1
|
Apostolova D, Apostolov G, Moten D, Batsalova T, Dzhambazov B. Claudin-12: guardian of the tissue barrier or friend of tumor cells. Tissue Barriers 2024:2387408. [PMID: 39087432 DOI: 10.1080/21688370.2024.2387408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.
Collapse
Affiliation(s)
- Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Georgi Apostolov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Rowshan N, Anjomshoa M, Farahzad A, Bijad E, Amini-Khoei H. Gut-brain barrier dysfunction bridge autistic-like behavior in mouse model of maternal separation stress: A behavioral, histopathological, and molecular study. Int J Dev Neurosci 2024; 84:314-327. [PMID: 38584149 DOI: 10.1002/jdn.10329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a fast-growing neurodevelopmental disorder throughout the world. Experiencing early life stresses (ELS) like maternal separation (MS) is associated with autistic-like behaviors. It has been proposed that disturbance in the gut-brain axis-mediated psychiatric disorders following MS. The role of disruption in the integrity of gut-brain barrier in ASD remains unclear. Addressing this knowledge gap, in this study we aimed to investigate role of the gut-brain barrier integrity in mediating autistic-like behaviors in mouse models of MS stress. To do this, mice neonates are separated daily from their mothers from postnatal day (PND) 2 to PND 14 for 3 hours. During PND58-60, behavioral tests related to autistic-like behaviors including three-chamber sociability, shuttle box, and resident-intruder tests were performed. Then, prefrontal cortex (PFC), hippocampus, and colon samples were dissected out for histopathological and molecular evaluations. Results showed that MS is associated with impaired sociability and social preference indexes, aggressive behaviors, and impaired passive avoidance memory. The gene expression of CLDN1 decreased in the colon, and the gene expression of CLDN5, CLDN12, and MMP9 increased in the PFC of the MS mice. MS is associated with decrease in the diameter of CA1 and CA3 areas of the hippocampus. In addition, MS led to histopathological changes in the colon. We concluded that, probably, disturbance in the gut-brain barrier integrities mediated the autistic-like behavior in MS stress in mice.
Collapse
Affiliation(s)
- Negin Rowshan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Anahita Farahzad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Truong TTT, Liu ZSJ, Panizzutti B, Kim JH, Dean OM, Berk M, Walder K. Network-based drug repurposing for schizophrenia. Neuropsychopharmacology 2024; 49:983-992. [PMID: 38321095 PMCID: PMC11039639 DOI: 10.1038/s41386-024-01805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Despite recent progress, the challenges in drug discovery for schizophrenia persist. However, computational drug repurposing has gained popularity as it leverages the wealth of expanding biomedical databases. Network analyses provide a comprehensive understanding of transcription factor (TF) regulatory effects through gene regulatory networks, which capture the interactions between TFs and target genes by integrating various lines of evidence. Using the PANDA algorithm, we examined the topological variances in TF-gene regulatory networks between individuals with schizophrenia and healthy controls. This algorithm incorporates binding motifs, protein interactions, and gene co-expression data. To identify these differences, we subtracted the edge weights of the healthy control network from those of the schizophrenia network. The resulting differential network was then analysed using the CLUEreg tool in the GRAND database. This tool employs differential network signatures to identify drugs that potentially target the gene signature associated with the disease. Our analysis utilised a large RNA-seq dataset comprising 532 post-mortem brain samples from the CommonMind project. We constructed co-expression gene regulatory networks for both schizophrenia cases and healthy control subjects, incorporating 15,831 genes and 413 overlapping TFs. Through drug repurposing, we identified 18 promising candidates for repurposing as potential treatments for schizophrenia. The analysis of TF-gene regulatory networks revealed that the TFs in schizophrenia predominantly regulate pathways associated with energy metabolism, immune response, cell adhesion, and thyroid hormone signalling. These pathways represent significant targets for therapeutic intervention. The identified drug repurposing candidates likely act through TF-targeted pathways. These promising candidates, particularly those with preclinical evidence such as rimonabant and kaempferol, warrant further investigation into their potential mechanisms of action and efficacy in alleviating the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3010, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.
| |
Collapse
|
4
|
Liu Q, Wang Z, Sun S, Nemes J, Brenner LA, Hoisington A, Skotak M, LaValle CR, Ge Y, Carr W, Haghighi F. Association of Blast Exposure in Military Breaching with Intestinal Permeability Blood Biomarkers Associated with Leaky Gut. Int J Mol Sci 2024; 25:3549. [PMID: 38542520 PMCID: PMC10971443 DOI: 10.3390/ijms25063549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Injuries and subclinical effects from exposure to blasts are of significant concern in military operational settings, including tactical training, and are associated with self-reported concussion-like symptomology and physiological changes such as increased intestinal permeability (IP), which was investigated in this study. Time-series gene expression and IP biomarker data were generated from "breachers" exposed to controlled, low-level explosive blast during training. Samples from 30 male participants at pre-, post-, and follow-up blast exposure the next day were assayed via RNA-seq and ELISA. A battery of symptom data was also collected at each of these time points that acutely showed elevated symptom reporting related to headache, concentration, dizziness, and taking longer to think, dissipating ~16 h following blast exposure. Evidence for bacterial translocation into circulation following blast exposure was detected by significant stepwise increase in microbial diversity (measured via alpha-diversity p = 0.049). Alterations in levels of IP protein biomarkers (i.e., Zonulin, LBP, Claudin-3, I-FABP) assessed in a subset of these participants (n = 23) further evidenced blast exposure associates with IP. The observed symptom profile was consistent with mild traumatic brain injury and was further associated with changes in bacterial translocation and intestinal permeability, suggesting that IP may be linked to a decrease in cognitive functioning. These preliminary findings show for the first time within real-world military operational settings that exposures to blast can contribute to IP.
Collapse
Affiliation(s)
- Qingkun Liu
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Zhaoyu Wang
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Shengnan Sun
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jeffrey Nemes
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Lisa A. Brenner
- Rocky Mountain Mental Illness, Research, Education and Clinical Care, Department of Veterans Affairs, Aurora, CO 80045, USA; (L.A.B.); (A.H.)
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Andrew Hoisington
- Rocky Mountain Mental Illness, Research, Education and Clinical Care, Department of Veterans Affairs, Aurora, CO 80045, USA; (L.A.B.); (A.H.)
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433, USA
| | - Maciej Skotak
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Christina R. LaValle
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Yongchao Ge
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Walter Carr
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Fatemeh Haghighi
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
5
|
Fathi MA, Shen D, Luo L, Li Y, Elnesr SS, Li C. The exposure in ovo to glyphosate on the integrity of intestinal epithelial tight junctions of chicks. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:183-191. [PMID: 38400726 DOI: 10.1080/03601234.2024.2319006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Glyphosate is an ingredient widely used in various commercial formulations, including Roundup®. This study focused on tight junctions and the expression of inflammatory genes in the small intestine of chicks. On the sixth day of embryonic development, the eggs were randomly assigned to three groups: the control group (CON, n = 60), the glyphosate group (GLYP, n = 60), which received 10 mg of active glyphosate/kg egg mass, and the Roundup®-based glyphosate group also received 10 mg of glyphosate. The results indicated that the chicks exposed to glyphosate or Roundup® exhibited signs of oxidative stress. Additionally, histopathological alterations in the small intestine tissues included villi fusion, complete fusion of some intestinal villi, a reduced number of goblet cells, and necrosis of some submucosal epithelial cells in chicks. Genes related to the small intestine (ZO-1, ZO-2, Claudin-1, Claudin-3, JAM2, and Occludin), as well as the levels of pro-inflammatory cytokines (IFNγ, IL-1β, and IL-6), exhibited significant changes in the groups exposed to glyphosate or Roundup® compared to the control group. In conclusion, the toxicity of pure glyphosate or Roundup® likely disrupts the small intestine of chicks by modulating the expression of genes associated with tight junctions in the small intestine.
Collapse
Affiliation(s)
- Mohamed A Fathi
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
- Animal Production Research Institute, Agricultural Research Centre, Dokki, Giza, Egypt
| | - Dan Shen
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Lu Luo
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Yansen Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Chunmei Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
6
|
Wang W, Zhou Y, Li W, Quan C, Li Y. Claudins and hepatocellular carcinoma. Biomed Pharmacother 2024; 171:116109. [PMID: 38185042 DOI: 10.1016/j.biopha.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high incidence and dismal prognosis, making it a significant global health burden. To change this, the development of new therapeutic strategies is imminent. The claudin (CLDN) family, as key components of tight junctions (TJs), plays an important role in the initiation and development of cancer. Dysregulated expression of CLDNs leads to loss of intercellular adhesion and aberrant cell signaling, which are closely related to cancer cell invasion, migration, and epithelial-mesenchymal transition (EMT). CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, CLDN10, CLDN11, CLDN14, and CLDN17 are aberrantly expressed in HCC, which drives the progression of the disease. Consequently, they have tremendous potential as prognostic indicators and therapeutic targets. This article summarizes the aberrant expression, molecular mechanisms, and clinical application studies of different subtypes of CLDNs in HCC, with a particular emphasis on CLDN1.
Collapse
Affiliation(s)
- Wentao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yi Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China.
| |
Collapse
|
7
|
Yin B, Liu H, Tan B, Deng J, Xie S. The effects of sodium butyrate (NaB) combination with soy saponin dietary supplementation on the growth parameters, intestinal performance and immune-related genes expression of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109033. [PMID: 37640123 DOI: 10.1016/j.fsi.2023.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Soy saponins are generally known to have negative effects on growth and the intestines of aquatic animals, and appropriate levels of sodium butyrate (NaB) may provide some mitigating effects. We investigated the effects of low and high levels of soy saponin and the protective effects of NaB (based on high level of soy saponin) on growth, serum cytokines, distal intestinal histopathology, and inflammation in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). The experiment included four groups: fishmeal group (FM, 0.00% saponin and 0.00% NaB), low saponin group (SL, 0.30% saponin and 0.00% NaB), high saponin group (SH, 1.50% saponin and 0.00% NaB) and high saponin with NaB group (SH-NaB, 1.50% saponin and 0.13% NaB). The results showed compared to FM, the final body weight (FBW) and weight gain (WG) were significantly higher and lower in SL and SH, respectively (P < 0.05). Compared to SH, the FBW and WG were significant higher in SH-NaB (P < 0.05). In the serum, compared to FM, the interferon γ (IFN-γ) and interleukin-1β (IL-1β) levels in SH were significantly increased (P < 0.05). Compared to SH, the IFN-γ level was significantly decreased in SH-NaB (P < 0.05). In the distal intestine, based on Alcian Blue-Periodic Acid-Schiff (AB-PAS) observation, the goblet cell/μm was significantly increased and decreased in the SL and SH, respectively, compared to FM. The intestinal diameter/plica height ratio in the SH was significantly higher than those in the FM, SL and SH-NaB (P < 0.05). The NO and ONOO- levels in the SH were significantly higher than that in FM and SL (P < 0.05). At the transcriptional level in the distal intestine, compared to FM, the mRNA levels of tumor necrosis factor (tnfα), il1β, interleukin-8 (il8) and ifnγ were significantly up-regulated in the SH (P < 0.05). Compared to the SH, tnfα, il8 and ifnγ were significantly down-regulated in the SH-NaB (P < 0.05). Compared to the FM, the mRNA levels of claudin3, claudin15, zo2 and zo3 were significantly up-regulated in the SL (P < 0.05). The mRNA levels of occludin, claudin3, claudin12, claudin15, zo1, zo2 and zo3 were significantly down-regulated in the SH compared to the FM (P < 0.05). Additionally, compared to the SH, the mRNA levels of occludin, claudin3, claudin12, claudin15, zo1, zo2 and zo3 were significantly up-regulated in the SH-NaB (P < 0.05). After the 7-day Vibrio parahaemolyticus challenge test, the survival was significantly higher and lower in the SL and SH, respectively, compared to FM (P < 0.05). Overall, low and high levels of soy saponins had positive and negative effects on growth, disease resistance, serum cytokines, and distal intestinal development and anti-inflammation, respectively, in hybrid grouper. NaB effectively increased disease resistance and improved distal intestinal inflammation in hybrid grouper, but the effects of NaB were mainly observed in improving distal intestinal tight junctions.
