composition and Toxicity of Foods? Handb Exp Pharmacol 2021; 275:321-351. [PMID: 33782771 DOI: 10.1007/164_2021_451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the distinctive features of the human taste system is that it categorizes food into a few taste qualities - e.g., sweet, salty, sour, bitter, and umami. Here, I examined the functional significance of these taste qualities by asking what they tell us about the nutritional composition and toxicity of foods. I collected published data on the composition of raw and unprocessed foods - i.e., fruits, endosperm tissues, starchy foods, mushrooms, and meats. Sweet taste is thought to help identify foods with a high caloric or micronutrient density. However, the sweetest foods (fruits) had a relatively modest caloric density and low micronutrient density, whereas the blandest foods (endosperm tissues and meats) had a relatively high caloric and high micronutrient density. Salty taste is thought to be a proxy for foods high in sodium. Sodium levels were higher in meats than in most plant materials, but raw meats lack a salient salty taste. Sour taste (a measure of acidity) is thought to signify dangerous or spoiled foods. While this may be the case, it is notable that most ripe fruits are acidic. Umami taste is thought to reflect the protein content of food. I found that free L-glutamate (the prototypical umami tastant) concentration varies independently of protein content in foods. Bitter taste is thought to help identify poisonous foods, but many nutritious plant materials taste bitter. Fat taste is thought to help identify triglyceride-rich foods, but the role of taste versus mouthfeel in the attraction to fatty foods is unresolved. These findings indicate that the taste system provides incomplete or, in some cases, misleading information about the nutritional content and toxicity of foods. This may explain why inputs from the taste system are merged with inputs from the other cephalic senses and intestinal nutrient-sensing systems. By doing so, we create a more complete sensory representation and nutritional evaluation of foods.
Collapse
Affiliation(s)
- John I Glendinning
- Departments of Biology and Neuroscience and Behavior, Barnard College, Columbia University, New York, NY, USA.
| |
Collapse
|
43
|
Margulis E, Dagan-Wiener A, Ives RS, Jaffari S, Siems K, Niv MY. Intense bitterness of molecules: Machine learning for expediting drug discovery. Comput Struct Biotechnol J 2020; 19:568-576. [PMID: 33510862 PMCID: PMC7807207 DOI: 10.1016/j.csbj.2020.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Drug development is a long, expensive and multistage process geared to achieving safe drugs with high efficacy. A crucial prerequisite for completing the medication regimen for oral drugs, particularly for pediatric and geriatric populations, is achieving taste that does not hinder compliance. Currently, the aversive taste of drugs is tested in late stages of clinical trials. This can result in the need to reformulate, potentially resulting in the use of more animals for additional toxicity trials, increased financial costs and a delay in release to the market. Here we present BitterIntense, a machine learning tool that classifies molecules into "very bitter" or "not very bitter", based on their chemical structure. The model, trained on chemically diverse compounds, has above 80% accuracy on several test sets. Our results suggest that about 25% of drugs are predicted to be very bitter, with even higher prevalence (~40%) in COVID19 drug candidates and in microbial natural products. Only ~10% of toxic molecules are predicted to be intensely bitter, and it is also suggested that intense bitterness does not correlate with hepatotoxicity of drugs. However, very bitter compounds may be more cardiotoxic than not very bitter compounds, possessing significantly lower QPlogHERG values. BitterIntense allows quick and easy prediction of strong bitterness of compounds of interest for food, pharma and biotechnology industries. We estimate that implementation of BitterIntense or similar tools early in drug discovery process may lead to reduction in delays, in animal use and in overall financial burden.
