1
|
Sgariboldi A, Posté E, Chirico N, Sangion A, Evangelista M, Morosini C, Re A, Torretta V, Papa E. Global Assessment of Emerging Contaminant Removal in Wastewater Treatment Plants: In Silico Hazard Screening and Risk Evaluation. TOXICS 2024; 13:6. [PMID: 39853006 PMCID: PMC11768813 DOI: 10.3390/toxics13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Pharmaceuticals and personal care products (PPCPs) are emerging contaminants (ECs), whose presence in the environment is of increasing concern due to their widespread use and possible detrimental effects on wildlife and humans. These chemicals may present multiple hazardous properties such as environmental persistence, toxicity, high mobility, and the potential for bioaccumulation. In this study, extended bibliographic research was conducted to characterize the removal efficiency (RE) of PPCPs in wastewater treatment plants (WWTPs) considering different technologies. Measured values of RE were collected from the literature or calculated for 251 compounds. The molecular structure of the 245 PPCPs were used as the input to generate predictions of multiple properties using several QSAR tools, such as the OECD Toolbox, OPERA, EPI Suite™, and QSAR-ME Profiler. These predictions were compared to regulatory thresholds to identify hazardous chemicals and to screen persistent, mobile and toxic (PMT) or persistent, bioaccumulative and toxic (PBT) substances. Finally, chemicals were prioritized by combining values of RE and QSAR predictions for multiple properties. A total of 16 out of the 245 molecules were prioritized as the most hazardous compounds to the aquatic environment and, among these, six were associated with potential risk due to their exposure concentrations reported in the literature.
Collapse
Affiliation(s)
- Arianna Sgariboldi
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Elena Posté
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- AIR CLEAN S.r.l., via Trento 37, 20017 Rho, Italy
| | - Nicola Chirico
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
| | | | - Marco Evangelista
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Cristiana Morosini
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Andrea Re
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- Xylem Water Solutions Italia S.r.l., Via G. Rossini, 1/A, 20045 Lainate, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
| | - Ester Papa
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
| |
Collapse
|
2
|
Love D, Slovisky M, Costa KA, Megarani D, Mehdi Q, Colombo V, Ivantsova E, Subramaniam K, Bowden JA, Bisesi JH, Martyniuk CJ. Toxicity Risks Associated With the Beta-Blocker Metoprolol in Marine and Freshwater Organisms: A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2530-2544. [PMID: 39291828 DOI: 10.1002/etc.5981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024]
Abstract
The detection of pharmaceuticals in aquatic ecosystems has generated concern for wildlife and human health over the past several decades. β-adrenergic blocking agents are a class of drugs designed to treat cardiovascular diseases and high blood pressure. Metoprolol is a second-generation β1-adrenergic receptor inhibitor detected in effluent derived from sewage treatment plants. Our review presents an updated survey of the current state of knowledge regarding the sources, occurrence, and toxicity of metoprolol in aquatic ecosystems. We further aimed to summarize the current literature on the presence of metoprolol in various classes of aquatic species and to consider the trophic transfer of these contaminants in marine mammals. The biological impacts of metoprolol have been reported in 20 aquatic organisms, with a primary focus on cardiac function and oxidative stress. Our review reveals that concentrations of metoprolol that cause toxicity in aquatic species are above levels that are typical of marine and freshwater environments. Future studies should investigate the effects of metoprolol at lower concentrations in aquatic organisms. Other recommendations include (1) a further focus on noncardiac endpoints, because computational assessments of currently available molecular data identify gonadotropins, vitellogenin, collagen, and cytokines as potential targets of modulation, and (2) development of adverse outcome pathways for cardiac dysfunction in aquatic species to improve our understanding of molecular interactions and outcomes following exposure. As the next generation of β-blockers is developed, continued diligence is needed for assessing environmental impacts in aquatic ecosystems to determine their potential accumulation and long-term effects on wildlife and humans. Environ Toxicol Chem 2024;43:2530-2544. © 2024 SETAC.
Collapse
Affiliation(s)
- Deirdre Love
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Megan Slovisky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kaylie Anne Costa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Dorothea Megarani
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Qaim Mehdi
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Vincent Colombo
- Department of Animal Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Emma Ivantsova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Chemistry, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Lv J, Sun F, Li Z, Qin Y, Sheng R, Sun L. Comparative Study of the Effects of Drugs Targeting Adrenergic Receptors on the Early Life Stages of Zebrafish. TOXICS 2024; 12:583. [PMID: 39195685 PMCID: PMC11359397 DOI: 10.3390/toxics12080583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Owing to the presence of drugs targeting adrenergic receptors in aquatic ecosystems, considerable attention has been directed towards their environmental distribution and fate in recent decades. However, their potential impacts on non-target aquatic organisms, particularly fish, have received relatively limited investigation. In this study, moxisylyte (MOX) and propranolol (PRO) were selected as representatives of α- or β-adrenergic receptor antagonist, respectively, and we assessed their effects on the early life stages of zebrafish, especially on the nervous and cardiovascular systems. Although both compounds exhibited marginal effects on zebrafish survival, hatching and gross abnormality following exposure to concentrations ranging from 1 to 625 μg/L, they adversely affected the development of cardiovascular and nervous systems, but through different mechanisms of action, as evidenced by variations in gene transcriptional responses and enzyme activities. Notably, cardiovascular responses appear promising for use as potential biomarkers for exposure to drugs targeting adrenergic receptors. This study enhances our understanding of the ecotoxicological risks posed by α- and β-blockers in fish. Nonetheless, further investigation is needed to elucidate the precise mechanisms underlying the impacts of drugs targeting adrenergic receptors due to our limited knowledge of the physiological functions of the adrenergic system in fish.
Collapse
Affiliation(s)
| | | | | | | | | | - Liwei Sun
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, China
| |
Collapse
|
4
|
Wang J, Guo Z, Guo Y, Zhang Y, Yu P, Ye Z, Qian Y, Yoshimura C, Wang T, Zhang L. Photochemical fate of β-blocker pindolol in riverine and its downstream coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172236. [PMID: 38582123 DOI: 10.1016/j.scitotenv.2024.172236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Pindolol (PIN) is a commonly used β-blocker drug and has been frequently detected in various natural waters. Comprehensive understanding of its environmental photochemical transformation is necessary to assess its environmental risk. In this study, the photodegradation kinetics and mechanisms of PIN in both freshwater and coastal water were investigated for the first time. The photodegradation experiments were carried out by steady-state photochemical experiment under simulated sunlight irradiation. The results showed that the photodegradation rate of PIN in the freshwater of the Pearl River estuary was significantly faster than that in its downstream coastal water. In river water, PIN can undergo both direct photolysis and indirect photolysis induced by riverine dissolved organic matter (DOM) mainly through excited triplet-state of DOM and singlet oxygen, while direct photolysis dominated its degradation in coastal water. The promotion effect was found to be much greater for Suwannee River Natural Organic Matter (SRNOM) than that of the sampled riverine DOM, due to its high steady-state concentrations of reactive species. Interestingly, coastal DOM in northern and southern China were found to have similar promotion effects on PIN photodegradation for the first time, but both less than that of riverine DOM. A total of seven degradation products of PIN resulting from hydroxylation, hydrogen abstraction and cleavage of ether bond were identified. Biological toxicity of one products were found to be higher than that of PIN. These results are of significance for knowing the persistence and ecological risk of PIN in natural waters.
Collapse
Affiliation(s)
- Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yuchen Guo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yingqi Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zimi Ye
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Yao Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
5
|
Lanaro VM, Sombra LL, Altamirano JC, Almeida CA, Stege PW. Chiral separation of propranolol by electrokinetic chromatography using nanodiamonds and human serum albumin as a pseudo-stationary phase in river water. Chirality 2024; 36:e23640. [PMID: 38384157 DOI: 10.1002/chir.23640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
Propranolol is currently considered as an emerging contaminant in water bodies. In this study, R- and S-propranolol were determined in river samples by electrokinetic chromatography (EKC) using nanodiamonds (NDs) and human serum albumin (HSA) as a pseudo-stationary phase in order to achieve enantioseparation. Previously, river samples were preconcentrated using a column filled with Amberlite® IR-120 and Dowex® 50WX8 resins. The setting up of influential factors such as temperature, voltage, pH, and HSA and NDs concentration is accurately described along this manuscript. A multivariate study and optimization was carried out to obtain the enantioseparation of propranolol (Rs = 2.91), which was reached under the following experimental conditions: voltage of 16 kV, temperature of 16°C, phosphate buffer pH 9.5, NDs of 0.20%, and HSA of 15 μmol l-1 . The recoveries of analytes under optimal conditions were higher than 98%. The limits of detection were 0.85 μg l-1 for R- and S-propranolol. The method was applied to real samples, and the obtained results in three different water sources studied were 1.02, 0.59, and 0.30 μg l-1 for the R-enantiomer and 0.99, 0.54, and 0.28 μg l-1 for the S-enantiomer. The accuracy of the proposed methodology (including bias and precision) has allowed us to propose it as a successful tool for the control of water quality.
Collapse
Affiliation(s)
- Verónica M Lanaro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Lorena L Sombra
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Jorgelina C Altamirano
- IANIGLA, Laboratorio de Química Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Mendoza, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), San Luis, Argentina
| | - César A Almeida
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), San Luis, Argentina
| | - Patricia W Stege
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), San Luis, Argentina
- Laboratorio de Medicina Experimental y Transcripcional, IMIBIO-SL, Instituto Multidisciplinario de Investigación Biológica, San Luis, Argentina
| |
Collapse
|
6
|
Meade EB, Iwanowicz LR, Neureuther N, LeFevre GH, Kolpin DW, Zhi H, Meppelink SM, Lane RF, Schmoldt A, Mohaimani A, Mueller O, Klaper RD. Transcriptome signatures of wastewater effluent exposure in larval zebrafish vary with seasonal mixture composition in an effluent-dominated stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159069. [PMID: 36174698 DOI: 10.1016/j.scitotenv.2022.159069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plant (WWTP) effluent-dominated streams provide critical habitat for aquatic and terrestrial organisms but also continually expose them to complex mixtures of pharmaceuticals that can potentially impair growth, behavior, and reproduction. Currently, few biomarkers are available that relate to pharmaceutical-specific mechanisms of action. In the experiment reported in this paper, zebrafish (Danio rerio) embryos at two developmental stages were exposed to water samples from three sampling sites (0.1 km upstream of the outfall, at the effluent outfall, and 0.1 km below the outfall) during base-flow conditions from two months (January and May) of a temperate-region effluent-dominated stream containing a complex mixture of pharmaceuticals and other contaminants of emerging concern. RNA-sequencing identified potential biological impacts and biomarkers of WWTP effluent exposure that extend past traditional markers of endocrine disruption. Transcriptomics revealed changes to a wide range of biological functions and pathways including cardiac, neurological, visual, metabolic, and signaling pathways. These transcriptomic changes varied by developmental stage and displayed sensitivity to variable chemical composition and concentration of effluent, thus indicating a need for stage-specific biomarkers. Some transcripts are known to be associated with genes related to pharmaceuticals that were present in the collected samples. Although traditional biomarkers of endocrine disruption were not enriched in either month, a high estrogenicity signal was detected upstream in May and implicates the presence of unidentified chemical inputs not captured by the targeted chemical analysis. This work reveals associations between bioeffects of exposure, stage of development, and the composition of chemical mixtures in effluent-dominated surface water. The work underscores the importance of measuring effects beyond the endocrine system when assessing the impact of bioactive chemicals in WWTP effluent and identifies a need for non-targeted chemical analysis when bioeffects are not explained by the targeted analysis.