Collapse
Affiliation(s)
- Bin Yin
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China; Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Agricultural Development Co., Ltd., Chengdu, 610093, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China.
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China
| |
Collapse
|
8
|
Deeksha HS, Pajai S, Cherukuri S. Study Based on the Alliance Between Serum Magnesium Levels and Preterm Labor: An Inclusive Review. Cureus 2023; 15:e42602. [PMID: 37641740 PMCID: PMC10460502 DOI: 10.7759/cureus.42602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Preterm labor, regarded as the onset of labor before 37 weeks of gestation, is a highly prevalent issue in obstetrics with repercussions for neonatal health. This review article presents an in-depth analysis of the alliance between serum magnesium levels and preterm labor. The review explores the physiological roles of magnesium right through pregnancy, including its significance for energy metabolism, smooth muscle contraction, deoxyribonucleic acid (DNA), and protein synthesis. It addresses cellular transport and the homeostasis of magnesium. The pathophysiological processes encompassing inflammation, oxidative stress, calcium regulation, smooth muscle contractility, and neuroendocrine pathways are investigated. The review evaluates epidemiological studies investigating the alliance between serum magnesium levels and preterm labor. The review incorporates an assortment of study varieties, such as observational studies, case-control studies, prospective cohort studies, and meta-analyses. In the course of reviewing the prognostic relevance of serum magnesium levels in premature labor, therapeutic implications involving diagnostic precision, prognostic significance, and therapeutic response assessment have additionally been addressed. Therapeutic interventions targeting magnesium levels, such as magnesium supplementation, tocolytic therapy, and the role of magnesium in antenatal corticosteroid administration, are explored. This review provides an in-depth evaluation of the correlation between serum magnesium levels and preterm labor, stressing its therapeutic significance and repercussions for future research and treatment strategies.
Collapse
Affiliation(s)
- H S Deeksha
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sandhya Pajai
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Srinidhi Cherukuri
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Wade H, Pan K, Duan Q, Kaluzny S, Pandey E, Fatumoju L, Saraswathi V, Wu R, Harris EN, Su Q. Akkermansia muciniphila and its membrane protein ameliorates intestinal inflammatory stress and promotes epithelial wound healing via CREBH and miR-143/145. J Biomed Sci 2023; 30:38. [PMID: 37287024 DOI: 10.1186/s12929-023-00935-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND The intestinal epithelial barrier is the interface for interaction between gut microbiota and host metabolic systems. Akkermansia muciniphila (A. muciniphila) is a key player in the colonic microbiota that resides in the mucus layer, whose abundance is selectively decreased in the faecal microbiota of inflammatory bowel disease (IBD) patients. This study aims to investigate the regulatory mechanism among A. muciniphila, a transcription factor cAMP-responsive element-binding protein H (CREBH), and microRNA-143/145 (miR-143/145) in intestinal inflammatory stress, gut barrier integrity and epithelial regeneration. METHODS A novel mouse model with increased colonization of A muciniphila in the intestine of CREBH knockout mice, an epithelial wound healing assay and several molecular biological techniques were applied in this study. Results were analysed using a homoscedastic 2-tailed t-test. RESULTS Increased colonization of A. muciniphila in mouse gut enhanced expression of intestinal CREBH, which was associated with the mitigation of intestinal endoplasmic reticulum (ER) stress, gut barrier leakage and blood endotoxemia induced by dextran sulfate sodium (DSS). Genetic depletion of CREBH (CREBH-KO) significantly inhibited the expression of tight junction proteins that are associated with gut barrier integrity, including Claudin5 and Claudin8, but upregulated Claudin2, a tight junction protein that enhances gut permeability, resulting in intestinal hyperpermeability and inflammation. Upregulation of CREBH by A. muciniphila further coupled with miR-143/145 promoted intestinal epithelial cell (IEC) regeneration and wound repair via insulin-like growth factor (IGF) and IGFBP5 signalling. Moreover, the gene expressing an outer membrane protein of A. muciniphila, Amuc_1100, was cloned into a mammalian cell-expression vector and successfully expressed in porcine and human IECs. Expression of Amuc_1100 in IECs could recapitulate the health beneficial effect of A. muciniphila on the gut by activating CREBH, inhibiting ER stress and enhancing the expression of genes involved in gut barrier integrity and IEC's regeneration. CONCLUSIONS This study uncovers a novel mechanism that links A. muciniphila and its membrane protein with host CREBH, IGF signalling and miRNAs in mitigating intestinal inflammatory stress-gut barrier permeability and promoting intestinal wound healing. This novel finding may lend support to the development of therapeutic approaches for IBD by manipulating the interaction between host genes, gut bacteria and its bioactive components.
Collapse
Affiliation(s)
- Henry Wade
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Kaichao Pan
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Szczepan Kaluzny
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Ekta Pandey
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Linda Fatumoju
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
10
|
Differential Expression of Claudin 1 and 4 in Basal Cell Carcinoma of the Skin. Dermatol Res Pract 2023; 2023:9936551. [PMID: 36714681 PMCID: PMC9883106 DOI: 10.1155/2023/9936551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common human malignancy. The biological behavior of this entity is remarkably indolent. Claudin plays an important role in tight junctions, regulating paracellular passage of variable substance including growth factors and maintaining the polarity of epithelia. Up- or downregulated claudin expression has been reported in many cancers. Nevertheless, claudin expression in BCC of the skin remains unclear. We therefore examined the status of claudin 1 and 4 expressions in BCC and adjacent normal skin by immunohistochemistry (IHC). Our IHC results demonstrated high claudin 1 expression and low claudin 4 expression in 33 of 34 lower-grade BCCs. In lower-grade BCC, claudin 1 was increased and claudin 4 was decreased compared with the normal skin. Claudin 1 was inclined to be highly expressed in the membrane and cytoplasm of tumour cells in the periphery of tumour nest. Conversely, almost all lower-grade BCCs (33/34) and one of two higher-grade BCC lacked or showed focal positivity for claudin 4. These results imply that the expression pattern is characteristics of lower-risk BCC. Interestingly, one of the two higher-grade BCCs demonstrated the converse expression patterns of claudins, with decreased claudin 1 and increased claudin 4. The combination of immunohistochemical claudin 1 and 4 expression may offer a useful ancillary tool for the pathological diagnosis of BCC. Furthermore, membranous and intracellular claudins may present future therapeutic targets for uncontrollable BCC.
Collapse
|
11
|
Agarwal S, Goswami P, Poudel S, Gunjan D, Singh N, Yadav R, Kumar U, Pandey G, Saraya A. Acute pancreatitis is characterized by generalized intestinal barrier dysfunction in early stage. Pancreatology 2023; 23:9-17. [PMID: 36509643 DOI: 10.1016/j.pan.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS The role of intestinal-barrier in acute pancreatitis(AP) is poorly understood. We aimed to assess structural and functional changes in the intestinal-barrier in patients with early AP (time from onset<2 weeks) and the effect of enteral nutrition on them. METHODS In this prospective observational study, patients with early AP not on enteral nutrition were compared with controls for baseline intestinal-permeability(lactulose: mannitol ratio(L:M)), endotoxinemia(serum IgM/IgG anti-endotoxin antibodies), bacterial-translocation(serum bacterial 16S rRNA) and duodenal epithelial tight-junction structure by immunohistochemistry(IHC) for tight-junction proteins(claudin-2,-3,-4, zonula occludens-1(ZO1), junctional adhesion molecule(JAM) and occludin) and electron microscopy. These parameters were reassessed after 2 weeks enteral feeding in a AP patients subset. RESULTS 96 patients with AP(age: 38.0 ± 14.5 years; etiology: biliary[46.8%]/alcohol[39.6%]; severe:53.2%, mortality:11.4%) and 40 matched controls were recruited. Patients with AP had higher baseline intestinal permeability(median L:M 0.176(IQR 0.073-0.376) vs 0.049(0.024-0.075) in controls; p < 0.001) and more frequent bacteraemia(positive bacterial 16S rRNA in 24/48 AP vs 0/21 controls; p < 0.001) with trend towards higher serum endotoxinemia(median IgG anti-endotoxin 78(51.2-171.6) GMU/ml vs 51.2(26.16-79.2) in controls; p = 0.061). Claudin-2, claudin-3, ZO1 were downregulated in both duodenal crypts and villi while claudin-4 and JAM were downregulated in duodenal villi and crypts respectively. 22 AP patients reassessed after initiation of enteral nutrition showed trend towards improving intestinal permeability, serum endotoxinemia and bacteraemia, with significant improvement in claudin-2,-3 in duodenal villi. CONCLUSION Patients with AP have significant disturbances in intestinal barrier structure and function in first 2 weeks from onset that persist despite institution of enteral nutrition.
