1
|
Wang X, Zhang M, Ma J, Tie Y, Wang S. Biochemical Markers of Zinc Nutrition. Biol Trace Elem Res 2024; 202:5328-5338. [PMID: 38319550 DOI: 10.1007/s12011-024-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Zinc is an important trace element involved in the biochemical and physiological functions of the organism and is essential in the human body. It has been reported that 17.3% of people around the world are at risk of many diseases due to zinc deficiency, which has already affected people's healthy lives. Currently, mild zinc deficiency is difficult to diagnose early due to the lack of typical clinical manifestations, so finding zinc biomarkers is crucial for people's health. The present article reviews the main representative zinc biomarkers, such as body fluid zinc levels, zinc-dependent proteins, tissue zinc, and zinc-containing enzymes, to provide a reference for actively promoting the study of zinc nutritional status and early clinical diagnosis.
Collapse
Affiliation(s)
- Xinying Wang
- North China University of Science and Technology, Tangshan, Hebei Province, 063210, China
| | - Menghui Zhang
- North China University of Science and Technology, Tangshan, Hebei Province, 063210, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei Province, 050071, China
| | - Yanqing Tie
- Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei Province, 050071, China.
| |
Collapse
|
2
|
Jin L, Tian X, Ji X, Xiao G. The expression of Catsup in the hindgut is essential for zinc homeostasis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:601-612. [PMID: 38664880 DOI: 10.1111/imb.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 11/06/2024]
Abstract
Zinc excretion is crucial for zinc homeostasis. However, the mechanism of zinc excretion has not been well characterized. Zinc homeostasis in Drosophila seems well conserved to mammals. In this study, we screened all members of the zinc transporters ZnT (SLC30) and Zip (SLC39) for their potential roles in Drosophila hindgut, an insect organ that belongs to the excretory system. The results indicated that Catecholamines up (Catsup, CG10449), a ZIP member localized to the Golgi, is responsible for zinc homeostasis in the hindgut of Drosophila hindgut-specific knockdown of Catsup leads to a developmental arrest in the larval stage, which could be rescued well by human ZIP7. Further study suggested that Catsup RNAi in the hindgut reduced zinc levels in the excretory system (containing the Malpighian tubule and hindgut) but exhibited systemic zinc overload. Besides, more calculi were observed in the Malpighian tubules of Catsup RNAi flies. The developmental arrest and calculi in the Malpighian tubules of hindgut-specific Catsup RNAi flies could be rescued by dietary zinc restriction but hypersensitivity to zinc. These results will help us understand the fundamental process of zinc excretion in higher eukaryotes.
Collapse
Affiliation(s)
- Li Jin
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Xueke Tian
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
3
|
Feng Y, Liu Y, Liu W, Ding X, James Kang Y. Zinc-glutathione mitigates alcohol-induced intestinal and hepatic injury by modulating intestinal zinc-transporters in mice. J Nutr Biochem 2024; 132:109697. [PMID: 38964724 DOI: 10.1016/j.jnutbio.2024.109697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Long-term alcohol overconsumption impairs intestinal and hepatic structure and function, along with dysregulation of zinc homeostasis. We previously found that zinc-glutathione (Zn-GSH) complex effectively suppressed alcohol-induced liver injury in mice. This study was undertaken to test the hypothesis that Zn-GSH suppresses alcohol-induced liver injury by modulating intestinal zinc transporters. Mice were subjected to long-term ethanol feeding, as per the NIAAA model, with groups receiving either an ethanol diet alone or an ethanol diet supplemented with Zn-GSH. Treatment groups were carefully monitored for alcohol consumption and subjected to a final binge drinking exposure. The results showed that Zn-GSH increased the survival rate and decreased the recovery time from binge drinking-induced drunkenness. Histopathological analyses demonstrated a reduction in liver steatosis and the preservation of intestinal integrity by Zn-GSH. It was observed that Zn-GSH prevented the reduction of Zn and GSH levels while increasing alcohol dehydrogenase and aldehyde dehydrogenase in both liver and intestine. Importantly, the expression and protein abundance of zinc transporters ZnT-1, ZIP-1, ZIP-4, ZIP-6, and ZIP-14, all of which are critically involved in intestinal zinc transport and homeostasis, were significantly increased or preserved by Zn-GSH in response to alcohol exposure. This study thus highlights the critical role of Zn-GSH in maintaining intestinal zinc homeostasis by modulating zinc transporters, thereby preventing alcohol-induced intestinal and hepatic injury.
Collapse
Affiliation(s)
- Yinrui Feng
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yundi Liu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Wenrui Liu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Hobin K, Abou-Zeid L, Mendizabal IB, Van Vrekhem T, Miatton M, D'Haeze B, Scarioni M, Van Langenhove T, Vanhaecke F. Investigation of the concentration and isotopic composition of Cu, Fe and Zn in human biofluids in the context of Alzheimer's disease via tandem and multi-collector inductively coupled plasma-mass spectrometry. J Trace Elem Med Biol 2024; 86:127515. [PMID: 39241488 DOI: 10.1016/j.jtemb.2024.127515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Studies on essential trace elements in the context of Alzheimer's disease (AD) concluded that Cu, Fe and Zn interact with amyloid-β, accelerating plaque formation in the brain. Additionally, Cu and Fe in the vicinity of plaques produce reactive oxygen species (ROS) resulting in oxidative stress, whereas Zn plays a role in the antioxidant defence as a co-factor for antioxidants. In this work, the Cu, Fe and Zn concentrations and isotope ratios were determined in whole blood, blood serum and cerebrospinal fluid of 10 patients diagnosed with AD and 8 control individuals, using tandem (ICP-MS/MS) and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), respectively. In whole blood and blood serum of AD patients, a heavier Cu isotopic composition was observed (significant for whole blood only) compared to controls. Albumin levels in cerebrospinal fluid tend to increase with age, which could indicate an increased leakiness of the blood-brain barrier. In cerebrospinal fluid, a large variability was observed for the Cu and Fe isotope ratios, potentially resulting from that leakiness at the blood-brain barrier. Therefore, potential effects of AD on the concentration and isotopic composition of essential elements in cerebrospinal fluid related to amyloid-β formation could be hidden. Finally, in blood serum, Zn, urea and creatinine concentrations showed an increase with age and showed a significant difference between sexes.
Collapse
Affiliation(s)
- Kasper Hobin
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, Ghent 9000, Belgium
| | - Lana Abou-Zeid
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, Ghent 9000, Belgium
| | - Iker Basabe Mendizabal
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, Ghent 9000, Belgium
| | - Tineke Van Vrekhem
- Cognitive Center, Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Marijke Miatton
- Cognitive Center, Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Bregje D'Haeze
- Cognitive Center, Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Marta Scarioni
- Cognitive Center, Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Tim Van Langenhove
- Cognitive Center, Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, Ghent 9000, Belgium.
| |
Collapse
|
5
|
Jin D, Wei X, He Y, Zhong L, Lu H, Lan J, Wei Y, Liu Z, Liu H. The nutritional roles of zinc for immune system and COVID-19 patients. Front Nutr 2024; 11:1385591. [PMID: 38706559 PMCID: PMC11066294 DOI: 10.3389/fnut.2024.1385591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Zinc (Zn) is a vital micronutrient that strengthens the immune system, aids cellular activities, and treats infectious diseases. A deficiency in Zn can lead to an imbalance in the immune system. This imbalance is particularly evident in severe deficiency cases, where there is a high susceptibility to various viral infections, including COVID-19 caused by SARS-CoV-2. This review article examines the nutritional roles of Zn in human health, the maintenance of Zn concentration, and Zn uptake. As Zn is an essential trace element that plays a critical role in the immune system and is necessary for immune cell function and cell signaling, the roles of Zn in the human immune system, immune cells, interleukins, and its role in SARS-CoV-2 infection are further discussed. In summary, this review paper encapsulates the nutritional role of Zn in the human immune system, with the hope of providing specific insights into Zn research.
Collapse
Affiliation(s)
- Di Jin
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Xinran Wei
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yunyi He
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Luying Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Huijie Lu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jiaxin Lan
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yuting Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Hongbo Liu
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| |
Collapse
|
6
|
Zadok N, Ast G, Sharan R. A network-based method for associating genes with autism spectrum disorder. FRONTIERS IN BIOINFORMATICS 2024; 4:1295600. [PMID: 38525240 PMCID: PMC10960359 DOI: 10.3389/fbinf.2024.1295600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable complex disease that affects 1% of the population, yet its underlying molecular mechanisms are largely unknown. Here we study the problem of predicting causal genes for ASD by combining genome-scale data with a network propagation approach. We construct a predictor that integrates multiple omic data sets that assess genomic, transcriptomic, proteomic, and phosphoproteomic associations with ASD. In cross validation our predictor yields mean area under the ROC curve of 0.87 and area under the precision-recall curve of 0.89. We further show that it outperforms previous gene-level predictors of autism association. Finally, we show that we can use the model to predict genes associated with Schizophrenia which is known to share genetic components with ASD.
Collapse
Affiliation(s)
- Neta Zadok
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Zhou B, Li J, Zhang J, Liu H, Chen S, He Y, Wang T, Wang C. Effects of Long-Term Dietary Zinc Oxide Nanoparticle on Liver Function, Deposition, and Absorption of Trace Minerals in Intrauterine Growth Retardation Pigs. Biol Trace Elem Res 2023; 201:4746-4757. [PMID: 36585599 DOI: 10.1007/s12011-022-03547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
To investigate the long-term effects of dietary zinc oxide nanoparticle (Nano-ZnO, 20-40 nm) on the relative organ weight, liver function, deposition, and absorption of trace minerals in intrauterine growth retardation (IUGR) pigs, piglets were allocated to NBW (6 normal birth weight piglets fed basal diets), IUGR (6 IUGR piglets fed basal diets) and IUGR+NZ (6 IUGR piglets fed basal diets + 600 mg Zn/kg from Nano-ZnO) groups at weaning (21 days of age), which were sampled at 163 days of age. There were no noteworthy changes in the relative weight of organs, hepatic histomorphology, serum alkaline phosphatase, glutamic pyruvic transaminase and glutamic oxalacetic transaminase activities, and Mn, Cu, and Fe concentrations in leg muscle, the liver, the tibia, and feces among the IUGR, NBW, and IUGR+NZ groups (P>0.05), and no intact Nano-ZnO in the jejunum, liver, and muscle was observed, while dietary Nano-ZnO increased the Zn concentrations in the tibia, the liver, serum, and feces (P<0.05) and mRNA expression of metallothionein (MT) 1A, MT2A, solute carrier family 39 member (ZIP) 4, ZIP14, ZIP8, divalent metal transporter 1, solute carrier family 30 member (ZnT) 1, ZnT4 and metal regulatory transcription factor 1, and ZIP8 protein expression in jejunal mucosa (P<0.05). Immunohistochemistry showed that dietary Nano-ZnO increased the relative optical density of ZIP8 (mainly expressed in cells of brush border) and MT2A (mainly expressed in villus lamina propria and gland/crypt) (P<0.05). In conclusion, long-term dietary Nano-ZnO showed no obvious side effects on the development of the major organs, liver function, and metabolism of Cu, Fe, and Mn in IUGR pigs, while it increased the Zn absorption and deposition via enhancing the expression of transporters (MT, ZIP, and ZnT families) in the jejunum, rather than via endocytosis as the form of intact nanoparticles.