Collapse
Affiliation(s)
- Emma B Meade
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Luke R Iwanowicz
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, United States
| | - Nicklaus Neureuther
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Hui Zhi
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Shannon M Meppelink
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Rachael F Lane
- U.S. Geological Survey, Kansas Water Science Center, 1217 Biltmore Dr, Lawrence, KS 66049, United States
| | - Angela Schmoldt
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Aurash Mohaimani
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Olaf Mueller
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States; Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States.
| |
Collapse
|
7
|
Wang H, Lin X, He Z, Qian B, Sun L. Effects of adrenergic α-antagonists on the early life stages of Japanese medaka (Oryzias latipes). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1485-1491. [PMID: 36385212 DOI: 10.1007/s10646-022-02604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of pharmaceuticals in the aquatic environment has stimulated considerable research efforts into their potential ecotoxicological consequences. There are a number of pharmaceuticals targeting adrenergic receptors; however, relatively few studies have explored the effects of adrenergic α-antagonists (or α-blockers) on fish. In this study, moxisylyte was selected as a representative α-blocker, and Japanese medaka embryos were exposed to moxisylyte (1-625 μg/L) for 44 days. Moxisylyte caused no significant or only marginal effects on the mortality, development, and growth; however, most genes involved in detoxification and antioxidant were transcriptionally upregulated, and antioxidant enzymes activities were induced as well. Moxisylyte exposure resulted in transcriptional downregulation of most of the steroidogenesis genes, and accordingly, the mRNA levels of steroid hormone receptors and vitellogenin decreased, particularly in males, indicating that moxisylyte disrupts the hypothalamic-pituitary-gonadal (HPG) axis in a gender-specific manner. Therefore, the risk of α-blockers on fish should not be overlooked and deserves further investigation.
Collapse
Affiliation(s)
- Haixia Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Xia Lin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Zepeng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Baoliu Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
8
|
Smith R, Sayen S, Guillon E. Adsorption of Individual and Mixtures of β-Blockers and Copper in Soils and Sediments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2700-2707. [PMID: 35899978 PMCID: PMC9828069 DOI: 10.1002/etc.5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/29/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The (bio)availability of pharmaceuticals at solid/water interfaces is governed by their sorption, which determines their concentrations in groundwaters and surface waters in contact with biota, and can be affected by the presence of other contaminants such as metallic trace elements likely to compete for adsorption sites and form complexes with pharmaceuticals. We studied the adsorption of the pharmaceuticals propranolol and sotalol-two β-blockers-on one soil and one sediment using batch experiments to assess their (bio)availability. The influence of contact time, pH, and concentration was studied. As in the real environment these contaminants are not alone but in mixtures, and they were studied alone, simultaneously added, and in the presence of Cu2+ , which is known to form coordination complexes with propranolol and sotalol, but their presence in mixtures did not alter their adsorption properties. Sotalol was more mobile in water and thus more bioavailable for organisms than propranolol. The mobility in surface waters of both β-blockers and thus their bioavailabity for organisms is more important than their risk of transfer to groundwater during rainwater infiltration and to surface water due to runoff. Environ Toxicol Chem 2022;41:2700-2707. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rose‐Michelle Smith
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312Université de Reims Champagne‐ArdenneReims Cedex 2France
| | - Stéphanie Sayen
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312Université de Reims Champagne‐ArdenneReims Cedex 2France
| | - Emmanuel Guillon
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312Université de Reims Champagne‐ArdenneReims Cedex 2France
| |
Collapse
|
9
|
Ponkshe A, Thakur P. Solar light-driven photocatalytic degradation and mineralization of beta blockers propranolol and atenolol by carbon dot/TiO 2 composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15614-15630. [PMID: 34628578 DOI: 10.1007/s11356-021-16796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Herein improved solar light-driven photocatalytic degradation and mineralization of two emerging pollutants as well as recalcitrant beta blockers propranolol (PR) and atenolol (AT) have been demonstrated by metal-free carbon dot/TiO2 (CDT) composite. Hydrothermally synthesized TiO2 has been decorated with electrochemically synthesized carbon dots (CDs) and was well characterized by various analytical techniques viz. XRD, FTIR, Raman, XPS, UV-visible DRS, FESEM, and TEM. The optimized CDT composite, 2CDT (2 mL carbon dot/TiO2), showed ~ 3.45- and ~ 1.75-fold enhancement in the photodegradation rate as compared to pristine TiO2 for PR and AT respectively in 1 hour of irradiation along with complete degradation of PR and AT after 3 hours of irradiation. 2CDT exhibited 76% and 80% mineralization of PR and AT in contrast with 62% and 47% observed by pristine TiO2. Further, the major reaction intermediates formed after degradation have been identified by HPLC/MS analysis, confirming more than 99% reduction of the parent compound for both PR and AT. Reusability of the optimized catalyst also showed successful degradation up to 3 cycles, showing reduction abilities of 97%, 95%, and 94% for 1st, 2nd, and 3rd cycle respectively. The enhanced degradation and mineralization efficiency of the 2CDT composite could be attributed to the excellent photosensitizer and electron reservoir properties of the CD along with upconverted photoluminescence behavior. The present study unlocks the possibility of using metal-free, facile CDT composite for effective degradation and mineralization of widely used beta blockers and other pharmaceuticals.
Collapse
Affiliation(s)
- Amruta Ponkshe
- Department of Environmental Sciences, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Pragati Thakur
- epartment of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune , 411007, India.
| |
Collapse
|
10
|
Varsha M, Senthil Kumar P, Senthil Rathi B. A review on recent trends in the removal of emerging contaminants from aquatic environment using low-cost adsorbents. CHEMOSPHERE 2022; 287:132270. [PMID: 34560497 DOI: 10.1016/j.chemosphere.2021.132270] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 05/11/2023]
Abstract
Emerging contaminants (ECs), a class of contaminants with low concentrations but significant harm, have received a lot of attention in recent times. ECs comprises of various chemicals that enter the environment every day. In today's modern lifestyle, we use many chemical-based products. These persist in wastewater and ultimately enter the water bodies, causing serious problems to the human and aquatic ecosystem. This is because the conventional wastewater treatment methods are inefficient in identifying and removing such contaminants. Aiming for a long-term, effective solution to this issue, Adsorption was proposed. Although several adsorbents are already present in the market, which have proved beneficial in removing such ECs, not all are affordable. This article reviews replacing costly adsorbents with agriculture-based biomass that are abundant, inexpensive, and biodegradable and possess excellent adsorption capacity. The objectives of this article is to look at adsorption as a viable treatment option for emerging pollutants, as well as sophisticated and cost-effective emerging contaminants treatment options.
Collapse
Affiliation(s)
- M Varsha
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Senthil Kumar
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - B Senthil Rathi
- Deprtament of Chemical Engineering, St. Joseph' College of Engineering, Chennai, 603110, India
| |
Collapse
|
11
|
Ye Z, Guo Z, Wang J, Zhang L, Guo Y, Yoshimura C, Niu J. Photodegradation of acebutolol in natural waters: Important roles of carbonate radical and hydroxyl radical. CHEMOSPHERE 2022; 287:132318. [PMID: 34826949 DOI: 10.1016/j.chemosphere.2021.132318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Acebutolol (ACE) has been widely used for the treatment of cardiovascular disorders, and its photochemical fate in natural waters is a matter of concern due to its ubiquitous occurrence and its toxicity to aquatic organisms. In this study, the photodegradation of ACE in river water and synthetic waters were investigated under simulated sunlight irradiation. The results demonstrated that ACE photodegradation rate in river water was 3.2 times higher than that in pure water. Then the influences of HCO3-, NO3- and DOM on ACE photolysis were investigated under their concentrations similar with the ones in river water. ACE photodegradation was significantly enhanced in the presence of HCO3- alone, and the scavenging experiments and the electron paramagnetic resonance experiments together proved that HCO3- could be oxidized by triplet-excited state of ACE to generate CO3•-, which subsequently played a key role in ACE degradation. The presence of both NO3- and DOM also increased the ACE photodegradation rates, and •OH and 3DOM* were found to be involved in the degradation. In addition, when DOM was added to a solution with HCO3-, the enhancement effect of HCO3- on ACE photodegradation was weakened due to the scavenging of CO3•- by DOM combined with the light screening effect of DOM.
Collapse
Affiliation(s)
- Zimi Ye
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuchen Guo
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| |
Collapse
|
12
|
Gueye C, Aaron JJ, Gaye-Seye MD, Cisse L, Oturan N, Oturan MA. A spectrofluorimetric method for the determination of pindolol in natural waters using various organic and cyclodextrin media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55029-55040. [PMID: 34128161 DOI: 10.1007/s11356-021-14801-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
A simple, sensitive, and rapid spectrofluorimetric method was developed for the determination of the β-blocker pindolol. The native fluorescence of pindolol was measured in different organic solvents and in cyclodextrin aqueous media. The highest fluorescence signal was obtained in 2-propanol at λem = 303 nm with λex = 260 nm. Analytical figures of merit for the spectrofluorimetric determination of pindolol were satisfactory, with wide linear dynamic range (LDR) values of two orders of magnitude, and rather low limit of detection (LOD) values between 0.2 and 8.7 ng/mL. Moreover, the addition of cyclodextrins (HP-β-CD and β-CD) in aqueous media enhanced the fluorescence of pindolol. In addition, the inclusion complexes of pindolol with cyclodextrins were investigated and the stability constants of complexes were calculated by means of the method of nonlinear regression (NLR). The method was successfully applied to the analysis of tap water and natural water samples, spiked with pindolol.