Collapse
Affiliation(s)
- Samagra Agarwal
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Pooja Goswami
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Shekhar Poudel
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gunjan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Namrata Singh
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Umesh Kumar
- Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Gaurav Pandey
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
12
|
Atluri K, Manne S, Nalamothu V, Mantel A, Sharma PK, Babu RJ. Advances in Current Drugs and Formulations for the Management of Atopic Dermatitis. Crit Rev Ther Drug Carrier Syst 2023; 40:1-87. [PMID: 37585309 DOI: 10.1615/critrevtherdrugcarriersyst.2023042979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with a complex pathophysiology. Treatment of AD remains challenging owing to the presence of a wide spectrum of clinical phenotypes and limited response to existing therapies. However, recent genetic, immunological, and pathophysiological insights into the disease mechanism resulted in the invention of novel therapeutic drug candidates. This review provides a comprehensive overview of current therapies and assesses various novel drug delivery strategies currently under clinical investigation. Further, this review majorly emphasizes on various topical treatments including emollient therapies, barrier repair agents, topical corticosteroids (TCS), phosphodiesterase 4 (PDE4) inhibitors, calcineurin inhibitors, and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway inhibitors. It also discusses biological and systemic therapies, upcoming treatments based on ongoing clinical trials. Additionally, this review scrutinized the use of pharmaceutical inactive ingredients in the approved topical dosage forms for AD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Zhao B, Yin Q, Fei Y, Zhu J, Qiu Y, Fang W, Li Y. Research progress of mechanisms for tight junction damage on blood-brain barrier inflammation. Arch Physiol Biochem 2022; 128:1579-1590. [PMID: 32608276 DOI: 10.1080/13813455.2020.1784952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation in the central nervous system (CNS) contributes to disease pathologies by disrupting the integrity of the blood-brain barrier (BBB). Tight junctions (TJ) are a key component of the BBB. Following hypoxic-ischaemic or mechanical injury to the brain, inflammatory mediators are released such as cytokines, chemokines, and growth factors. Simultaneously, matrix metalloproteinases (MMPs) are released which can degrade TJ proteins. Subsequently, the function and morphology of the BBB are disrupted, which allows immune cells an opportunity to enter into the brain parenchyma. This review summarises the information on the role of TJ protein families in the BBB and provides a comprehensive summary of the mechanisms whereby inflammation breaks down the BBB by increasing degradation of TJ proteins.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qiyang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jianping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Farnesoid X receptor activation by the novel agonist TC-100 (3α, 7α, 11β-Trihydroxy-6α-ethyl-5β-cholan-24-oic Acid) preserves the intestinal barrier integrity and promotes intestinal microbial reshaping in a mouse model of obstructed bile acid flow. Biomed Pharmacother 2022; 153:113380. [DOI: 10.1016/j.biopha.2022.113380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
|
15
|
Lopez-Escalera S, Wellejus A. Evaluation of Caco-2 and human intestinal epithelial cells as in vitro models of colonic and small intestinal integrity. Biochem Biophys Rep 2022; 31:101314. [PMID: 35873654 PMCID: PMC9304606 DOI: 10.1016/j.bbrep.2022.101314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Although the colonic cell line Caco-2 is widely used as a model of the small intestinal barrier function, it has limitations such as overestimated transepithelial electrical resistance (TEER) compared to in vivo conditions. Therefore, we investigated Human Intestinal Epithelial Cells (HIECs) as an alternative in vitro model. We explored whether cell seeding number of HIEC-6, and the number of incubation days for HIEC and Caco-2 cells had an impact on TEER, and tight junction expression was examined for both cell lines via immunofluorescence in the presence and absence of probiotic bacteria. We observed no significant difference in TEER readings for either cell lines when cultured for different days. Further, the HIEC TEER readings did not change with increased seeding number and were not significantly different from a control with no cells. HIECs expressed Claudin-1 and Zonula Occludens-1 but not Occludin. Caco-2 co-culture with probiotic bacteria demonstrated a significant increase in TEER, particularly for the lactobacillus strains, whereas HIEC TEER did not respond to bacterial co-incubation. Our study shows that although HIECs express certain TJ proteins, a significant TEER was not observed, likely due to the embryonic origin of the cells, which limits the application of this cell line as a suitable model for small intestinal barrier function. Human embryonic intestinal epithelial cells cannot form a significant barrier. Contrary to Caco-2 cells HIECs do not express the tight junction protein occludin. Probiotic bacteria induce a tight barrier in Caco-2 cells but not in HIECs.
Collapse
Affiliation(s)
- Silvia Lopez-Escalera
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, DK-2970, Hørsholm, Denmark
- Friedrich-Schiller Universität Jena, Fakultät für Biowissenschaften, Bachstraβe 18K, 07743, Jena, Germany
| | - Anja Wellejus
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, DK-2970, Hørsholm, Denmark
- Corresponding author.
| |
Collapse
|
16
|
Shanmugasundaram R, Adams D, Ramirez S, Murugesan GR, Applegate TJ, Cunningham S, Pokoo-Aikins A, Glenn AE. Subclinical Doses of Combined Fumonisins and Deoxynivalenol Predispose Clostridium perfringens–Inoculated Broilers to Necrotic Enteritis. Front Physiol 2022; 13:934660. [PMID: 35936897 PMCID: PMC9353554 DOI: 10.3389/fphys.2022.934660] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Fumonisins (FB) and deoxynivalenol (DON) are mycotoxins which may predispose broiler chickens to necrotic enteritis (NE). The objective of this study was to identify the effects of subclinical doses of combined FB and DON on NE. A total of 480 day-old male broiler chicks were divided into four treatment groups; 1) control group (basal diet + Clostridium perfringens); 2) necrotic enteritis group (basal diet + Eimeria maxima + C. perfringens); 3) FB + DON group (basal diet + 3 mg/kg FB + 4 mg/kg DON + C. perfringens); and 4) FB + DON + NE group (basal diet + 3 mg/kg FB + 4 mg/kg DON + E. maxima + C. perfringens). Birds in NE and FB + DON + NE groups received 2.5 × 103E. maxima on day 14. All birds were inoculated with C. perfringens on days 19, 20, and 21. On day 35, birds in the NE, FB + DON, and FB + DON + NE groups had 242, 84, and 339 g lower BWG and a 19-, 2-, and 22-point increase in FCR respectively, than in the control group. Subclinical doses of FB + DON increased (p < 0.05) the NE lesion scores compared to the control group on day 21. On day 21, birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) serum FITC-D, lower (p < 0.05) jejunal tight junction protein mRNA, and increased (p < 0.05) cecal tonsil IL-1 mRNA compared to control group. On day 21, birds in the NE group had decreased (p < 0.05) villi height to crypt depth ratio compared to the control group and the presence of FB + DON in NE-induced birds further decreased the villi height to crypt depth ratio. Birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) C. perfringens, lower (p < 0.05) Lactobacillus loads in the cecal content, and a lower (p < 0.05) CD8+: CD4+ cell ratio in the cecal tonsils compared to the control group. It can be concluded that subclinical doses of combined FB and DON predispose C. perfringens-inoculated birds to NE, and the presence of FB + DON in NE-induced birds exacerbated the severity of NE.
Collapse
Affiliation(s)
- R. Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
- *Correspondence: R. Shanmugasundaram,
| | - D. Adams
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Ramirez
- DSM Animal Nutrition and Health, Kaiseraugst, Switzerland
| | | | - T. J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Cunningham
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. Pokoo-Aikins
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. E. Glenn
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
17
|
Paraprobiotics and Postbiotics of Lactobacillus delbrueckii CIDCA 133 Mitigate 5-FU-Induced Intestinal Inflammation. Microorganisms 2022; 10:microorganisms10071418. [PMID: 35889136 PMCID: PMC9324481 DOI: 10.3390/microorganisms10071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal mucositis is a commonly reported side effect in oncology practice. Probiotics are considered an excellent alternative therapeutic approach to this debilitating condition; however, there are safety questions regarding the viable consumption of probiotics in clinical practice due to the risks of systemic infections, especially in immune-compromised patients. The use of heat-killed or cell-free supernatants derived from probiotic strains has been evaluated to minimize these adverse effects. Thus, this work evaluated the anti-inflammatory properties of paraprobiotics (heat-killed) and postbiotics (cell-free supernatant) of the probiotic Lactobacillus delbrueckii CIDCA 133 strain in a mouse model of 5-Fluorouracil drug-induced mucositis. Administration of paraprobiotics and postbiotics reduced the neutrophil cells infiltrating into the small intestinal mucosa and ameliorated the intestinal epithelium architecture damaged by 5-FU. These ameliorative effects were associated with a downregulation of inflammatory markers (Tlr2, Nfkb1, Il12, Il17a, Il1b, Tnf), and upregulation of immunoregulatory Il10 cytokine and the epithelial barrier markers Ocln, Cldn1, 2, 5, Hp and Muc2. Thus, heat-killed L. delbrueckii CIDCA 133 and supernatants derived from this strain were shown to be effective in reducing 5-FU-induced inflammatory damage, demonstrating them to be an alternative approach to the problems arising from the use of live beneficial microorganisms in clinical practice.
Collapse
|
18
|
Ahlswede L, Siebenaller C, Junglas B, Hellmann N, Schneider D. Human Claudin-7 cis-Interactions Are Not Crucial for Membrane-Membrane (Trans-) Interactions. Front Mol Biosci 2022; 9:908383. [PMID: 35832741 PMCID: PMC9271825 DOI: 10.3389/fmolb.2022.908383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Human Claudin-7 (Cldn7) is a member of the Claudin (Cldn) superfamily. In vivo, these proteins form tight junctions, which establish constricted connections between cells. Cldns oligomerize within the membrane plane (= cis-interaction), and also interact with Cldns from adjacent cells (= trans-interaction). Interactions of Cldns are typically studied in vivo and structural analyses of isolated Cldns are limited. Here, we describe heterologous expression in E. coli and purification of human Cldn7, enabling in vitro analyses of the isolated protein using detergent and model membrane systems. Cldn7 exists as a monomer, hexamer, and various higher oligomers in micelles. While only limited unfolding of the protein was observed in the presence of the anionic detergent sodium dodecyl sulfate, decreased ionic strength did affect Cldn7 cis-interactions. Furthermore, we identified two amino acids which mediate electrostatic cis-interactions and analyzed the impact of disturbed cis-interaction on trans-contacts via atomic force microscopy and monitoring Förster resonance energy transfer between fluorescently labeled Cldn7-containing proteoliposomes. Our results indicate that Cldn7 cis-oligomerization might not be a prerequisite for establishing trans-contacts.
