1
|
Qiu L, Gao X, Shao X, Xi J, Chen S, Pham T, Wang Y, Dong J, Rao SD, Hao J, Lo JH, Yang R, Engel EA, Crump CM, Yuan W. HSV-1 UL56 protein recruits cellular NEDD4-family ubiquitin ligases to suppress CD1d expression and NKT cell function. J Virol 2025; 99:e0214024. [PMID: 40047437 PMCID: PMC11998485 DOI: 10.1128/jvi.02140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Herpesviruses, including α-herpesvirus and herpes simplex virus (HSV-1), are masters of immune evasion. Previously we demonstrated that CD1d-restricted NKT cells are required for optimal anti-HSV-1 immune responses and HSV-1 efficiently downregulates CD1d to suppress NKT cell function. To delineate how the virus evades NKT cell function and establishes infection in vivo, we screened an HSV-1 expression library to identify the viral gene(s) downregulating CD1d and discovered that a leaky late gene, UL56, most efficiently suppresses CD1d expression by degrading the protein, apparently via both proteasome- and lysosome-dependent pathways. To investigate the molecular mechanism of UL56 suppression of CD1d expression, we purified and identified UL56-associated proteins by mass spectrometry. The most abundant associated proteins were members of NEDD4 E3 ubiquitin ligase family. Interestingly overexpression of one member, NEDD4L is sufficient to downregulate CD1d expression. However, different from the K5 protein from Kaposi sarcoma's herpesvirus (KSHV), UL56 and NEDD4L did not directly ubiquitinate CD1d. CD1d protein lacking the key lysine residue in its cytoplasmic tail is similarly downregulated by UL56 and NEDD4L protein. Co-expression of UL56 and NEDD4L synergistically reduced the CD1d expression, suggesting that UL56 collaborates with NEDD4L to downregulate CD1d. During in vivo infection, UL56-deficient mutant virus showed significantly weaker virulence in NKT-sufficient mice but demonstrated higher virulence in mutant mice lacking NKT cells. All our results supported that at least one of the pathogenesis functions of UL56 is its suppression of NKT cell function during infection. IMPORTANCE In the large DNA genomes of herpeviruses, there are many genes encoding associate proteins. Most of these proteins are not essential for viral replication but play key roles in viral pathogenesis, in particular, modulating the host immune system to allow efficient viral replication in vivo and latency. The HSV-1 UL56 gene is one of such genes, and its exact pathogenic roles have remain elusive. After we demonstrated the essential roles of CD1d-restricted NKT cells in anti-HSV-1 immunity during HSV-1 ocular infection (P. Rao, X. Wen, J. H. Lo, S. Kim, X. Li, et al., J Virol 92:e01490-18, 2018, https://doi.org/10.1128/jvi.01490-18), we now screened the HSV-1 expression library and identified UL56 is a key factor downregulating CD1d and suppressing NKT cell function. In this manuscript, we are reporting our molecular mechanism study of how UL56 evades CD1d antigen presentation and NKT cell function.
Collapse
Affiliation(s)
- Lingxi Qiu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xuedi Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xinyue Shao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jingwen Xi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Thanh Pham
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yi Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan Dong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samhita Divakar Rao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jingting Hao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae Ho Lo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rirong Yang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Causey A, Constantine M, Oswald J, Dellomo A, Masters B, Omorogbe E, Admon A, Garzino-Demo A, Ehrlich E. Analysis of the ubiquitin-modified proteome identifies novel host factors in Kaposi's sarcoma herpesvirus lytic reactivation. J Virol 2025; 99:e0122424. [PMID: 39636148 PMCID: PMC11784101 DOI: 10.1128/jvi.01224-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma and is associated with primary effusion lymphoma (PEL), multicentric Castleman's disease, and two inflammatory diseases. KSHV-associated cancers are primarily associated with genes expressed during latency, while other pathologies are associated with lytic gene expression. The major lytic switch of the virus, Replication and Transcription Activator (RTA), interacts with cellular machinery to co-opt the host ubiquitin proteasome system to evade the immune response as well as activate the program of lytic replication. Through stable isotope labeling using amino acids in cell culture (SILAC) labeling, ubiquitin remnant enrichment, and mass spectrometry, we have analyzed the RTA-dependent ubiquitin-modified proteome. We identified RTA-dependent changes in the populations of polyubiquitin chains, as well as changes in ubiquitinated proteins in both cells expressing RTA and naturally infected cells following lytic reactivation. We observed an enrichment of proteins that are also reported to be SUMOylated, suggesting that RTA, a small ubiquitin-like modifier (SUMO) targeting ubiquitin ligase, may function to alleviate a SUMO-dependent block to lytic reactivation. RTA targeted substrates directly through a ubiquitin ligase domain-dependent mechanism as well as indirectly through cellular ubiquitin ligase RAUL. Our ubiquitome analysis revealed an RTA-dependent mechanism of immune evasion. We provide evidence of inhibition of transporter associated with antigen processing (TAP)-dependent peptide transport, resulting in decreased human leukocyte antigen (HLA) complex stability. The results of this analysis increase our understanding of mechanisms governing the latent to lytic transition in addition to the identification of a novel RTA-dependent mechanism of immune evasion. IMPORTANCE Kaposi's sarcoma herpesvirus, an AIDS-associated pathogen, is associated with multiple cancers and inflammatory syndromes. This virus has a latent and lytic lifecycle, each associated with pathogenesis and oncogenesis. Here, we identify proteins that display differential abundance in different phases of the lifecycle. We provide evidence supporting a new model of viral immune evasion. These findings increase our understanding of how the virus manipulates the host cell and provides new targets for intervention.
Collapse
Affiliation(s)
- Amerria Causey
- Biological Sciences, Towson University, Towson, Maryland, USA
| | | | - Jessica Oswald
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Anna Dellomo
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Bronwyn Masters
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Esosa Omorogbe
- Biological Sciences, Towson University, Towson, Maryland, USA
| | - Arie Admon
- Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alfredo Garzino-Demo
- Department of Microbial Pathogenesis, University of Maryland Baltimore School of Dentistry, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Elana Ehrlich
- Biological Sciences, Towson University, Towson, Maryland, USA
| |
Collapse
|
3
|
Zhou M, Shen Z. Advanced progress in the genetic modification of the oncolytic HSV-1 virus. Front Oncol 2025; 14:1525940. [PMID: 39906660 PMCID: PMC11790444 DOI: 10.3389/fonc.2024.1525940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
The use of replication-competent viruses for selective tumor oncolysis while sparing normal cells marks a significant advancement in cancer treatment. HSV-1 presents several advantages that position it as a leading candidate for oncolytic virotherapies. Its large genome can accommodate insertions over 30 kb or deletions of multiple virulence genes without compromising lytic replication in tumor cells. Additionally, anti-herpes drugs can inhibit its replication during accidental infections. Importantly, HSV-1 does not integrate into the host genome and cause mutations. The HSV-1 genome can be modified through genetic engineering in two main ways: first, by reducing infectivity and toxicity to normal cells via limited replication and assembly, altered protein-virus receptor binding, and minimized immune evasion; second, by enhancing anticancer activity through disruption of tumor cell metabolism, induction of autophagy, improved immune recognition, and modification of the tumor microenvironment. In this mini-review, we systematically examine genetic modification strategies for oncolytic HSV-1 while highlighting advancements from these modifications. Certain genetic alterations have shown efficacy in improving clinical outcomes for HSV-1-based therapies. These modifications include silencing specific genes and inserting exogenous genes into the HSV-1 genome. The insertion of exogenous genes has increasingly been used to develop new oncolytic HSV-1 variants. Finally, we discuss limitations associated with oncolytic virotherapy at the conclusion of this review. As more clinical trials explore newly engineered therapies, they are likely to yield breakthroughs and promote broader adoption for cancer treatment.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Shen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Ye Y, Li S, Yan X, Zheng Q, Xue M, Wang H, Zheng C. VZV IE4 downregulates cellular surface MHC-I via sequestering it to the Golgi complex. Cell Mol Life Sci 2024; 82:23. [PMID: 39725803 DOI: 10.1007/s00018-024-05477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 12/28/2024]
Abstract
Varicella-zoster virus (VZV) infection downregulates surface major histocompatibility complex class I (MHC-I) expression and retains MHC-I in the Golgi complex of infected cells. However, the underlying mechanism is not fully understood. The VZV IE4 protein is a multifunctional protein that is essential for VZV infection. In this study, the human leucocyte antigen C (HLA-C) protein was identified as a novel cellular factor associated with IE4. Ectopically expressed IE4 co-localizes with HLA-C, sequesters HLA-C to the Golgi complex and downregulates cellular surface MHC-I. VZV, with a mutated Golgi localization signal in IE4, denoted as mutated IE4 (mIE4) VZV, was constructed. In mIE4 VZV-infected cells, the cellular surface MHC-I was restored, and HLA-C was not retained in the Golgi complex. In summary, for the first time, we demonstrate a novel role of VZV IE4 in interfering with the MHC-I presentation pathway, suggesting that it may contribute to the evasion of host antiviral adaptive immunity.