Collapse
Affiliation(s)
- Coumba Gueye
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
- Laboratoire de Photochimie et d'Analyse, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Jean-Jacques Aaron
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France.
| | - Mame Diabou Gaye-Seye
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
- Laboratoire de Photochimie et d'Analyse, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Lamine Cisse
- Laboratoire de Photochimie et d'Analyse, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nihal Oturan
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
| |
Collapse
|
13
|
Evaluation of Effects of Ractopamine on Cardiovascular, Respiratory, and Locomotory Physiology in Animal Model Zebrafish Larvae. Cells 2021; 10:cells10092449. [PMID: 34572098 PMCID: PMC8466814 DOI: 10.3390/cells10092449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/31/2022] Open
Abstract
Ractopamine (RAC) is a beta-adrenoceptor agonist that is used to promote lean and increased food conversion efficiency in livestock. This compound has been considered to be causing behavioral and physiological alterations in livestock like pig. Few studies have addressed the potential non-target effect of RAC in aquatic animals. In this study, we aimed to explore the potential physiological response after acute RAC exposure in zebrafish by evaluating multiple endpoints like locomotor activity, oxygen consumption, and cardiovascular performance. Zebrafish larvae were subjected to waterborne RAC exposure at 0.1, 1, 2, 4, or 8 ppm for 24 h, and the corresponding cardiovascular, respiratory, and locomotion activities were monitored and quantified. In addition, we also performed in silico molecular docking for RAC with 10 zebrafish endogenous β-adrenergic receptors to elucidate the potential acting mechanism of RAC. Results show RAC administration can significantly boost locomotor activity, cardiac performance, oxygen consumption, and blood flow rate, but without affecting the cardiac rhythm regularity in zebrafish embryos. Based on structure-based flexible molecular docking, RAC display similar binding affinity to all ten subtypes of endogenous β-adrenergic receptors, from adra1aa to adra2db, which are equivalent to the human one. This result suggests RAC might act as high potency and broad spectrum β-adrenergic receptors agonist on boosting the locomotor activity, cardiac performance, and oxygen consumption in zebrafish. To validate our results, we co-incubated a well-known β-blocker of propranolol (PROP) with RAC. PROP exposure tends to minimize the locomotor hyperactivity, high oxygen consumption, and cardiac rate in zebrafish larvae. In silico structure-based molecular simulation and binding affinity tests show PROP has an overall lower binding affinity than RAC. Taken together, our studies provide solid in vivo evidence to support that RAC plays crucial roles on modulating cardiovascular, respiratory, and locomotory physiology in zebrafish for the first time. In addition, the versatile functions of RAC as β-agonist possibly mediated via receptor competition with PROP as β-antagonist.
Collapse
|
14
|
Chiral separation of beta-blockers by high-performance liquid chromatography and determination of bisoprolol enantiomers in surface waters. Arh Hig Rada Toksikol 2021; 71:56-62. [PMID: 32597137 PMCID: PMC7837245 DOI: 10.2478/aiht-2020-71-3318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/01/2020] [Indexed: 11/22/2022] Open
Abstract
Beta-blockers are chiral compounds with enantiomers that have different bioactivity, which means that while one is active, the other can be inactive or even harmful. Due to their high consumption and incomplete degradation in waste water, they may reach surface waters and affect aquatic organisms. To address this issue we developed a chromatographic method suitable for determining beta-blocker enantiomers in surface waters. It was tested on five beta-blockers (acebutolol, atenolol, bisoprolol, labetalol and metoprolol) and validated on bisoprolol enantiomers. Good enantioseparation of all analysed beta-blockers was achieved on the Chirobiotic V column with the mobile phase composed of methanol/acetic acid/triethylamine (100/0.20/0.15 v/v/v) at a flow rate of 0.5 mL/min and column temperature of 45 °C. Method proved to be linear in the concentration range from 0.075 µg/mL to 5 µg/mL, and showed good recovery. The limits of bisoprolol enantiomer detection were 0.025 µg/mL and 0.026 µg/mL and of quantification 0.075 µg/mL and 0.075 µg/mL. Despite its limitations, it seems to be a promising method for bisoprolol enantiomer analysis in surface water samples. Further research could focus on waste water analysis, where enantiomer concentrations may be high. Furthermore, transferring the method to a more sensitive one such as liquid chromatography coupled with tandem mass spectrometry and using ammonium acetate as the mobile phase additive instead of acetic acid and triethylamine would perhaps yield much lower limits of detection and quantification.
Collapse
|
15
|
Swinton C, Swinton E, Phillips I, Lukowiak K. A thermal stressor, propranolol and long-term memory formation in freshly collected Lymnaea. J Exp Biol 2021; 224:jeb.242293. [PMID: 33795418 DOI: 10.1242/jeb.242293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022]
Abstract
A heat stressor (1 h at 30°C) in Lymnaea stagnalis before operant conditioning training of aerial respiration is sufficient to enhance long-term memory (LTM) formation in 'average' cognitive ability, laboratory-reared, inbred snails. However, in freshly collected outbred snails, the same heat stressor blocks LTM formation in 'smart' cognitive phenotype but not in average cognitive phenotype strains. Here, we hypothesize that (1) preventing the stress associated with the heat stressor before training allows LTM to form in the smart phenotype strains; and (2) alleviating the stress before a memory recall session allows a formed LTM to be recalled in the smart phenotype strains. We found that an injection of propranolol, which mitigates the stressor, before snails experience the heat stressor enabled two strains of the smart phenotype snails to form LTM, consistent with our first hypothesis. However, the injection of propranolol before a memory test session did not alleviate a memory recall block in the smart phenotype snails. Thus, our second hypothesis was not supported. Therefore, smart cognitive phenotype snails encountering a heat stressor have an inability to form LTM, but this inability can be overcome by the pre-injection of propranolol.
Collapse
Affiliation(s)
- Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Iain Phillips
- Water Security Agency, Saskatoon, SK S7N 3R3, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
16
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence and risk assessment of pharmaceuticals and cocaine around the coastal submarine sewage outfall in Guarujá, São Paulo State, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11384-11400. [PMID: 33123891 DOI: 10.1007/s11356-020-11320-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to screen and quantify 23 pharmaceutical compounds (including illicit drugs), at two sampling points near the diffusers of the Guarujá submarine outfall, State of São Paulo, Brazil. Samples were collected in triplicate during the high (January 2018) and low (April 2018) seasons at two different water column depths (surface and bottom). A total of 10 compounds were detected using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Caffeine (42.3-141.0 ng/L), diclofenac (3.6-85.7 ng/L), valsartan (4.7-14.3 ng/L), benzoylecgonine (0.3-1.7 ng/L), and cocaine (0.3-0.6 ng/L) were frequently detected (75% occurrence). Orphenadrine (0.6-3.0 ng/L) and atenolol (0.1-0.3 ng/L), and acetaminophen (1.2-1.4 ng/L) and losartan (0.7-3.4 ng/L), were detected in 50% and 25% of the samples, respectively. Only one sample (12.5%) detected the presence of carbamazepine (< 0.001-0.1 ng/L). Unexpectedly a lower frequency of occurrence and concentration of these compounds occurred during the summer season, suggesting that other factors, such as the oceanographic and hydrodynamic regimes of the study area, besides the population rise, should be taken into account. Caffeine presented concentrations above the surface water safety limits (0.01 μg/L). For almost all compounds, the observed concentrations indicate nonenvironmental risk for the aquatic biota, except for caffeine, diclofenac, and acetaminophen that showed low to moderate ecological risk for the three trophic levels tested.
Collapse
Affiliation(s)
- Vinicius Roveri
- Faculdade de Ciência e Tecnologia (FCT), Universidade Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536, Encruzilhada, Santos, São Paulo, 11045-002, Brazil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brazil
| | - Walber Toma
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brazil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde (FCS), Universidade Fernando Pessoa (UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
17
|
Kalamarz-Kubiak H. Endocrine-Disrupting Compounds in Fish Physiology, with Emphasis on their Effects on the Arginine Vasotocin/Isotocin System. Endocr Metab Immune Disord Drug Targets 2021; 22:738-747. [PMID: 33530920 DOI: 10.2174/1871530321666210202150947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
The purposes of this review are to promote better use of existing knowledge of marine pollutants especially endocrine-disrupting compounds (EDCs) and to draw attention to the slow progression of the research on the influence of those compounds on arginine vasotocin/isotocin system (AVT/IT) in fish. EDCs are leading to the degradation of fish habitats, reducing their spawning potential and possibly their population parameters (e.g. growth, maturation), by preventing fish from breeding and rebuilding their populations. Therefore, searching for new welfare indicators such as AVT and IT and developing research procedures mimicking environmental conditions using a versatile fish model is extremely important. Fish species such as Zebrafish (Daniorerio) and round goby (Neogobiusmelanostomus) can be recommended as very suitable modelsfor studying estrogenic EDCs on the AVT/IT system and other hormones involved in the neuroendocrine regulation of physiological processes in fish.These studies would not only improve our understanding of the effects of EDCs on vertebrates but could also help safeguard the well-being of aquatic and terrestrial organisms from the harmful effects of these compounds.
Collapse
Affiliation(s)
- Hanna Kalamarz-Kubiak
- Genetics and Marine Biotechnology Department, Institute of Oceanology, Polish Academy of Sciences, PowstańcówWarszawy 55, 81-712 Sopot. Poland
| |
Collapse
|
18
|
|
19
|
Som I, Roy M, Saha R. Advances in Nanomaterial‐based Water Treatment Approaches for Photocatalytic Degradation of Water Pollutants. ChemCatChem 2020. [DOI: 10.1002/cctc.201902081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ipsita Som
- Department of ChemistryNational Institute of Technology Durgapur 713209 India
| | - Mouni Roy
- Department of ChemistryNational Institute of Technology Durgapur 713209 India
- Department of ChemistryBanasthali University Banasthali Rajasthan 304022 India
| | - Rajnarayan Saha
- Department of ChemistryNational Institute of Technology Durgapur 713209 India
| |
Collapse
|
20
|
Surface-Bound Humic Acid Increased Propranolol Sorption on Fe 3O 4/Attapulgite Magnetic Nanoparticles. NANOMATERIALS 2020; 10:nano10020205. [PMID: 31991558 PMCID: PMC7074867 DOI: 10.3390/nano10020205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/20/2022]
Abstract
This study explored the feasibility of utilizing a novel sorbent humic acid (HA) coated Fe3O4/attapulgite (MATP) magnetic nanoparticles (HMATP) for the sorption of propranolol from aqueous solutions. MATP and bare Fe3O4 nanoparticles were also synthesized under similar preparation conditions. The FTIR, Zeta potential, XRD, VSM, TEM, and TGA analyses were conducted to characterize the sorbent materials. The effects of pH, sorbent dosage, ionic strength, HA in the aqueous solution, contact time and initial sorbate concentration on sorption of propranolol were investigated using batch sorption experiments. The results suggested that the sorption capacity of HMATP showed little change from pH 4 to 10. Na+ and Ca2+ slightly inhibited the sorption of propranolol on HMATP. While HA in solution enhanced both MATP and HMATP, which indicated that HMATP can resist HA interference in water. Further, the less leaching amounts of Fe and HA suggested a good stability of HMATP. In all conditions, sorption capacity of propranolol on HMATP was obviously higher than that on MATP, which indicated that surface-coated HA played an important role in the propranolol sorption process. Electrostatic interaction, cation exchange, hydrogen bonding, and π–π electron donor acceptor interactions were considered as the sorption mechanisms.