Collapse
Affiliation(s)
- Lena Ahlswede
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carmen Siebenaller
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benedikt Junglas
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Dirk Schneider,
| |
Collapse
|
19
|
Inclusion of Mannan-Oligosaccharides in Diets for Tropical Gar Atractosteus tropicus Larvae: Effects on Growth, Digestive Enzymes, and Expression of Intestinal Barrier Genes. FISHES 2022. [DOI: 10.3390/fishes7030127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mannan-oligosaccharides (MOS) are non-digestible carbohydrates, and their use in aquaculture as prebiotics is well documented. The objective of this work was to test whether MOS supplemented in the diet of A. tropicus larvae (2, 4, and 6 g kg−1) influence growth parameters, the activity of digestive enzymes, and the expression of genes related to the intestinal barrier. The highest total length was observed in larvae fed 6 g kg−1 MOS compared to control larvae. Trypsin activity increased with the addition of MOS to the diets, but leucine aminopeptidase activity only increased with 6 g kg−1 MOS. Lipase and α-amylase activities increased in larvae fed with 2 and 4 g kg−1 MOS. The expression of zo-2 was higher with the 6 g kg−1 MOS treatment. The cl-3 transcripts were lower with 2 g kg−1 MOS but higher with 6 g kg−1 MOS. All tested concentrations of MOS increased the expression of muc-2. In this study, incorporating mannan-oligosaccharides into the diet of A. tropicus larvae had a positive effect, and the concentration of 6 g kg−1 produced the best results. Therefore, including this prebiotic in the diets for the culture of A. tropicus larvae is suitable.
Collapse
|
20
|
Fernandes J, Karra N, Bowring J, Reale R, James J, Blume C, Pell TJ, Rowan WC, Davies DE, Swindle EJ, Morgan H. Real-time monitoring of epithelial barrier function by impedance spectroscopy in a microfluidic platform. LAB ON A CHIP 2022; 22:2041-2054. [PMID: 35485428 DOI: 10.1039/d1lc01046h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A multichannel microfluidic platform for real-time monitoring of epithelial barrier integrity by electrical impedance has been developed. Growth and polarization of human epithelial cells from the airway or gastrointestinal tract was continuously monitored over 5 days in 8 parallel, individually perfused microfluidic chips. Electrical impedance data were continuously recorded to monitor cell barrier formation using a low-cost bespoke impedance analyser. Data was analysed using an electric circuit model to extract the equivalent transepithelial electrical resistance and epithelial cell layer capacitance. The cell barrier integrity steadily increased overtime, achieving an average resistance of 418 ± 121 Ω cm2 (airway cells) or 207 ± 59 Ω cm2 (gastrointestinal cells) by day 5. The utility of the polarized airway epithelial barrier was demonstrated using a 24 hour challenge with double stranded RNA to mimic viral infection. This caused a rapid decrease in barrier integrity in association with disruption of tight junctions, whereas simultaneous treatment with a corticosteroid reduced this effect. The platform is able to measure barrier integrity in real-time and is scalable, thus has the potential to be used for drug development and testing.
Collapse
Affiliation(s)
- João Fernandes
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK.
| | - Nikita Karra
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK.
| | - Joel Bowring
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK.
| | - Riccardo Reale
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK.
| | - Jonathan James
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Cornelia Blume
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK
| | - Theresa J Pell
- Novel Human Genetics Research Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, UK
| | - Wendy C Rowan
- Novel Human Genetics Research Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, UK
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK
| | - Emily J Swindle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, UK
| | - Hywel Morgan
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK.
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
21
|
Ding X, Zhou J, Zhao L, Chen M, Wang S, Zhang M, Zhang X, Jiang G. Intestinal Flora Composition Determines Microglia Activation and Improves Epileptic Episode Progress. Front Cell Infect Microbiol 2022; 12:835217. [PMID: 35356535 PMCID: PMC8959590 DOI: 10.3389/fcimb.2022.835217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
In response to environmental stimuli, immune memory mediates the plasticity of myeloid cells. Immune training and immune tolerance are two aspects of plasticity. Microglia that are immunologically trained or immunologically tolerant are endowed with a tendency to differentiate into alternative dominant phenotypes (M1/M2). Male C57BL/6 mice (immune-training group, immune-tolerant group, and control group) were used to establish the kainic acid epilepsy model. The seizure grade, duration, latency, hippocampal potential, and energy density were used to evaluate seizures, and the changes in the polarization of microglia were detected by western blot. 16S rDNA sequencing showed that the abundance of Ruminococcus in the immune-tolerant group was the dominant flora. Our research connections Intestinal microorganisms, brain immune status, and epilepsy behavior together. Pro-inflammatory M1 phenotype and anti-inflammatory M2 phenotype mediate and enhance and suppress subsequent inflammation, respectively. We conclude that intestinal microorganisms influence the occurrence and development of epilepsy by regulating the polarization of microglia.
Collapse
|
22
|
Zhong C, Tong DQ, Zhang YR, Wang XQ, Yan HC, Tan HZ, Gao CQ. DL-methionine and DL-methionyl- DL-methionine increase intestinal development and activate Wnt/β-catenin signaling activity in domestic pigeons (Columba livia). Poult Sci 2022; 101:101644. [PMID: 34986451 PMCID: PMC8743218 DOI: 10.1016/j.psj.2021.101644] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
This experiment was undertaken to investigate the effects of parental dietary DL-methionine (DL-Met) and DL-methionyl-DL-methionine (DL-Met-Met) supplementation on the intestinal development of young squabs. A total of 108 pairs of breeding pigeons and 432 one-day-old squabs were randomly divided into 3 groups: the control group (CON) was fed a basal diet (CP = 15%) and the experimental groups were fed a basal diet supplemented with 0.3% DL-Met or DL-Met-Met. Each pair of breeding pigeons nourished 4 young squabs, and 8 squabs from each treatment were randomly sampled at the end of the experiment. The results indicated that DL-Met and DL-Met-Met supplementation improved the intestinal morphology and structure in the squabs, as reflected by the increased relative intestinal weight of each small intestinal segment, villus height, and villus to crypt ratio. In addition, DL-Met and DL-Met-Met supplementation significantly increased the protein expression of cell proliferation markers (Ki67 and PCNA) and tight junction proteins (ZO-1 and Claudin-1) in the jejunum and strengthened the fluorescence signal intensity of Ki67, PCNA and Villin. Moreover, the expression of Wnt/β-catenin signaling pathway-related proteins (Frizzled 7 [FZD7], p-GSK-3β, Active β-catenin, β-catenin, TCF4, c-Myc, and Cyclin D1), and intestinal peptide transporter 1 (PepT1) in the jejunum was considerably higher in the treatment group than in the CON group (P < 0.05), with the DL-Met-Met group having the highest expression. Consistently, the molecular docking results predicted the possibility that DL-Met or DL-Met-Met binds to the membrane receptor FZD7, which mediates Wnt/β-catenin signaling. Collectively, the improvement of the intestinal development in squabs after parental dietary 0.3% DL-Met and DL-Met-Met supplementation could be through activation of Wnt/β-catenin signaling pathway, and DL-Met-Met is superior to DL-Met. Our findings may provide basic data for further optimizing the feeding formula of breeding pigeons and improving the growth and development of squabs.
Collapse
Affiliation(s)
- Chen Zhong
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Di-Qing Tong
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Ya-Ru Zhang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Hui-Ze Tan
- Wen's Foodstuffs Group Co., Ltd., Yunfu, Guangdong, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
23
|
Ullah I, Murtaza K, Ammara H, Misbah, Bhinder MA, Riaz A, Shehzad W, Zahoor MY. Association study of CLDN14 variations in patients with kidney stones. Open Life Sci 2022; 17:81-92. [PMID: 35291565 PMCID: PMC8886595 DOI: 10.1515/biol-2021-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022] Open
Abstract
Claudin-14 protein plays an essential role in regulating calcium ions in the kidney and ear. Two phenotypes, hearing loss and kidney stones, were reportedly associated with variations in the CLDN14 gene. This study aimed to understand CLDN14 mutations’ contribution to hearing loss and renal stone formation in a Pakistani cohort. We analyzed CLDN14 sequence variations in 100 patients, along with healthy individuals, to assess whether specific polymorphisms were associated with the disease. Also, we performed an in silico analysis using a mutation database and protein annotation. The rs219779’s genotype CT (p = 0.0020) and rs219780’s genotype AG (p = 0.0012) were significantly associated with kidney stones. We also found that a novel haplotype, “TA” associated with kidney stone formation, has moderate linkage disequilibrium. The TA haplotype was significantly correlated with a kidney stone risk formation of 3.76-fold (OR (CI 95%) = 3.76 (1.83–7.72)) and p = 0.0016 compared to other haplotypes. In silico analysis revealed that mutations associated with hearing loss were not correlated with renal stone formation but affected claudin-14 protein stability. We structurally mapped a novel TA haplotype of CLDN14 that, based on our analysis, likely contributes to the pathogenesis of renal stones.
Collapse
Affiliation(s)
- Ihsan Ullah
- Molecular Biology and Biotechnology Section, Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences , Syed Abdul Qadir Jillani (Out Fall) Road , Lahore 54000 , Pakistan
| | - Khadijah Murtaza
- Molecular Biology and Biotechnology Section, Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences , Syed Abdul Qadir Jillani (Out Fall) Road , Lahore 54000 , Pakistan
| | - Hafiza Ammara
- Molecular Biology and Biotechnology Section, Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences , Syed Abdul Qadir Jillani (Out Fall) Road , Lahore 54000 , Pakistan
| | - Misbah
- Department of Medicine, Services Hospital , Lahore 54000 , Pakistan
| | - Munir Ahmad Bhinder
- Department of Human Genetics and Molecular Biology, University of Health Sciences , Lahore 54000 , Pakistan
| | - Amjad Riaz
- Department of Theriogenology, University of Veterinary & Animal Sciences , Lahore 54000 , Pakistan
| | - Wasim Shehzad
- Molecular Biology and Biotechnology Section, Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences , Syed Abdul Qadir Jillani (Out Fall) Road , Lahore 54000 , Pakistan
| | - Muhammad Yasir Zahoor
- Molecular Biology and Biotechnology Section, Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences , Syed Abdul Qadir Jillani (Out Fall) Road , Lahore 54000 , Pakistan
| |
Collapse
|
24
|
Qian B, Liu J, Wang J, Hao Z, Wang Q. Calcium sensitive receptor and claudin-14 expression in kidney tissues of two kidney stone models. Arch Med Sci 2022; 18:251-256. [PMID: 35154544 PMCID: PMC8826795 DOI: 10.5114/aoms/103453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
INTODUCTION The differences in protein expression of calcium sensitive receptor (CaSR) and claudin-14 in a kidney stone model established by nanobacteria (NB) and ethylene glycol (EG) were compared. MATERIAL AND METHODS Ninety Wistar male rats were randomly divided into the NB group, the EG group, and the blank control group (NC group), with 30 rats in each group. Three rats of each group were sacrificed every week after injection. Histopathology was used to evaluate the stone formation of each group. The expression of CaSR and claudin-14 protein was detected by immunohistochemistry every week. RESULTS There was formation of bright crystals in the kidneys of the EG group and the NB group, but not the NC group. At the 3rd week, the expression of CaSR and claudin-14 in the kidney tissue of the EG group began to increase while that in the NB group increased at the 4th week. The expression of CaSR and claudin-14 protein in the EG group was stronger than that in the NB group. Meanwhile, CaSR was expressed in the NC group but did not change significantly. Claudin-14 was not expressed in the NC group. CONCLUSIONS Our results indicate that the traditional EG kidney stone modeling method is more rapid than the NB kidney stone modeling method, with a high stone formation rate, and the CaSR and claudin-14 protein expression levels are higher. Meanwhile, the NB used to establish the kidney stone model was isolated from patients with kidney stones, which may imitate the process of natural formation of kidney stones of patients. Therefore, the results of our research are more conducive to related research on the etiology of stones.