Collapse
Affiliation(s)
- Binbin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huijuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yudan He
- Department of Animal Science, Jiangxi Biotech Vocational College, 608 Nanlian Road, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
8
|
Li N, Wang R, Deng Z, Zhou J, Li W, Du Q, Zheng L. Structural Characterization of Zinc-Sucrose Complex and Its Ability to Promote Zinc Absorption in Caco-2 Monolayer Cells and Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12094-12104. [PMID: 37493257 DOI: 10.1021/acs.jafc.3c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Sucrose emerges as a metal-ion chelating agent with excellent stability that may increase metal-ion absorption. This study aimed to characterize the structure of zinc-sucrose complex and investigate its ability to promote zinc absorption in Caco-2 monolayer cells and mice. Based on the results of the inductively coupled plasma emission spectrometer (ICP-ES), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared spectroscopy (FT-IR), it can be inferred that zinc and sucrose were chelated at a 1:1 ratio, with the hydroxyl groups playing a significant role. The Caco-2 monolayer cell model revealed that zinc-sucrose complex increased the amount of zinc uptake, retention, and transport in a dose- and time-dependent manner. Through the upregulation of genes and proteins for ZIP4, MT1, and DMT1, treatment with zinc-sucrose complex improved the proportion of absorbed zinc utilized for transport compared to ZnCl2 (26.21 ± 4.96 versus 8.50 ± 1.51%). Pharmacokinetic analysis of mice confirmed the zinc absorption-promoting effect of zinc-sucrose complex, as indicated by the considerably higher serum zinc level (4.16 ± 0.53 versus 2.56 ± 0.45 mg/L) and intestinal ZIP4, MT1, and DMT1 gene expression than ZnCl2. Further treatment of different zinc channel inhibitors and CETSA demonstrated the direct interaction of zinc-sucrose complex with ZIP4 protein and ZIP4-mediated cellular transport of zinc-sucrose complex. These findings provide a novel insight into the zinc absorption-promoting mechanism of zinc-sucrose complex, which could be used as an ingredient in functional foods to treat zinc deficiency.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Ruiyan Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, Jiangxi, P. R. China
| | - Jianqun Zhou
- Nanning Zeweier Feed Co., Ltd., Nanning 530221, P. R. China
| | - Wenwen Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Qian Du
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| |
Collapse
|
9
|
Su W, Li Z, Gong T, Wang F, Jin M, Wang Y, Lu Z. An alternative ZnO with large specific surface area: Preparation, physicochemical characterization and effects on growth performance, diarrhea, zinc metabolism and gut barrier function of weaning piglets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163558. [PMID: 37075996 DOI: 10.1016/j.scitotenv.2023.163558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
High-dose ZnO is widely used to prevent diarrhea and promote growth of weaning piglets, which has led to serious problems of animal toxicity, bacterial resistance and environmental pollution. In this study, a novel alternative ZnO (AZO) was prepared and its physicochemical properties were characterized. Animal experiments were further conducted to evaluate the effects of the ZnO forms, the dose of AZO and the combinations with AZO on the growth performance, diarrhea, zinc metabolism and gut barrier function of weaning piglets. The results showed that the AZO, compared with ordinary ZnO (OZO), nano ZnO (NZO) and porous ZnO (PZO), had the largest surface area and reduced the release of Zn2+ into the gastric fluid. AZO showed better antibacterial activity on Escherichia coli K88, Staphylococcus aureus and Salmonella enteritidis but lower cytotoxicity on porcine intestinal epithelial cells. Animal experiments suggested that low-dose AZO, NZO and PZO (300 mg/kg) improved growth performance and reduced diarrhea in weaning piglets as well as high-dose OZO (3000 mg/kg). Notably, low-dose AZO had the lowest diarrhea incidence. Additionally, low-dose AZO in combination with probiotics improved digestibility and digestive enzyme activities. Low-dose AZO in combination with probiotics also upregulated the expression of the intestinal zinc transporter proteins ZIP4 and DMT1, increased zinc bioavailability, reduced faecal zinc emissions, and avoided zinc overload in the liver and oxidative damage caused by high-dose ZnO. Moreover, low-dose AZO in combination with probiotics improved the gut barrier function of weaning piglets by promoting the expression of tight junction proteins, mucins and antimicrobial peptides and increasing gut microbiota diversity and beneficial Lactobacillus. This study proposed a novel strategy to replace high-dose ZnO and antibiotics with low-dose AZO and probiotics in weaning piglets, which effectively improved growth performance and prevented diarrhea while reducing animal toxicity, bacterial resistance, heavy metal residues and zinc emission pollution.
Collapse
Affiliation(s)
- Weifa Su
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zhixue Li
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Tao Gong
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Fengqin Wang
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Mingliang Jin
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhen Wang
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zeqing Lu
- National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Road, Taiyuan, Shanxi 030000, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
10
|
Katimba HA, Wang R, Cheng C, Zhang Y, Lu W, Ma Y. Zinc Absorption & Homeostasis in the Human Body: A General Overview. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Yang W, Wang X, Yu Z, Li C, Sun M, Li Y, Hui Y, Guo G, Fan X, Jiang K, Sun C. Low Levels of Serum Zinc Associate with Malnutrition Risk Assessed by the Royal Free Hospital-Nutritional Prioritizing Tool in Cirrhosis. Biol Trace Elem Res 2022; 200:4289-4296. [PMID: 34791623 DOI: 10.1007/s12011-021-03033-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/13/2021] [Indexed: 12/20/2022]
Abstract
We have clarified that malnutrition risk evaluated by the Royal Free Hospital-Nutritional Prioritizing Tool (RFH-NPT) is prevalent in patients with cirrhosis. Mineral elements (zinc, iron, magnesium, copper, manganese, and calcium) are micronutrients essential for versatile physiological processes and cellular bioactivities. However, the association between these trace elements and integral nutritional status is unclear in decompensated cirrhotics. We collected blood samples from hospitalized patients with cirrhosis, and serum trace element concentrations were examined by inductively coupled plasma mass spectrometry. Association of trace element levels with high malnutrition risk was determined by multivariate logistic regression model. Sera from 141 patients with decompensated cirrhosis were analyzed for a total of six trace element concentrations. No significant differences were observed between high and low/moderate RFH-NPT malnutrition risk groups with the exception of zinc. The serum zinc concentrations were significantly decreased in patients at high malnutrition risk when compared to low/moderate subjects (57.9 vs 68.1 μg/dL, P = 0.006). In terms of receiver operating characteristics curve, zinc < 64 μg/dL represented best discriminative capability with an area of 0.635 (95% CI: 0.542, 0.728). Patients in the group with zinc < 64 μg/dL had elevated RFH-NPT and MELD score, higher proportion of Child-Pugh class C and ascites, higher CRP, lower albumin and sodium than in the group with zinc ≥ 64 μg/dL. Zinc < 64 μg/dL was an independent risk factor for high malnutrition risk. Low levels of serum zinc referring to less than 64 μg/dL were associated with poor integral nutritional status in cirrhosis.
Collapse
Affiliation(s)
- Wanting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154Heping District, Tianjin, 300052, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154Heping District, Tianjin, 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154Heping District, Tianjin, 300052, China
| | - Chaoqun Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Department of Internal Medicine, Tianjin Hexi Hospital, Qiongzhou Road 43, Hexi District, Tianjin, 300202, China
| | - Mingyu Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154Heping District, Tianjin, 300052, China
| | - Yifan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154Heping District, Tianjin, 300052, China
| | - Yangyang Hui
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154Heping District, Tianjin, 300052, China
| | - Gaoyue Guo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154Heping District, Tianjin, 300052, China
| | - Xiaofei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154Heping District, Tianjin, 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154Heping District, Tianjin, 300052, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, China.
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154Heping District, Tianjin, 300052, China.
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
12
|
Hu Y, Wang C, Wu W, Qu Y, Zhang W, Li D, Zhu L, Gao F, Wu B, Zhang L, Cui X, Li T, Geng Y, Luo X. Organic zinc with moderate chelation strength enhances zinc absorption in the small intestine and expression of related transporters in the duodenum of broilers. Front Physiol 2022; 13:952941. [PMID: 35936908 PMCID: PMC9355254 DOI: 10.3389/fphys.2022.952941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Our previous study demonstrated that the absorption of zinc (Zn) from the organic Zn proteinate with moderate chelation strength was significantly higher than that of Zn from the inorganic Zn sulfate in the in situ ligated duodenal segment of broilers, but the underlying mechanisms are unknown. The present study aimed to determine the effect of organic Zn with moderate chelation strength and inorganic Zn on the Zn absorption in the small intestine and the expression of related transporters in the duodenum of broilers. The Zn-deficient broilers (13 days old) were fed with the Zn-unsupplemented basal diets (control) containing 25.72 and 25.64 mg Zn/kg by analysis or the basal diets supplemented with 60 mg Zn/kg as the Zn sulfate or the Zn proteinate with moderate chelation strength (Zn-Prot M) for 26 days. The results showed that the plasma Zn contents from the hepatic portal vein of broilers at 28 days and 39 days of age were increased (p < 0.05) by Zn addition and greater (p < 0.05) in the Zn-Prot M than in the Zn sulfate. On d 28, Zn addition upregulated (p < 0.05) mRNA expression of zinc transporter 1 (ZnT1), Zrt-irt-like protein 5 (ZIP5), y + L-type amino transporter 2 (y + LAT2) and b0,+-type amino acid transporter (rBAT), zinc transporter 4 (ZnT4) protein expression, and zinc transporter 9 (ZnT9) mRNA and protein expression in the duodenum. Moreover, ZnT9 mRNA expression, ZnT4, ZIP5, and rBAT protein expression, zinc transporter 7 (ZnT7), and y + LAT2 mRNA and protein expression in the duodenum of broilers on 28 days were higher (p < 0.05) in the Zn-Prot M than in the Zn sulfate. On d 39, supplemental Zn increased (p < 0.05) peptide-transporter 1 (PepT1) mRNA expression and y + LAT2 protein expression, while the mRNA expression of ZnT7 and Zrt-irt-like protein 3 (ZIP3) were higher (p < 0.05) for the Zn-Prot M than for the Zn sulfate in the duodenum. It was concluded that the Zn-Prot M enhanced the Zn absorption in the small intestine partially via upregulating the expression of ZnT4, ZnT7, ZnT9, ZIP3, ZIP5, y + LAT2, and rBAT in the duodenum of broilers.