Collapse
Affiliation(s)
- Yu Ye
- College of Animal Science and Technology, Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xu Yan
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, UK
| | - Qingcong Zheng
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Berquez M, Li AL, Luy MA, Venida AC, O'Loughlin T, Rademaker G, Barpanda A, Hu J, Yano J, Wiita A, Gilbert LA, Bruno PM, Perera RM. A multi-subunit autophagic capture complex facilitates degradation of ER stalled MHC-I in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620516. [PMID: 39554122 PMCID: PMC11565957 DOI: 10.1101/2024.10.27.620516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDA) evades immune detection partly via autophagic capture and lysosomal degradation of major histocompatibility complex class I (MHC-I). Why MHC-I is susceptible to capture via autophagy remains unclear. By synchronizing exit of proteins from the endoplasmic reticulum (ER), we show that PDAC cells display prolonged retention of MHC-I in the ER and fail to efficiently route it to the plasma membrane. A capture-complex composed of NBR1 and the ER-phagy receptor TEX264 facilitates targeting of MHC-I for autophagic degradation, and suppression of either receptor is sufficient to increase total levels and re-route MHC-I to the plasma membrane. Binding of MHC-I to the capture complex is linked to antigen presentation efficiency, as inhibiting antigen loading via knockdown of TAP1 or beta 2-Microglobulin led to increased binding between MHC-I and the TEX264-NBR1 capture complex. Conversely, expression of ER directed high affinity antigenic peptides led to increased MHC-I at the cell surface and reduced lysosomal degradation. A genome-wide CRISPRi screen identified NFXL1, as an ER-resident E3 ligase that binds to MHC-I and mediates its autophagic capture. High levels of NFXL1 are negatively correlated with MHC-I protein expression and predicts poor patient prognosis. These data highlight an ER resident capture complex tasked with sequestration and degradation of non-conformational MHC-I in PDAC cells, and targeting this complex has the potential to increase PDAC immunogenicity.
Collapse
|
6
|
Wang K, Jordan T, Dowdell K, Herbert R, Moore IN, Koelle DM, Cohen JI. A nonhuman primate model for genital herpes simplex virus 2 infection that results in vaginal vesicular lesions, virus shedding, and seroconversion. PLoS Pathog 2024; 20:e1012477. [PMID: 39226323 PMCID: PMC11371218 DOI: 10.1371/journal.ppat.1012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
The most commonly used animal models for evaluating the efficacy of HSV-2 candidate vaccines are mice and guinea pigs. While numerous HSV-2 vaccine candidates have been tested in these animals and were effective in reducing disease and mortality, these results did not predict the effectiveness of the vaccines in human trials. Infection of rhesus macaques rarely results in lesions or HSV-2 specific antibody responses. In seeking an animal model that better recapitulates human disease and that might be more predictive of the efficacy of prophylactic vaccines than mice and guinea pigs, we evaluated Cebus apella (C. apella), a New World primate, in an HSV-2 genital infection model. Infectious HSV-2 was cultured from vaginal swabs from all 4 animals for 9-14 days after intravaginal inoculation of HSV-2 seronegative monkeys. Two of 4 monkeys had vesicular lesions in the vagina or vulva. No neurological symptoms were noted. Recurrent lesions and HSV-2 DNA shedding after acute disease resolved was infrequent. UV irradiation of the genital area did not induce recurrent genital lesions or virus shedding. All 4 monkeys developed HSV-2 neutralizing antibodies as well as virus-specific CD4 and CD8 T cell responses. Reinfection of animals 15 to 19 months after primary infection did not result in lesions; animals had reduced virus shedding and a shorter duration of shedding compared with that during primary infection, suggesting that primary infection induced protective immunity. Primary fibroblasts from C. apella monkeys supported the growth of HSV-2 in vitro; in contrast, HSV-2 did not replicate above the titer of the input inoculum in fibroblasts from rhesus macaques. These observations suggest that the C. apella monkey has potential to serve as a model for evaluating the efficacy of prophylactic vaccines, antivirals, or monoclonal antibodies to HSV-2.
Collapse
Affiliation(s)
- Kening Wang
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tristan Jordan
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kennichi Dowdell
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Canova PN, Charron AJ, Leib DA. Models of Herpes Simplex Virus Latency. Viruses 2024; 16:747. [PMID: 38793628 PMCID: PMC11125678 DOI: 10.3390/v16050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily manipulate host genetics and biological pathways, as well as mimicking the immune response and viral pathogenesis in human infections. Although realistically modeling HSV latency is necessary when choosing a model, the cost, time requirement, ethical constraints, and reagent availability are also equally important. Presently, there remains a pressing need for in vivo models that more closely recapitulate human HSV infection. While the current in vivo, ex vivo, and in vitro models used to study HSV latency have limitations, they provide further insights that add to our understanding of latency. In vivo models have shed light on natural infection routes and the interplay between the host immune response and the virus during latency, while in vitro models have been invaluable in elucidating molecular pathways involved in latency. Below, we review the relative advantages and disadvantages of current HSV models and highlight insights gained through each.
Collapse
Affiliation(s)
- Paige N. Canova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - Audra J. Charron
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - David A. Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
8
|
Kardani K, Sanchez Gil J, Rabkin SD. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front Cell Infect Microbiol 2023; 13:1206111. [PMID: 37325516 PMCID: PMC10264819 DOI: 10.3389/fcimb.2023.1206111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma (GBM) is one of the most lethal cancers, having a poor prognosis and a median survival of only about 15 months with standard treatment (surgery, radiation, and chemotherapy), which has not been significantly extended in decades. GBM demonstrates remarkable cellular heterogeneity, with glioblastoma stem-like cells (GSCs) at the apex. GSCs are a subpopulation of GBM cells that possess the ability to self-renew, differentiate, initiate tumor formation, and manipulate the tumor microenvironment (TME). GSCs are no longer considered a static population of cells with specific markers but are quite flexible phenotypically and in driving tumor heterogeneity and therapeutic resistance. In light of these features, they are a critical target for successful GBM therapy. Oncolytic viruses, in particular oncolytic herpes simplex viruses (oHSVs), have many attributes for therapy and are promising agents to target GSCs. oHSVs are genetically-engineered to selectively replicate in and kill cancer cells, including GSCs, but not normal cells. Moreover, oHSV can induce anti-tumor immune responses and synergize with other therapies, such as chemotherapy, DNA repair inhibitors, and immune checkpoint inhibitors, to potentiate treatment effects and reduce GSC populations that are partly responsible for chemo- and radio-resistance. Herein, we present an overview of GSCs, activity of different oHSVs, clinical trial results, and combination strategies to enhance efficacy, including therapeutic arming of oHSV. Throughout, the therapeutic focus will be on GSCs and studies specifically targeting these cells. Recent clinical trials and approval of oHSV G47Δ in Japan for patients with recurrent glioma demonstrate the efficacy and promise of oHSV therapy.
Collapse
Affiliation(s)
| | | | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Graul M, Karska N, Wąchalska M, Krupa P, Ślusarz MJ, Lubocki M, Bieńkowska-Szewczyk K, Rodziewicz-Motowidło S, Sieradzan AK, Lipińska AD. The N-terminal Proline Hinge Motif Controls the Structure of Bovine Herpesvirus 1-encoded Inhibitor of the Transporter Associated with Antigen Processing Required for its Immunomodulatory Function. J Mol Biol 2023; 435:167964. [PMID: 36646375 DOI: 10.1016/j.jmb.2023.167964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Due to unique features, proline residues may control protein structure and function. Here, we investigated the role of 52PPQ54 residues, indicated by the recently established experimental 3D structure of bovine herpesvirus 1-encoded UL49.5 protein as forming a characteristic proline hinge motif in its N-terminal domain. UL49.5 acts as a potent inhibitor of the transporter associated with antigen processing (TAP), which alters the antiviral immune response. Mechanisms employed by UL49.5 to affect TAP remain undetermined on a molecular level. We found that mutations in the 52PPQ54 region had a vast impact on its immunomodulatory function, increasing cell surface MHC class I expression, TAP levels, and peptide transport efficiency. This inhibitory effect was specific for UL49.5 activity towards TAP but not towards the viral glycoprotein M. To get an insight into the impact of proline hinge modifications on structure and dynamics, we performed all-atom and coarse-grained molecular dynamics studies on the native protein and PPQ mutants. The results demonstrated that the proline hinge sequence with its highly rigid conformation served as an anchor into the membrane. This anchor was responsible for the structural and dynamical behavior of the whole protein, constraining the mobility of the C-terminus, increasing the mobility of the transmembrane region, and controlling the accessibility of the C-terminal residues to the cytoplasmic environment. Those features appear crucial for TAP binding and inhibition. Our findings significantly advance the structural understanding of the UL49.5 protein and its functional regions and support the importance of proline motifs for the protein structure.
