1
|
Bellier A, Tafforeau P, Bouziane A, Angelloz-Nicoud T, Lee PD, Walsh C. Micro to macro scale anatomical analysis of the human hippocampal arteries with synchrotron hierarchical phase-contrast tomography. Surg Radiol Anat 2024; 46:1753-1760. [PMID: 39225863 PMCID: PMC11458648 DOI: 10.1007/s00276-024-03467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To date, no non-invasive imaging modality has been employed to profile the structural intricacies of the hippocampal arterial microvasculature in humans. We hypothesised that synchrotron-based imaging of the human hippocampus would enable precise characterisation of the arterial microvasculature. METHODS Two preserved human brains from, a 69-year-old female and a 63-year-old male body donors were imaged using hierarchical phase-contrast tomography (HiP-CT) with synchrotron radiation at multiple voxel resolutions from 25.08 μm down to 2.45 μm. Subsequent manual and semi-automatic artery segmentation were performed followed by morphometric analyses. These data were compared to published data from alternative methodologies. RESULTS HiP-CT made it possible to segment in context the arterial architecture of the human hippocampus. Our analysis identified anterior, medial and posterior hippocampal arteries arising from the P2 segment of the posterior cerebral artery on the image slices. We mapped arterial branches with external diameters greater than 50 μm in the hippocampal region. We visualised vascular asymmetry and quantified arterial structures with diameters as small as 7 μm. CONCLUSIONS Through the application of HiP-CT, we have provided the first imaging visualisation and quantification of the arterial system of the human hippocampus at high resolution in the context of whole brain imaging. Our results bridge the gap between anatomical and histological scales.
Collapse
Affiliation(s)
- Alexandre Bellier
- Department of Anatomy (LADAF), Univ. Grenoble Alpes, Domaine de La Merci, Place du commandant Nal, La Tronche, 38700, France.
- Univ. Grenoble Alpes, AGEIS laboratory, Place du commandant Nal, Domaine de La Merci, La Tronche, 38700, France.
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble, 38000, France.
| | - P Tafforeau
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble, 38000, France
| | - A Bouziane
- Department of Anatomy (LADAF), Univ. Grenoble Alpes, Domaine de La Merci, Place du commandant Nal, La Tronche, 38700, France
| | - T Angelloz-Nicoud
- Department of Anatomy (LADAF), Univ. Grenoble Alpes, Domaine de La Merci, Place du commandant Nal, La Tronche, 38700, France
| | - P D Lee
- Centre for Advanced Biomedical Imaging, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - C Walsh
- Centre for Advanced Biomedical Imaging, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
2
|
Crocetta A, Liloia D, Costa T, Duca S, Cauda F, Manuello J. From gut to brain: unveiling probiotic effects through a neuroimaging perspective-A systematic review of randomized controlled trials. Front Nutr 2024; 11:1446854. [PMID: 39360283 PMCID: PMC11444994 DOI: 10.3389/fnut.2024.1446854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The gut-brain axis, a bidirectional communication network between the gastrointestinal system and the brain, significantly influences mental health and behavior. Probiotics, live microorganisms conferring health benefits, have garnered attention for their potential to modulate this axis. However, their effects on brain function through gut microbiota modulation remain controversial. This systematic review examines the effects of probiotics on brain activity and functioning, focusing on randomized controlled trials using both resting-state and task-based functional magnetic resonance imaging (fMRI) methodologies. Studies investigating probiotic effects on brain activity in healthy individuals and clinical populations (i.e., major depressive disorder and irritable bowel syndrome) were identified. In healthy individuals, task-based fMRI studies indicated that probiotics modulate brain activity related to emotional regulation and cognitive processing, particularly in high-order areas such as the amygdala, precuneus, and orbitofrontal cortex. Resting-state fMRI studies revealed changes in connectivity patterns, such as increased activation in the Salience Network and reduced activity in the Default Mode Network. In clinical populations, task-based fMRI studies showed that probiotics could normalize brain function in patients with major depressive disorder and irritable bowel syndrome. Resting-state fMRI studies further suggested improved connectivity in mood-regulating networks, specifically in the subcallosal cortex, amygdala and hippocampus. Despite promising findings, methodological variability and limited sample sizes emphasize the need for rigorous, longitudinal research to clarify the beneficial effects of probiotics on the gut-brain axis and mental health.