Collapse
Affiliation(s)
- Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chuanlong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yicheng Qu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ding Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Zhu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Feiyu Gao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bingxin Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyang Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanqiang Geng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Xugang Luo,
| |
Collapse
|
13
|
Wei W, Hu Q, Li W, Li M, Dong S, Peng Y, Yin J, Lu Y, Liu L, Zhao Q. The Role of Ferroptosis Signature in Overall Survival and Chemotherapy of Pancreatic Adenocarcinoma. DNA Cell Biol 2022; 41:116-127. [PMID: 34898275 DOI: 10.1089/dna.2021.0594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Studies have shown that ferroptosis, an iron-dependent regulated cell death, is related to prognosis and chemotherapy, but the role of ferroptosis in pancreatic adenocarcinoma (PAAD) is still unclear. We aimed at constructing a ferroptosis-related gene (FRGs) model to predict the PAAD patients' overall survival (OS) and at exploring their values in chemotherapy. We downloaded the mRNA-sequencing data and corresponding clinical data of patients with PAAD from The Cancer Genome Atlas. Lasso-penalized Cox regression analysis was utilized to construct a prognostic risk model, including spermidine/spermine N1-acetyltransferase 1 (SAT1), SAT2, TFRC, SLC39A8, MAP1LC3A, ALOX15, and PROM2. Receiver operating characteristic curves were used to evaluate the prognostic model. International Cancer Genome Consortium cohorts were used to validate this model. Then, we used Genomics of Drug Sensitivity in Cancer and Gene Expression Omnibus databases to analyze the correlation between FRGs and drug sensitivity. Notably, SAT1 showed significant influence in cisplatin and gemcitabine resistance. Finally, in vitro experiments demonstrated that the combination of gemcitabine and cisplatin could induce ferroptosis in AsPC1 cells, probably through elevated SAT1 expression. Taken together, Our 7-gene signature has significant values in predicting the PAAD patients' OS, and it may help inform the clinical treatment of PAAD.
Collapse
Affiliation(s)
- Wanhui Wei
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Qian Hu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Shouquan Dong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Jingwen Yin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Yuanyuan Lu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| |
Collapse
|
14
|
Cheng Y, Chen H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrients 2021; 13:nu13124456. [PMID: 34960004 PMCID: PMC8707169 DOI: 10.3390/nu13124456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Zinc, an essential micronutrient in the human body, is a component in over 300 enzymes and participates in regulating enzymatic activity. Zinc metalloenzymes play a crucial role in physiological processes including antioxidant, anti-inflammatory, and immune responses, as well as apoptosis. Aberrant enzyme activity can lead to various human diseases. In this review, we summarize zinc homeostasis, the roles of zinc in zinc metalloenzymes, the physiological processes of zinc metalloenzymes, and aberrant zinc metalloenzymes in human diseases. In addition, potential mechanisms of action are also discussed. This comprehensive understanding of the mechanisms of action of the regulatory functions of zinc in enzyme activity could inform novel zinc-micronutrient-supply strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Yunqi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China;
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
15
|
Ito T, Uenoyama K, Kobayashi K, Kakumoto M, Mizumoto H, Katsura T, Onoue M. Administration of zinc to preterm infants with hypozincemia does not reduce serum copper concentrations in most cases: a single-center retrospective observational study. J Pharm Health Care Sci 2021; 7:46. [PMID: 34852847 PMCID: PMC8638113 DOI: 10.1186/s40780-021-00229-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Background Zinc is an essential trace element involved in various physiological functions. In Japan, zinc acetate dihydrate is administered to neonates and infants with hypozincemia. Since serum copper concentrations are reduced by the administration of zinc, we retrospectively investigated changes in serum zinc and copper concentrations in preterm infants with hypozincemia receiving zinc acetate dihydrate. Methods Sixty-three preterm infants were included in the present study. Serum zinc and copper concentrations, doses, and other clinical characteristics were retrieved from electronic medical records. Results The medians and interquartile ranges of the dosage and duration of zinc acetate dihydrate were 2.1 (1.8–2.5) mg/kg/day and 12.0 (10.0–13.0) days, respectively. Its administration increased serum zinc concentrations in 39 patients (61.9%) and to more than 70 μg/dL in 16 patients (25.4%). The group with a serum zinc concentration of 70 μg/dL or higher after administration had a significantly higher zinc dose of 2.5 mg/kg/day than the group with a serum zinc concentration of less than 70 μg/dL. Serum copper concentrations did not decrease in 44 patients (69.8%). In the group with a decreased serum copper concentration, postmenstrual age and body weight were significantly lower, while serum zinc concentrations were significantly higher at the start of administration. Conclusion The present results showed that when zinc acetate dihydrate was administered to preterm infants with hypozincemia, it was possible to increase serum zinc concentrations without decreasing serum copper concentrations in many cases. However, caution may be required when administering zinc to preterm infants with a lower postmenstrual age or milder hypozincemia because serum copper concentrations may decrease.
Collapse
Affiliation(s)
- Toshikazu Ito
- Department of Pharmacy, Kitano Hospital, Tazuke Kofukai Medical Research Institute. 2-4-20, Ogimachi, Kita-ku, Osaka, 530-8480, Japan. .,Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Kazuya Uenoyama
- Department of Pharmacy, Kitano Hospital, Tazuke Kofukai Medical Research Institute. 2-4-20, Ogimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Kazuhiro Kobayashi
- Department of Pharmacy, Kitano Hospital, Tazuke Kofukai Medical Research Institute. 2-4-20, Ogimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Mikio Kakumoto
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hiroshi Mizumoto
- Department of Pediatrics, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20, Ogimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masahide Onoue
- Department of Pharmacy, Kitano Hospital, Tazuke Kofukai Medical Research Institute. 2-4-20, Ogimachi, Kita-ku, Osaka, 530-8480, Japan
| |
Collapse
|
16
|
Pereira AM, Maia MRG, Pinna C, Biagi G, Matos E, Segundo MA, Fonseca AJM, Cabrita ARJ. Effects of Zinc Source and Enzyme Addition on the Fecal Microbiota of Dogs. Front Microbiol 2021; 12:688392. [PMID: 34721312 PMCID: PMC8549731 DOI: 10.3389/fmicb.2021.688392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Supplemental zinc from organic sources has been suggested to be more bioavailable than inorganic ones for dog foods. However, the bioavailability of zinc might be affected by dietary constituents such as phytates. The present study aimed to evaluate the effects of two zinc sources (zinc sulfate and zinc proteinate) and the addition of a multi-enzymatic complex from the solid-state fermentation of Aspergillus niger on end-products of fecal fermentation and fecal microbiota of adult Beagles fed a high-phytate diet. The experimental design consisted of three 4 × 4 Latin Squares with a 2 × 2 factorial arrangement of treatments (n = 12 Beagles), with four periods and four diets: zinc sulfate without (IZ) or with (IZ +) enzyme addition, and zinc proteinate without (OZ) or with (OZ +) enzyme addition. Enzyme addition significantly affected Faith’s phylogenetic diversity index, whereas zinc source did not affect either beta or alpha diversity measures. Linear discriminant analysis effect size detected nine taxa as markers for organic zinc, 18 for inorganic source, and none for enzyme addition. However, with the use of a negative binomial generalized linear model, further effects were observed. Organic zinc was associated with a significantly higher abundance of Firmicutes and lower Proteobacteria and Bacteroidetes, although at a genus level, the response varied. The DNA abundance of Clostridium cluster I, Clostridium cluster XIV, Campylobacter spp., Ruminococcaceae, Turicibacter, and Blautia was significantly higher in dogs fed IZ and IZ + diets. Higher abundance of genus Lactobacillus was observed in dogs fed enzyme-supplemented diets. End-products of fecal fermentation were not affected by zinc source or enzymes. An increase in some taxa of the phyla Actinobacteria and Firmicutes was observed in feces of dogs fed organic zinc with enzyme addition but not with inorganic zinc. This study fills a gap in knowledge regarding the effect of zinc source and enzyme addition on the fecal microbiota of dogs. An association of zinc bioavailability and bacteria abundance is suggested, but the implications for the host (dog) are not clear. Further studies are required to unveil the effects of the interaction between zinc sources and enzyme addition on the fecal microbial community.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- LAQV, REQUIMTE, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Margarida R G Maia
- LAQV, REQUIMTE, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlo Pinna
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Ozzano dell'Emilia, Italy
| | - Giacomo Biagi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Ozzano dell'Emilia, Italy
| | | | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - António J M Fonseca
- LAQV, REQUIMTE, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana R J Cabrita
- LAQV, REQUIMTE, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Xia P, Lian S, Wu Y, Yan L, Quan G, Zhu G. Zinc is an important inter-kingdom signal between the host and microbe. Vet Res 2021; 52:39. [PMID: 33663613 PMCID: PMC7931793 DOI: 10.1186/s13567-021-00913-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc (Zn) is an essential trace element in living organisms and plays a vital role in the regulation of both microbial virulence and host immune responses. A growing number of studies have shown that zinc deficiency or the internal Zn concentration does not meet the needs of animals and microbes, leading to an imbalance in zinc homeostasis and intracellular signalling pathway dysregulation. Competition for zinc ions (Zn2+) between microbes and the host exists in the use of Zn2+ to maintain cell structure and physiological functions. It also affects the interplay between microbial virulence factors and their specific receptors in the host. This review will focus on the role of Zn in the crosstalk between the host and microbe, especially for changes in microbial pathogenesis and nociceptive neuron-immune interactions, as it may lead to new ways to prevent or treat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Unal O, Baltaci AK, Mogulkoc R, Avunduk MC. Effect of pinealectomy and melatonin supplementation on metallothionein, ZnT2, ZIP2, ZIP4 and zinc levels in rat small intestine. Biotech Histochem 2021; 96:623-635. [PMID: 33615931 DOI: 10.1080/10520295.2021.1885738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We investigated the relations among levels of metallothionein (MT); zinc (Zn) transport proteins, ZnT2, ZIP2 (ZRT and IRT-like proteins); and ZIP4, which enable Zn absorption in the small intestine of rats. We also investigated tissue Zn levels in the small intestine. We used four groups of adult male rats: group 1, control; group 2, pinealectomy (Px); group 3, Px + melatonin (MEL); group 4, MEL only. Animals in groups 3 and 4 were administered 5 mg/kg/day MEL for four weeks. At the end of the study, all animals were sacrificed and samples of duodenum, jejunum and ileum were harvested to analyze ZnT2, ZIP2, ZIP4 and MT levels using immunohistochemistry, and tissue Zn levels were measured by atomic absorption spectrophotometry. The lowest ZnT2 levels in the duodenum, jejunum and ileum, and the lowest ZIP2 levels in the duodenum and ileum were found in group 2. The lowest ZIP4 levels were found in the duodenum and jejunum, and the lowest MT levels in the duodenum and ileum were found in group 2. The highest MT values in the ileum were found in group 4. We found that ZnT2, ZIP2, ZIP4 and MT levels were reduced in the ileum compared to controls following Px, but levels approached control values after MEL administration. By its effects on ZnT2, ZIP2, ZIP4 and MT levels, MEL participates in the absorption of Zn in the rat small intestine.