Collapse
Affiliation(s)
- Małgorzata Graul
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Natalia Karska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland; Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Magda Wąchalska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Paweł Krupa
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Magdalena J Ślusarz
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Marcin Lubocki
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | | | - Adam K Sieradzan
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland.
| | - Andrea D Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland.
| |
Collapse
|
10
|
Zhang J, Wang J, Li M, Su X, Tian Y, Wang P, Zhou X, Jin G, Liu F. Oncolytic HSV-1 suppresses cell invasion through downregulating Sp1 in experimental glioblastoma. Cell Signal 2023; 103:110581. [PMID: 36572188 DOI: 10.1016/j.cellsig.2022.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Gliomas are highly aggressive intracranial tumors that are difficult to resect and have high lethality and recurrence rates. According to WHO grading criteria, glioblastoma with wild-type IDH1 has a poorer prognosis than WHO grade 4 IDH-mutant astrocytomas. To date, no effective therapeutic strategies have been developed to treat glioblastoma. Clinical trials have shown that herpes simplex virus (HSV)-1 is the safest and most efficacious oncolytic virus against glioblastoma, but the molecular antitumor mechanism of action of HSV-1 has not yet been determined. Deletion of the γ34.5 and ICP47 genes from a strain of HSV-1 yielded the oncolytic virus, oHSV-1, which reduced glioma cell viability, migration, and invasive capacity, as well as the growth of microvilli. Infected cell polypeptide 4 (ICP4) expressed by oHSV-1 was found to suppress the expression of the transcription factor Sp1, reducing the expression of host invasion-related genes. In vivo, oHSV-1 showed significant antitumor effects by suppressing the expression of Sp1 and invasion-associated genes, highly expressed in high-grade glioblastoma tissue specimens. These findings indicate that Sp1 may be a molecular marker predicting the antitumor effects of oHSV-1 in the treatment of glioma and that oHSV-1 suppresses host cell invasion through the ICP4-mediated downregulation of Sp1.
Collapse
Affiliation(s)
- Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Mingxin Li
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiaodong Su
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yifu Tian
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Peiwen Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xianzhe Zhou
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China.
| |
Collapse
|
11
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
12
|
Scanlan H, Coffman Z, Bettencourt J, Shipley T, Bramblett DE. Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front Oncol 2022; 12:940019. [PMID: 35965554 PMCID: PMC9364694 DOI: 10.3389/fonc.2022.940019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
The need for efficacious and non-toxic cancer therapies is paramount. Oncolytic viruses (OVs) are showing great promise and are introducing new possibilities in cancer treatment with their ability to selectively infect tumor cells and trigger antitumor immune responses. Herpes Simplex Virus 1 (HSV-1) is a commonly selected OV candidate due to its large genome, relative safety profile, and ability to infect a variety of cell types. Talimogene laherparevec (T-VEC) is an HSV-1-derived OV variant and the first and only OV therapy currently approved for clinical use by the United States Food and Drug Administration (FDA). This review provides a concise description of HSV-1 as an OV candidate and the genomic organization of T-VEC. Furthermore, this review focuses on the advantages and limitations in the use of T-VEC compared to other HSV-1 OV variants currently in clinical trials. In addition, approaches for future directions of HSV-1 OVs as cancer therapy is discussed.
Collapse
Affiliation(s)
- Hayle Scanlan
- Rowan School of Medicine, RowanSOM-Jefferson Health-Virtua Our Lady of Lourdes Hospital, Stratford, NJ, United States
| | - Zachary Coffman
- Monroe Clinic Rural Family Medicine Program, The University of Illinois College of Medicine Rockford, Monroe, WI, United States
| | - Jeffrey Bettencourt
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Timothy Shipley
- Department of Biomedical Sciences, A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, United States
| | - Debra E. Bramblett
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
- *Correspondence: Debra E. Bramblett,
| |
Collapse
|
13
|
Sandbrink JB, Alley EC, Watson MC, Koblentz GD, Esvelt KM. Insidious Insights: Implications of viral vector engineering for pathogen enhancement. Gene Ther 2022; 30:407-410. [PMID: 35264741 DOI: 10.1038/s41434-021-00312-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022]
Abstract
Optimizing viral vectors and their properties will be important for improving the effectiveness and safety of clinical gene therapy. However, such research may generate dual-use insights relevant to the enhancement of pandemic pathogens. In particular, reliable and generalizable methods of immune evasion could increase viral fitness sufficient to cause a new pandemic. High potential for misuse is associated with (1) the development of universal genetic elements for immune modulation, (2) specific insights on capsid engineering for antibody evasion applicable to viruses with pandemic potential, and (3) the development of computational methods to inform capsid engineering. These risks may be mitigated by prioritizing non-viral delivery systems, pharmacological immune modulation methods, non-genetic vector surface modifications, and engineering methods specific to AAV and other viruses incapable of unassisted human-to-human transmission. We recommend that computational vector engineering and the publication of associated code and data be limited to AAV until a technical solution for preventing malicious access to viral engineering tools has been established.
Collapse
Affiliation(s)
- Jonas B Sandbrink
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Future of Humanity Institute, University of Oxford, Oxford, UK.
| | - Ethan C Alley
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew C Watson
- Center for Health Security, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gregory D Koblentz
- Schar School of Policy and Government, George Mason University, Fairfax, VA, USA
| | - Kevin M Esvelt
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Sethumadhavan S, Barth M, Spaapen RM, Schmidt C, Trowitzsch S, Tampé R. Viral immune evasins impact antigen presentation by allele-specific trapping of MHC I at the peptide-loading complex. Sci Rep 2022; 12:1516. [PMID: 35087068 PMCID: PMC8795405 DOI: 10.1038/s41598-022-05000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides to cytotoxic T cells to eliminate infected or cancerous cells. The transporter associated with antigen processing (TAP) shuttles proteasomally generated peptides into the ER for MHC I loading. As central part of the peptide-loading complex (PLC), TAP is targeted by viral factors, which inhibit peptide supply and thereby impact MHC I-mediated immune responses. However, it is still poorly understood how antigen presentation via different MHC I allotypes is affected by TAP inhibition. Here, we show that conditional expression of herpes simplex viral ICP47 suppresses surface presentation of HLA-A and HLA-C, but not of HLA-B, while the human cytomegaloviral US6 reduces surface levels of all MHC I allotypes. This marked difference in HLA-B antigen presentation is echoed by an enrichment of HLA-B allomorphs at US6-arrested PLC in comparison to ICP47-PLC. Although both viral factors prevent TAP-mediated peptide supply, our data imply that MHC I allomorphs favor different conformationally arrested states of the PLC, leading to differential downregulation of MHC I surface presentation. These findings will help understand MHC I biology in general and will even advance the targeted treatment of infections depending on patients' allotypes.
Collapse
Affiliation(s)
- Sunesh Sethumadhavan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
15
|
Abendroth A, Slobedman B. Modulation of MHC and MHC-Like Molecules by Varicella Zoster Virus. Curr Top Microbiol Immunol 2022; 438:85-102. [DOI: 10.1007/82_2022_254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Characterization of Host Cell Potential Proteins Interacting with OsHV-1 Membrane Proteins. Viruses 2021; 13:v13122518. [PMID: 34960787 PMCID: PMC8705437 DOI: 10.3390/v13122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The interaction between viral membrane associate proteins and host cellular surface molecules should facilitate the attachment and entry of OsHV-1 into host cells. Thus, blocking the putative membrane proteins ORF25 and ORF72 of OsHV-1 with antibodies that have previously been reported to subdue OsHV-1 replication in host cells, especially ORF25. In this study, prey proteins in host hemocytes were screened by pull-down assay with recombinant baits ORF25 and ORF72, respectively. Gene Ontology (GO) analysis of these prey proteins revealed that most of them were mainly associated with binding, structural molecule activity and transport activity in the molecular function category. The protein–protein interaction (PPI) network of the prey proteins was constructed by STRING and clustered via K-means. For both ORF25 and ORF72, three clusters of these prey proteins were distinguished that were mainly associated with cytoskeleton assembly, energy metabolism and nucleic acid processing. ORF25 tended to function in synergy with actins, while ORF72 functioned mainly with tubulins. The above results suggest that these two putative membrane proteins, ORF25 and ORF72, might serve a role in the transport of viral particles with the aid of a cytoskeleton inside cells.