Collapse
Affiliation(s)
- Annachiara Crocetta
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Donato Liloia
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Tommaso Costa
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Sergio Duca
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Franco Cauda
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Jordi Manuello
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Move’N’Brains Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Ma LH, Li S, Jiao XH, Li ZY, Zhou Y, Zhou CR, Zhou CH, Zheng H, Wu YQ. BLA-involved circuits in neuropsychiatric disorders. Ageing Res Rev 2024; 99:102363. [PMID: 38838785 DOI: 10.1016/j.arr.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
4
|
Jackson AD, Cohen JL, Phensy AJ, Chang EF, Dawes HE, Sohal VS. Amygdala-hippocampus somatostatin interneuron beta-synchrony underlies a cross-species biomarker of emotional state. Neuron 2024; 112:1182-1195.e5. [PMID: 38266646 PMCID: PMC10994747 DOI: 10.1016/j.neuron.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/20/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Emotional responses arise from limbic circuits including the hippocampus and amygdala. In the human brain, beta-frequency communication between these structures correlates with self-reported mood and anxiety. However, both the mechanism and significance of this biomarker as a readout vs. driver of emotional state remain unknown. Here, we show that beta-frequency communication between ventral hippocampus and basolateral amygdala also predicts anxiety-related behavior in mice, both on long timescales (∼30 min) and immediately preceding behavioral choices. Genetically encoded voltage indicators reveal that this biomarker reflects synchronization between somatostatin interneurons across both structures. Indeed, synchrony between these neurons dynamically predicts approach-avoidance decisions, and optogenetically shifting the phase of synchronization by just 25 ms is sufficient to bidirectionally modulate anxiety-related behaviors. Thus, back-translation establishes a human biomarker as a causal determinant (not just predictor) of emotional state, revealing a novel mechanism whereby interregional synchronization that is frequency, phase, and cell type specific controls emotional processing.
Collapse
Affiliation(s)
- Adam D Jackson
- Department of Psychiatry and Behavioral Sciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Joshua L Cohen
- Department of Psychiatry and Behavioral Sciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Aarron J Phensy
- Department of Psychiatry and Behavioral Sciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Edward F Chang
- Department of Neurological Surgery, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Heather E Dawes
- Department of Neurological Surgery, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weill Institute for Neurosciences, Center for Integrative Neuroscience and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
5
|
Carlos AF, Weigand SD, Duffy JR, Clark HM, Utianski RL, Machulda MM, Botha H, Thu Pham NT, Lowe VJ, Schwarz CG, Whitwell JL, Josephs KA. Volumetric analysis of hippocampal subregions and subfields in left and right semantic dementia. Brain Commun 2024; 6:fcae097. [PMID: 38572268 PMCID: PMC10988847 DOI: 10.1093/braincomms/fcae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Two variants of semantic dementia are recognized based on the laterality of temporal lobe involvement: a left-predominant variant associated with verbal knowledge impairment and a right-predominant variant associated with behavioural changes and non-verbal knowledge loss. This cross-sectional clinicoradiologic study aimed to assess whole hippocampal, subregion, and/or subfield volume loss in semantic dementia versus controls and across its variants. Thirty-five semantic dementia participants and 15 controls from the Neurodegenerative Research Group at Mayo Clinic who had completed 3.0-T volumetric magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography were included. Classification as left-predominant (n = 25) or right-predominant (n = 10) variant was based on temporal lobe hypometabolism. Volumes of hippocampal subregions (head, body, and tail) and subfields (parasubiculum, presubiculum, subiculum, cornu ammonis 1, cornu ammonis 3, cornu ammonis 4, dentate gyrus, molecular layer, hippocampal-amygdaloid transition area, and fimbria) were obtained using FreeSurfer 7. Subfield volumes were measured separately from head and body subregions. We fit linear mixed-effects models using log-transformed whole hippocampal/subregion/subfield volumes as dependent variables; age, sex, total intracranial volume, hemisphere and a group-by-hemisphere interaction as fixed effects; and subregion/subfield nested within hemisphere as a random effect. Significant results (P < 0.05) are hereby reported. At the whole hippocampal level, the dominant (predominantly involved) hemisphere of both variants showed 23-27% smaller volumes than controls. The non-dominant (less involved) hemisphere of the right-predominant variant also showed volume loss versus controls and the left-predominant variant. At the subregional level, both variants showed 17-28% smaller dominant hemisphere head, body, and tail than controls, with the