Collapse
Affiliation(s)
- Biao Qian
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingshen Wang
- Department of Urology Surgery, the First Affiliated Hospital of Medical College in Shihezi University, Shihezi, Xinjiang, China
| | - Zhiqiang Hao
- Department of Urology, the First Affiliated Hospital of Medical College in Shihezi University, Shihezi, Xinjiang, China
| | - Qinzhang Wang
- Department of Urology Surgery, the First Affiliated Hospital of Medical College in Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
25
|
Guo Y, Dong L, Gong A, Zhang J, Jing L, Ding T, Li PAA, Zhang JZ. Damage to the blood‑brain barrier and activation of neuroinflammation by focal cerebral ischemia under hyperglycemic condition. Int J Mol Med 2021; 48:142. [PMID: 34080644 PMCID: PMC8175066 DOI: 10.3892/ijmm.2021.4975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperglycemia aggravates brain damage caused by cerebral ischemia/reperfusion (I/R) and increases the permeability of the blood‑brain barrier (BBB). However, there are relatively few studies on morphological changes of the BBB. The present study aimed to investigate the effect of hyperglycemia on BBB morphological changes following cerebral I/R injury. Streptozotocin‑induced hyperglycemic and citrate‑buffered saline‑injected normoglycemic rats were subjected to 30 min middle cerebral artery occlusion. Neurological deficits were evaluated. Brain infarct volume was assessed by 2,3,5‑triphenyltetrazolium chloride staining and BBB integrity was evaluated by Evans blue and IgG extravasation following 24 h reperfusion. Changes in tight junctions (TJ) and basement membrane (BM) proteins (claudin, occludin and zonula occludens‑1) were examined using immunohistochemistry and western blotting. Astrocytes, microglial cells and neutrophils were labeled with specific antibodies for immunohistochemistry after 1, 3 and 7 days of reperfusion. Hyperglycemia increased extravasations of Evan's blue and IgG and aggravated damage to TJ and BM proteins following I/R injury. Furthermore, hyperglycemia suppressed astrocyte activation and damaged astrocytic endfeet surrounding cerebral blood vessels following I/R. Hyperglycemia inhibited microglia activation and proliferation and increased neutrophil infiltration in the brain. It was concluded that hyperglycemia‑induced BBB leakage following I/R might be caused by damage to TJ and BM proteins and astrocytic endfeet. Furthermore, suppression of microglial cells and increased neutrophil infiltration to the brain may contribute to the detrimental effects of pre‑ischemic hyperglycemia on the outcome of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yongzhen Guo
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Lingdi Dong
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Ao Gong
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Jingwen Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Li Jing
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Tomas Ding
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Ping-An Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Jian-Zhong Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
26
|
Precilla DS, Kuduvalli SS, Purushothaman M, Marimuthu P, Ramachandran MA, Anitha TS. Wnt/β-catenin Antagonists: Exploring New Avenues to Trigger Old Drugs in Alleviating Glioblastoma Multiforme. Curr Mol Pharmacol 2021; 15:338-360. [PMID: 33881978 DOI: 10.2174/1874467214666210420115431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/24/2020] [Accepted: 01/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioblastoma multiforme is one of the most heterogenous primary brain tumor with high mortality. Nevertheless, of the current therapeutic approaches, survival rate remains poor with 12 to 15 months following preliminary diagnosis, this warrants the need for effective treatment modality. Wnt/β-catenin pathway is presumably the most noteworthy pathway up-regulated in almost 80% GBM cases contributing to tumor-initiation, progression and survival. Therefore, therapeutic strategies targeting key components of Wnt/β-catenin cascade using established genotoxic agents like temozolomide and pharmacological inhibitors would be an effective approach to modulate Wnt/β-catenin pathway. Recently, drug repurposing by means of effective combination therapy has gained importance in various solid tumors including GBM, by targeting two or more proteins in a single pathway, thereby possessing the ability to overcome the hurdle implicated by chemo-resistance in GBM. OBJECTIVE In this context, by employing computational tools, an attempt has been carried out to speculate the novel combinations against Wnt/β-catenin signaling pathway. METHODS We have explored the binding interactions of three conventional drugs namely temozolomide, metformin, chloroquine along with three natural compounds viz., epigallocatechin gallate, naringenin and phloroglucinol on the major receptors of Wnt/β-catenin signaling. RESULTS It was noted that all the experimental compounds possessed profound interaction with the two major receptors of Wnt/β-catenin pathway. CONCLUSION To the best of our knowledge, this study is the first of its kind to characterize the combined interactions of the afore-mentioned drugs on Wnt/β-catenin signaling in silico and this will putatively open up new avenues for combination therapies in GBM treatment.
Collapse
Affiliation(s)
- Daisy S Precilla
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory - Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, Turku. Finland
| | | | | |
Collapse
|
27
|
Ou A, Yung WKA, Majd N. Molecular Mechanisms of Treatment Resistance in Glioblastoma. Int J Mol Sci 2020; 22:E351. [PMID: 33396284 PMCID: PMC7794986 DOI: 10.3390/ijms22010351] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults and is almost invariably fatal. Despite our growing understanding of the various mechanisms underlying treatment failure, the standard-of-care therapy has not changed over the last two decades, signifying a great unmet need. The challenges of treating glioblastoma are many and include inadequate drug or agent delivery across the blood-brain barrier, abundant intra- and intertumoral heterogeneity, redundant signaling pathways, and an immunosuppressive microenvironment. Here, we review the innate and adaptive molecular mechanisms underlying glioblastoma's treatment resistance, emphasizing the intrinsic challenges therapeutic interventions must overcome-namely, the blood-brain barrier, tumoral heterogeneity, and microenvironment-and the mechanisms of resistance to conventional treatments, targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
| | - W. K. Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 431, Houston, TX 77030, USA;
| | - Nazanin Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 431, Houston, TX 77030, USA;
| |
Collapse
|
28
|
Sun C, Li J, Dong J, Niu Y, Hu J, Lian J, Li W, Li J, Tian Y, Shi Q, Ye X. Chromosome-level genome assembly for the largemouth bass Micropterus salmoides provides insights into adaptation to fresh and brackish water. Mol Ecol Resour 2020; 21:301-315. [PMID: 32985096 DOI: 10.1111/1755-0998.13256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
Largemouth bass (LMB; Micropterus salmoides) has been an economically important fish in North America, Europe, and China. This study obtained a chromosome-level genome assembly of LMB using PacBio and Hi-C sequencing. The final assembled genome is 964 Mb, with contig N50 and scaffold N50 values of 1.23 Mb and 36.48 Mb, respectively. Combining with RNA sequencing data, we annotated a total of 23,701 genes. Chromosomal assembly and syntenic analysis proved that, unlike most Perciformes with the popular haploid chromosome number of 24, LMB has only 23 chromosomes (Chr), among which the Chr1 seems to be resulted from a chromosomal fusion event. LMB is phylogenetically closely related to European seabass and spotted seabass, diverging 64.1 million years ago (mya) from the two seabass species. Eight gene families comprising 294 genes associated with ionic regulation were identified through positive selection, transcriptome and genome comparisons. These genes involved in iron facilitated diffusion (such as claudin, aquaporins, sodium channel protein and so on) and others related to ion active transport (such as sodium/potassium-transporting ATPase and sodium/calcium exchanger). The claudin gene family, which is critical for regulating cell tight junctions and osmotic homeostasis, showed a significant expansion in LMB with 27 family members and 68 copies for salinity adaptation. In summary, we reported the first high-quality LMB genome, and provided insights into the molecular mechanisms of LMB adaptation to fresh and brackish water. The chromosome-level LMB genome will also be a valuable genomic resource for in-depth biological and evolutionary studies, germplasm conservation and genetic breeding of LMB.
Collapse
Affiliation(s)
- Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jia Li
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Junjian Dong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | | | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | | | - Wuhui Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiang Li
- Biozeron Shenzhen Inc., Shenzhen, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qiong Shi
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
29
|
Proszkowiec-Weglarz M, Schreier LL, Kahl S, Miska KB, Russell B, Elsasser TH. Effect of delayed feeding post-hatch on expression of tight junction- and gut barrier-related genes in the small intestine of broiler chickens during neonatal development. Poult Sci 2020; 99:4714-4729. [PMID: 32988506 PMCID: PMC7598124 DOI: 10.1016/j.psj.2020.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/03/2020] [Accepted: 06/16/2020] [Indexed: 01/04/2023] Open
Abstract
The gut not only plays a key role in digestion and absorption of nutrients but also forms a physical barrier and first line of defense between the host and the luminal environment. A functional gut barrier (mucus and epithelial cells with tight junctions [TJ]) is essential for optimal health and efficient production in poultry. In current broiler system, chicks are deprived of food and water up to 72 h due to uneven hatching, hatchery procedures, and transportation. Post-hatch feed delay results in lower BW, higher FCR and mortality, and delayed post-hatch gut development. Little is known about the effects of early neonatal development and delayed feeding immediately post-hatch on gut barrier function in chickens. Therefore, the aim of the present study was to characterize the expression pattern of gut barrier-related and TJ-related genes in the small intestine of broiler chickens during early development and delay in access to feed. Newly hatched chicks received feed and water immediately after hatch or were subjected to 48 h delayed access to feed to mimic commercial hatchery setting and operations. Birds were sampled (n = 6) at -48, 0, 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h post-hatch. Jejunum and ileum were collected, cleaned of digesta, and snap-frozen in liquid nitrogen or fixed in paraformaldehyde. The relative mRNA levels of gut barrier- and TJ-related protein genes were measured by quantitative PCR and analyzed by 2-way ANOVA. In both tissues, changes (P < 0.05) in gene expression pattern of gut barrier-related and TJ-related genes were detected due to delayed access to feed post-hatch and/or development. In general, expression of TJ-related genes was downregulated while mRNA levels of gut barrier-related genes were upregulated during development. Histological differences and changes in mucin staining due to age and treatment were observed. These results suggest that delayed access to feed post-hatch may affect TJ structure and/or function and therefore gut barrier function and overall health of the chicken small intestine.