Collapse
|
21
|
Principe SC, Augusto A, Costa TM. Point-of-care testing for measuring haemolymph glucose in invertebrates is not a valid method. CONSERVATION PHYSIOLOGY 2019; 7:coz079. [PMID: 31798882 PMCID: PMC6882269 DOI: 10.1093/conphys/coz079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Blood glucose is widely used as a physiological parameter for vertebrates and invertebrates. However, its measurement in the field is often difficult due to the need for expensive and non-portable equipment. Point-of-care (POC) devices, originally intended for human use, are increasingly being used for measuring blood parameters of animals in the field. In this regard, POC glucose meters are becoming valuable tools for conservation physiologists, as glucose can be a useful indicator of stress response. In invertebrates, the use of POC glucose meters is still scarce, and no study yet has evaluated their usability in crustaceans and molluscs. We tested if a POC device can be used to measure haemolymph glucose in two widely used models, Leptuca thayeri and Perna perna, compared with a standard laboratory method. The device was unable to measure glucose in P. perna haemolymph due to equipment inaccuracy and low glucose concentration in this species (10.13 ± 6.25 mg/dL). Additionally, despite the device being capable of measuring glucose in L. thayeri haemolymph, Bland-Altman plots showed a strong bias and wide limits of agreement, and Lin's concordance correlation coefficient showed a weak concordance between methods. When simulating experimental conditions, POC results differed from those found using the standard method. We conclude that POC glucose meters are unsuitable for assessing glucose in mussels and should not be used in crabs as results are inaccurate.
Collapse
Affiliation(s)
- Silas C Principe
- São Paulo State University (UNESP), Biosciences Institute, Botucatu Campus, R. Prof. Dr. Antônio Celso, 250, 18618-000, Botucatu, São Paulo, Brazil
- São Paulo State University (UNESP), Biosciences Institute, Coastal Campus, Praça Infante Dom Henrique, s/n, P.O. Box: 73601, 11380-972, São Vicente, São Paulo, Brazil
| | - Alessandra Augusto
- São Paulo State University (UNESP), Biosciences Institute, Coastal Campus, Praça Infante Dom Henrique, s/n, P.O. Box: 73601, 11380-972, São Vicente, São Paulo, Brazil
- São Paulo State University (UNESP), CAUNESP, Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Tânia M Costa
- São Paulo State University (UNESP), Biosciences Institute, Botucatu Campus, R. Prof. Dr. Antônio Celso, 250, 18618-000, Botucatu, São Paulo, Brazil
- São Paulo State University (UNESP), Biosciences Institute, Coastal Campus, Praça Infante Dom Henrique, s/n, P.O. Box: 73601, 11380-972, São Vicente, São Paulo, Brazil
| |
Collapse
|
22
|
AminiTabrizi R, Hassan D, Davis R, Tucker KR. Analysis of beta-blocker bioconcentration in brown planaria (Girardia dorotocephala) and its effects on regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27435-27443. [PMID: 31327142 DOI: 10.1007/s11356-019-05960-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Production, distribution, and disposal of pharmaceutical products, including beta-blockers, have become a global issue. Beta-blockers are known to persist in the environment months after their release and may result in the disruption of the homeostatic system in non-target organisms. Here, we study the bioconcentration of three of the most commonly used beta-blockers and their effect on the regeneration of Girardia dorotocephala, a freshwater brown planarian. Acute toxicity tests determined LC50s for acebutolol, metoprolol, and propranolol to be 778 mg/L, 711 mg/L, and 111 mg/L, respectively. The quantification and analysis of beta-blocker bioconcentration during acute exposure were performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). After 4 days of exposure to beta-blockers, the bioconcentration drastically decreased for all three beta-blockers at all exposure levels, suggesting that an effective mechanism to reduce uptake or excrete beta-blockers could be present. Additionally, Girardia dorotocephala were cut proximal to the head and the quality of regeneration was documented from each fragment daily. No significant difference was visually observed after 2 weeks of regeneration between the brown planarians placed in beta-blocker solution and those placed in control solution.
Collapse
Affiliation(s)
- Roya AminiTabrizi
- Bio5 Institute, The University of Arizona, 1657 East Helen Street, PO Box 210240, Tucson, AZ, 85721, USA
| | - Dalia Hassan
- Department of Chemistry, College of Arts and Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Science Building West, Box - 1652, Edwardsville, IL, 62026-1652, USA
| | - Rachel Davis
- Department of Chemistry, College of Arts and Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Science Building West, Box - 1652, Edwardsville, IL, 62026-1652, USA
| | - Kevin R Tucker
- Department of Chemistry, College of Arts and Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Science Building West, Box - 1652, Edwardsville, IL, 62026-1652, USA.
| |
Collapse
|
23
|
Zhu Y, Snape J, Jones K, Sweetman A. Spatially Explicit Large-Scale Environmental Risk Assessment of Pharmaceuticals in Surface Water in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2559-2569. [PMID: 30758963 DOI: 10.1021/acs.est.8b07054] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With improving healthcare and an aging population, the consumption of human pharmaceuticals in China has been increasing dramatically. Environmental risks posed by many active pharmaceutical ingredients (APIs) are still unknown. This study used a spatially explicit dilution-factor methodology to model predicted environmental concentrations (PECs) of 11 human-use APIs in surface water for a preliminary environmental risk assessment (ERA). Median PECs in surface water across China range between 0.01 and 8.0 × 103 ng/L for the different APIs, under a moderate patient use scenario. Higher environmental risks of APIs in surface water are in regions with high water stress, e.g., northern China. Levonorgestrel, estradiol, ethinyl estradiol and abiraterone acetate were predicted to potentially pose a high or moderate environmental risk in China if consumption levels reach those in Europe. Relative risks of these four APIs have the potential to be among those chemicals with the highest impact on surface water in China when compared to the risks associated with other regulated chemicals, including triclosan and some standard water quality parameters including BOD5 (5-day biological oxygen demand), COD (chemical oxygen demand), Cu, Zn, and Hg and linear alkylbenzene sulfonate. This method could support the regulation of this category of chemicals and risk mitigation strategies in China.
Collapse
Affiliation(s)
- Ying Zhu
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , United Kingdom
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Jason Snape
- AstraZeneca , Global Safety, Health and Environment , Alderley Park, Macclesfield SK10 4TG , United Kingdom
- School of Life Sciences, Gibbet Hill Campus , The University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Kevin Jones
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , United Kingdom
| | - Andrew Sweetman
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , United Kingdom
| |
Collapse
|
24
|
Model JFA, Dos Santos JT, Da Silva RSM, Vinagre AS. Metabolic effects of epinephrine on the crab Neohelice granulata. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:111-118. [PMID: 30735703 DOI: 10.1016/j.cbpa.2019.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022]
Abstract
Although widely known for their involvement in the control of carbohydrate and lipid metabolism of vertebrates, the participation of catecholamines (CAs) in the metabolism of invertebrates is less understood. This study was designed to identify the physiological role of Epinephrine (E) in the intermediary metabolism of the burrowing crab Neohelice granulata and how E regulates the metabolism in crabs fed with a high-carbohydrate (HC) or a high-protein (HP) diet. To answer these questions, we evaluated in vivo the effects of E injections on glucose and triglycerides in the hemolymph and tissue glycogen levels of crabs fed with HC or HP diet. An in vitro investigation was carried out to assess the direct effects of E on glycogenolysis, lipolysis and glycolysis pathways in the hepatopancreas, mandibular muscle and anterior and posterior gills of this crab. E injections increased glucose and did not affect triglycerides levels in the hemolymph of either group of crabs, and E decreased glycogen in the hepatopancreas and mandibular muscle only in HP crabs, suggesting that these effects may be mediated by the crustacean hyperglycemic hormone (CHH). When the tissues were incubated with different concentrations of E, the concentration of glucose released to the medium decreased in the hepatopancreas and posterior gills, while glucose oxidation increased in the posterior gills of HP crabs. Incubation with E did not alter any parameter in tissues of HC crabs. These effects suggest that E may be involved in the metabolic response to osmotic stress.
Collapse
|
25
|
Battaglin WA, Bradley PM, Iwanowicz L, Journey CA, Walsh HL, Blazer VS. Pharmaceuticals, hormones, pesticides, and other bioactive contaminants in water, sediment, and tissue from Rocky Mountain National Park, 2012-2013. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:651-673. [PMID: 29957431 DOI: 10.1016/j.scitotenv.2018.06.150] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 05/02/2023]
Abstract
Pharmaceuticals, hormones, pesticides, and other bioactive contaminants (BCs) are commonly detected in surface water and bed sediment in urban and suburban areas, but these contaminants are understudied in remote locations. In Rocky Mountain National Park (RMNP), Colorado, USA, BCs may threaten the reproductive success and survival of native aquatic species, benthic communities, and pelagic food webs. In 2012-2013, 67 water, 57 sediment, 63 fish, 10 frog, and 12 quality-control samples (8 water and 4 sediment) were collected from 20 sites in RMNP. Samples were analyzed for 369 parameters including 149 pharmaceuticals, 22 hormones, 137 pesticides, and 61 other chemicals or conditions to provide a representative assessment of BC occurrence within RMNP. Results indicate that BCs were detected in water and/or sediment from both remote and more accessible locations in RMNP. The most commonly detected BCs in water were caffeine, camphor, para-cresol, and DEET; and the most commonly detected BCs in sediment were indole, 3-methyl-1H-indole, para-cresol, and 2,6-dimethyl-naphthalene. Some detected contaminants, including carbaryl, caffeine, and oxycodone, are clearly attributable to direct local human input, whereas others may be transported into the park atmospherically (e.g., atrazine) or have local natural sources (e.g., para-cresol). One or more pharmaceuticals were detected in at least 1 sample from 15 of 20 sites. Most of the 29 detected pharmaceuticals are excreted primarily in human urine, not feces. Elevated net estrogenicity was observed in 18% of water samples, and elevated vitellogenin in blood was observed in 12% of male trout, both evidence of potential endocrine disruption. Hormone concentrations in sediment tended to be greater than concentrations in water. Most BCs were observed at concentrations below those not expected to pose adverse effects to aquatic life. Results indicate that even in remote locations aquatic wildlife can be exposed to pharmaceuticals, hormones, pesticides, and other bioactive contaminants.