Collapse
|
17
|
Wellington D, Yin Z, Kessler BM, Dong T. Immunodominance complexity: lessons yet to be learned from dominant T cell responses to SARS-COV-2. Curr Opin Virol 2021; 50:183-191. [PMID: 34534732 PMCID: PMC8424056 DOI: 10.1016/j.coviro.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022]
Abstract
Immunodominance is a complex and highly debated topic of T cell biology. The current SARS-CoV-2 pandemic has provided the opportunity to profile adaptive immune responses and determine molecular factors contributing to emerging responses towards immunodominant viral epitopes. Here, we discuss parameters that alter the dynamics of CD8 viral epitope processing, generation and T-cell responses, and how immunodominance counteracts viral immune escape mechanisms that develop in the context of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Dannielle Wellington
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK.
| | - Zixi Yin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Benedikt M Kessler
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Target Discovery Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK.
| |
Collapse
|
18
|
Muhuri M, Maeda Y, Ma H, Ram S, Fitzgerald KA, Tai PW, Gao G. Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest 2021; 131:143780. [PMID: 33393506 DOI: 10.1172/jci143780] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The field of gene therapy has made considerable progress over the past several years. Adeno-associated virus (AAV) vectors have emerged as promising and attractive tools for in vivo gene therapy. Despite the recent clinical successes achieved with recombinant AAVs (rAAVs) for therapeutics, host immune responses against the vector and transgene product have been observed in numerous preclinical and clinical studies. These outcomes have hampered the advancement of AAV gene therapies, preventing them from becoming fully viable and safe medicines. The human immune system is multidimensional and complex. Both the innate and adaptive arms of the immune system seem to play a concerted role in the response against rAAVs. While most efforts have been focused on the role of adaptive immunity and developing ways to overcome it, the innate immune system has also been found to have a critical function. Innate immunity not only mediates the initial response to the vector, but also primes the adaptive immune system to launch a more deleterious attack against the foreign vector. This Review highlights what is known about innate immune responses against rAAVs and discusses potential strategies to circumvent these pathways.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Yukiko Maeda
- Horae Gene Therapy Center.,VIDE Program.,Department of Medicine
| | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology
| | | | - Phillip Wl Tai
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Guangping Gao
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Vanni EAH, Foley JW, Davison AJ, Sommer M, Liu D, Sung P, Moffat J, Zerboni L, Arvin AM. The latency-associated transcript locus of herpes simplex virus 1 is a virulence determinant in human skin. PLoS Pathog 2020; 16:e1009166. [PMID: 33370402 PMCID: PMC7794027 DOI: 10.1371/journal.ppat.1009166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/08/2021] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects skin and mucosal epithelial cells and then travels along axons to establish latency in the neurones of sensory ganglia. Although viral gene expression is restricted during latency, the latency-associated transcript (LAT) locus encodes many RNAs, including a 2 kb intron known as the hallmark of HSV-1 latency. Here, we studied HSV-1 infection and the role of the LAT locus in human skin xenografts in vivo and in cultured explants. We sequenced the genomes of our stock of HSV-1 strain 17syn+ and seven derived viruses and found nonsynonymous mutations in many viral proteins that had no impact on skin infection. In contrast, deletions in the LAT locus severely impaired HSV-1 replication and lesion formation in skin. However, skin replication was not affected by impaired intron splicing. Moreover, although the LAT locus has been implicated in regulating gene expression in neurones, we observed only small changes in transcript levels that were unrelated to the growth defect in skin, suggesting that its functions in skin may be different from those in neurones. Thus, although the LAT locus was previously thought to be dispensable for lytic infection, we show that it is a determinant of HSV-1 virulence during lytic infection of human skin. Herpes simplex virus type 1 (HSV-1) infects and destroys the outer layer of skin cells, producing lesions known as cold sores. Although these lesions heal, the virus persists in the host for the lifetime and can reactivate to cause new lesions. This is possible because the virus enters the axons of neurones in the skin and moves to their cell bodies located in spinal or cranial nerve bundles called ganglia, where the virus becomes dormant (latent). The most abundant viral RNAs expressed during this state are the latency associated transcripts (LATs), which have been considered a hallmark of HSV-1 latency. Here, we studied HSV-1 infection and spread in human skin. Unexpectedly, we found that the LAT locus is necessary for lesion formation in skin. HSV-1 viruses that were genetically mutated to delete the start of the locus could not spread in skin, whereas viruses with many other genetic mutations had this capacity. Our results suggest that an antiviral drug that inhibits transcripts from this region of the viral genome could block viral spread in skin, or a vaccine could possibly be produced by genetically modifying the virus at the LAT locus and by doing so, limit the virus’ ability become latent in neurones.
Collapse
Affiliation(s)
- Emilia A. H. Vanni
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Joseph W. Foley
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marvin Sommer
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dongmei Liu
- Department of Microbiology and Immunology, State University of New York-Upstate Medical University, Syracuse, New York, United States of America
| | - Phillip Sung
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jennifer Moffat
- Department of Microbiology and Immunology, State University of New York-Upstate Medical University, Syracuse, New York, United States of America
| | - Leigh Zerboni
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ann M. Arvin
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
21
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
22
|
Evasion of the Cell-Mediated Immune Response by Alphaherpesviruses. Viruses 2020; 12:v12121354. [PMID: 33256093 PMCID: PMC7761393 DOI: 10.3390/v12121354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Alphaherpesviruses cause various diseases and establish life-long latent infections in humans and animals. These viruses encode multiple viral proteins and miRNAs to evade the host immune response, including both innate and adaptive immunity. Alphaherpesviruses evolved highly advanced immune evasion strategies to be able to replicate efficiently in vivo and produce latent infections with recurrent outbreaks. This review describes the immune evasion strategies of alphaherpesviruses, especially against cytotoxic host immune responses. Considering these strategies, it is important to evaluate whether the immune evasion mechanisms in cell cultures are applicable to viral propagation and pathogenicity in vivo. This review focuses on cytotoxic T lymphocytes (CTLs), natural killer cells (NK cells), and natural killer T cells (NKT cells), which are representative immune cells that directly damage virus-infected cells. Since these immune cells recognize the ligands expressed on their target cells via specific activating and/or inhibitory receptors, alphaherpesviruses make several ligands that may be targets for immune evasion. In addition, alphaherpesviruses suppress the infiltration of CTLs by downregulating the expression of chemokines at infection sites in vivo. Elucidation of the alphaherpesvirus immune evasion mechanisms is essential for the development of new antiviral therapies and vaccines.
Collapse
|
23
|
Liu S, Liu F, Zhao M, Zhang J. Antitumor Efficacy of Oncolytic Herpes Virus Type 1 Armed with GM-CSF in Murine Uveal Melanoma Xenografts. Cancer Manag Res 2020; 12:11803-11812. [PMID: 33239914 PMCID: PMC7680789 DOI: 10.2147/cmar.s274605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background Uveal melanoma (UM) is the most common primary intraocular tumor in adults with a high incidence of metastasis. Standard care therapies for UM include enucleation and radiation, which are minimally effective in prolonging patient survival. Oncolytic virus treatment has become a new trend in cancer field. Of which, oncolytic herpes simplex virus type 1 (HSV-1) therapy is one of the most effective antitumor treatments. Here, we established an oncolytic HSV-1 encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), tested its efficacy in UM therapy, and investigated the innate immune response induced by this virus. Methods Oncolytic HSV-1 expressing GM-CSF (HSV-GM-CSF) was constructed, then verified using qPCR and Western blot assays. Cell viability assays and transmission electron microscopy were conducted on three UM cell lines, MUM2B, 92.1, and MP41, to assess the cell-killing ability and virus infection of this virus. For in vivo experiments, BALB/c-nude mice in situ UM xenografts were established to testify the efficacy of the oncolytic virus, oncolytic HSV-1, and HSV-GM-CSF groups, respectively. IVIS images, ocular volumes, mice weights, and survivals were tracked to see the efficacy of the virus. Hematoxylin and eosin staining, immunohistochemistry, and flow cytometry analyses were conducted to demonstrate the immune activity after virus treatment. Results All three tested UM cell lines were sensitive to infection by HSV-GM-CSF. In vivo xenograft experiments revealed that oncolytic virus HSV-1 reduced UM tumor volume and that oncolytic virus HSV-1 armed with GM-CSF enhanced the antitumor effect compared with unmodified HSV-1. The bodyweights of untreated control group mice were significantly lower than those of mice in either virus-treated group (HSV-1 or HSV-GM-CSF). Follow-up survivals were prolonged in the virus-treated groups compared with the control group and were prolonged to a greater extent in the HSV-GM-CSF group than in the HSV-1 group. Macrophage stimulation was observed following HSV-GM-CSF treatment. Conclusion Our results indicate that the recombinant oncolytic virus HSV-GM-CSF is a potential therapeutic treatment for UM.