Collapse
Affiliation(s)
- Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Lori L Schreier
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Stanislaw Kahl
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Katarzyna B Miska
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Beverly Russell
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Theodore H Elsasser
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
30
|
Fisher D, Thomas KA, Abdul‐Rasool S. The Synergistic and Neuroprotective Effects of Alcohol–Antioxidant Treatment on Blood–Brain Barrier Endothelial Cells. Alcohol Clin Exp Res 2020; 44:1997-2007. [DOI: 10.1111/acer.14433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022]
Affiliation(s)
- David Fisher
- From the Department of Medical Biosciences (DF, KAT, SA‐R) University of the Western Cape Cape Town South Africa
- School of Health Professions (DF) University of Missouri Columbia Missouri
| | - Kelly Angelique Thomas
- From the Department of Medical Biosciences (DF, KAT, SA‐R) University of the Western Cape Cape Town South Africa
| | - Sahar Abdul‐Rasool
- From the Department of Medical Biosciences (DF, KAT, SA‐R) University of the Western Cape Cape Town South Africa
| |
Collapse
|
31
|
Pérez AG, Andrade-Da-Costa J, De Souza WF, De Souza Ferreira M, Boroni M, De Oliveira IM, Freire-Neto CA, Fernandes PV, De Lanna CA, Souza-Santos PT, Morgado-Díaz JA, De-Freitas-Junior JCM. N‑glycosylation and receptor tyrosine kinase signaling affect claudin‑3 levels in colorectal cancer cells. Oncol Rep 2020; 44:1649-1661. [PMID: 32945502 PMCID: PMC7448416 DOI: 10.3892/or.2020.7727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Changes in protein levels in different components of the apical junctional complex occur in colorectal cancer (CRC). Claudin-3 is one of the main constituents of tight junctions, and its overexpression can increase the paracellular flux of macromolecules, as well as the malignant potential of CRC cells. The aim of this study was to investigate the molecular mechanisms involved in the regulation of claudin-3 and its prognostic value in CRC. In silico evaluation in each of the CRC consensus molecular subtypes (CMSs) revealed that high expression levels of CLDN3 (gene encoding claudin-3) in CMS2 and CMS3 worsened the patients' long-term survival, whereas a decrease in claudin-3 levels concomitant with a reduction in phosphorylation levels of epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) could be achieved by inhibiting N-glycan biosynthesis in CRC cells. We also observed that specific inactivation of these receptor tyrosine kinases (RTKs) led to a decrease in claudin-3 levels, and this regulation seems to be mediated by phospholipase C (PLC) and signal transducer and activator of transcription 3 (STAT3) in CRC cells. RTKs are modulated by their N-linked glycans, and inhibition of N-glycan biosynthesis decreased the claudin-3 levels; therefore, we evaluated the correlation between N-glycogenes and CLDN3 expression levels in each of the CRC molecular subtypes. The CMS1 (MSI immune) subtype concomitantly exhibited low expression levels of CLDN3 and N-glycogenes (MGAT5, ST6GAL1, and B3GNT8), whereas CMS2 (canonical) exhibited high gene expression levels of CLDN3 and N-glycogenes (ST6GAL1 and B3GNT8). A robust positive correlation was also observed between CLDN3 and B3GNT8 expression levels in all CMSs. These results support the hypothesis of a mechanism integrating RTK signaling and N-glycosylation for the regulation of claudin-3 levels in CRC, and they suggest that CLDN3 expression can be used to predict the prognosis of patients identified as CMS2 or CMS3.
Collapse
Affiliation(s)
- Amelia G Pérez
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Jéssica Andrade-Da-Costa
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Waldemir F De Souza
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Michelle De Souza Ferreira
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Mariana Boroni
- Bioinformatics and Computational Biology Laboratory, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Ivanir M De Oliveira
- Pathology Division, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Carlos A Freire-Neto
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Priscila V Fernandes
- Pathology Division, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | - Cristóvão A De Lanna
- Bioinformatics and Computational Biology Laboratory, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | | | - José A Morgado-Díaz
- Cellular and Molecular Oncobiology Program, National Cancer Institute (INCA), Rio de Janeiro, RJ 20231‑050, Brazil
| | | |
Collapse
|
32
|
Bhat AA, Syed N, Therachiyil L, Nisar S, Hashem S, Macha MA, Yadav SK, Krishnankutty R, Muralitharan S, Al-Naemi H, Bagga P, Reddy R, Dhawan P, Akobeng A, Uddin S, Frenneaux MP, El-Rifai W, Haris M. Claudin-1, A Double-Edged Sword in Cancer. Int J Mol Sci 2020; 21:ijms21020569. [PMID: 31952355 PMCID: PMC7013445 DOI: 10.3390/ijms21020569] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Najeeb Syed
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Sabah Nisar
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Muzafar A. Macha
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Santosh K. Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
| | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Anthony Akobeng
- Department of Pediatric Gastroenterology, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
- Correspondence: ; Tel.: +974-4003-7407
| |
Collapse
|
33
|
Montague-Cardoso K, Pitcher T, Chisolm K, Salera G, Lindstrom E, Hewitt E, Solito E, Malcangio M. Changes in vascular permeability in the spinal cord contribute to chemotherapy-induced neuropathic pain. Brain Behav Immun 2020; 83:248-259. [PMID: 31669344 PMCID: PMC6928576 DOI: 10.1016/j.bbi.2019.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023] Open
Abstract
Chemotherapy-induced neuropathic pain is a dose-limiting side effect of many cancer therapies due to their propensity to accumulate in peripheral nerves, which is facilitated by the permeability of the blood-nerve barrier. Preclinically, the chemotherapy agent vincristine (VCR) activates endothelial cells in the murine peripheral nervous system and in doing so allows the infiltration of monocytes into nerve tissue where they orchestrate the development of VCR-induced nociceptive hypersensitivity. In this study we demonstrate that VCR also activates endothelial cells in the murine central nervous system, increases paracellular permeability and decreases trans endothelial resistance. In in vivo imaging studies in mice, VCR administration results in trafficking of inflammatory monocytes through the endothelium. Indeed, VCR treatment affects the integrity of the blood-spinal cord-barrier as indicated by Evans Blue extravasation, disrupts tight junction coupling and is accompanied by the presence of monocytes in the spinal cord. Such inflammatory monocytes (Iba-1+ CCR2+ Ly6C+ TMEM119- cells) that infiltrate the spinal cord also express the pro-nociceptive cysteine protease Cathepsin S. Systemic treatment with a CNS-penetrant, but not a peripherally-restricted, inhibitor of Cathepsin S prevents the development of VCR-induced hypersensitivity, suggesting that infiltrating monocytes play a functional role in sensitising spinal cord nociceptive neurons. Our findings guide us towards a better understanding of central mechanisms of pain associated with VCR treatment and thus pave the way for the development of innovative antinociceptive strategies.
Collapse
Affiliation(s)
- Karli Montague-Cardoso
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom.
| | - Thomas Pitcher
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom
| | - Kim Chisolm
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom
| | - Giorgia Salera
- William Harvey Research Institute, Bart's and The London School of Medicine Queen Mary, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | - Egle Solito
- William Harvey Research Institute, Bart's and The London School of Medicine Queen Mary, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
34
|
Raj D, Tomar B, Lahiri A, Mulay SR. The gut-liver-kidney axis: Novel regulator of fatty liver associated chronic kidney disease. Pharmacol Res 2019; 152:104617. [PMID: 31881272 DOI: 10.1016/j.phrs.2019.104617] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022]
Abstract
Increased interest in understanding the liver-kidney axis in health and disease during the last decade unveiled multiple recent evidence that suggested a strong association of fatty liver diseases with chronic kidney disease (CKD). Low-grade systemic inflammation is thought to be the major contributing factor to the pathogenesis of CKD associated with fatty liver. However, other contributing factors largely remained unclear, for example, gut microbiota and intestinal barrier integrity. Homeostasis of the gut microbiome is very crucial for the health of an individual. Imbalance in the gut microbiota leads to various diseases like fatty liver disease and CKD. On the contrary, disease conditions can also distinctly change gut microbiota. In this review, we propose the pathogenic role of the gut-liver-kidney axis in the development and progression of CKD associated with chronic fatty liver diseases, either non-alcoholic fatty liver disease or non-alcoholic steatohepatitis in experimental models and humans. Further, we discuss the therapeutic potential and highlight the future research directions for therapeutic targeting of the gut-liver-kidney axis.
Collapse
Affiliation(s)
- Desh Raj
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Bhawna Tomar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| |
Collapse
|
35
|
General Study and Gene Expression Profiling of Endotheliocytes Cultivated on Electrospun Materials. MATERIALS 2019; 12:ma12244082. [PMID: 31817735 PMCID: PMC6947544 DOI: 10.3390/ma12244082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Endothelization of the luminal surface of vascular grafts is required for their long-term functioning. Here, we have cultivated human endothelial cells (HUVEC) on different 3D matrices to assess cell proliferation, gene expression and select the best substrate for endothelization. 3D matrices were produced by electrospinning from solutions of poly(D,L-lactide-co-glycolide) (PLGA), polycaprolactone (PCL), and blends of PCL with gelatin (Gl) in hexafluoroisopropanol. Structure and surface properties of 3D matrices were characterized by SEM, AFM, and sessile drop analysis. Cell adhesion, viability, and proliferation were studied by SEM, Alamar Blue staining, and 5-ethynyl-2’-deoxyuridine (EdU) assay. Gene expression profiling was done on an Illumina HiSeq 2500 platform. Obtained data indicated that 3D matrices produced from PCL with Gl and treated with glutaraldehyde provide the most suitable support for HUVEC adhesion and proliferation. Transcriptome sequencing has demonstrated a minimal difference of gene expression profile in HUVEC cultivated on the surface of these matrices as compared to tissue culture plastic, thus confirming these matrices as the best support for endothelization.