Collapse
Affiliation(s)
- William A Battaglin
- U.S. Geological Survey, Denver Federal Center, MS 415, Denver, CO 80225-0046, United States of America.
| | - Paul M Bradley
- U.S. Geological Survey, 720 Gracern Rd, Suite 129, Columbia, SC 29210-7651, United States of America
| | - Luke Iwanowicz
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV 25430, United States of America
| | - Celeste A Journey
- U.S. Geological Survey, 720 Gracern Rd, Suite 129, Columbia, SC 29210-7651, United States of America
| | - Heather L Walsh
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV 25430, United States of America
| | - Vicki S Blazer
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV 25430, United States of America
| |
Collapse
|
26
|
Liu Z, Li M, Yi Q, Wang L, Song L. The Neuroendocrine-Immune Regulation in Response to Environmental Stress in Marine Bivalves. Front Physiol 2018; 9:1456. [PMID: 30555334 PMCID: PMC6282093 DOI: 10.3389/fphys.2018.01456] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/26/2018] [Indexed: 12/27/2022] Open
Abstract
Marine bivalves, which include many species worldwide, from intertidal zones to hydrothermal vents and cold seeps, are important components of the ecosystem and biodiversity. In their living habitats, marine bivalves need to cope with a series of harsh environmental stressors, including biotic threats (bacterium, virus, and protozoan) and abiotic threats (temperature, salinity, and pollutants). In order to adapt to these surroundings, marine bivalves have evolved sophisticated stress response mechanisms, in which neuroendocrine regulation plays an important role. The nervous system and hemocyte are pillars of the neuroendocrine system. Various neurotransmitters, hormones, neuropeptides, and cytokines have been also characterized as signal messengers or effectors to regulate humoral and cellular immunity, energy metabolism, shell formation, and larval development in response to a vast array of environmental stressors. In this review substantial consideration will be devoted to outline the vital components of the neuroendocrine system identified in bivalves, as well as its modulation repertoire in response to environmental stressors, thereby illustrating the dramatic adaptation mechanisms of molluscs.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
27
|
Khan B, Burgess RM, Fogg SA, Cantwell MG, Katz DR, Ho KT. Cellular responses to in vitro exposures to β-blocking pharmaceuticals in hard clams and Eastern oysters. CHEMOSPHERE 2018; 211:360-370. [PMID: 30077932 PMCID: PMC6158783 DOI: 10.1016/j.chemosphere.2018.07.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 05/10/2023]
Abstract
Increased consumption and improper disposal of prescription medication, such as beta (β)-blockers, contribute to their introduction into waterways and may pose threats to non-target aquatic organisms. There has been rising concern about the impacts of these prescription drugs on coastal ecosystems, especially because wastewater treatment plants are not designed to eliminate them from the discharge. Few studies have characterized the sublethal effects of β-blocker exposures in marine invertebrates. The overall aim of our research is to identify cellular responses of two commercially important filter-feeding marine bivalves, hard clams (Mercenaria mercenaria) and Eastern oysters (Crassostrea virginica), upon exposures to two β-blocker drugs, propranolol and metoprolol. In vitro exposures with bivalve digestive gland and gill tissues were conducted where tissues were separately exposed to each drug for 24 h. Tissue samples were analyzed for cellular damage (lysosomal membrane destabilization and lipid peroxidation), total antioxidant capacity, and glutathione-s-transferase activity. Elevated damage and changes in enzyme activities were noted in the exposed tissues at environmentally relevant concentrations. Differences in species and tissue sensitivities and responses to exposures were also observed. These studies enhance our understanding of the potential impacts of prescription medication on coastal organisms. Additionally, this work demonstrates that filter-feeders may serve as good model organisms to examine the effects of unintended environmental exposures to β-blockers. These studies are part of our ongoing work aimed at evaluation of sublethal biomarkers of pharmaceutical exposures and identification of key events that can contribute to the development of adverse outcome pathways (AOPs).
Collapse
Affiliation(s)
- Bushra Khan
- National Research Council Postdoctoral Research Associate, Narragansett, RI, USA.
| | - Robert M Burgess
- US Environmental Protection Agency, ORD-NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Sandra A Fogg
- Oak Ridge Associated Universities Student Services, Narragansett, RI, USA
| | - Mark G Cantwell
- US Environmental Protection Agency, ORD-NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - David R Katz
- US Environmental Protection Agency, ORD-NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Kay T Ho
- US Environmental Protection Agency, ORD-NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| |
Collapse
|
28
|
Bittner L, Teixido E, Seiwert B, Escher BI, Klüver N. Influence of pH on the uptake and toxicity of β-blockers in embryos of zebrafish, Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:129-137. [PMID: 29906695 DOI: 10.1016/j.aquatox.2018.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 05/22/2023]
Abstract
ß-Blockers are weak bases with acidity constants related to their secondary amine group. At environmental pH they are protonated with the tendency to shift to their neutral species at more alkaline pH. Here we studied the influence of pH from 5.5 to 8.6 on the toxicity of the four ß-blockers atenolol, metoprolol, labetalol and propranolol in zebrafish embryos, relating toxicity not only in a conventional way to external aqueous concentrations but also to measured internal concentrations. Besides lethality, we evaluated changes in swimming activity and heartbeat, using the Locomotor Response (LMR) method and the Vertebrate Automated Screening Technology (VAST) for high throughput imaging. Effects of metoprolol, labetalol and propranolol were detected on phenotype, heart rate and swimming activity. External effect concentrations decreased with increasing neutral fraction for all three pharmaceuticals, attributed by an enhanced uptake of the neutral species in comparison to the corresponding charged form. The LC50 of metoprolol decreased by a factor of 35 from 1.91 mM with almost complete cationic state at pH 7.0 to 0.054 mM with 8% neutral fraction at pH 8.6. For propranolol the LC50 of 2.42 mM at pH 5.5 was even 100 fold higher than the LC50 at pH 8 with 0.023 mM where 3% were neutral fraction. No effects were detected in the zebrafish embryo exposed to atenolol. The internal concentrations for metoprolol and propranolol were quantified at non-toxic concentrations and at the LC10. Apparent bioconcentration factors (BCF) ranged from 1.96 at pH 7.0 to 32.0 at pH 8.6 for metoprolol and from 1.86 at pH 5.5 to 169 at pH 8.0 for propranolol. The BCFs served to predict the internal effect concentrations from the measured external effect concentrations. Internal effect concentrations of metoprolol and propranolol were in a similar range for all pH-values and for all endpoints. Interestingly, the internal effect concentrations were in the internal concentration range of baseline toxicity, which suggests that the effects of the ß-blockers are rather unspecific, even for sublethal effects on heart rate. In summary, our data confirm that the pH-dependent toxicity related to external concentrations can be explained by toxicokinetic effects and that the internal effect concentrations are pH-independent.
Collapse
Affiliation(s)
- Lisa Bittner
- Department Cell Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Elisabet Teixido
- Department Bioanalytical Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Department Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I Escher
- Department Cell Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Environmental Toxicology, Centre for Applied Geoscience, Eberhard-Karls University, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Nils Klüver
- Department Cell Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
29
|
Shymansky T, Hughes E, Rothwell CM, Lukowiak K. Propranolol disrupts consolidation of emotional memory in Lymnaea. Neurobiol Learn Mem 2018; 149:1-9. [DOI: 10.1016/j.nlm.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 01/30/2023]
|
30
|
Vogt ÉL, Model JFA, Vinagre AS. Effects of Organotins on Crustaceans: Update and Perspectives. Front Endocrinol (Lausanne) 2018; 9:65. [PMID: 29535684 PMCID: PMC5835110 DOI: 10.3389/fendo.2018.00065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
Organotins (OTs) are considered some of the most toxic chemicals introduced into aquatic environments by anthropogenic activities. They are widely used for agricultural and industrial purposes and as antifouling additives on boat hull's paints. Even though the use of OTs was banned in 2008, elevated levels of OTs can still be detected in aquatic environments. OTs' deleterious effects upon wildlife and experimental animals are well documented and include endocrine disruption, immunotoxicity, neurotoxicity, genotoxicity, and metabolic dysfunction. Crustaceans are key members of zooplankton and benthic communities and have vital roles in food chains, so the endocrine-disrupting effects of tributyltin (TBT) on crustaceans can affect other organisms. TBT can disrupt carbohydrate and lipid homeostasis of crustaceans by interacting with retinoid X receptor (RXR) and crustacean hyperglycemic hormone (CHH) signaling. Moreover, it can also interact with other nuclear receptors, disrupting methyl farnesoate and ecdysteroid signaling, thereby altering growth and sexual maturity, respectively. This compound also interferes in cytochrome P450 system disrupting steroid synthesis and reproduction. Crustaceans are also important fisheries worldwide, and its consumption can pose risks to human health. However, some questions remain unanswered. This mini review aims to update information about the effects of OTs on the metabolism, growth, and reproduction of crustaceans; to compare with known effects in mammals; and to point aspects that still needs to be addressed in future studies. Since both macrocrustaceans and microcrustaceans are good models to study the effects of sublethal TBT contamination, novel studies should be developed using multibiomarkers and omics technology.