Collapse
Affiliation(s)
- Sisi Liu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, People's Republic of China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, People's Republic of China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| |
Collapse
|
24
|
Herpes Simplex Viruses Whose Replication Can Be Deliberately Controlled as Candidate Vaccines. Vaccines (Basel) 2020; 8:vaccines8020230. [PMID: 32443425 PMCID: PMC7349925 DOI: 10.3390/vaccines8020230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/15/2023] Open
Abstract
Over the last few years, we have been evaluating a novel paradigm for immunization using viruses or virus-based vectors. Safety is provided not by attenuation or inactivation of vaccine viruses, but by the introduction into the viral genomes of genetic mechanisms that allow for stringent, deliberate spatial and temporal control of virus replication. The resulting replication-competent controlled viruses (RCCVs) can be activated to undergo one or, if desired, several rounds of efficient replication at the inoculation site, but are nonreplicating in the absence of activation. Extrapolating from observations that attenuated replicating viruses are better immunogens than replication-defective or inactivated viruses, it was hypothesized that RCCVs that replicate with wild-type-like efficiency when activated will be even better immunogens. The vigorous replication of the RCCVs should also render heterologous antigens expressed from them highly immunogenic. RCCVs for administration to skin sites or mucosal membranes were constructed using a virulent wild-type HSV-1 strain as the backbone. The recombinants are activated by a localized heat treatment to the inoculation site in the presence of a small-molecule regulator (SMR). Derivatives expressing influenza virus antigens were also prepared. Immunization/challenge experiments in mouse models revealed that the activated RCCVs induced far better protective immune responses against themselves as well as against the heterologous antigens they express than unactivated RCCVs or a replication-defective HSV-1 strain. Neutralizing antibody and proliferation responses mirrored these findings. We believe that the data obtained so far warrant further research to explore the possibility of developing effective RCCV-based vaccines directed to herpetic diseases and/or diseases caused by other pathogens.
Collapse
|
25
|
Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21:255-272. [DOI: 10.1038/s41576-019-0205-4] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
|
26
|
Trowitzsch S, Tampé R. Multifunctional Chaperone and Quality Control Complexes in Adaptive Immunity. Annu Rev Biophys 2020; 49:135-161. [PMID: 32004089 DOI: 10.1146/annurev-biophys-121219-081643] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fundamental process of adaptive immunity relies on the differentiation of self from nonself. Nucleated cells are continuously monitored by effector cells of the immune system, which police the peptide status presented via cell surface molecules. Recent integrative structural approaches have provided insights toward our understanding of how sophisticated cellular machineries shape such hierarchical immune surveillance. Biophysical and structural achievements were invaluable for defining the interconnection of many key factors during antigen processing and presentation, and helped to solve several conundrums that persisted for many years. In this review, we illuminate the numerous quality control machineries involved in different steps during the maturation of major histocompatibility complex class I (MHC I) proteins, from their synthesis in the endoplasmic reticulum to folding and trafficking via the secretory pathway, optimization of antigenic cargo, final release to the cell surface, and engagement with their cognate receptors on cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
27
|
Abdulhaqq SA, Wu H, Schell JB, Hammond KB, Reed JS, Legasse AW, Axthelm MK, Park BS, Asokan A, Früh K, Hansen SG, Picker LJ, Sacha JB. Vaccine-Mediated Inhibition of the Transporter Associated with Antigen Processing Is Insufficient To Induce Major Histocompatibility Complex E-Restricted CD8 + T Cells in Nonhuman Primates. J Virol 2019; 93:e00592-19. [PMID: 31315990 PMCID: PMC6744250 DOI: 10.1128/jvi.00592-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023] Open
Abstract
Major histocompatibility complex E (MHC-E) is a highly conserved nonclassical MHC-Ib molecule that tightly binds peptides derived from leader sequences of classical MHC-Ia molecules for presentation to natural killer cells. However, MHC-E also binds diverse foreign and neoplastic self-peptide antigens for presentation to CD8+ T cells. Although the determinants of MHC-E-restricted T cell priming remain unknown, these cells are induced in humans infected with pathogens containing genes that inhibit the transporter associated with antigen processing (TAP). Indeed, mice vaccinated with TAP-inhibited autologous dendritic cells develop T cells restricted by the murine MHC-E homologue, Qa-1b. Here, we tested whether rhesus macaques (RM) vaccinated with viral constructs expressing a TAP inhibitor would develop insert-specific MHC-E-restricted CD8+ T cells. We generated viral constructs coexpressing SIVmac239 Gag in addition to one of three TAP inhibitors: herpes simplex virus 2 ICP47, bovine herpes virus 1 UL49.5, or rhesus cytomegalovirus Rh185. Each TAP inhibitor reduced surface expression of MHC-Ia molecules but did not reduce surface MHC-E expression. In agreement with modulation of surface MHC-Ia levels, TAP inhibition diminished presentation of MHC-Ia-restricted CD8+ T cell epitopes without impacting presentation of peptide antigen bound by MHC-E. Vaccination of macaques with vectors dually expressing SIVmac239 Gag with ICP47, UL49.5, or Rh185 generated Gag-specific CD8+ T cells classically restricted by MHC-Ia but not MHC-E. These data demonstrate that, in contrast to results in mice, TAP inhibition alone is insufficient for priming of MHC-E-restricted T cell responses in primates and suggest that additional unknown mechanisms govern the induction of CD8+ T cells recognizing MHC-E-bound antigen.IMPORTANCE Due to the near monomorphic nature of MHC-E in the human population and inability of many pathogens to inhibit MHC-E-mediated peptide presentation, MHC-E-restricted T cells have become an attractive vaccine target. However, little is known concerning how these cells are induced. Understanding the underlying mechanisms that induce these T cells would provide a powerful new vaccine strategy to an array of neoplasms and viral and bacterial pathogens. Recent studies have indicated a link between TAP inhibition and induction of MHC-E-restricted T cells. The significance of our research is in demonstrating that TAP inhibition alone does not prime MHC-E-restricted T cell generation and suggests that other, currently unknown mechanisms regulate their induction.
Collapse
Affiliation(s)
- Shaheed A Abdulhaqq
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Helen Wu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - John B Schell
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Katherine B Hammond
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jason S Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Alfred W Legasse
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Byung S Park
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Aravind Asokan
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| |
Collapse
|
28
|
Praest P, Liaci AM, Förster F, Wiertz EJ. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol Immunol 2019; 113:103-114. [DOI: 10.1016/j.molimm.2018.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
|
29
|
Manandhar T, Hò GGT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci 2019; 20:E3626. [PMID: 31344940 PMCID: PMC6695940 DOI: 10.3390/ijms20153626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. HCMV infection is typically asymptomatic and controlled by the immune system in healthy individuals, yet HCMV can be severely pathogenic for the fetus during pregnancy and in immunocompromised persons, such as transplant recipients or HIV infected patients. HCMV has co-evolved with the hosts, developed strategies to hide from immune effector cells and to successfully survive in the human organism. One strategy for evading or delaying the immune response is maintenance of the viral genome to establish the phase of latency. Furthermore, HCMV immune evasion involves the downregulation of human leukocyte antigens (HLA)-Ia molecules to hide infected cells from T-cell recognition. HCMV expresses several proteins that are described for downregulation of the HLA class I pathway via various mechanisms. Here, we review the wide range of immune evasion mechanisms of HCMV. Understanding the mechanisms of HCMV immune evasion will contribute to the development of new customized therapeutic strategies against the virus.
Collapse
Affiliation(s)
- Trishna Manandhar
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
30
|
Wang Q, Wang F, Liu L, Li Q, Liu R, Zheng M, Cui H, Wen J, Zhao G. Genetic Mutation Analysis of High and Low IgY Chickens by Capture Sequencing. Animals (Basel) 2019; 9:ani9050272. [PMID: 31126132 PMCID: PMC6562818 DOI: 10.3390/ani9050272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Immunoglobulin Y (IgY) is the major antibody produced by hens and it endows their offspring with effective humoral immunity against the pathogens. In previous research, we identified 13 genomic regions that were significantly associated with the serum IgY level or antibody responses to sheep red-blood-cells, but the specific mutations in these regions have not been reported. Therefore, we screened for variations in these regions in White Leghorn and Beijing-You chickens with high and low IgY. Our study identified 35,154 mutations and 829 Indels which were associated with IgY levels in both lines. Many non-synonymous mutations were located in crucial genes related to the host immune function, indicating the possible involvement of these genes in controlling IgY levels. Abstract Based on the results of our previous genome-wide association study (GWAS), a comprehensive analysis on single nucleotide polymorphisms (SNPs) was performed on White Leghorn and Beijing-You chickens with high and low IgY levels in defined genomic regions using the capture-sequencing approach. High and low IgY chickens showed substantial genetic variations. In total, more than 30,000 SNPs were found in all four chicken groups, among which 1045 were non-synonymous mutations resulting in amino acids alterations. In total, 23,309 Indels were identified. Among the 1169 Indels that were found only in Beijing-You chickens, 702 were shared between high and low IgY chickens compared with the reference genome. There were 1016 Indels specific to the White Leghorn chickens, among which 188 were high IgY-specific, 134 were low IgY-specific and 694 were shared between the high and low IgY chicken lines. Many genetic mutations were located in the regulatory regions of important immunomodulatory genes, including TAP1, TAP2 and BF1. Our findings provide an in-depth understanding of genetic mutations in chicken microchromosomes.
Collapse
Affiliation(s)
- Qiao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Fei Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Lu Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Beijing 100193, China.