Collapse
|
36
|
Nakatsu D, Kano F, Shinozaki-Narikawa N, Murata M. Pyk2-dependent phosphorylation of LSR enhances localization of LSR and tricellulin at tricellular tight junctions. PLoS One 2019; 14:e0223300. [PMID: 31574128 PMCID: PMC6773211 DOI: 10.1371/journal.pone.0223300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
Tight junctions (TJs) are cellular junctions within the mammalian epithelial cell sheet that function as a physical barrier to molecular transport within the intercellular space. Dysregulation of TJs leads to various diseases. Tricellular TJs (tTJs), specialized structural variants of TJs, are formed by multiple transmembrane proteins (e.g., lipolysis-stimulated lipoprotein receptor [LSR] and tricellulin) within tricellular contacts in the mammalian epithelial cell sheet. However, the mechanism for recruiting LSR and tricellulin to tTJs is largely unknown. Previous studies have identified that tyrphostin 9, the dual inhibitor of Pyk2 (a nonreceptor tyrosine kinase) and receptor tyrosine kinase platelet-derived growth factor receptor (PDGFR), suppresses LSR and tricellulin recruitment to tTJs in EpH4 (a mouse mammary epithelial cell line) cells. In this study, we investigated the effect of Pyk2 inhibition on LSR and tricellulin localization to tTJs. Pyk2 inactivation by its specific inhibitor or repression by RNAi inhibited the localization of LSR and downstream tricellulin to tTJs without changing their expression level in EpH4 cells. Pyk2-dependent changes in subcellular LSR and tricellulin localization were independent of c-Jun N-terminal kinase (JNK) activation and expression. Additionally, Pyk2-dependent LSR phosphorylation at Tyr-237 was required for LSR and tricellulin localization to tTJs and decreased epithelial barrier function. Our findings indicated a novel mechanism by which Pyk2 regulates tTJ assembly and epithelial barrier function in the mammalian epithelial cell sheet.
Collapse
Affiliation(s)
- Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
37
|
Barekatain R, Nattrass G, Tilbrook AJ, Chousalkar K, Gilani S. Reduced protein diet and amino acid concentration alter intestinal barrier function and performance of broiler chickens with or without synthetic glucocorticoid. Poult Sci 2019; 98:3662-3675. [DOI: 10.3382/ps/pey563] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
|
38
|
Di ZS, Yang ZJ, Zhu MJ, Wang FF, Li LS, Xu JD. Regulation of intestinal epithelial barrier by and dysfunction of intestinal glial cells. Shijie Huaren Xiaohua Zazhi 2019; 27:1013-1021. [DOI: 10.11569/wcjd.v27.i16.1013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The enteric glia is an important component of the enteric nervous system and forms a broad network in the mucosa of the gastrointestinal tract. Enteric glial cells (EGC) are located in all layers of the intestinal wall and respond to neurotransmitters and neuromodulators through signal transduction pathways. The enteric nervous system interacts with resident glial cells in the gut, and there is increasing evidence that EGC are involved in the regulation of epithelial function. Epithelial cells have important absorption and secretion functions and are also involved in the formation of intestinal epithelial barrier. Studies have found that the enteric glia is not only involved in the regulation of gastrointestinal motility and epithelial barrier function, but also in the formation of cellular molecular bridges between intestinal neurons, enteroendocrine cells, immune cells, and epithelial cells. This article reviews the recent progress in the understanding of the role of EGC in the intestinal barrier and defense functions.
Collapse
Affiliation(s)
- Zhi-Shan Di
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Ze-Jun Yang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Min-Jia Zhu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Fei-Fei Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Li-Sheng Li
- School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
39
|
Cunniffe C, Ryan F, Lambkin H, Brankin B. Expression of tight and adherens junction proteins in cervical neoplasia. Br J Biomed Sci 2019. [DOI: 10.1080/09674845.2012.12069143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- C. Cunniffe
- School of Biological Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - F. Ryan
- School of Biological Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - H. Lambkin
- School of Biological Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - B. Brankin
- School of Biological Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| |
Collapse
|
40
|
Jia H, Chai X, Li S, Wu D, Fan Z. Identification of claudin-2, -6, -11 and -14 as prognostic markers in human breast carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2195-2204. [PMID: 31934042 PMCID: PMC6949642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2019] [Indexed: 06/10/2023]
Abstract
The development of cancer occurs with various genomic and epigenetic modifications that act as indicators for early diagnosis and treatment. Recent data have shown that the abnormal expression of the claudin (CLDN) tight junction (TJ) proteins is involved in the tumorigenesis of numerous human cancers. Real-time quantitative PCR and western blotting were used to explore the differences in the expression of the CLDN TJ proteins in breast carcinoma tissues and non-neoplastic tissues. The results showed that CLDN5, CLDN9, CLDN12 and CLDN13 were not expressed in breast carcinoma tissues or non-neoplastic tissues. CLDN1, CLDN3, CLDN8 and CLDN10 were expressed in breast carcinoma and non-neoplastic tissues, but there was no significant difference between the expression of these CLDN proteins among them. The expression of CLDN2, -6, -11 and -14 varied between the breast carcinoma and non-neoplastic tissues. Moreover, 86 samples of breast carcinoma and non-neoplastic tissues were examined for the expression of CLDN2, -6, -11 and -14 by streptavidin-peroxidase immunohistochemical staining. The data revealed that the CLDN2, CLDN6, and CLDN14 were expressed in the cell membrane and the expression levels of these proteins were downregulated in breast carcinoma. The CLDN11 was expressed in cell cytoplasm and the expression level of CLDN11 was upregulated compared with those in non-neoplastic tissues. Consistent with these findings, the expression of CLDN2, CLDN6 and CLDN14 were downregulated, while the expression of CLDN11 was upregulated in breast carcinoma compared with those in non-neoplastic tissues. Furthermore, the associations between these CLDNs and clinicopathologic indicators were analyzed, and these CLDN expressions were revealed to be associated with distant metastasis and to predict a poor prognosis. In conclusion, our data showed that the expression levels of CLDN2, -6, -11 and -14 differed between breast carcinoma tissues and histologically non-neoplastic tissues, and the expression levels of these CLDNs may be useful as molecular markers for the diagnosis of breast carcinoma as well as for the determination of metastasis and prognosis.
Collapse
Affiliation(s)
- Hongyao Jia
- Department of Breast Surgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin, P. R. China
| | - Xin Chai
- Department of Breast Surgery, Jilin Cancer Hospital1018 Huguang Street, Changchun 130021, Jilin, P. R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin, P. R. China
| | - Di Wu
- Department of Breast Surgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin, P. R. China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin, P. R. China
| |
Collapse
|
41
|
Zhou S, Piao X, Wang C, Wang R, Song Z. Identification of claudin‑1, ‑3, ‑7 and ‑8 as prognostic markers in human laryngeal carcinoma. Mol Med Rep 2019; 20:393-400. [PMID: 31115553 PMCID: PMC6580001 DOI: 10.3892/mmr.2019.10265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Various genomic and epigenetic modifications that occur during the development of cancer act as potential biomarkers for early diagnosis and treatment. Previous studies have demonstrated abnormal expression of the claudin (CLDN) tight junction (TJ) proteins in numerous types of human cancer. Reverse transcription-quantitative polymerase chain reaction and western blotting were employed to investigate variations in the expression of the CLDN TJ proteins in laryngeal non-neoplastic tissues and laryngeal squamous carcinoma tissues. It was revealed that CLDN2, CLDN4, CLDN5, CLDN6, CLDN9, CLDN11 and CLDN12 were undetectable in laryngeal squamous carcinoma tissues and laryngeal non-neoplastic tissues. Additionally, CLDN10 was expressed in laryngeal squamous carcinoma tissues and laryngeal non-neoplastic tissues; however, no significant difference was reported. Conversely, the expression levels of CLDN1 and CLDN7 mRNA and protein were downregulated in laryngeal squamous carcinoma tissues compared with in adjacent non-neoplastic tissues, whereas those of CLDN3 and CLDN8 were upregulated. A total of 80 samples of laryngeal squamous carcinoma and non-neoplastic tissues were analyzed for the expression of CLDN1, −3, −7 and −8 via streptavidin-peroxidase immunohistochemical staining. It was revealed that the expression levels of CLDN1 and CLDN7 were downregulated in laryngeal squamous carcinoma tissues compared with in non-neoplastic mucosal tissues, whereas those of CLDN3 and CLDN8 were upregulated. Furthermore, the associations between CLDN expression and the clinicopathological factors of patients were analyzed. The expression levels of CLDN3 and CLDN7 were reported to be associated with distant metastasis and serve as potential predictors of poor prognosis. In conclusion, the findings of the present study demonstrated that the expression levels of CLDN1, −3, −7 and −8 varied between laryngeal squamous carcinoma tissues and non-neoplastic tissues. The expression levels of these CLDNs may be useful molecular markers for the diagnosis of laryngeal carcinoma, and determining the metastasis and prognosis of this disease.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, Jilin 130021, P.R. China
| | - Xue Piao
- Department of Anesthesiology, Maternity Hospital of Changchun City, Changchun, Jilin 130021, P.R. China
| | - Chengyan Wang
- Department of Ultrasound, Jilin Cancer Hospital, Changchun, Jilin 130021, P.R. China
| | - Rui Wang
- Department of Ultrasound, Jilin Cancer Hospital, Changchun, Jilin 130021, P.R. China
| | - Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
42
|
Abstract
The term blood-bile barrier (BBlB) refers to the physical structure within a hepatic lobule that compartmentalizes and hence segregates sinusoidal blood from canalicular bile. Thus, this barrier provides physiological protection in the liver, shielding the hepatocytes from bile toxicity and restricting the mixing of blood and bile. BBlB is primarily composed of tight junctions; however, adherens junction, desmosomes, gap junctions, and hepatocyte bile transporters also contribute to the barrier function of the BBlB. Recent findings also suggest that disruption of BBlB is associated with major hepatic diseases characterized by cholestasis and aberrations in BBlB thus may be a hallmark of many chronic liver diseases. Several molecular signaling pathways have now been shown to play a role in regulating the structure and function and eventually contribute to regulation of the BBlB function within the liver. In this review, we will discuss the structure and function of the BBlB, summarize the methods to assess the integrity and function of BBlB, discuss the role of BBlB in liver pathophysiology, and finally, discuss the mechanisms of BBlB regulation. Collectively, this review will demonstrate the significance of the BBlB in both liver homeostasis and hepatic dysfunction.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan Pal Monga
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Abstract
There have been recent developments in the treatment of various cancers, in particular non-metastatic cancers. However, many of the responding patients often relapse initially through the development of spread micro and macro-metastases. Unfortunately, there are very few therapeutic modalities for the treatment of metastatic cancers. The development of cancer metastasis has been proposed to involve the epithelial-mesenchymal transition (EMT), in which the tumor cells with the EMT phenotype exhibit various phenotypic markers and molecular modifications that are manifested to resist most conventional therapies. YY1 is a target of the hyperactivated nuclear factor-kappa beta pathway in cancer and it was reported that YY1 also regulates cell survival and cell proliferation in addition to its role in EMT and resistance. The overexpression of YY1 in the majority of cancers has been correlated with poor prognosis. It is hypothesized that targeting YY1 may result in several anti-tumor activities, including inhibition of cell survival and cell proliferation, inhibition of EMT, and reversal of resistance. This review discusses the potential therapeutic targeting of an overexpressed transcription factor, Yin Yang 1 (YY1), which has been implicated in the development of EMT and drug resistance. Several examples targeting YY1 in experimental models are presented.