Collapse
Affiliation(s)
- Éverton L. Vogt
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jorge F. A. Model
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Anapaula S. Vinagre
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
31
|
Sachett A, Bevilaqua F, Chitolina R, Garbinato C, Gasparetto H, Dal Magro J, Conterato GM, Siebel AM. Ractopamine hydrochloride induces behavioral alterations and oxidative status imbalance in zebrafish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:194-201. [PMID: 29405861 DOI: 10.1080/15287394.2018.1434848] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The occurrence of ractopamine (RAC) hydrochloride in water bodies is of significant concern due to its ecological impacts and toxicity to humans. RAC hydrochloride is a β-adrenergic agonist drug used as a feed additive to (1) improve feed efficiency, (2) rate of weight gain, and (3) increase carcass leanness in animals raised for their meat. This drug is excreted by animals in urine and introduced into the environment affecting nontarget organisms including fish. In wastewater released from farms, RAC concentrations were detected from 0.124 µg/L to 30.1 µg/L, and in levels ranging from 1.3 × 10-5 to 5.4 × 10-4 μg/L in watersheds. The aim of this study was to examine the effects of exposure to RAC at 0.1, 0.2, 0.85, 8.5, or 85 µg/L dissolved in water on behavior and oxidative status in adult zebrafish. At 0.85 µg/L, RAC treatment increased exploratory behavior of zebrafish; while at 8.5 µg/L, decreased locomotor and exploratory activities were noted. With respect to oxidative stress biomarkers, results showed that RAC at 0.2 µg/L induced lipid peroxidation and elevated total thiol content in zebrafish brain. All drug tested concentrations produced a fall in nonprotein thiol content. Finally, RAC at 0.85, 8.5, or 85 µg/L increased catalase enzyme activity. Our results demonstrated that the exposure to RAC induced behavioral alterations and oxidative stress in zebrafish.
Collapse
Affiliation(s)
- Adrieli Sachett
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Fernanda Bevilaqua
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Rafael Chitolina
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Cristiane Garbinato
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Henrique Gasparetto
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Jacir Dal Magro
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Greicy M Conterato
- b Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais , Universidade Federal de Santa Catarina, Campus de Curitibanos , Curitibanos , SC , Brazil
- c Programa de Pós-Graduação em Farmácia, UFSC , Campus Reitor João David Ferreira Lima , Florianópolis , SC , Brazil
| | - Anna M Siebel
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| |
Collapse
|
32
|
Gröner F, Höhne C, Kleiner W, Kloas W. Chronic exposure to the ß-blocker metoprolol reduces growth and alters gene expression of gonadotropins and vitellogenin in Nile tilapia (Oreochromis niloticus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:271-279. [PMID: 28359993 DOI: 10.1016/j.ecoenv.2017.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
Knowledge of the occurrence and impacts of human pharmaceuticals in the aquatic environment is increasing since many years. Ecotoxicological studies mainly focus on acute effects though; chronic exposure studies are still rare. ß-adrenergic receptor antagonists (ß-blockers) are widely detected in the aquatic environment and likely alter the physiology of aquatic vertebrates due to a well-conserved adrenergic system. In this study, Nile tilapia (Oreochromis niloticus) were exposed to four different concentrations (4×10-10M, 4×10-9M, 4×10-8M and 4×10-7M) of metoprolol (ß1-blocker) from fertilized egg until 80 days post-hatch. Hatching and survival were not affected but growth was reduced almost dose-dependently after 30 and 80 days post-hatch. Histopathological evaluation of the gills revealed the tendency of mild alterations with proliferation of mucous/chloride cells and infiltration by leucocytes as the main findings. The transcriptional responses of both pituitary gonadotropins (luteinizing hormone and follicle stimulating hormone) as well as the estrogenic biomarker vitellogenin indicated moderately altered endocrine processes due to metoprolol exposure at the concentrations chosen. In contrast, hepatic detoxification mechanisms displayed only little to no effects. Based on this study, the overall toxicity of metoprolol in fish at environmentally relevant concentrations seems to be rather low.
Collapse
Affiliation(s)
- Frederike Gröner
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany.
| | - Christin Höhne
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Wibke Kleiner
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany; Department of Endocrinology, Institute of Biology, Humboldt University, Invalidenstr. 42, 10099 Berlin, Germany
| |
Collapse
|
33
|
Catecholamines are produced by ascidian immune cells: The involvement of PKA and PKC in the adrenergic signaling pathway. Brain Behav Immun 2017; 61:289-296. [PMID: 28089640 DOI: 10.1016/j.bbi.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
The stress response is a complex mechanism, which includes changes in the immune system to enable organisms to maintain homeostasis. The neurohormones dopamine, noradrenaline (NA) and adrenalin are responsible for the physiological modulations that occur during acute stress. In the present study, we analyzed the effects of NA on the immune system specific to nitric-oxide (NO) production by subpopulations of immune cells (hemocytes) of the ascidian Phallusia nigra. We also investigated the capability of immune cells to produce catecholamine (CA). Finally, we tested the involvement of protein kinase A (PKA) and C (PKC) in the NA downstream signaling pathway. The results revealed that NA can reduce NO production by P. nigra hemocytes threefold, and that signet-ring cells, univacuolar refractile granulocytes and morula cells are the cell types most involved in this event. A challenge effected with Zymosan A induced CA production, and co-incubation with both inhibitors of the second messengers PKA and PKC revealed the involvement of these molecules in the adrenergic pathway of P. nigra hemocytes. Taken together, these results suggest that NO production can be down-regulated by NA through α- and β-adrenoceptors via the second messengers PKA and PKC.
Collapse
|
34
|
Mitchell KM, Moon TW. Behavioral and biochemical adjustments of the zebrafish Danio rerio exposed to the β-blocker propranolol. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:105-114. [DOI: 10.1016/j.cbpb.2015.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 02/05/2023]
|
35
|
Assessing Potential Vulnerability and Response of Fish to Simulated Avian Predation after Exposure to Psychotropic Pharmaceuticals. TOXICS 2016; 4:toxics4020009. [PMID: 29051414 PMCID: PMC5606628 DOI: 10.3390/toxics4020009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 11/24/2022]
Abstract
Psychotropic pharmaceuticals present in the environment may impact organisms both directly and via interaction strengths with other organisms, including predators; therefore, this study examined the potential effects of pharmaceuticals on behavioral responses of fish to avian predators. Wild-caught juvenile perch (Perca fluviatilis) were assayed using a striking bird model after a seven-day exposure to psychotropic pharmaceuticals (the antidepressants fluoxetine or sertraline, or the β-blocker propranolol) under the hypotheses that exposure would increase vulnerability to avian predation via increasing the probability of predator encounter as well as degrading evasive behaviors upon encounter. None of the substances significantly affected swimming activity of the fish, nor did they increase vulnerability by affecting encounter probability or evasive endpoints compared to control treatments. Counter to our expectations, fish exposed to 100 μg/L fluoxetine (but no other concentrations or pharmaceuticals) were less likely to enter the open area of the arena, i.e., less likely to engage in risky behavior that could lead to predator encounters. Additionally, all fish exposed to environmentally relevant, low concentrations of sertraline (0.12 μg/L) and propranolol (0.1 μg/L) sought refuge after the simulated attack. Our unexpected results warrant further research as they have interesting implications on how these psychotropic pharmaceuticals may affect predator-prey interactions spanning the terrestrial-aquatic interface.
Collapse
|
36
|
Ding J, Lu G, Liu J, Yang H, Li Y. Uptake, depuration, and bioconcentration of two pharmaceuticals, roxithromycin and propranolol, in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 126:85-93. [PMID: 26722979 DOI: 10.1016/j.ecoenv.2015.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
The objective of the present study was to investigate the uptake, depuration, and bioconcentration of two pharmaceuticals, roxithromycin (ROX) and propranolol (PRP), in Daphnia magna via aqueous exposure. Additionally, dietary and pH effects on the bioconcentration of two pharmaceuticals in daphnia were studied. During the 24-h uptake phase followed by the 24-h depuration phase, the uptake rate constants (k(u)) of ROX for daphnia were 9.21 and 2.77 L kg(-1) h(-1), corresponding to the exposure concentrations of 5 and 100 μg L(-1), respectively; For PRP at the nominal concentrations of 5 and 100 μg L(-1), k(u) were 2.29 and 0.99 L kg(-1) h(-1), respectively. The depuration rate constants (k(d)) of ROX in daphnia, at the exposure concentrations of 5 and 100 μg L(-1), were 0.0985 and 0.207 h(-1), respectively; while those of PRP were 0.0276 and 0.0539 h(-1) for the nominal concentrations of 5 and 100 μg L(-1), respectively. With the decreasing exposure concentrations, the bioconcentration factors (BCFs) in daphnia ranged from 13.4 to 93.5 L kg(-1) for ROX, and 18.4 to 83.0 L kg(-1) for PRP, revealing the considerable accumulation potential of these two pharmaceuticals. Moreover, after 6h exposure, the body burdens of ROX and PRP in dead daphnia were 4.98-6.14 and 7.42-12.9 times higher than those in living daphnia, respectively, implying that body surface sorption dominates the bioconcentration of the two pharmaceuticals in daphnia. In addition, the presence of algal food in the media could significantly elevate the kd values for both ROX and PRP, thereby restraining their bioconcentration in daphnia. A pH-dependent bioconcentration study revealed that the bioconcentration of the two pharmaceuticals in daphnia increased with increasing pH levels, which ranged from 7 to 9. Finally, a model was developed to estimate the relationships between pH and the BCFs of the two pharmaceuticals in zooplankton. The predicted values based on this model were highly consistent with wildlife monitoring data, implying that this model will be useful in identifying the bioaccumulation risks that pharmaceuticals pose to zooplankton.
Collapse
Affiliation(s)
- Jiannan Ding
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haohan Yang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
37
|
Sun L, Wang S, Lin X, Tan H, Fu Z. Early Life Exposure to Ractopamine Causes Endocrine-Disrupting Effects in Japanese Medaka (Oryzias latipes). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:150-155. [PMID: 26395355 DOI: 10.1007/s00128-015-1659-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
β-Agonists, which are used as human pharmaceuticals or feed additives, have been detected in aquatic environments. β-Agonists have also been proposed for use in aquaculture. However, there are limited data available regarding the adverse effects of β-agonists in aquatic organisms. In this study, ractopamine was selected as the representative β-agonist, and medaka embryos were exposed at concentrations ranging from 5 to 625 μg/L for 44 days. In contrast to what has been found in mammals, ractopamine caused no growth response in medaka. However, the transcriptional changes of genes related to the hypothalamic-pituitary-gonadal (HPG) axis, especially in females, suggested that β-agonists may have the potential to disrupt the endocrine system. Moreover, genes involved in anti-oxidative activity or detoxification were affected in a gender-specific manner. These findings, particularly the effects on the endocrine system of fish, will advance our understanding of the ecotoxicity of β-agonists.