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
31
|
Jones C. Bovine Herpesvirus 1 Counteracts Immune Responses and Immune-Surveillance to Enhance Pathogenesis and Virus Transmission. Front Immunol 2019; 10:1008. [PMID: 31134079 PMCID: PMC6514135 DOI: 10.3389/fimmu.2019.01008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Infection of cattle by bovine herpesvirus 1 (BoHV-1) can culminate in upper respiratory tract disorders, conjunctivitis, or genital disorders. Infection also consistently leads to transient immune-suppression. BoHV-1 is the number one infectious agent in cattle that is associated with abortions in cattle. BoHV-1, as other α-herpesvirinae subfamily members, establishes latency in sensory neurons. Stressful stimuli, mimicked by the synthetic corticosteroid dexamethasone, consistently induce reactivation from latency in latently infected calves and rabbits. Increased corticosteroid levels due to stress have a two-pronged effect on reactivation from latency by: (1) directly stimulating viral gene expression and replication, and (2) impairing antiviral immune responses, thus enhancing virus spread and transmission. BoHV-1 encodes several proteins, bICP0, bICP27, gG, UL49.5, and VP8, which interfere with key antiviral innate immune responses in the absence of other viral genes. Furthermore, the ability of BoHV-1 to infect lymphocytes and induce apoptosis, in particular CD4+ T cells, has negative impacts on immune responses during acute infection. BoHV-1 induced immune-suppression can initiate the poly-microbial disorder known as bovine respiratory disease complex, which costs the US cattle industry more than one billion dollars annually. Furthermore, interfering with antiviral responses may promote viral spread to ovaries and the developing fetus, thus enhancing reproductive issues associated with BoHV-1 infection of cows or pregnant cows. The focus of this review is to describe the known mechanisms, direct and indirect, by which BoHV-1 interferes with antiviral immune responses during the course of infection.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
32
|
Ravindranath MH, Filippone EJ, Devarajan A, Asgharzadeh S. Enhancing Natural Killer and CD8 + T Cell-Mediated Anticancer Cytotoxicity and Proliferation of CD8 + T Cells with HLA-E Monospecific Monoclonal Antibodies. Monoclon Antib Immunodiagn Immunother 2019; 38:38-59. [PMID: 31009335 PMCID: PMC6634170 DOI: 10.1089/mab.2018.0043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cytotoxic NK/CD8+ T cells interact with MHC-I ligands on tumor cells through either activating or inhibiting receptors. One of the inhibitory receptors is CD94/NKG2A. The NK/CD8+ T cell cytotoxic capability is lost when tumor-associated human leukocyte antigen, HLA-E, binds the CD94/NKG2A receptor, resulting in tumor progression and reduced survival. Failure of cancer patients to respond to natural killer (NK) cell therapies could be due to HLA-E overexpression in tumor tissues. Preventing the inhibitory receptor-ligand interaction by either receptor- or ligand-specific monoclonal antibodies (mAbs) is an innovative passive immunotherapeutic strategy for cancer. Since receptors and ligands can be monomeric or homo- or heterodimeric proteins, the efficacy of mAbs may rely on their ability to distinguish monospecific (private) functional epitopes from nonfunctional common (public) epitopes. We developed monospecific anti-HLA-E mAbs (e.g., TFL-033) that recognize only HLA-E-specific epitopes, but not epitopes shared with other HLA class-I loci as occurs with currently available polyreactive anti-HLA-E mAbs. Interestingly the amino acid sequences in the α1 and α2 helices of HLA-E, critical for the recognition of the mAb TFL-033, are strikingly the same sequences recognized by the CD94/NKG2A inhibitory receptors on NK/CD8+ cells. Such monospecific mAbs can block the CD94/NKG2A interaction with HLA-E to restore NK cell and CD8+ anticancer cell cytotoxicity. Furthermore, the HLA-E monospecific mAbs significantly promoted the proliferation of the CD4-/CD8+ T cells. These monospecific mAbs are also invaluable for the specific demonstration of HLA-E on tumor biopsies, potentially indicating those tumors most likely to respond to such therapy. Thus, they can be used to enhance passive immunotherapy once phased preclinical studies and clinical trials are completed. On principle, we postulate that NK cell passive immunotherapy should capitalize on both of these features of monospecific HLA-E mAbs, that is, the specific determination HLA-E expression on a particular tumor and the enhancement of NK cell/CD8+ cytotoxicity if HLA-E positive.
Collapse
Affiliation(s)
| | - Edward J Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Asokan Devarajan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Shahab Asgharzadeh
- Department of Pediatrics and Pathology, Children's Hospital, Keck School of Medicine, USC, Los Angeles, California
| |
Collapse
|
33
|
Shao W, Chen X, Samulski RJ, Hirsch ML, Li C. Inhibition of antigen presentation during AAV gene therapy using virus peptides. Hum Mol Genet 2019; 27:601-613. [PMID: 29272432 DOI: 10.1093/hmg/ddx427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/12/2017] [Indexed: 11/14/2022] Open
Abstract
The clinical trial using adeno-associated virus (AAV) vector delivery of mini-dystrophin in patients with Duchenne Muscular Dystrophy (DMD) demonstrated a cytotoxic lymphocyte (CTL) response targeting the transgene product. These mini-dystrophin-specific T-cells have the potential to clear all transduced muscle, presenting the general gene therapy concern of overcoming the CTL response to foreign proteins that provide therapeutic benefit. In this study, we exploited a natural immunosuppression strategy employed by some viruses that results in CTL evasion only in transduced cells. After transfection of the plasmids encoding viral peptides and ovalbumin, which includes the immune-domain epitope SIINFEKL, several viral small peptides (ICP47 and US6) inhibited the SIINFEKL peptide presentation. A single AAV vector genome that consisted of either transgene AAT fused with SIINFEKL epitope and, separately, ICP47 expressed from different promoters or a single fusion protein with ICP47 linked by a furin cleavage peptide (AATOVA-ICP47) decreased antigen presentation. Compared with AAV/AATOVA in which decreased AAT expression was observed at late time points, persistent transgene expression was obtained after systemic administration of AAV/AATOVA-ICP47 vectors in mice. We extended this strategy to DMD gene therapy. After administration of AAV vector encoding human mini-dystrophin fusion protein with ICP47 into mdx mice, a lower mini-dystrophin-specific CTL response was induced. Importantly, the ICP47 fusion to mini-dystrophin inhibited CTLs mediated cytotoxicity. Although demonstrated herein using AAT and mini-dystrophin transgenes in an AAV context, the collective results have implications for all gene therapy applications resulting in foreign peptides by immune suppression in only genetically modified cells.
Collapse
Affiliation(s)
- Wenwei Shao
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaojing Chen
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard J Samulski
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew L Hirsch
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengwen Li
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17:40-49. [PMID: 30317007 PMCID: PMC6340725 DOI: 10.1016/j.jtos.2018.10.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus type 1 (HSV) keratitis is a leading cause of infectious blindness. Clinical disease occurs variably throughout the cornea from epithelium to endothelium and recurrent HSV stromal keratitis is associated with corneal scarring and neovascularization. HSV keratitis can be associated with ocular pain and subsequent neutrophic keratopathy. Host cell interactions with HSV trigger an inflammatory cascade responsible not only for clearance of virus but also for progressive corneal opacification due to inflammatory cell infiltrate, angiogenesis, and corneal nerve loss. Current antiviral therapies target viral replication to decrease disease duration, severity and recurrence, but there are limitations to these agents. Therapies directed towards viral entry into cells, protein synthesis, inflammatory cytokines and vascular endothelial growth factor pathways in animal models represent promising new approaches to the treatment of recurrent HSV keratitis.
Collapse
Affiliation(s)
- Ann-Marie Lobo
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alex M Agelidis
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
35
|
Braner M, Koller N, Knauer J, Herbring V, Hank S, Wieneke R, Tampé R. Optical control of the antigen translocation by synthetic photo-conditional viral inhibitors. Chem Sci 2018; 10:2001-2005. [PMID: 30881629 PMCID: PMC6385481 DOI: 10.1039/c8sc04863k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/15/2018] [Indexed: 12/12/2022] Open
Abstract
By designing and engineering photo-conditional viral inhibitors, spatiotemporal control of the transporter associated with antigen processing TAP was sustained, allowing the on-demand antigen translocation in human immune cell lines and primary cells by light.
The immune system makes use of major histocompatibility complex class I (MHC I) molecules to present peptides to other immune cells, which can evoke an immune response. Within this process of antigen presentation, the MHC I peptide loading complex, consisting of a transporter associated with antigen processing TAP, MHC I, and chaperones, is key to the initiation of immune response by shuttling peptides from the cytosol into the ER lumen. However, it is still enigmatic how the flux of antigens is precisely coordinated in time and space, limiting our understanding of antigen presentation pathways. Here, we report on the development of a synthetic viral TAP inhibitor that can be cleaved by light. This photo-conditional inhibitor shows temporal blockade of TAP-mediated antigen translocation, which is unleashed upon illumination. The recovery of TAP activity was monitored at single-cell resolution both in human immune cell lines and primary cells. The development of a photo-conditional TAP inhibitor thus expands the repertoire of chemical intervention tools for immunological processes.