Collapse
Affiliation(s)
- Omer Unal
- Faculty of Medicine, Department of Physiology, Selcuk University, Konya, Turkey
| | | | - Rasim Mogulkoc
- Faculty of Medicine, Department of Physiology, Selcuk University, Konya, Turkey
| | - Mustafa Cihat Avunduk
- Faculty of Meram Medicine, Department of Pathology, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
19
|
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem 2021; 296:100320. [PMID: 33485965 PMCID: PMC7949119 DOI: 10.1016/j.jbc.2021.100320] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Zinc is a ubiquitous biological metal in all living organisms. The spatiotemporal zinc dynamics in cells provide crucial cellular signaling opportunities, but also challenges for intracellular zinc homeostasis with broad disease implications. Zinc transporters play a central role in regulating cellular zinc balance and subcellular zinc distributions. The discoveries of two complementary families of mammalian zinc transporters (ZnTs and ZIPs) in the mid-1990s spurred much speculation on their metal selectivity and cellular functions. After two decades of research, we have arrived at a biochemical description of zinc transport. However, in vitro functions are fundamentally different from those in living cells, where mammalian zinc transporters are directed to specific subcellular locations, engaged in dedicated macromolecular machineries, and connected with diverse cellular processes. Hence, the molecular functions of individual zinc transporters are reshaped and deeply integrated in cells to promote the utilization of zinc chemistry to perform enzymatic reactions, tune cellular responsiveness to pathophysiologic signals, and safeguard cellular homeostasis. At present, the underlying mechanisms driving the functional integration of mammalian zinc transporters are largely unknown. This knowledge gap has motivated a shift of the research focus from in vitro studies of purified zinc transporters to in cell studies of mammalian zinc transporters in the context of their subcellular locations and protein interactions. In this review, we will outline how knowledge of zinc transporters has been accumulated from in-test-tube to in-cell studies, highlighting new insights and paradigm shifts in our understanding of the molecular and cellular basis of mammalian zinc transporter functions.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
20
|
Becares ER, Pedersen PA, Gourdon P, Gotfryd K. Overproduction of Human Zip (SLC39) Zinc Transporters in Saccharomyces cerevisiae for Biophysical Characterization. Cells 2021; 10:cells10020213. [PMID: 33494457 PMCID: PMC7911073 DOI: 10.3390/cells10020213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc constitutes the second most abundant transition metal in the human body, and it is implicated in numerous cellular processes, including cell division, DNA and protein synthesis as well as for the catalytic activity of many enzymes. Two major membrane protein families facilitate zinc homeostasis in the animal kingdom, i.e., Zrt/Irt-like proteins (ZIPs aka solute carrier 39, SLC39, family) and Zn transporters (ZnTs), essentially conducting zinc flux in the opposite directions. Human ZIPs (hZIPs) regulate import of extracellular zinc to the cytosol, being critical in preventing overaccumulation of this potentially toxic metal, and crucial for diverse physiological and pathological processes, including development of neurodegenerative disorders and several cancers. To date, our understanding of structure-function relationships governing hZIP-mediated zinc transport mechanism is scarce, mainly due to the notorious difficulty in overproduction of these proteins for biophysical characterization. Here we describe employment of a Saccharomyces cerevisiae-based platform for heterologous expression of hZIPs. We demonstrate that yeast is able to produce four full-length hZIP members belonging to three different subfamilies. One target (hZIP1) is purified in the high quantity and homogeneity required for the downstream biochemical analysis. Our work demonstrates the potential of the described production system for future structural and functional studies of hZIP transporters.
Collapse
Affiliation(s)
- Eva Ramos Becares
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK-2200 Copenhagen N, Denmark;
| | - Per Amstrup Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark;
| | - Pontus Gourdon
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK-2200 Copenhagen N, Denmark;
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84 Lund, Sweden
- Correspondence: (P.G.); (K.G.); Tel.: +45-503-39990; (+45)-414-02869
| | - Kamil Gotfryd
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK-2200 Copenhagen N, Denmark;
- Correspondence: (P.G.); (K.G.); Tel.: +45-503-39990; (+45)-414-02869
| |
Collapse
|
21
|
Imipramine Influences Body Distribution of Supplemental Zinc Which May Enhance Antidepressant Action. Nutrients 2020; 12:nu12092529. [PMID: 32825449 PMCID: PMC7551732 DOI: 10.3390/nu12092529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023] Open
Abstract
Zinc (Zn) was found to enhance the antidepressant efficacy of imipramine (IMI) in human depression and animal tests/models of depression. However, the underlying mechanism for this effect remains unknown. We measured the effect of intragastric (p.o.) combined administration of IMI (60 mg/kg) and Zn (40 mg Zn/kg) in the forced swim test (FST) in mice. The effect of Zn + IMI on serum, brain, and intestinal Zn concentrations; Zn transporter (ZnT, ZIP) protein levels in the intestine and ZnT in the brain; including BDNF (brain-derived neurotrophic factor) and CREB (cAMP response element-binding protein) protein levels in the brain were evaluated. Finally, the effect of IMI on Zn permeability was measured in vitro in colon epithelial Caco-2 cells. The co-administration of IMI and Zn induced antidepressant-like activity in the FST in mice compared to controls and Zn or IMI given alone. This effect correlated with increased BDNF and the ratio of pCREB/CREB protein levels in the prefrontal cortex (PFC) compared to the control group. Zn + IMI co-treatment increased Zn concentrations in the serum and brain compared to the control group. However, in serum, co-administration of IMI and Zn decreased Zn concentration compared to Zn alone treatment. Also, there was a reduction in the Zn-induced enhancement of ZnT1 protein level in the small intestine. Zn + IMI also induced an increase in the ZnT4 protein level in the PFC compared to the control group and normalized the Zn-induced decrease in the ZnT1 protein level in the hippocampus (Hp). The in vitro studies revealed enhanced Zn permeability (observed as the increased transfer of Zn through the intestinal cell membrane) after IMI treatment. Our data indicate that IMI enhances Zn transfer through the intestinal tract and influences the redistribution of Zn between the blood and brain. These mechanisms might explain the enhanced antidepressant efficacy of combined IMI/Zn treatment observed in the FST in mice.
Collapse
|
22
|
Foligné B, George F, Standaert A, Garat A, Poiret S, Peucelle V, Ferreira S, Sobry H, Muharram G, Lucau‐Danila A, Daniel C. High‐dose dietary supplementation with zinc prevents gut inflammation: Investigation of the role of metallothioneins and beyond by transcriptomic and metagenomic studies. FASEB J 2020; 34:12615-12633. [DOI: 10.1096/fj.202000562rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Benoît Foligné
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
| | - Fanny George
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483‐IMPECS‐IMPact de l'Environnement Chimique sur la Santé humaine Lille France
| | - Annie Standaert
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
| | - Anne Garat
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483‐IMPECS‐IMPact de l'Environnement Chimique sur la Santé humaine Lille France
- CHU Lille, Unité Fonctionnelle de Toxicologie Lille France
| | - Sabine Poiret
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Véronique Peucelle
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | | | - Hélène Sobry
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Ghaffar Muharram
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Anca Lucau‐Danila
- BIOECOAGRO INRAe, UArtois, ULiege, ULille, ULCO, UPJV, YNCREA, Institut Charles Viollette Lille France
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| |
Collapse
|
23
|
Reis BZ, Vieira DADS, Maynard DDC, Silva DGD, Mendes-Netto RS, Cozzolino SMF. Zinc nutritional status influences ZnT1 and ZIP4 gene expression in children with a high risk of zinc deficiency. J Trace Elem Med Biol 2020; 61:126537. [PMID: 32388102 DOI: 10.1016/j.jtemb.2020.126537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Subclinical deficiency of zinc is associated with impairment of immune system function, growth, and cognitive development in children. Although plasma zinc is the best available biomarker of the risk of zinc deficiency in populations, its sensitivity for early detection of deficiency is limited. Therefore, we aimed to investigate zinc deficiency among preschool children and its relationship with whole blood gene expression of zinc transporters ZIP4 and ZnT1. MATERIAL AND METHODS This cross-sectional study included 139 children aged 32-76 months enrolled in philanthropic day-care centers. We performed an anthropometric evaluation, weighed food record and dietary record for dietary assessment, blood sample collection for zinc, and whole blood gene expression analyses of ZnT1 (SLC30A1) and ZIP4 (SLC39A4). RESULTS Zinc deficiency was observed in 26.6 % of the children despite adequate zinc intake and a phytate:zinc molar ratio < 18. Usual zinc intake did not affect whole blood gene expression of zinc transporters, but zinc status influenced ZnT1 and ZIP4 whole blood mRNA. Children with zinc deficiency exhibited 37.1 % higher ZnT1 expression and 45.3 % lower ZIP4 expression than children with adequate zinc (p < 0.05). CONCLUSION Children with plasma zinc deficiency exhibited higher expression of ZnT1 and lower expression of ZIP4 in whole blood mRNA, reinforcing the existence of strong regulation of mineral homeostasis according to the nutritional status, indicating that this analysis may be useful in the evaluation of dietary interventions.