Collapse
Affiliation(s)
- Liwei Sun
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Sisi Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Xia Lin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Hana Tan
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
38
|
Roberts J, Kumar A, Du J, Hepplewhite C, Ellis DJ, Christy AG, Beavis SG. Pharmaceuticals and personal care products (PPCPs) in Australia's largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1625-1637. [PMID: 26456435 DOI: 10.1016/j.scitotenv.2015.03.145] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 05/18/2023]
Abstract
Reports of pharmaceuticals in STPs and aquatic systems in the northern hemisphere have surged over the last decade. However, the Australian evidence base is relatively limited, and information on the role of seasonal dilution in attenuation of micropollutants is also scarce. We investigated the removal of 11 PPCPs during sewage treatment in Australia's largest inland STP, and concentrations in the effluent-receiving environment under 2 dilution scenarios. Five treatment stages were sampled, as well as upstream and downstream of the effluent outfall in the Lower Molonglo/Upper Murrumbidgee Catchment, which is dominated by effluent flow during dry periods. Compounds of interest include carbamazepine (CBZ), venlafaxine (VEN), sertraline (SER), fluoxetine (FLX), atenolol (ATL), sotalol (SOT), metoprolol (MET) propranolol (PRL), chlorpheniramine (CHP), diphenhydramine (DPH), and triclosan (TCS). Removal of most pharmaceuticals in the STP was incomplete, although the degree of removal was highly variable for compounds in the same therapeutic class, and for the same compounds in different seasons. Removal efficiency was highest for TCS and lowest for VEN (effluent concentrations 5-7 times higher than influent). Influent mass loads and removal efficiencies of cardiovascular medicines varied considerably. Effluent loads were highest for CBZ, VEN and SOT in both seasons (up to 64 g/day). The dilution conditions were clearly reflected in the 'zone of impact' of PPCPs in the catchment. This study confirms that risk assessment models for PPCPs must account for seasonality of influent loads and removal efficiency of STPs, and site validation is critical for predictive capability. Seasonal dilution can play an important role in ameliorating potentially adverse effects related to mixtures of PPCPs in effluent-impacted systems.
Collapse
Affiliation(s)
- Jenna Roberts
- CSIRO Land and Water, Glen Osmond, SA 5064, Australia; Research School of Earth Sciences, Australian National University, Acton, ACT 2601, Australia.
| | - Anupama Kumar
- CSIRO Land and Water, Glen Osmond, SA 5064, Australia
| | - Jun Du
- CSIRO Land and Water, Glen Osmond, SA 5064, Australia
| | | | - David J Ellis
- Research School of Earth Sciences, Australian National University, Acton, ACT 2601, Australia
| | - Andrew G Christy
- Research School of Earth Sciences, Australian National University, Acton, ACT 2601, Australia
| | - Sara G Beavis
- Fenner School of Environment and Society, Linnaeus Way, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
39
|
Peng L, Chen X, Xu Y, Liu Y, Gao SH, Ni BJ. Biodegradation of pharmaceuticals in membrane aerated biofilm reactor for autotrophic nitrogen removal: A model-based evaluation. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Ding J, Lu G, Li S, Nie Y, Liu J. Biological fate and effects of propranolol in an experimental aquatic food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 532:31-39. [PMID: 26057722 DOI: 10.1016/j.scitotenv.2015.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/08/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate the trophic transfer of the β-blocker propranolol (PRP) in an experimental aquatic food chain involving the green algae Scenedesmus obliquus, the water flea Daphnia magna and the crucian carp Carassius auratus, as well as the metabolism and effects of PRP in the liver of crucian carp. After a 48 h PRP aqueous exposure for algae, with a subsequent 48 h dietary exposure for daphnia and an 8d dietary exposure for crucian carp, PRP was observed in each trophic level, despite significant bioaccumulation did not occur in daphnia and crucian carp. A portion of the absorbed PRP was metabolized by the crucian carp to N-desisopropylated propranolol, propranolol glucuronic acid, monohydroxylated propranolol, hydroxypropranolol glucuronide and dihydroxypropranolol glucuronide, which were similar to those in mammals. In addition, multiple biomarkers in the liver of crucian carp (7-ethoxyresorufin O-deethylase, EROD; 7-benzyloxyresorufin O-dealkylation, BROD; superoxide dismutase, SOD and malondialdehyde, MDA) were measured. BROD and MDA were not significantly affected by PRP, while EROD and SOD did change significantly during the 8d dietary exposure. This work indicated that the trophic transfer of PRP, resulting in biochemical perturbations of fish biological systems, should be a concern for the assessment of the environmental risks to aquatic food chains.
Collapse
Affiliation(s)
- Jiannan Ding
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Sheng Li
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yang Nie
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
41
|
Fabbri E, Moon TW. Adrenergic signaling in teleost fish liver, a challenging path. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:74-86. [PMID: 26482086 DOI: 10.1016/j.cbpb.2015.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/09/2015] [Accepted: 10/12/2015] [Indexed: 01/15/2023]
Abstract
Adrenergic receptors or adrenoceptors (ARs) belong to the huge family of G-protein coupled receptors (GPCRs) that have been well characterized in mammals primarily because of their importance as therapeutic drug targets. ARs are found across vertebrates and this review examines the path to identify and characterize these receptors in fish with emphasis on hepatic metabolism. The absence of reliable and specific pharmacological agents led investigators to define the fish hepatic AR system as relying solely on a β2-AR, cAMP-dependent signaling transduction pathway. The use of calcium-radiometric imaging, purified membranes for ligand-binding studies, and perifused rather than static cultured fish hepatocytes, unequivocally demonstrated that both α1- and β2-AR signaling systems existed in the fish liver consistent with studies in mammals. Additionally, the use of molecular tools and phylogenetic analysis clearly demonstrated the existence of multiple AR-types and -subtypes in hepatic and other tissues of a number of fish species. This review also examines the use of β-blockers as pharmaceuticals and how these drugs that are now in the aquatic environment may be impacting aquatic species including fish and some invertebrates. Clearly there is a large conservation of structure and function within the AR system of vertebrates but there remain a number of key questions that need to be addressed before a clear understanding of these systems can be resolved.
Collapse
Affiliation(s)
- Elena Fabbri
- University of Bologna, Department of Biological, Geological and Environmental Sciences Unit of Ravenna, via S. Alberto 163, 48124 Ravenna, Italy.
| | - Thomas W Moon
- University of Ottawa, Department of Biology and the Centre for Advance Research in Environmental Genomics, 30 Marie Curie, K1N 6N5 Ottawa, Canada
| |
Collapse
|
42
|
Sun L, Liu F, Chen H, Wang S, Lin X, Chi J, Zhu Q, Fu Z. Transcriptional Responses in Adult Zebrafish (Danio rerio) Exposed to Propranolol and Metoprolol. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1352-1361. [PMID: 26088506 DOI: 10.1007/s10646-015-1510-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
β-adrenergic receptor blockers (β-blockers) are widely detected in the aquatic environment; however, the effects of these pharmaceuticals on aquatic organisms remain uncertain. In this study, adult zebrafish were exposed to two different β-blockers, propranolol and metoprolol, for 96 h. After exposure, the transcriptional responses of genes encoding the β-adrenergic receptor (i.e., adrb1, adrb2a, adrb2b, adrb3a and adrb3b), genes involved in detoxification and the stress response (i.e., hsp70, tap, mt1 and mt2), and genes related to the antioxidant system (i.e., cu/zn-sod, mn-sod, cat and gpx) were examined in the brain, liver and gonad. Our results show that both propranolol and metoprolol exposure changes the mRNA level of β-adrenergic receptors, indicating clear pharmacological target engagement of the β-blockers. The transcription of genes related to antioxidant responses and detoxification process were induced, suggesting that β-blocker exposure can activate the detoxification process and result in oxidative stress in fish. Moreover, the transcriptional responses displayed substantial tissue- and gender-specific effects. Considering the environmental concentrations of propranolol and metoprolol, these results suggest that these pharmaceuticals are unlikely to pose a risk to fish. However, the impacts in prolonged exposure, along with other possible side effects due to β-adrenergic receptor blockade, should be further assessed.
Collapse
Affiliation(s)
- Liwei Sun
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Overturf MD, Anderson JC, Pandelides Z, Beyger L, Holdway DA. Pharmaceuticals and personal care products: A critical review of the impacts on fish reproduction. Crit Rev Toxicol 2015; 45:469-91. [PMID: 25945515 DOI: 10.3109/10408444.2015.1038499] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research in environmental toxicology involving pharmaceuticals and personal care products (PPCPs) has increased greatly over the last 10-15 years. Much research has been focused on the endocrine-disrupting potential of PPCPs, as they relate to negative population impacts of aquatic organisms. This review assesses the current data on the reported effects of PPCPs on fish reproduction with an emphasis on fecundity, a predictor of population effects. Studies of both individual PPCPs and PPCP mixtures are presented. As the majority of individual PPCP studies reviewed demonstrate negative effects on fish fecundity, we relate these findings to detected surface water concentrations of these compounds. Very few studies involving PPCP mixtures have been conducted; however, the need for these types of studies is warranted as fish are most likely exposed to mixtures of PPCPs in the wild. In addition, laboratory and field assessments of wastewater treatment plant (WWTP) effluents, a major source of PPCPs, are reviewed. Much of the data provided from these assessments are variable and do not generally demonstrate negative impacts on reproduction, or the studies are unable to directly associate observed effects with WWTP effluents. Finally, future research considerations are outlined to provide an avenue into understanding how wild populations of fish are affected by PPCPs. These considerations are aimed at determining the adaptation potential of fish exposed to mixtures of PPCPs over multiple generations. As global use of PPCPs continually rises, the need to discern the effects of chronic exposure to PPCPs is greatly increased.