Collapse
Affiliation(s)
- M Braner
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - N Koller
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - J Knauer
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - V Herbring
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - S Hank
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - R Wieneke
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| | - R Tampé
- Institute of Biochemistry , Biocenter , Goethe University Frankfurt , Max-von-Laue Str. 9 , 60438 Frankfurt/M. , Germany . ;
| |
Collapse
|
36
|
Washburne AD, Crowley DE, Becker DJ, Olival KJ, Taylor M, Munster VJ, Plowright RK. Taxonomic patterns in the zoonotic potential of mammalian viruses. PeerJ 2018; 6:e5979. [PMID: 30519509 PMCID: PMC6272030 DOI: 10.7717/peerj.5979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Predicting and simplifying which pathogens may spill over from animals to humans is a major priority in infectious disease biology. Many efforts to determine which viruses are at risk of spillover use a subset of viral traits to find trait-based associations with spillover. We adapt a new method-phylofactorization-to identify not traits but lineages of viruses at risk of spilling over. Phylofactorization is used to partition the International Committee on Taxonomy of Viruses viral taxonomy based on non-human host range of viruses and whether there exists evidence the viruses have infected humans. We identify clades on a range of taxonomic levels with high or low propensities to spillover, thereby simplifying the classification of zoonotic potential of mammalian viruses. Phylofactorization by whether a virus is zoonotic yields many disjoint clades of viruses containing few to no representatives that have spilled over to humans. Phylofactorization by non-human host breadth yields several clades with significantly higher host breadth. We connect the phylogenetic factors above with life-histories of clades, revisit trait-based analyses, and illustrate how cladistic coarse-graining of zoonotic potential can refine trait-based analyses by illuminating clade-specific determinants of spillover risk.
Collapse
Affiliation(s)
- Alex D. Washburne
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Daniel E. Crowley
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Daniel J. Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Matthew Taylor
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
37
|
Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. J Mol Biol 2018; 430:4481-4495. [DOI: 10.1016/j.jmb.2018.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
|
38
|
The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins. Mol Immunol 2018; 101:55-64. [DOI: 10.1016/j.molimm.2018.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/03/2023]
|
39
|
Mouse Norovirus Infection Reduces the Surface Expression of Major Histocompatibility Complex Class I Proteins and Inhibits CD8 + T Cell Recognition and Activation. J Virol 2018; 92:JVI.00286-18. [PMID: 29976673 DOI: 10.1128/jvi.00286-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Human noroviruses are highly infectious single-stranded RNA (ssRNA) viruses and the major cause of nonbacterial gastroenteritis worldwide. With the discovery of murine norovirus (MNV) and the introduction of an effective model for norovirus infection and replication, knowledge about infection mechanisms and their impact on the host immune response has progressed. A major player in the immune response against viral infections is the group of major histocompatibility complex (MHC) class I proteins, which present viral antigen to immune cells. We have observed that MNV interferes with the antigen presentation pathway in infected cells by reducing the surface expression of MHC class I proteins. We have shown that MNV-infected dendritic cells or macrophages have lower levels of surface expression of MHC class I proteins than uninfected and bystander cells. Transcriptional analysis revealed that this defect is not due to a decreased amount of mRNA but is reflected at the protein level. We have determined that this defect is mediated via the MNV NS3 protein. Significantly, treatment of MNV-infected cells with the endocytic recycling inhibitor dynasore completely restored the surface expression of MHC class I proteins, whereas treatment with the proteasome inhibitor MG132 partly restored such expression. These observations indicate a role for endocytic recycling and proteasome-mediated degradation of these proteins. Importantly, we show that due to the reduced surface expression of MHC class I proteins, antigen presentation is inhibited, resulting in the inability of CD8+ T cells to become activated in the presence of MNV-infected cells.IMPORTANCE Human noroviruses (HuNoVs) are the major cause of nonbacterial gastroenteritis worldwide and impose a great burden on patients and health systems every year. So far, no antiviral treatment or vaccine is available. We show that MNV evades the host immune response by reducing the amount of MHC class I proteins displayed on the cell surface. This reduction leads to a decrease in viral antigen presentation and interferes with the CD8+ T cell response. CD8+ T cells respond to foreign antigen by activating cytotoxic pathways and inducing immune memory to the infection. By evading this immune response, MNV is able to replicate efficiently in the host, and the ability of cells to respond to consecutive infections is impaired. These findings have a major impact on our understanding of the ways in which noroviruses interact with the host immune response and manipulate immune memory.
Collapse
|
40
|
Abele R, Tampé R. Moving the Cellular Peptidome by Transporters. Front Cell Dev Biol 2018; 6:43. [PMID: 29761100 PMCID: PMC5937356 DOI: 10.3389/fcell.2018.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Living matter is defined by metastability, implying a tightly balanced synthesis and turnover of cellular components. The first step of eukaryotic protein degradation via the ubiquitin-proteasome system (UPS) leads to peptides, which are subsequently degraded to single amino acids by an armada of proteases. A small fraction of peptides, however, escapes further cytosolic destruction and is transported by ATP-binding cassette (ABC) transporters into the endoplasmic reticulum (ER) and lysosomes. The ER-resident heterodimeric transporter associated with antigen processing (TAP) is a crucial component in adaptive immunity for the transport and loading of peptides onto major histocompatibility complex class I (MHC I) molecules. Although the function of the lysosomal resident homodimeric TAPL-like (TAPL) remains, until today, only loosely defined, an involvement in immune defense is anticipated since it is highly expressed in dendritic cells and macrophages. Here, we compare the gene organization and the function of single domains of both peptide transporters. We highlight the structural organization, the modes of substrate binding and translocation as well as physiological functions of both organellar transporters.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Cluster of Excellence - Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
41
|
Russell TA, Velusamy T, Tseng YY, Tscharke DC. Increasing antigen presentation on HSV-1-infected cells increases lesion size but does not alter neural infection or latency. J Gen Virol 2018; 99:682-692. [PMID: 29620508 PMCID: PMC5994700 DOI: 10.1099/jgv.0.001059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CD8+ T cells have a role in the control of acute herpes simplex virus (HSV) infection and may also be important in the maintenance of latency. In this study we have explored the consequences of boosting the efficacy of CD8+ T cells against HSV by increasing the amount of an MHC I-presented epitope on the surface of infected cells. To do this we used HSVs engineered to express an extra copy of the immunodominant CD8+ T cell epitope in C57Bl/6 mice, namely gB498 (SSIEFARL). Despite greater presentation of gB498 on infected cells, CD8+ T cell responses to these viruses in mice were similar to those elicited by a control virus. Further, the expression of extra gB498 did not significantly alter the extent or stability of latency in our mouse model, and virus loads in skin and sensory ganglia of infected mice were not affected. Surprisingly, mice infected with these viruses developed significantly larger skin lesions than those infected with control viruses and notably, this phenotype was dependent on MHC haplotype. Therefore increasing the visibility of HSV-infected cells to CD8+ T cell attack did not impact neural infection or latency, but rather enhanced pathology in the skin.
Collapse
Affiliation(s)
- Tiffany A Russell
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Present address: Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Thilaga Velusamy
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
42
|
Bommareddy PK, Peters C, Saha D, Rabkin SD, Kaufman HL. Oncolytic Herpes Simplex Viruses as a Paradigm for the Treatment of Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050254] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Praveen K. Bommareddy
- Department of Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Cole Peters
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dipongkor Saha
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Samuel D. Rabkin
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Howard L. Kaufman
- Department of Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
43
|
Dai HS, Caligiuri MA. Molecular Basis for the Recognition of Herpes Simplex Virus Type 1 Infection by Human Natural Killer Cells. Front Immunol 2018; 9:183. [PMID: 29483911 PMCID: PMC5816072 DOI: 10.3389/fimmu.2018.00183] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/22/2018] [Indexed: 01/02/2023] Open
Abstract
Primary infection with Herpes simplex virus type 1 (HSV1) is subclinical or only mildly symptomatic in normal individuals, yet the reason for the body's effective immune defense against this pathogen in the absence of antigen-specific immunity has not been well understood. It is clear that human natural killer (NK) cells recognize and kill HSV1-infected cells, and those individuals who either lack or have functionally impaired NK cells can suffer severe, recurrent, and sometimes fatal HSV1 infection. In this article, we review what is known about the recognition of HSV1 by NK cells, and describe a novel mechanism of innate immune surveillance against certain viral pathogens by NK cells called Fc-bridged cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Hong-Sheng Dai
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Michael A Caligiuri
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
44
|
Koyanagi N, Imai T, Shindo K, Sato A, Fujii W, Ichinohe T, Takemura N, Kakuta S, Uematsu S, Kiyono H, Maruzuru Y, Arii J, Kato A, Kawaguchi Y. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis. J Clin Invest 2017; 127:3784-3795. [PMID: 28891812 DOI: 10.1172/jci92931] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/26/2017] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus-1 (HSV-1) is the most common cause of sporadic viral encephalitis, which can be lethal or result in severe neurological defects even with antiviral therapy. While HSV-1 causes encephalitis in spite of HSV-1-specific humoral and cellular immunity, the mechanism by which HSV-1 evades the immune system in the central nervous system (CNS) remains unknown. Here we describe a strategy by which HSV-1 avoids immune targeting in the CNS. The HSV-1 UL13 kinase promotes evasion of HSV-1-specific CD8+ T cell accumulation in infection sites by downregulating expression of the CD8+ T cell attractant chemokine CXCL9 in the CNS of infected mice, leading to increased HSV-1 mortality due to encephalitis. Direct injection of CXCL9 into the CNS infection site enhanced HSV-1-specific CD8+ T cell accumulation, leading to marked improvements in the survival of infected mice. This previously uncharacterized strategy for HSV-1 evasion of CD8+ T cell accumulation in the CNS has important implications for understanding the pathogenesis and clinical treatment of HSV-1 encephalitis.