Collapse
Affiliation(s)
- Eitan Margulis
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ayana Dagan-Wiener
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Robert S. Ives
- Comparative & Translational Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Sara Jaffari
- Product Development & Supply, GlaxoSmithKline, Park Road, Ware, SG12 0DP, United Kingdom
| | | | - Masha Y. Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
44
|
Behrens M, Di Pizio A, Redel U, Meyerhof W, Korsching SI. At the Root of T2R Gene Evolution: Recognition Profiles of Coelacanth and Zebrafish Bitter Receptors. Genome Biol Evol 2020; 13:6045956. [PMID: 33355666 PMCID: PMC7851594 DOI: 10.1093/gbe/evaa264] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
The careful evaluation of food is important for survival throughout the animal kingdom, and specialized chemoreceptors have evolved to recognize nutrients, minerals, acids, and many toxins. Vertebrate bitter taste, mediated by the taste receptor type 2 (T2R) family, warns against potentially toxic compounds. During evolution T2R receptors appear first in bony fish, but the functional properties of bony fish T2R receptors are mostly unknown. We performed a phylogenetic analysis showing the “living fossil” coelacanth (Latimeria chalumnae) and zebrafish (Danio rerio) to possess T2R repertoires typical for early-diverged species in the lobe-finned and the ray-finned clade, respectively. Receptors from these two species were selected for heterologous expression assays using a diverse panel of bitter substances. Remarkably, the ligand profile of the most basal coelacanth receptor, T2R01, is identical to that of its ortholog in zebrafish, consistent with functional conservation across >400 Myr of separate evolution. The second coelacanth receptor deorphaned, T2R02, is activated by steroid hormones and bile acids, evolutionary old molecules that are potentially endogenously synthesized agonists for extraoral T2Rs. For zebrafish, we report the presence of both specialized and promiscuous T2R receptors. Moreover, we identified an antagonist for one of the zebrafish receptors suggesting that bitter antagonism contributed to shape this receptor family throughout evolution.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Ulrike Redel
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | | |
Collapse
|
45
|
Grau-Bové C, Miguéns-Gómez A, González-Quilen C, Fernández-López JA, Remesar X, Torres-Fuentes C, Ávila-Román J, Rodríguez-Gallego E, Beltrán-Debón R, Blay MT, Terra X, Ardévol A, Pinent M. Modulation of Food Intake by Differential TAS2R Stimulation in Rat. Nutrients 2020; 12:E3784. [PMID: 33321802 PMCID: PMC7762996 DOI: 10.3390/nu12123784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic surgery modulates the enterohormone profile, which leads, among other effects, to changes in food intake. Bitter taste receptors (TAS2Rs) have been identified in the gastrointestinal tract and specific stimulation of these has been linked to the control of ghrelin secretion. We hypothesize that optimal stimulation of TAS2Rs could help to modulate enteroendocrine secretions and thus regulate food intake. To determine this, we have assayed the response to specific agonists for hTAS2R5, hTAS2R14 and hTAS2R39 on enteroendocrine secretions from intestinal segments and food intake in rats. We found that hTAS2R5 agonists stimulate glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK), and reduce food intake. hTAS2R14 agonists induce GLP1, while hTASR39 agonists tend to increase peptide YY (PYY) but fail to reduce food intake. The effect of simultaneously activating several receptors is heterogeneous depending on the relative affinity of the agonists for each receptor. Although detailed mechanisms are not clear, bitter compounds can stimulate differentially enteroendocrine secretions that modulate food intake in rats.
Collapse
Grants
- AGL2017-83477-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- R2B2018/03 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
- Martí Franqués Universitat Rovira i Virgili
- FI Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
- Beatriu de Pinós Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
- Serra Hunter Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
Collapse
Affiliation(s)
- Carme Grau-Bové
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Alba Miguéns-Gómez
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Carlos González-Quilen
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - José-Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (J.-A.F.-L.); (X.R.)
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (J.-A.F.-L.); (X.R.)
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.T.-F.); (J.Á.-R.)
| | - Javier Ávila-Román
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.T.-F.); (J.Á.-R.)
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - M Teresa Blay
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Ximena Terra
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Anna Ardévol
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Montserrat Pinent
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| |
Collapse
|
46
|
Chen Z, Zhang Q, Shan J, Lu Y, Liu Q. Detection of Bitter Taste Molecules Based on Odorant-Binding Protein-Modified Screen-Printed Electrodes. ACS OMEGA 2020; 5:27536-27545. [PMID: 33134717 PMCID: PMC7594143 DOI: 10.1021/acsomega.0c04089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/29/2020] [Indexed: 05/08/2023]
Abstract
Bitter taste substances commonly represent a signal of toxicity. Fast and reliable detection of bitter molecules improves the safety of foods and beverages. Here, we report a biosensor using an easily accessible and cost-effective odorant-binding protein (OBP) of Drosophila melanogaster as a biosensitive material for the detection of bitter molecules. Based on the theoretical evaluation of the protein-ligand interaction, binding energies between the OBP and bitter molecules were calculated via molecular docking for the prediction and verification of binding affinities. Through one-step reduction, gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) were deposited on the screen-printed electrodes for improving the electrochemical properties of electrodes. After the electrodes were immobilized with OBPs via layer-by-layer self-assembly, typical bitter molecules, such as denatonium, quinine, and berberine, were investigated through electrochemical impedance spectroscopy. The bitter molecules showed significant binding properties to the OBP with linear response concentrations ranging from 10-9 to 10-6 mg/mL. Therefore, the OBP-based biosensor offered powerful analytic techniques for the detection of bitter molecules and showed promising applications in the field of bitter taste evaluation.