Collapse
Affiliation(s)
- Matthew D Overturf
- Faculty of Science, University of Ontario Institute of Technology , Oshawa, ON , Canada
| | | | | | | | | |
Collapse
|
44
|
de Oliveira LLD, Antunes SC, Gonçalves F, Rocha O, Nunes B. Acute and chronic ecotoxicological effects of four pharmaceuticals drugs on cladoceranDaphnia magna. Drug Chem Toxicol 2015; 39:13-21. [DOI: 10.3109/01480545.2015.1029048] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Gröner F, Ziková A, Kloas W. Effects of the pharmaceuticals diclofenac and metoprolol on gene expression levels of enzymes of biotransformation, excretion pathways and estrogenicity in primary hepatocytes of Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2015; 167:51-7. [PMID: 25236869 DOI: 10.1016/j.cbpc.2014.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/22/2022]
Abstract
The expression levels of key enzymes of the xenobiotic metabolism and excretion pathways concerning biotransformation phases I (cytochrome P4501A), II (glutathione S-transferase) and III (multidrug resistance protein) and of the estrogenic biomarker vitellogenin (vtg) were investigated in primary hepatocytes isolated from male Nile tilapia (Oreochromis niloticus) after exposure to diclofenac and metoprolol, two pharmaceuticals prevalent in the aquatic environment worldwide. The lowest test concentration (4×10(-9) M) was chosen to reflect an environmentally relevant exposure situation. Furthermore concentration dependent effects were investigated. Therefore a series of concentrations higher than the environmentally relevant range were used (10- and 100-fold). Diclofenac significantly induced all chosen biomarkers already at the environmentally relevant concentration indicating that biotransformation and elimination occur via the pathways under investigation. Estrogenic potential of this substance was demonstrated by VTG up-regulation as well. Metoprolol was either less effective than diclofenac or metabolized using different pathways. Key enzymes of the xenobiotic metabolism were less (CYP1A, GST) or not (MDRP) induced and a mild increase in vtg mRNA was detected only for 4×10(-8) M. No concentration-dependency for metoprolol was found.
Collapse
Affiliation(s)
- Frederike Gröner
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany.
| | - Andrea Ziková
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany; Department of Endocrinology, Institute of Biology, Humboldt University, Invalidenstr. 42, 10099 Berlin, Germany
| |
Collapse
|
46
|
Sun L, Xin L, Peng Z, Jin R, Jin Y, Qian H, Fu Z. Toxicity and enantiospecific differences of two β-blockers, propranolol and metoprolol, in the embryos and larvae of zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2014; 29:1367-1378. [PMID: 23661550 DOI: 10.1002/tox.21867] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
The risk presented by β-blockers on aquatic organisms remains uncertain, particularly given the enantiospecific differences in toxicity of chiral β-blockers. In this study, the toxicity of two β-blockers, propranolol and metoprolol, was determined. The 96-h LC50 of propranolol in the zebrafish larvae was 2.48 mg/L, whereas 50 mg/L metoprolol did not result in death. Both β-blockers decreased the heart rate and hatching rate and increased the mortality of the zebrafish embryos. Among these indicators, the heart rate was the most sensitive. However, the acute larval and embryo toxicity results displayed no enantioselectivity. Additionally, the transcriptional response of the genes encoding the β-adrenergic receptors and those involved in other physiological processes, including the antioxidant response, detoxification, and apoptosis, in zebrafish larvae exposed to the β-blockers was examined. Although the changes in gene transcription were fairly minor, significant enantioselectivity was observed for β-blockers, suggesting that the transcriptional response was more sensitive for the evaluation of enantiospecific toxicity. Based on these results, the pharmaceutical drugs were not expected to pose a risk to fish; however, this conclusion should not be considered final. These results also demonstrated that the enantiospecific toxicity of chiral β-blockers should be investigated when performing an ecological risk assessment.
Collapse
Affiliation(s)
- Liwei Sun
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Feiner M, Laforsch C, Letzel T, Geist J. Sublethal effects of the beta-blocker sotalol at environmentally relevant concentrations on the New Zealand mudsnail Potamopyrgus antipodarum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2510-2515. [PMID: 25132045 DOI: 10.1002/etc.2699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/17/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
Monitoring sublethal effects of pharmaceuticals on nontarget species in aquatic environments has become an important topic in ecotoxicology, yet few studies have been conducted concerning the effects of beta-blockers on aquatic organisms. The present study investigated the effects of the beta-blocker sotalol (SOT) at 3 environmentally relevant concentrations on life-history traits of the New Zealand mudsnail Potamopyrgus antipodarum. Based on the pharmacodynamic properties of SOT, the authors hypothesized reduced numbers of embryos in the brood pouches, decelerated growth of adult snails, and smaller size of neonates, but no effect on mortality rates of adults. Contrary to the hypothesis, the total number of embryos was significantly higher after 56 d of exposure at nominal concentrations of 0.05 µg/L and 1.0 µg/L by 107% and 73%, respectively. No differences in embryo numbers were observed at earlier time-points. Therefore, the mode of action seems to be an extension of the reproductive period rather than an increase of the embryo production. Furthermore, our results indicate a hormetic dose-response relationship, because no effects were observed at the highest test-concentration (6.5 µg/L). Mortality, growth of adult snails, and neonate sizes were not affected by the beta-blocker. Given the strong influence on reproduction, the effects of sublethal concentrations of SOT and other beta-blockers deserve better consideration in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Mona Feiner
- Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
| | | | | | | |
Collapse
|
48
|
Steinbach C, Burkina V, Fedorova G, Grabicova K, Stara A, Velisek J, Zlabek V, Schmidt-Posthaus H, Grabic R, Kocour Kroupova H. The sub-lethal effects and tissue concentration of the human pharmaceutical atenolol in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:209-218. [PMID: 25129157 DOI: 10.1016/j.scitotenv.2014.07.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/16/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
Atenolol is a highly prescribed anti-hypertensive pharmaceutical and a member of the group of β-blockers. It has been detected at concentrations ranging from ng L(-1) to low μg L(-1) in waste and surface waters. The present study aimed to assess the sub-lethal effects of atenolol on rainbow trout (Oncorhynchus mykiss) and to determine its tissue-specific bioconcentration. Juvenile rainbow trout were exposed for 21 and 42 days to three concentration levels of atenolol (1 μg L(-1) - environmentally relevant concentration, 10 μg L(-1), and 1000 μg L(-1)). The fish exposed to 1 μg L(-1) atenolol exhibited a higher lactate content in the blood plasma and a reduced haemoglobin content compared with the control. The results show that exposure to atenolol at concentrations greater than or equal to 10 μg L(-1) significantly reduces both the haematocrit value and the glucose concentration in the blood plasma. The activities of the studied antioxidant enzymes (catalase and superoxide dismutase) were not significantly affected by atenolol exposure, and only the highest tested concentration of atenolol significantly reduced the activity of glutathione reductase. The activities of selected CYP450 enzymes were not affected by atenolol exposure. The histological changes indicate that atenolol has an effect on the vascular system, as evidenced by the observed liver congestion and changes in the pericardium and myocardium. Atenolol was found to have a very low bioconcentration factor (the highest value found was 0.27). The bioconcentration levels followed the order liver>kidney>muscle. The concentration of atenolol in the blood plasma was below the limit of quantification (2.0 ng g(-1)). The bioconcentration factors and the activities of selected CYP450 enzymes suggest that atenolol is not metabolised in the liver and may be excreted unchanged.
Collapse
Affiliation(s)
- Christoph Steinbach
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany, Czech Republic.
| | - Viktoriia Burkina
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany, Czech Republic
| | - Ganna Fedorova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany, Czech Republic
| | - Katerina Grabicova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany, Czech Republic
| | - Alzbeta Stara
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany, Czech Republic
| | - Josef Velisek
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany, Czech Republic
| | - Vladimir Zlabek
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany, Czech Republic
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Laenggass-Strasse 122, 3001 Bern, Switzerland
| | - Roman Grabic
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany, Czech Republic
| | - Hana Kocour Kroupova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany, Czech Republic
| |
Collapse
|
49
|
Gesto M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL, Conde-Sieira M. Is plasma cortisol response to stress in rainbow trout regulated by catecholamine-induced hyperglycemia? Gen Comp Endocrinol 2014; 205:207-17. [PMID: 24735744 DOI: 10.1016/j.ygcen.2014.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 01/28/2023]
Abstract
Based on previous studies we hypothesize that under stress conditions catecholamine-induced hyperglycemia contributes to enhance cortisol production in head kidney of rainbow trout. Therefore, treatment with propranolol (β-adrenoceptor blocker) should reduce the hyperglycemia elicited by stress and, therefore, we expected reduced glucosensing response and cortisol production in head kidney. Propranolol treatment was effective in blocking most of the effects of catecholamines in liver energy metabolism resulting in a lower glycemia in stressed fish. The decreased glycemia of stressed fish treated with propranolol was observed along with reduced transcription of genes involved in the cortisol synthetic pathway, which supports our hypothesis. However, changes in putative glucosensing parameters assessed in head kidney were scarce and in general did not follow changes noted in glucose levels in plasma. Furthermore, circulating cortisol levels did not change in parallel with changes in glycemia. As a whole, the present results suggest that glycemia could participate in the regulation of cortisol synthetic pathways but other factors are also likely involved. Propranolol effects on trout stress response were different depending on time passed after stress onset; the direct or indirect involvement of catecholaminergic response in the regulation of cortisol production and release deserves further investigation.
Collapse
Affiliation(s)
- Manuel Gesto
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Cristina Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Marcos A López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain.
| |
Collapse
|
50
|
McRobb FM, Kufareva I, Abagyan R. In silico identification and pharmacological evaluation of novel endocrine disrupting chemicals that act via the ligand-binding domain of the estrogen receptor α. Toxicol Sci 2014; 141:188-97. [PMID: 24928891 DOI: 10.1093/toxsci/kfu114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) pose a significant threat to human health, society, and the environment. Many EDCs elicit their toxic effects through nuclear hormone receptors, like the estrogen receptor α (ERα). In silico models can be used to prioritize chemicals for toxicological evaluation to reduce the amount of costly pharmacological testing and enable early alerts for newly designed compounds. However, many of the current computational models are overly dependent on the chemistry of known modulators and perform poorly for novel chemical scaffolds. Herein we describe the development of computational, three-dimensional multi-conformational pocket-field docking, and chemical-field docking models for the identification of novel EDCs that act via the ligand-binding domain of ERα. These models were highly accurate in the retrospective task of distinguishing known high-affinity ERα modulators from inactive or decoy molecules, with minimal training. To illustrate the utility of the models in prospective in silico compound screening, we screened a database of over 6000 environmental chemicals and evaluated the 24 top-ranked hits in an ERα transcriptional activation assay and a differential scanning fluorimetry-based ERα binding assay. Promisingly, six chemicals displayed ERα agonist activity (32nM-3.98μM) and two chemicals had moderately stabilizing effects on ERα. Two newly identified active compounds were chemically related β-adrenergic receptor (βAR) agonists, dobutamine, and ractopamine (a feed additive that promotes leanness in cattle and poultry), which are the first βAR agonists identified as activators of ERα-mediated gene transcription. This approach can be applied to other receptors implicated in endocrine disruption.
Collapse
Affiliation(s)
- Fiona M McRobb
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093
| |
Collapse
|