Collapse
Affiliation(s)
- Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Takahiko Imai
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Keiko Shindo
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Ayuko Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ichinohe
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Naoki Takemura
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Mucosal Immunology, School of Medicine, Chiba University, Chiba, Japan
| | - Shigeru Kakuta
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Uematsu
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Mucosal Immunology, School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Yuhei Maruzuru
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Jun Arii
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| |
Collapse
|
45
|
Budida R, Stankov MV, Döhner K, Buch A, Panayotova-Dimitrova D, Tappe KA, Pohlmann A, Sodeik B, Behrens GMN. Herpes simplex virus 1 interferes with autophagy of murine dendritic cells and impairs their ability to stimulate CD8 + T lymphocytes. Eur J Immunol 2017; 47:1819-1834. [PMID: 28771693 DOI: 10.1002/eji.201646908] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/31/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022]
Abstract
The MHC class I presentation is responsible for the presentation of viral proteins to CD8+ T lymphocytes and mainly depends on the classical antigen processing pathway. Recently, a second pathway involving autophagy has been implicated in this process. Here, we show an increase in the capacity of murine dendritic cells (DCs) to present viral antigens on MHC class I after infection with a mutant herpes simplex virus 1 (HSV-1-Δ34.5), lacking infected cell protein 34.5 (ICP34.5), when compared to its parental HSV-1 strain. The ICP34.5 protein counteracts host cell translational arrest and suppresses macroautophagy, and the lack of this protein resulted in a low viral protein abundance, which was processed and presented in an efficient way. Our study demonstrates an important role of autophagy in processing endogenous viral proteins in HSV-1-infected DCs.
Collapse
Affiliation(s)
- Ramachandramouli Budida
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Metodi V Stankov
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Kim A Tappe
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Anja Pohlmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Georg M N Behrens
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| |
Collapse
|
46
|
A highly conserved sequence of the viral TAP inhibitor ICP47 is required for freezing of the peptide transport cycle. Sci Rep 2017; 7:2933. [PMID: 28592828 PMCID: PMC5462769 DOI: 10.1038/s41598-017-02994-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The transporter associated with antigen processing (TAP) translocates antigenic peptides into the endoplasmic reticulum (ER) lumen for loading onto MHC class I molecules. This is a key step in the control of viral infections through CD8+ T-cells. The herpes simplex virus type-1 encodes an 88 amino acid long species-specific TAP inhibitor, ICP47, that functions as a high affinity competitor for the peptide binding site on TAP. It has previously been suggested that the inhibitory function of ICP47 resides within the N-terminal region (residues 1–35). Here we show that mutation of the highly conserved 50PLL52 motif within the central region of ICP47 attenuates its inhibitory capacity. Taking advantage of the human cytomegalovirus-encoded TAP inhibitor US6 as a luminal sensor for conformational changes of TAP, we demonstrated that the 50PLL52 motif is essential for freezing of the TAP conformation. Moreover, hierarchical functional interaction sites on TAP dependent on 50PLL52 could be defined using a comprehensive set of human-rat TAP chimeras. This data broadens our understanding of the molecular mechanism underpinning TAP inhibition by ICP47, to include the 50PLL52 sequence as a stabilizer that tethers the TAP-ICP47 complex in an inward-facing conformation.
Collapse
|
47
|
Association of cognitive function and liability to addiction with childhood herpesvirus infections: A prospective cohort study. Dev Psychopathol 2017; 30:143-152. [PMID: 28420448 DOI: 10.1017/s0954579417000529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liability to substance use disorder (SUD) is largely nonspecific to particular drugs and is related to behavior dysregulation, including reduced cognitive control. Recent data suggest that cognitive mechanisms may be influenced by exposure to neurotropic infections, such as human herpesviruses. In this study, serological evidence of exposure to human herpesvirus Herpes simplex virus Type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as Toxoplasma gondii was determined in childhood (age ~11 years) in 395 sons and 174 daughters of fathers with or without SUD. Its relationships with a cognitive characteristic (IQ) in childhood and with risk for SUD in adulthood were examined using correlation, regression, survival, and path analyses. Exposure to HSV-1, EBV, and T. gondii in males and females, and CMV in males, was associated with lower IQ. Independent of that relationship, EBV in females and possibly in males, and CMV and possibly HSV-1 in females were associated with elevated risk for SUD. Therefore, childhood neurotropic infections may influence cognitive development and risk for behavior disorders such as SUD. The results may point to new avenues for alleviating cognitive impairment and SUD risk.
Collapse
|
48
|
Speranza MC, Kasai K, Lawler SE. Preclinical Mouse Models for Analysis of the Therapeutic Potential of Engineered Oncolytic Herpes Viruses. ILAR J 2017; 57:63-72. [PMID: 27034396 DOI: 10.1093/ilar/ilw002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After more than two decades of research and development, oncolytic herpes viruses (oHSVs) are moving into the spotlight due to recent encouraging clinical trial data. oHSV and other oncolytic viruses function through direct oncolytic cancer cell-killing mechanisms and by stimulating antitumor immunity. As further viruses are developed and optimized for the treatment of various types of cancer, appropriate predictive preclinical models will be of great utility. This review will discuss existing data in this area, focusing on the mouse tumor models that are commonly used.
Collapse
Affiliation(s)
- Maria-Carmela Speranza
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| | - Kazue Kasai
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| | - Sean E Lawler
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| |
Collapse
|
49
|
Oldham ML, Grigorieff N, Chen J. Structure of the transporter associated with antigen processing trapped by herpes simplex virus. eLife 2016; 5. [PMID: 27935481 PMCID: PMC5199193 DOI: 10.7554/elife.21829] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
The transporter associated with antigen processing (TAP) is an ATP-binding cassette (ABC) transporter essential to cellular immunity against viral infection. Some persistent viruses have evolved strategies to inhibit TAP so that they may go undetected by the immune system. The herpes simplex virus for example evades immune surveillance by blocking peptide transport with a small viral protein ICP47. In this study, we determined the structure of human TAP bound to ICP47 by electron cryo-microscopy (cryo-EM) to 4.0 Å. The structure shows that ICP47 traps TAP in an inactive conformation distinct from the normal transport cycle. The specificity and potency of ICP47 inhibition result from contacts between the tip of the helical hairpin and the apex of the transmembrane cavity. This work provides a clear molecular description of immune evasion by a persistent virus. It also establishes the molecular structure of TAP to facilitate mechanistic studies of the antigen presentation process. DOI:http://dx.doi.org/10.7554/eLife.21829.001
Collapse
Affiliation(s)
- Michael L Oldham
- Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jue Chen
- Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
50
|
A dual inhibition mechanism of herpesviral ICP47 arresting a conformationally thermostable TAP complex. Sci Rep 2016; 6:36907. [PMID: 27845362 PMCID: PMC5109273 DOI: 10.1038/srep36907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/24/2016] [Indexed: 11/09/2022] Open
Abstract
As a centerpiece of antigen processing, the ATP-binding cassette transporter associated with antigen processing (TAP) became a main target for viral immune evasion. The herpesviral ICP47 inhibits TAP function, thereby suppressing an adaptive immune response. Here, we report on a thermostable ICP47-TAP complex, generated by fusion of different ICP47 fragments. These fusion complexes allowed us to determine the direction and positioning in the central cavity of TAP. ICP47-TAP fusion complexes are arrested in a stable conformation, as demonstrated by MHC I surface expression, melting temperature, and the mutual exclusion of herpesviral TAP inhibitors. We unveiled a conserved region next to the active domain of ICP47 as essential for the complete stabilization of the TAP complex. Binding of the active domain of ICP47 arrests TAP in an open inward facing conformation rendering the complex inaccessible for other viral factors. Based on our findings, we propose a dual interaction mechanism for ICP47. A per se destabilizing active domain inhibits the function of TAP, whereas a conserved C-terminal region additionally stabilizes the transporter. These new insights into the ICP47 inhibition mechanism can be applied for future structural analyses of the TAP complex.
Collapse
|