Collapse
Affiliation(s)
- Bruna Zavarize Reis
- Postgraduate Program in Applied Human Nutrition (PRONUT), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, Butantã, 05508-000, São Paulo, SP, Brazil.
| | - Diva Aliete Dos Santos Vieira
- Department of Nutrition, Federal University of Sergipe, Av. Universitária Marcelo Deda Chagas, 13. Jardim Campo Novo, 49400-000. Lagarto, SE, Brazil.
| | - Dayanne da Costa Maynard
- Department of Nutrition, Federal University of Sergipe, Av. Marechal Rondon s/n. Jardim Rosa Elze, 49100-000, São Cristóvão, SE, Brazil.
| | - Danielle Góes da Silva
- Department of Nutrition, Federal University of Sergipe, Av. Marechal Rondon s/n. Jardim Rosa Elze, 49100-000, São Cristóvão, SE, Brazil.
| | - Raquel Simões Mendes-Netto
- Department of Nutrition, Federal University of Sergipe, Av. Marechal Rondon s/n. Jardim Rosa Elze, 49100-000, São Cristóvão, SE, Brazil.
| | - Silvia Maria Franciscato Cozzolino
- Postgraduate Program in Applied Human Nutrition (PRONUT), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, Butantã, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Maares M, Haase H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients 2020; 12:E762. [PMID: 32183116 PMCID: PMC7146416 DOI: 10.3390/nu12030762] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc absorption in the small intestine is one of the main mechanisms regulating the systemic homeostasis of this essential trace element. This review summarizes the key aspects of human zinc homeostasis and distribution. In particular, current knowledge on human intestinal zinc absorption and the influence of diet-derived factors on bioaccessibility and bioavailability as well as intrinsic luminal and basolateral factors with an impact on zinc uptake are discussed. Their investigation is increasingly performed using in vitro cellular intestinal models, which are continually being refined and keep gaining importance for studying zinc uptake and transport via the human intestinal epithelium. The vast majority of these models is based on the human intestinal cell line Caco-2 in combination with other relevant components of the intestinal epithelium, such as mucin-secreting goblet cells and in vitro digestion models, and applying improved compositions of apical and basolateral media to mimic the in vivo situation as closely as possible. Particular emphasis is placed on summarizing previous applications as well as key results of these models, comparing their results to data obtained in humans, and discussing their advantages and limitations.
Collapse
Affiliation(s)
- Maria Maares
- Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
| |
Collapse
|
25
|
The role of zinc chelate of hydroxy analogue of methionine in cadmium toxicity: effects on cadmium absorption on intestinal health in piglets. Animal 2020; 14:1382-1391. [PMID: 32051055 DOI: 10.1017/s1751731120000166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that poses a threat to the health of humans and animals. It can cause serious damage to the small intestine, which is the main absorption site of Cd and the primary target organ after oral administration. Our previous study found that zinc chelate of hydroxy analogue of methionine (Zn-HMTB), a new type of feed additive, decreased Cd accumulation in the liver and kidneys. The aim of this study was to investigate the effect of Zn-HMTB on Cd absorption and Cd-induced toxicity in the small intestine of piglets. Twenty-four piglets (Landrace × Large White, 13.22 ± 0.58 kg BW) were randomly divided into four dietary treatment groups: basal diet, and diets containing 30 mg/kg Cd from CdCl2 and 0, 100 or 200 mg/kg Zn from Zn-HMTB. The experiment lasted 27 days. The feed intake and final BW of each piglet were recorded at the end of the experiment. Gastrointestinal (GI) tract tissue and samples of liver, kidney, spleen, heart, lung and longissimus muscle tissue and faeces were collected. The concentrations of Cd and metal trace elements in the GI tract and organs were analysed, as was the relative messenger RNA (mRNA) expression of inflammatory cytokines and metal element transporters in the small intestine, and epithelial apoptosis in the small intestine. The results showed that, compared with Cd-treated piglets, piglets in the Zn-HMTB and Cd cotreatment groups had less Cd deposition in the stomach, ileum, caecum, colon, liver, kidneys, spleen, lungs, heart and muscles (P < 0.05), and lower Cd concentrations in faeces (P < 0.05), suggesting that Zn-HMTB increased Cd absorption and the excretion of Cd in other forms (possibly urine). Zinc chelate of hydroxy analogue of methionine increased Zn deposition in the jejunum and the relative mRNA expression of divalent metal transporters 1 and zinc transporter 5 in the duodenum (P < 0.05), indicating that Zn-HMTB may promote the absorption and transportation of Cd and Zn together by upregulating metal element transporters. Competition between Zn and Cd may be responsible for accelerating Cd excretion. Furthermore, Zn-HMTB reduced Cd-induced apoptosis of enterocytes and inflammatory stimuli in the small intestine, suggesting that Zn-HMTB reduced Cd-induced toxicity to the small intestine. These results suggest that Zn-HMTB can be helpful in decreasing Cd accumulation in the GI tract and organs of piglets and relieving Cd-induced toxicity to the small intestine but cannot reduce the absorption of Cd.
Collapse
|
26
|
Dalto DB, Audet I, Matte JJ. Impact of dietary zinc:copper ratio on the postprandial net portal appearance of these minerals in pigs1. J Anim Sci 2019; 97:3938-3946. [PMID: 31292635 DOI: 10.1093/jas/skz238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
The present study compared the net intestinal absorption of zinc (Zn) and copper (Cu) after meals containing different dietary ratios among these trace elements. Ten 46-kg pigs were used in a cross-over design to assess the 10-h net portal-drained viscera (PDV) flux of serum Cu and Zn after ingestion of boluses containing ZnSO4 and CuSO4 in different Zn:Cu ratios (mg:mg): 120:20; 200:20; 120:8; and 200:8. Arterial Zn concentrations peaked within the first hour post-meal and responses were greater with 200 (0.9 to 1.8 mg/L) than with 120 mg (0.9 to 1.6 mg/L) of dietary Zn (dietary Zn × time, P = 0.05). Net PDV flux of Zn was greater (P = 0.02) with 200 than with 120 mg of dietary Zn and tended to be greater (P = 0.10) with 20 than with 8 mg of dietary Cu. The cumulative PDV appearance of Zn (% of dietary intake) was greater with 120 than 200 mg of dietary Zn from 8 h post-meal (P ≤ 0.04) and with 20 than 8 mg of dietary Cu from 7 h post-meal (P ≤ 0.05). At the end of the postprandial period (10 h), estimated PDV appearance of Zn was 16.0%, 18.4%, 12.0%, and 15.3% of Zn intake for 120:8, 120:20, 200:8, and 200:20 ratios, respectively. For Cu, irrespective of treatment, arterial values varied (P < 0.01) by less than 5% across postmeal times. Net PDV flux was not affected by treatments (P ≥ 0.12), but the value for ratio 120:20 was different from zero (P = 0.03). There was an interaction dietary Zn × dietary Cu on cumulative PDV appearance of Cu (% of dietary intake) at 30 min post-meal (P = 0.04) and thereafter at 3 h post-meal (P = 0.04). For the whole postprandial period (10 h), estimated PDV appearance of Cu was 61.9%, 42.1%, -17.1%, and 23.6% of Cu intake for 120:8, 120:20, 200:8, and 200:20 ratios, respectively. In conclusion, the present dietary amounts and ratios of Zn and Cu can affect the metabolic availability of both trace minerals for pigs. Ratios with 120 mg of dietary Zn maximized the postintestinal availability of both Zn and Cu.
Collapse
Affiliation(s)
- Danyel Bueno Dalto
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - Isabelle Audet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - J Jacques Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| |
Collapse
|
27
|
Katayama K. Zinc and protein metabolism in chronic liver diseases. Nutr Res 2019; 74:1-9. [PMID: 31891865 DOI: 10.1016/j.nutres.2019.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
The capacity to metabolize proteins is closely related to the hepatic functional reserve in patients with chronic liver disease, and hypoalbuminemia and hyperammonemia develop along with hepatic disease progression. Zinc deficiency, which is frequently observed in patients with chronic liver disease, significantly affects protein metabolism. Ornithine transcarbamylase is a zinc enzyme involved in the urea cycle. Its activity decreases because of zinc deficiency, thereby reducing hepatic capacity to metabolize ammonia. Because the glutamine-synthesizing system in skeletal muscles compensates for the decrease in ammonia metabolism, hyperammonemia does not develop in the early stages of chronic liver disease. However, branched-chain amino acids (BCAAs) are consumed with the increase in glutamine-synthesizing system reactions, leading to a decreased capacity to synthesize proteins, including albumin, due to amino acid imbalance. Upon further disease progression, skeletal muscle mass decreases because of nutritional deficiency, as well as the further decreased capacity to metabolize ammonia in the liver, whereby the capacity to detoxify ammonia reduces as a whole, resulting in hyperammonemia. BCAA supplementation therapy for nutritional deficiency in liver cirrhosis improves survival by correcting amino acid imbalance via recovery of the capacity to synthesize albumin, while zinc supplementation therapy improves the capacity to metabolize ammonia in the liver. Here, the efficacy of a combination of BCAA and zinc preparation for nutritional deficiency in liver cirrhosis, as well as its theoretical background, was reviewed.
Collapse
Affiliation(s)
- Kazuhiro Katayama
- Department of Hepato-Biliary and Pancreatic Oncology, Osaka, International Cancer Institute, Osaka, Japan.
| |
Collapse
|
28
|
Ohashi W, Hara T, Takagishi T, Hase K, Fukada T. Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters. Dig Dis Sci 2019; 64:2404-2415. [PMID: 30830525 DOI: 10.1007/s10620-019-05561-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Zinc is an essential micronutrient for normal organ function, and dysregulation of zinc metabolism has been implicated in a wide range of diseases. Emerging evidence has revealed that zinc transporters play diverse roles in cellular homeostasis and function by regulating zinc trafficking via organelles or the plasma membrane. In the gastrointestinal tract, zinc deficiency leads to diarrhea and dysfunction of intestinal epithelial cells. Studies also showed that zinc transporters are very important in intestinal epithelial homeostasis. In this review, we describe the physiological roles of zinc transporters in intestinal epithelial functions and relevance of zinc transporters in gastrointestinal diseases.
Collapse
Affiliation(s)
- Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan
| | - Teruhisa Takagishi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan.