Collapse
Affiliation(s)
- Zetao Chen
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qingqing Zhang
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianzhen Shan
- The
First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yanli Lu
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Collaborative
Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, P. R. China
- . Tel/Fax: +86 571 87953796
| | - Qingjun Liu
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Collaborative
Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, P. R. China
| |
Collapse
|
47
|
Muthiah I, Rajendran K, Dhanaraj P. In silico molecular docking and physicochemical property studies on effective phytochemicals targeting GPR116 for breast cancer treatment. Mol Cell Biochem 2020; 476:883-896. [PMID: 33106912 DOI: 10.1007/s11010-020-03953-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 11/28/2022]
Abstract
G protein-coupled receptor 116 (GPR116), an orphan adhesion receptor, found an important role in cell adhesion and migration in eukaryotes. Abnormal expression of GPCR identified in various cancers turns focus of research community towards GPCR to identify the targeting drug against GPCR. Though GPR116 role was studied in progression of metastasis in triple-negative breast cancer (TNBC), unfortunately, still no drugs targeting GPR116 were identified. TNBC is a hormone-negative aggressive breast cancer found even in young women. Since TNBC has no target receptor for therapy, it would be desirable to target GPR116. Currently, chemotherapy is the only promising option for TNBC; however, these drugs cause chemoresistance. Hence this current study concentrated on finding drugable natural phytochemical ligands targeting GPR116 using in silico approach. Best docked ligand with target and active binding site amino acids were identified in molecular docking study. Pharmacokinetic properties (ADME) were assessed by Qikprop. Result showed that pharmacokinetics properties of natural phytochemicals were as good as existing chemotherapeutic cancer drugs. This study indicates that phytochemicals could be a promising target for GPR116. This in silico analysis facilitates further research to design the drug targeting GPR116 for treatment of TNBC.
Collapse
Affiliation(s)
- Indiraleka Muthiah
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India
| | - Karthikeyan Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India.
| | - Premnath Dhanaraj
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Science (Deemed To Be University), Coimbatore, Tamilnadu, 641114, India
| |
Collapse
|
48
|
Dunkel A, Hofmann T, Di Pizio A. In Silico Investigation of Bitter Hop-Derived Compounds and Their Cognate Bitter Taste Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10414-10423. [PMID: 32027492 DOI: 10.1021/acs.jafc.9b07863] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The typical bitter taste of beer is caused by adding hops (Humulus lupulus L.) during the wort boiling process. The bitter taste of hop-derived compounds was found to be mediated by three bitter taste receptors: TAS2R1, TAS2R14, and TAS2R40. In this work, structural bioinformatics analyses were used to characterize the binding modes of trans-isocohumulone, trans-isohumulone, trans-isoadhumulone, cis-isocohumulone, cis-isohumulone, cis-isoadhumulone, cohumulone, humulone, adhumulone, and 8-prenylnaringenin into the orthosteric binding site of their cognate receptors. A conserved asparagine in transmembrane 3 was found to be essential for the recognition of hop-derived compounds, whereas the surrounding residues in the binding site of the three receptors encode the ligand specificity. Hop-derived compounds are renowned bioactive molecules and are considered as potential hit molecules for drug discovery to treat metabolic diseases. A chemoinformatics analysis revealed that hop-derived compounds cluster in a different region of the chemical space compared to known bitter food-derived compounds, pinpointing hop-derived compounds as a very peculiar class of bitter compounds.
Collapse
Affiliation(s)
- Andreas Dunkel
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner Straße 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner Straße 34, D-85354 Freising, Germany
| |
Collapse
|
49
|
Polyphenols and taste 2 receptors. Physiological, pathophysiological and pharmacological implications. Biochem Pharmacol 2020; 178:114086. [DOI: 10.1016/j.bcp.2020.114086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
|
50
|
Structure-based screening for discovery of sweet compounds. Food Chem 2020; 315:126286. [DOI: 10.1016/j.foodchem.2020.126286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
|