Collapse
Affiliation(s)
- Anne Arah Cho
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
44
|
Fang H, Wang Y, Xu L, Zhou S, Bai J, Wu Y, Qiao J, Jiang X, Zhu D, Ding Y. EGFR inhibitor gefitinib regulates barrier function in human epidermal keratinocytes via the modulation of the expression of claudins. Int J Mol Med 2019; 43:1522-1530. [PMID: 30628660 DOI: 10.3892/ijmm.2018.4046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 11/06/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, has been frequently used in targeted therapy for lung cancer. However, the widespread use of gefitinib in targeted therapy for patients with lung cancer is hampered by its common skin toxicities. The present study aimed to investigate the mechanisms underlying the skin toxicities of gefitinib. Normal human epidermal keratinocytes (NHEKs) treated with gefitinib were used for a series of in vitro assays, including MTT, reverse transcription‑quantitative polymerase chain reaction, western blot analysis, immunohistochemistry and transepithelial electrical resistance and paracellular permeability detection. In the present study, it was determined that the skin toxicities of gefitinib may be due to claudin (CLDN)1 and CLDN4 downregulation and CLDN2 upregulation in NHEKs. Additionally, Src and signal transducer and activator of transcription 3 pathways were involved in gefitinib‑induced barrier function disruption in NHEKs. In conclusion, the present study may provide novel insights for improving skin toxicity of gefitinib in patients with lung cancer.
Collapse
Affiliation(s)
- Hong Fang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yina Wang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lina Xu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sha Zhou
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Juan Bai
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yinhua Wu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoling Jiang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Dingxian Zhu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yingguo Ding
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
45
|
Rajagopal N, Irudayanathan FJ, Nangia S. Palmitoylation of Claudin-5 Proteins Influences Their Lipid Domain Affinity and Tight Junction Assembly at the Blood–Brain Barrier Interface. J Phys Chem B 2019; 123:983-993. [DOI: 10.1021/acs.jpcb.8b09535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse 13244, United States
| | | | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse 13244, United States
| |
Collapse
|
46
|
Liu G, Zheng J, Cao W, Wu X, Jia G, Zhao H, Chen X, Wu C, Wang J. Effects of spermine on liver barrier function, amino acid transporters, immune status, and apoptosis in piglets. RSC Adv 2019; 9:11054-11062. [PMID: 35520224 PMCID: PMC9063033 DOI: 10.1039/c8ra05421e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
This study investigated the effects of spermine supplementation and its extended duration on amino acid transporters, immune status, barrier function, and apoptosis in the liver.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Jie Zheng
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Wei Cao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Xianjian Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Gang Jia
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Hua Zhao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Xiaoling Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Caimei Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Jing Wang
- Maize Research Institute
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|
47
|
Wu T, Li K, Yi D, Wang L, Zhao D, Lv Y, Zhang L, Chen H, Ding B, Hou Y, Wu G. Dietary Supplementation with Trihexanoin Enhances Intestinal Function of Weaned Piglets. Int J Mol Sci 2018; 19:ijms19103277. [PMID: 30360365 PMCID: PMC6213997 DOI: 10.3390/ijms19103277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/01/2022] Open
Abstract
Trihexanoin is a short-chain triglyceride (SCT). Many studies have reported that SCTs play important roles in the maintenance of intestinal epithelial structure and function. The present work was to investigate the effects of trihexanoin on growth performance, carbohydrate and fat metabolism, as well as intestinal morphology and function in weaned piglets. Twenty weaned piglets (21 ± 2 d) were randomly allocated to one of two treatment groups: The control group (basal diet supplemented with 0.5% soya oil); the TH group (basal diet supplemented with 0.5% trihexanoin). Dietary trihexanoin supplementation significantly reduced diarrhea rate; increased the concentrations of LDL, HDL and total protein in plasma; decreased cholesterol concentrations and glutamyl transpeptidase activity in plasma; improved intestinal morphologic structure; altered the mRNA levels and abundances of proteins related to glycogen and fat metabolism, mucosal barrier function, antioxidant capacity and water transport capacity; and altered the community of intestinal microflora. These results indicate that dietary trihexanoin supplementation could reduce diarrhea, regulate carbohydrate and fat metabolism, exert beneficial effects on the intestinal mucosal barrier, protect the intestinal mucosa from injuries, improve intestinal transport and absorption, and enhance antioxidant capacity. In conclusion, dietary supplementation with 0.5% trihexanoin improves the intestinal function and health of weaned piglets.
Collapse
Affiliation(s)
- Tao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Kang Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Dan Yi
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lei Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Di Zhao
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yang Lv
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lin Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Hongbo Chen
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Binying Ding
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Guoyao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
48
|
Dükel M, Tavsan Z, Erdogan D, Erkan Gök D, Ayar Kayali H. Protein kinase C Inhibitors selectively modulate dynamics of cell adhesion molecules and cell death in human colon cancer cells. Cell Adh Migr 2018; 13:83-97. [PMID: 30289336 PMCID: PMC6527378 DOI: 10.1080/19336918.2018.1530933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During development of colon cancer, Protein Kinase Cs (PKCs) are involved in regulation of many genes controlling several cellular mechanisms. Here, we examined the changes in cell adhesion molecules and PKCs for colorectal cancer progression. We identified that PKCs affected expression of EpCAM, claudins, tetraspanins. Treatment with low concentrations of PKC inhibitors resulted in decreased cell viability. In addition, immunoblotting and qRT-PCR analysis showed that apoptosis was inhibited while autophagy was induced by PKC inhibition in colon cancer cells. Furthermore, we observed decreased levels of intracellular Reactive Oxygen Species (ROS), lipid peroxidation and protein carbonyl, confirming the ROS-induced apoptosis. Taken together, our results reveal that PKC signalling modulates not only cell adhesion dynamics but also cell death-related mechanisms. Abbreviations: PKC: Protein Kinase C; EpCAM: Epithelial cell adhesion molecule; FBS: fetal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); CAM: cell adhesion molecule; ROS: reactive oxygen species.
Collapse
Affiliation(s)
- Muzaffer Dükel
- a Moleculer Biology and Genetic Department, Faculty of Art and Science , Mehmet Akif Ersoy University , Burdur , Turkey.,b Izmir Biomedicine and Genome Center , Izmir , Turkey
| | - Zehra Tavsan
- b Izmir Biomedicine and Genome Center , Izmir , Turkey
| | - Duygu Erdogan
- c Izmir International Biomedicine and Genome Institute , Dokuz Eylül University , Izmir , Turkey
| | | | - Hulya Ayar Kayali
- b Izmir Biomedicine and Genome Center , Izmir , Turkey.,d Biochemistry Division, Chemistry Department, Science Faculty , Dokuz Eylul University , Izmir , Turkey
| |
Collapse
|
49
|
Vermette D, Hu P, Canarie MF, Funaro M, Glover J, Pierce RW. Tight junction structure, function, and assessment in the critically ill: a systematic review. Intensive Care Med Exp 2018; 6:37. [PMID: 30259344 PMCID: PMC6158145 DOI: 10.1186/s40635-018-0203-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epithelial and endothelial barrier integrity, essential for homeostasis, is maintained by cellular boarder structures known as tight junctions (TJs). In critical illness, TJs may become disrupted, resulting in barrier dysfunction manifesting as capillary leak, pulmonary edema, gut bacterial translocation, and multiple organ failure. We aim to provide a clinically focused overview of TJ structure and function and systematically review and analyze all studies assessing markers of endothelial and epithelial TJ breakdown correlated with clinical outcomes in critically ill humans. METHODS We systematically searched MEDLINE, EMBASE, and PubMed. Additional articles were identified by targeted searches. We included studies that looked at the relationship between biomarkers of endothelial or epithelial TJ structure or function and critical illness. Results were qualitatively analyzed due to sample size and heterogeneity. RESULTS A total of 5297 abstracts met search criteria, of which 150 articles met requirements for full text review. Of these, 30 studies met inclusion criteria. Fifteen of the 30 reports investigated proteins of endothelial tight junctions and 15 investigated epithelial TJ markers, exclusively in the gastrointestinal epithelium. No studies investigated TJ-derived proteins in primary cardiac or pulmonary pathology. CONCLUSIONS TJ integrity is essential for homeostasis. We identified multiple studies that indicate TJs are disrupted by critical illness. These studies highlight the significance of barrier disruption across many critical disease states and correlate TJ-associated markers to clinically relevant outcomes. Further study on the role of multiple tissue-specific claudins, particularly in the setting of respiratory or cardiac failure, may lead to diagnostic and therapeutic advances. SYSTEMATIC REVIEW REGISTRATION This systematic review is registered in the PROSPERO database: CRD42017074546 .
Collapse
Affiliation(s)
- David Vermette
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Pamela Hu
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Michael F Canarie
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Melissa Funaro
- Cushing/Whitney Medical Library, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Janis Glover
- Cushing/Whitney Medical Library, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Richard W Pierce
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| |
Collapse
|
50
|
Dietary magnesium deficiency impaired intestinal structural integrity in grass carp (Ctenopharyngodon idella). Sci Rep 2018; 8:12705. [PMID: 30139942 PMCID: PMC6107577 DOI: 10.1038/s41598-018-30485-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Grass carp (223.85–757.33 g) were fed diets supplemented with magnesium (73.54–1054.53 mg/kg) for 60 days to explore the impacts of magnesium deficiency on the growth and intestinal structural integrity of the fish. The results demonstrated that magnesium deficiency suppressed the growth and damaged the intestinal structural integrity of the fish. We first demonstrated that magnesium is partly involved in (1) attenuating antioxidant ability by suppressing Nrf2 signalling to decrease antioxidant enzyme mRNA levels and activities (except CuZnSOD mRNA levels and activities); (2) aggravating apoptosis by activating JNK (not p38MAPK) signalling to upregulate proapoptotic protein (Apaf-1, Bax and FasL) and caspase-2, -3, -7, -8 and -9 gene expression but downregulate antiapoptotic protein (Bcl-2, IAP and Mcl-1b) gene expression; (3) weakening the function of tight junctional complexes (TJs) by promoting myosin light chain kinase (MLCK) signalling to downregulate TJ gene expression [except claudin-7, ZO-2b and claudin-15 gene expression]. Additionally, based on percent weight gain (PWG), against reactive oxygen species (ROS), against caspase-9 and claudin-3c in grass carp, the optimal dietary magnesium levels were calculated to be 770.38, 839.86, 856.79 and 811.49 mg/kg, respectively.
Collapse
|