- Division of Pathology, Department of Oral Diagnostic Sciences, School of dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0042, Japan.
| |
Collapse
|
29
|
Maares M, Duman A, Keil C, Schwerdtle T, Haase H. The impact of apical and basolateral albumin on intestinal zinc resorption in the Caco-2/HT-29-MTX co-culture model. Metallomics 2019; 10:979-991. [PMID: 29931006 DOI: 10.1039/c8mt00064f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms of intestinal zinc resorption and its regulation are still topics of ongoing research. To this end, the application of suitable in vitro intestinal models, optimized with regard to their cellular composition and medium constituents, is of crucial importance. As one vital aspect, the impact of cell culture media or buffer compounds, respectively, on the speciation and cellular availability of zinc has to be considered when investigating zinc resorption. Thus, the present study aims to investigate the impact of serum, and in particular its main constituent serum albumin, on zinc uptake and toxicity in the intestinal cell line Caco-2. Furthermore, the impact of serum albumin on zinc resorption is analyzed using a co-culture of Caco-2 cells and the mucin-producing goblet cell line HT-29-MTX. Apically added albumin significantly impaired zinc uptake into enterocytes and buffered its cytotoxicity. Yet, undigested albumin does not occur in the intestinal lumen in vivo and impairment of zinc uptake was abrogated by digestion of albumin. Interestingly, zinc uptake, as well as gene expression studies of mt1a and selected intestinal zinc transporters after zinc incubation for 24 h, did not show significant differences between 0 and 10% serum. Importantly, the basolateral application of serum in a transport study significantly enhanced fractional apical zinc resorption, suggesting that the occurrence of a zinc acceptor in the plasma considerably affects intestinal zinc resorption. This study demonstrates that the apical and basolateral medium composition is crucial when investigating zinc, particularly its intestinal resorption, using in vitro cell culture.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | | | | | | | | |
Collapse
|
30
|
Mayer AN, Vieira SL, Berwanger E, Angel CR, Kindlein L, França I, Noetzold TL. Zinc requirements of broiler breeder hens. Poult Sci 2019; 98:1288-1301. [PMID: 30329123 DOI: 10.3382/ps/pey451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
One hundred and twenty Cobb 500 hens, 20 wk of age, were randomly allocated into individual cages with the objective of estimating their Zn requirements. The study was composed of 3 phases: adaptation to cages (basal diet), depletion (deficient diet containing 18.7 ± 0.47 ppm Zn) for 7 wk, and experimental phases. Hens were fed diets with graded increments of Zn sulfate heptahydrate (ZnSO4·7H2O), totaling 18.7 ± 0.47, 50.3 ± 10.6, 77.3.0 ± 11.0, 110.2 ± 12.8, 140 ± 12.2, and 170.6 ± 13.2 ppm analyzed Zn in feeds for 12 wk (experimental phase). Requirements of Zn were done using quadratic polynomial (QP), broken line quadratic (BLQ), and exponential asymptotic (EA) models. In general, the non-linear statistical models were the ones that best fit the results in this study. Requirements obtained for hen day egg production and settable egg production were 83.3, 78.6 ppm and 61.4, 65.4 ppm for period of 33 to 36 wk, and 63.3, 53.1 and 60.4, 46.1 ppm for period of 37 to 40 wk, and 62.8, 52.8, and 67.7, 62.1 ppm for period of 41 to 44 wk, respectively, using BLQ and EA models. Total eggs and total settable eggs produced per hen had Zn requirements estimated as 75.7, 64.7 ppm, and 56.5, 41.5 ppm, respectively, for BLQ and EA models, whereas for alkaline phosphatase and eggshell percentage were 161.8, 124.9 ppm and 126.1, 122.4 ppm, using QP and BLQ models. Maximum responses for Zn in yolk for periods of 37 to 40 and 41 to 44 wk were 71.0, 78.1 and 64.5, 59.6 ppm, respectively, using BLQ and EA models. Breaking strength had Zn requirements estimated at 68.0 and 96.7 ppm, whereas eggshell palisade layer and eggshell thickness were maximized with 67.9, 67.9 ppm, and 67.7, 64.4 ppm, respectively, for BLQ and EA models. The average of all Zn requirement estimates obtained by EA and BLQ models in the present study was 72.28 ppm or 11.1 mg/hen/d.
Collapse
Affiliation(s)
- A N Mayer
- Department of Animal Sciences, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - S L Vieira
- Department of Animal Sciences, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - E Berwanger
- Department of Animal Sciences, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - C R Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742, Maryland, USA
| | - L Kindlein
- Department of Preventive Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - I França
- Department of Animal Sciences, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - T L Noetzold
- Department of Animal Sciences, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| |
Collapse
|
31
|
Transition metals and host-microbe interactions in the inflamed intestine. Biometals 2019; 32:369-384. [PMID: 30788645 DOI: 10.1007/s10534-019-00182-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Host-associated microbial communities provide critical functions for their hosts. Transition metals are essential for both the mammalian host and the majority of commensal bacteria. As such, access to transition metals is an important component of host-microbe interactions in the gastrointestinal tract. In mammals, transition metal ions are often sequestered by metal binding proteins to limit microbial access under homeostatic conditions. In response to invading pathogens, the mammalian host further decreases availability of these micronutrients by regulating their trafficking or releasing high-affinity metal chelating proteins, a process termed nutritional immunity. Bacterial pathogens have evolved several mechanisms to subvert nutritional immunity. Here, we provide an overview on how metal ion availability shapes host-microbe interactions in the gut with a particular focus on intestinal inflammatory diseases.
Collapse
|
32
|
Zinc in Keratinocytes and Langerhans Cells: Relevance to the Epidermal Homeostasis. J Immunol Res 2018; 2018:5404093. [PMID: 30622978 PMCID: PMC6304883 DOI: 10.1155/2018/5404093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
Abstract
In the skin, the epidermis is continuously exposed to various kinds of external substances and stimuli. Therefore, epidermal barriers are crucial for providing protection, safeguarding health, and regulating water balance by maintaining skin homeostasis. Disruption of the epidermal barrier allows external substances and stimuli to invade or stimulate the epidermal cells, leading to the elicitation of skin inflammation. The major components of the epidermal barrier are the stratum corneum (SC) and tight junctions (TJs). The presence of zinc in the epidermis promotes epidermal homeostasis; hence, this study reviewed the role of zinc in the formation and function of the SC and TJs. Langerhans cells (LCs) are one of the antigen-presenting cells found in the epidermis. They form TJs with adjacent keratinocytes (KCs), capture external antigens, and induce antigen-specific immune reactions. Thus, the function of zinc in LCs was examined in this review. We also summarized the general knowledge of zinc and zinc transporters in the epidermis with updated findings.
Collapse
|
33
|
Maares M, Keil C, Thomsen S, Günzel D, Wiesner B, Haase H. Characterization of Caco-2 cells stably expressing the protein-based zinc probe eCalwy-5 as a model system for investigating intestinal zinc transport. J Trace Elem Med Biol 2018; 49:296-304. [PMID: 29395783 DOI: 10.1016/j.jtemb.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022]
Abstract
Intestinal zinc resorption, in particular its regulation and mechanisms, are not yet fully understood. Suitable intestinal cell models are needed to investigate zinc uptake kinetics and the role of labile zinc in enterocytes in vitro. Therefore, a Caco-2 cell clone was produced, stably expressing the genetically encoded zinc biosensor eCalwy-5. The aim of the present study was to reassure the presence of characteristic enterocyte-specific properties in the Caco-2-eCalwy clone. Comparison of Caco-2-WT and Caco-2-eCalwy cells revealed only slight differences regarding subcellular localization of the tight junction protein occludin and alkaline phosphatase activity, which did not affect basic integrity of the intestinal barrier or the characteristic brush border membrane morphology. Furthermore, introduction of the additional zinc-binding protein in Caco-2 cells did not alter mRNA expression of the major intestinal zinc transporters (zip4, zip5, znt-1 and znt-5), but increased metallothionein 1a-expression and cellular resistance to higher zinc concentrations. Moreover, this study examines the effect of sensor expression level on its saturation with zinc. Fluorescence cell imaging indicated considerable intercellular heterogeneity in biosensor-expression. However, FRET-measurements confirmed that these differences in expression levels have no effect on fractional zinc-saturation of the probe.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Berlin, Germany
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Berlin, Germany
| | - Susanne Thomsen
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | - Hajo Haase
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Berlin, Germany; TraceAge-DFG Research Unit on Interactions of essential trace elements in healthy and diseased elderly, Potsdam-Berlin-Jena, Germany.
| |
Collapse
|
34
|
Hagmeyer S, Sauer AK, Grabrucker AM. Prospects of Zinc Supplementation in Autism Spectrum Disorders and Shankopathies Such as Phelan McDermid Syndrome. Front Synaptic Neurosci 2018; 10:11. [PMID: 29875651 PMCID: PMC5974951 DOI: 10.3389/fnsyn.2018.00011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022] Open
Abstract
The loss of one copy of SHANK3 (SH3 and multiple ankyrin repeat domains 3) in humans highly contributes to Phelan McDermid syndrome (PMDS). In addition, SHANK3 was identified as a major autism candidate gene. Interestingly, the protein encoded by the SHANK3 gene is regulated by zinc. While zinc deficiency depletes synaptic pools of Shank3, increased zinc levels were shown to promote synaptic scaffold formation. Therefore, the hypothesis arises that patients with PMDS and Autism caused by Shankopathies, having one intact copy of SHANK3 left, may benefit from zinc supplementation, as elevated zinc may drive remaining Shank3 into the post-synaptic density (PSD) and may additional recruit Shank2, a second zinc-dependent member of the SHANK gene family. Further, elevated synaptic zinc levels may modulate E/I ratios affecting other synaptic components such as NMDARs. However, several factors need to be considered in relation to zinc supplementation such as the role of Shank3 in the gastrointestinal (GI) system-the location of zinc absorption in humans. Therefore, here, we briefly discuss the prospect and impediments of zinc supplementation in disorders affecting Shank3 such as PMDS and propose a model for most efficacious supplementation.
Collapse
Affiliation(s)
- Simone Hagmeyer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,WG Molecular Analysis of Synaptopathies, Department of Neurology, Neurocenter of Ulm University, Ulm, Germany
| | - Ann Katrin Sauer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,WG Molecular Analysis of Synaptopathies, Department of Neurology, Neurocenter of Ulm University, Ulm, Germany.,Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
35
|
Micronutrient status assessment in humans: Current methods of analysis and future trends. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Mohr SE, Rudd K, Hu Y, Song WR, Gilly Q, Buckner M, Housden BE, Kelley C, Zirin J, Tao R, Amador G, Sierzputowska K, Comjean A, Perrimon N. Zinc Detoxification: A Functional Genomics and Transcriptomics Analysis in Drosophila melanogaster Cultured Cells. G3 (BETHESDA, MD.) 2018; 8:631-641. [PMID: 29223976 PMCID: PMC5919732 DOI: 10.1534/g3.117.300447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Cells require some metals, such as zinc and manganese, but excess levels of these metals can be toxic. As a result, cells have evolved complex mechanisms for maintaining metal homeostasis and surviving metal intoxication. Here, we present the results of a large-scale functional genomic screen in Drosophila cultured cells for modifiers of zinc chloride toxicity, together with transcriptomics data for wild-type or genetically zinc-sensitized cells challenged with mild zinc chloride supplementation. Altogether, we identified 47 genes for which knockdown conferred sensitivity or resistance to toxic zinc or manganese chloride treatment, and >1800 putative zinc-responsive genes. Analysis of the 'omics data points to the relevance of ion transporters, glutathione (GSH)-related factors, and conserved disease-associated genes in zinc detoxification. Specific genes identified in the zinc screen include orthologs of human disease-associated genes CTNS, PTPRN (also known as IA-2), and ATP13A2 (also known as PARK9). We show that knockdown of red dog mine (rdog; CG11897), a candidate zinc detoxification gene encoding an ABCC-type transporter family protein related to yeast cadmium factor (YCF1), confers sensitivity to zinc intoxication in cultured cells, and that rdog is transcriptionally upregulated in response to zinc stress. As there are many links between the biology of zinc and other metals and human health, the 'omics data sets presented here provide a resource that will allow researchers to explore metal biology in the context of diverse health-relevant processes.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Kirstin Rudd
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Yanhui Hu
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Wei Roc Song
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Quentin Gilly
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael Buckner
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Benjamin E Housden
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Colleen Kelley
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Jonathan Zirin
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Rong Tao
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Gabriel Amador
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Katarzyna Sierzputowska
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Aram Comjean
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Norbert Perrimon
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
37
|
Mechanistic insights into the protective impact of zinc on sepsis. Cytokine Growth Factor Rev 2017; 39:92-101. [PMID: 29279185 DOI: 10.1016/j.cytogfr.2017.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Sepsis, a systemic inflammation as a response to a bacterial infection, is a huge unmet medical need. Data accumulated over the last decade suggest that the nutritional status of patients as well as composition of their gut microbiome, are strongly linked with the risk to develop sepsis, the severity of the disease and prognosis. In particular, the essential micronutrient zinc is essential in the resistance against sepsis and has shown to be protective in animal models as well as in human patients. The potential mechanisms by which zinc protects in sepsis are discussed in this review paper: we will focus on the inflammatory response, chemotaxis, phagocytosis, immune response, oxidative stress and modulation of the microbiome. A full understanding of the mechanism of action of zinc may open new preventive and therapeutic interventions in sepsis.
Collapse
|
38
|
Zinc Transporter Proteins. Neurochem Res 2017; 43:517-530. [PMID: 29243032 DOI: 10.1007/s11064-017-2454-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/06/2023]
Abstract
Zinc, which is involved in the structure of all enzyme classes, is a micro nutrient element and necessary for growth and development. The ability of zinc to function without causing toxic effects is depends on the protection of its homeostasis. Zinc transporter proteins are responsible for keeping zinc at certain concentrations. Based on their predicted membrane topology, Zn transporters are divided into two major families, SLC39s/ZIPs and SLC30s/ZnTs, which transport Zn in opposite directions through cellular and intracellular membranes. ZIPs increases the zinc concentration in the cytosol. For this, the ZIPs carries the zinc from extracellular and intracellular compartments to the cytosol. ZnTs, reduces the concentration of zinc in the cytosol. For this, ZnTs carries the zinc from the cytosol to extracellular and intracellular compartments. After being transported to the cell, 50% of the zinc is found in the cytoplasm, 30-40% in the nucleus, and 10% in the plasma and organelle membranes. The expression of many zinc transporter proteins in the cell is depending on the concentration of zinc and the physiological problems. The aim of this study is to give information about association of zinc transporter proteins with physiological events and health problems.
Collapse
|
39
|
Recent Advances in the Role of SLC39A/ZIP Zinc Transporters In Vivo. Int J Mol Sci 2017; 18:ijms18122708. [PMID: 29236063 PMCID: PMC5751309 DOI: 10.3390/ijms18122708] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/27/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn), which is an essential trace element, is involved in numerous mammalian physiological events; therefore, either a deficiency or excess of Zn impairs cellular machineries and influences physiological events, such as systemic growth, bone homeostasis, skin formation, immune responses, endocrine function, and neuronal function. Zn transporters are thought to mainly contribute to Zn homeostasis within cells and in the whole body. Recent genetic, cellular, and molecular studies of Zn transporters highlight the dynamic role of Zn as a signaling mediator linking several cellular events and signaling pathways. Dysfunction in Zn transporters causes various diseases. This review aims to provide an update of Zn transporters and Zn signaling studies and discusses the remaining questions and future directions by focusing on recent progress in determining the roles of SLC39A/ZIP family members in vivo.
Collapse
|
40
|
Dow JA. The essential roles of metal ions in insect homeostasis and physiology. CURRENT OPINION IN INSECT SCIENCE 2017; 23:43-50. [PMID: 29129281 DOI: 10.1016/j.cois.2017.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Metal ions play distinct roles in living organisms, including insects. Some, like sodium and potassium, are central players in osmoregulation and 'blood and guts' transport physiology, and have been implicated in cold adaptation. Calcium is a key player as a second messenger, and as a structural element. Other metals, particularly those with multiple redox states, can be cofactors in many metalloenzymes, but can contribute to toxic oxidative stress on the organism in excess. This short review selects some examples where classical knowledge has been supplemented with recent advances, in order to emphasize the importance of metals as essential nutrients for insect survival.
Collapse
Affiliation(s)
- Julian At Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
41
|
Mónica A, Lautaro B, Fernando P, Miguel A. Calcium and zinc decrease intracellular iron by decreasing transport during iron repletion in an in vitro model. Eur J Nutr 2017; 57:2693-2700. [PMID: 28884360 DOI: 10.1007/s00394-017-1535-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Iron is an essential micronutrient that participates in a number of vital reactions and its absorption may be altered by various nutritional factors such as other micronutrients. Our hypothesis is that iron absorption is decreased because of the interactions with zinc and calcium. We evaluated the interaction between calcium and zinc on iron uptake and transport, intracellular Fe and Zn levels and mRNA expression of DMT1, ferroportin, Zip4 and ZnT1 in an in vitro model. METHODS Caco-2 cells were cultivated with 1 mM Ca; 10 or 30 µM Zn and/or 10, 20 or 30 µM Fe for 24 h. RESULTS Intracellular Fe decreased in cells incubated with 30 µM Zn or with the mix Ca/10 µM Zn/Fe. Zn mostly increased under Ca, Zn and Fe treatment. DMT1 mRNA expression decreased when intracellular Fe increased. Ferroportin expression displayed no change in cells cultured with different Fe concentrations. The mix of Ca, Zn and Fe increased DMT1 and ferroportin expression mainly under high Zn concentration. Zip4 expression was mostly augmented by Ca and Fe; however, ZnT1 showed no change in all conditions studied. Fe uptake was higher in all the conditions studied compared to control cells; however, Fe transport increased only in cells incubated with Fe alone. In all the other conditions, Fe transport was lower than that in control cells. CONCLUSIONS The present findings suggest that Ca and Zn interfere with iron metabolism. This interference is through an increase in ferroportin activity, which results in a diminished net iron absorption.
Collapse
Affiliation(s)
- Andrews Mónica
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Briones Lautaro
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Pizarro Fernando
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Arredondo Miguel
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
42
|
Knez M, Graham RD, Welch RM, Stangoulis JCR. New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans. Crit Rev Food Sci Nutr 2017; 57:2128-2143. [PMID: 26177050 DOI: 10.1080/10408398.2015.1050483] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Iron deficiency is the most prevalent nutritional deficiency, affecting more than 30% of the total world's population. It is a major public health problem in many countries around the world. Over the years various methods have been used with an effort to try and control iron-deficiency anemia. However, there has only been a marginal reduction in the global prevalence of anemia. Why is this so? Iron and zinc are essential trace elements for humans. These metals influence the transport and absorption of one another across the enterocytes and hepatocytes, due to similar ionic properties. This paper describes the structure and roles of major iron and zinc transport proteins, clarifies iron-zinc interactions at these sites, and provides a model for the mechanism of these interactions both at the local and systemic level. This review provides evidence that much of the massive extent of iron deficiency anemia in the world may be due to an underlying deficiency of zinc. It explains the reasons for predominance of cellular zinc status in determination of iron/zinc interactions and for the first time thoroughly explains mechanisms by which zinc brings about these changes.
Collapse
Affiliation(s)
- Marija Knez
- a School of Biological Sciences, Flinders University , Adelaide , South Australia , Australia
| | - Robin D Graham
- a School of Biological Sciences, Flinders University , Adelaide , South Australia , Australia
| | - Ross M Welch
- b USDA/ARS, Robert W. Holley Centre for Agriculture and Health, Cornell University , Ithaca , New York , USA
| | - James C R Stangoulis
- a School of Biological Sciences, Flinders University , Adelaide , South Australia , Australia
| |
Collapse
|
43
|
Early-in-life dietary zinc deficiency and supplementation and mammary tumor development in adulthood female rats. J Nutr Biochem 2017; 44:71-79. [DOI: 10.1016/j.jnutbio.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 03/02/2017] [Indexed: 11/19/2022]
|
44
|
McClain C, Vatsalya V, Cave M. Role of Zinc in the Development/Progression of Alcoholic Liver Disease. ACTA ACUST UNITED AC 2017; 15:285-295. [PMID: 28447197 DOI: 10.1007/s11938-017-0132-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OPINION STATEMENT Many variables, aside from the amount and duration of alcohol consumption, play a role in the development and progression of alcoholic liver disease (ALD). One critical factor that can be modified is diet/nutrition. We have made major recent advances in our understanding of the interactions of nutrition and ALD. In this article, we review advances made in zinc metabolism/therapy for ALD. There is major zinc dyshomeostasis with ALD which is mediated, in part, by poor intake and absorption, increased excretion, and altered zinc transporters, especially ZIP14. Zinc deficiency plays an etiologic role in multiple mechanisms of ALD, ranging from intestinal barrier dysfunction to hepatocyte apoptosis. Zinc supplementation is highly effective at correcting these ALD mechanisms and preventing/treating experimental ALD. There is no Food and Drug Administration (FDA) approved therapy for any stage of ALD. Because animal and human data suggest that zinc deficiency occurs early in the course of ALD, we treat most ALD patients with daily oral zinc supplementation (220 mg zinc sulfate which contains 50 mg elemental zinc).
Collapse
Affiliation(s)
- Craig McClain
- Departments of Medicine, Pharmacology & Toxicology, 505 S. Hancock Street, CTR503, Louisville, KY, 40202-1617, USA.
| | - Vatsalya Vatsalya
- Department of Medicine, 505 S. Hancock Street, CTR503, Louisville, KY, 40202-1617, USA
| | - Matthew Cave
- Departments of Medicine, Pharmacology & Toxicology, Biochemistry & Molecular Genetics, 505 S. Hancock Street, CTR503, Louisville, KY, 40202-1617, USA
| |
Collapse
|
45
|
Konz T, Migliavacca E, Dayon L, Bowman G, Oikonomidi A, Popp J, Rezzi S. ICP-MS/MS-Based Ionomics: A Validated Methodology to Investigate the Biological Variability of the Human Ionome. J Proteome Res 2017; 16:2080-2090. [PMID: 28383921 DOI: 10.1021/acs.jproteome.7b00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We here describe the development, validation and application of a quantitative methodology for the simultaneous determination of 29 elements in human serum using state-of-the-art inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS). This new methodology offers high-throughput elemental profiling using simple dilution of minimal quantity of serum samples. We report the outcomes of the validation procedure including limits of detection/quantification, linearity of calibration curves, precision, recovery and measurement uncertainty. ICP-MS/MS-based ionomics was used to analyze human serum of 120 older adults. Following a metabolomic data mining approach, the generated ionome profiles were subjected to principal component analysis revealing gender and age-specific differences. The ionome of female individuals was marked by higher levels of calcium, phosphorus, copper and copper to zinc ratio, while iron concentration was lower with respect to male subjects. Age was associated with lower concentrations of zinc. These findings were complemented with additional readouts to interpret micronutrient status including ceruloplasmin, ferritin and inorganic phosphate. Our data supports a gender-specific compartmentalization of the ionome that may reflect different bone remodelling in female individuals. Our ICP-MS/MS methodology enriches the panel of validated "Omics" approaches to study molecular relationships between the exposome and the ionome in relation with nutrition and health.
Collapse
Affiliation(s)
- Tobias Konz
- Nestlé Institute of Health Sciences , 1015 Lausanne, Switzerland
| | | | - Loïc Dayon
- Nestlé Institute of Health Sciences , 1015 Lausanne, Switzerland
| | - Gene Bowman
- Nestlé Institute of Health Sciences , 1015 Lausanne, Switzerland
| | | | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, CHUV , 1011 Lausanne, Switzerland.,Leenaards Memory Center, Department of Clinical Neurosciences, CHUV , 1011 Lausanne, Switzerland
| | - Serge Rezzi
- Nestlé Institute of Health Sciences , 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Yin S, Qin Q, Zhou B. Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules. BMC Biol 2017; 15:12. [PMID: 28196538 PMCID: PMC5309981 DOI: 10.1186/s12915-017-0355-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Zinc is an essential metal involved in many physiological processes. Previous work has identified a set of zinc transporters involved in Drosophila dietary zinc absorption. However, zinc excretion and reabsorption, the other two important processes to maintain zinc homeostasis, are not as well understood. In this work, we screened all the potential zinc transporter Zip (SLC39) and ZnT (SLC30) members for their likely roles in zinc excretion in Malpighian tubules, an insect organ functionally analogous to mammalian kidneys. Results Zip71B (CG10006, most homologous to hZIP5), in addition to the previously characterized ZnT35C (CG3994), was identified as being critical in zinc excretion. Tubule-specific knockdown of Zip71B/dZip5 reduces zinc accumulation in the tubules, but increases zinc levels in the body, resulting in survival defect under zinc excess conditions. Zip71B/dZip5 is localized to the plasma membrane at the basolateral side of the tubules, and is functionally epistatic to the apically localized ZnT35C in regulating the tubule zinc homeostasis. Our results indicate that Zip71B/dZip5 is involved in zinc import into the tubular cells from the circulation, and ZnT35C in turn effluxes the tubular zinc out. Notably, mammalian ZIP5, which is expressed in the kidney, functions analogously to Zip71B/dZip5 in the fly while hZIP4 cannot complement the loss of Zip71B/dZip5 function. Furthermore, Zip71B/dZip5 expression is regulated by zinc so that, in response to toxic levels of zinc, the tubules can increase zinc efflux capability. We also characterized the role of dZnT1 (CG17723) in zinc reabsorption in Malpighian tubules. Finally, using a tubule calcification model, we were able to show that knockdown of Zip71B/dZip5 or ZnT35C was able to mitigate stone formation, consistent with their roles in tubular zinc homeostasis. Conclusions Our results start to sketch out a relatively complete picture of the zinc excretion process in Drosophila Malpighian tubules, and may provide a reference for relevant mammalian studies. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0355-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sai Yin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiuhong Qin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
47
|
Gómez G EM, Maldonado C ME, Rojas L M, Posada J G. [Association between intracellular zinc levels and nutritional status in HIV-infected and uninfected children exposed to the virus]. ACTA ACUST UNITED AC 2016; 86:103-11. [PMID: 26235690 DOI: 10.1016/j.rchipe.2015.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/10/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Malnutrition, growth retardation and opportunistic infections outlast the metabolic, immune and gastrointestinal disorders produced by HIV. Zinc deficiency has been associated with deteriorating nutritional status, growth failure, and risk of infection. The aim of this study is to determine the association between zinc levels in peripheral blood mononuclear cells (PBMC) and the nutritional status of HIV-infected and uninfected children exposed to the virus. PATIENTS AND METHODS An analytical, observational, cross-sectional study was conducted on 17 infected and 17 exposed children, aged 2-10 years. Anthropometric measurements, clinical and nutritional history, 24h recall, measurement of physical activity, and zinc in PBMC by flow cytometry analysis were recorded. RESULTS Height according to age, energy consumption and adequacy of energy, protein and dietary zinc were significantly higher in children exposed to the virus compared to those infected with HIV (P <.05). No significant differences were found in BMI, levels of zinc in monocytes, CD4 + and CD4- lymphocytes between the two study groups (P >.05). However, the median levels of zinc in monocytes of infected patients was higher (218.6) compared to the control group (217.0). No association was found between zinc intake and levels of intracellular zinc. CONCLUSIONS The deterioration of nutritional status and growth retardation in children were associated with HIV, but not with the levels of intracellular zinc. The dietary intake of this nutrient was not associated with levels of zinc in monocytes or CD4 + and CD4- lymphocytes.
Collapse
Affiliation(s)
- Erika María Gómez G
- Escuela de Nutrición y Dietética, Universidad de Antioquia, UdeA, Medellín, Colombia.
| | - María Elena Maldonado C
- Grupo Impacto de los Componentes Alimentarios en la Salud, Escuela de Nutrición y Dietética, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Mauricio Rojas L
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Unidad de Citometría, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Gladys Posada J
- Escuela de Nutrición y Dietética, Universidad de Antioquia, UdeA, Medellín, Colombia
| |
Collapse
|
48
|
Lv M, Fu X, Hu L, Yue X, Han X. The Expression of Zinc Transporters Changed in the Intestine of Weaned Pigs Exposed to Zinc Chitosan Chelate. Biol Trace Elem Res 2016; 174:328-334. [PMID: 27156110 DOI: 10.1007/s12011-016-0732-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023]
Abstract
This study was conducted to investigate the effect of zinc chitosan chelate (CS-Zn) on zinc transporter expression and content of tissue zinc in weaned piglets. A total of 90 weaned pigs (Duroc × Landrace × Yorkshire) were randomly allocated to treatment groups with supplementation of 100 mg/kg zinc as ZnSO4, 100 mg/kg zinc as mixture of ZnSO4 and chitosan, or 100 mg/kg zinc as CS-Zn, respectively. After 30 days of trial, 18 piglets (six pigs per treatment) were killed and the samples of duodenal mucosa were taken for analysis of zinc transporter mRNA expressions and protein abundance. The results show that CS-Zn more effectively increases (p < 0.05) the average daily gain (ADG) and serum zinc concentration. Zinc concentration in the liver and kidney did not differ between treatments. The mRNA expressions of ZnT1, ZIP4, and ZIP5 in CS-Zn treatment were all upregulated (p < 0.05) than ZnSO4 or mixture of ZnSO4 and chitosan groups. ZnT1 abundance was greater (p < 0.05) with CS-Zn as compared with ZnSO4 and mixture of ZnSO4 and chitosan treatments, whereas ZIP4 and ZIP5 abundance was higher (p < 0.05) in ZnSO4 group. The results indicate that CS-Zn is more effective in serum zinc accumulation, and it might regulate zinc homeostasis by affecting zinc transporter mRNA expression and absorption mechanism might be different with ZnSO4.
Collapse
Affiliation(s)
- Mengyuan Lv
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiongfeng Fu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Luansha Hu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaojing Yue
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
49
|
Wang C, Lu J, Zhou L, Li J, Xu J, Li W, Zhang L, Zhong X, Wang T. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice. PLoS One 2016; 11:e0164434. [PMID: 27732669 PMCID: PMC5061426 DOI: 10.1371/journal.pone.0164434] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice.
Collapse
Affiliation(s)
- Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jianjun Lu
- Institute of Feed Science, College of Animal Science, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou Zhejiang Province, People’s Republic of China
| | - Le Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jun Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jiaman Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Weijian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
- * E-mail:
| |
Collapse
|
50
|
Pérez-Torras S, Iglesias I, Llopis M, Lozano JJ, Antolín M, Guarner F, Pastor-Anglada M. Transportome Profiling Identifies Profound Alterations in Crohn's Disease Partially Restored by Commensal Bacteria. J Crohns Colitis 2016; 10:850-9. [PMID: 26874350 DOI: 10.1093/ecco-jcc/jjw042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Several transport alterations have been described in intestinal inflammatory diseases. This is relevant because the primary function of the intestine is nutrient and mineral absorption. However, analysis of the transportome as a whole and the effect of commensal bacteria on it have not been addressed so far. METHODS Five healthy and 6 Crohn's disease (CD) samples were hybridized to human HT-12 V4 Illumina GeneChip. Results were validated by reverse transcription-polymerase chain reaction (RT-PCR) analysis and with additional array data. Organ culture assays were performed from mucosa ileal wall specimens collected at surgery. Samples were incubated with or without commensal bacteria for 4 hours. Finally, RNA was isolated for microarray processing. RESULTS The analysis of CD versus healthy ileal mucosa demonstrated upregulation of previously described genes involved in immunity and the inflammatory response in this disease. Interestingly, whole transcriptional analysis revealed profound alterations in the transportome profile. Sixty-two solute carrier (SLC) transporters displayed different expression patterns, most of them being downregulated. Changes were confirmed by RT-PCR in a randomly chosen subset of SLCs. A large number of amino acid transporters and most members of the enteric purinome were found to be altered. Most of these proteins were found at the apical membrane of the enterocyte, which could impair both amino acid absorption and purinergic signalling. Treatment of ileum specimen explants with commensal bacteria restored almost all CD transportome alterations. CONCLUSIONS These results describe the altered transportome profile in CD and open the possibility of restoring transportome complications with commensal bacteria.
Collapse
Affiliation(s)
- Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona, Spain Oncology Program, CIBERehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Ingrid Iglesias
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona, Spain Oncology Program, CIBERehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Marta Llopis
- Digestive System Research Unit, University Hospital Vall d'Hebron, CIBEREHD, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | | | - María Antolín
- Digestive System Research Unit, University Hospital Vall d'Hebron, CIBEREHD, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Francisco Guarner
- Digestive System Research Unit, University Hospital Vall d'Hebron, CIBEREHD, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona, Spain Oncology Program, CIBERehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|