right-predominant variant also showing 8-12% smaller non-dominant hemisphere head than controls and left-predominant variant. At the subfield level, the left-predominant variant showed 12-36% smaller volumes across all dominant hemisphere subfields and 14-15% smaller non-dominant hemisphere parasubiculum, presubiculum (head and body), subiculum (head) and hippocampal-amygdaloid transition area than controls. The right-predominant variant showed 16-49% smaller volumes across all dominant hemisphere subfields and 14-22% smaller parasubiculum, presubiculum, subiculum, cornu ammonis 3, hippocampal-amygdaloid transition area (all from the head) and fimbria of non-dominant hemisphere versus controls. Comparison of dominant hemispheres showed 16-29% smaller volumes of the parasubiculum, presubiculum (head) and fimbria in the right-predominant than left-predominant variant; comparison of non-dominant hemispheres showed 12-15% smaller cornu ammonis 3, cornu ammonis 4, dentate gyrus, hippocampal-amygdaloid transition area (all from the head) and cornu ammonis 1, cornu ammonis 3 and cornu ammonis 4 (all from the body) in the right-predominant variant. All hippocampal subregion/subfield volumes are affected in semantic dementia, although some are more affected in both dominant and non-dominant hemispheres of the right-predominant than the left-predominant variant by the time of presentation. Involvement of hippocampal structures is apparently more subregion dependent than subfield dependent, indicating possible superiority of subregion volumes as disease biomarkers.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
6
|
Stouffer KM, Grande X, Düzel E, Johansson M, Creese B, Witter MP, Miller MI, Wisse LEM, Berron D. Amidst an amygdala renaissance in Alzheimer's disease. Brain 2024; 147:816-829. [PMID: 38109776 PMCID: PMC10907090 DOI: 10.1093/brain/awad411] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
The amygdala was highlighted as an early site for neurofibrillary tau tangle pathology in Alzheimer's disease in the seminal 1991 article by Braak and Braak. This knowledge has, however, only received traction recently with advances in imaging and image analysis techniques. Here, we provide a cross-disciplinary overview of pathology and neuroimaging studies on the amygdala. These studies provide strong support for an early role of the amygdala in Alzheimer's disease and the utility of imaging biomarkers of the amygdala in detecting early changes and predicting decline in cognitive functions and neuropsychiatric symptoms in early stages. We summarize the animal literature on connectivity of the amygdala, demonstrating that amygdala nuclei that show the earliest and strongest accumulation of neurofibrillary tangle pathology are those that are connected to brain regions that also show early neurofibrillary tangle accumulation. Additionally, we propose an alternative pathway of neurofibrillary tangle spreading within the medial temporal lobe between the amygdala and the anterior hippocampus. The proposed existence of this pathway is strengthened by novel experimental data on human functional connectivity. Finally, we summarize the functional roles of the amygdala, highlighting the correspondence between neurofibrillary tangle accumulation and symptomatic profiles in Alzheimer's disease. In summary, these findings provide a new impetus for studying the amygdala in Alzheimer's disease and a unique perspective to guide further study on neurofibrillary tangle spreading and the occurrence of neuropsychiatric symptoms in Alzheimer's disease.
Collapse
Affiliation(s)
- Kaitlin M Stouffer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xenia Grande
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Maurits Johansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 205 02, Lund, Sweden
- Division of Clinical Sciences, Helsingborg, Department of Clinical Sciences Lund, Lund University, 221 84, Lund, Sweden
- Department of Psychiatry, Helsingborg Hospital, 252 23, Helsingborg, Sweden
| | - Byron Creese
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4PY, Exeter, UK
- Division of Psychology, Department of Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, 7491, Trondheim, Norway
- KG. Jebsen Centre for Alzheimer’s Disease, NTNU Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Laura E M Wisse
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, 211 84, Lund, Sweden
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 205 02, Lund, Sweden
| |
Collapse
|
7
|
Sepahvand T, Carew SJ, Yuan Q. The ventral hippocampus is activated in olfactory but not auditory threat memory. Front Neural Circuits 2024; 18:1371130. [PMID: 38476709 PMCID: PMC10927826 DOI: 10.3389/fncir.2024.1371130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Hippocampal networks required for associative memory formation are involved in cue- and context-dependent threat conditioning. The hippocampus is functionally heterogeneous at its dorsal and ventral poles, and recent investigations have focused on the specific roles required from each sub-region for associative conditioning. Cumulative evidence suggests that contextual and emotional information is processed by the dorsal and ventral hippocampus, respectively. However, it is not well understood how these two divisions engage in threat conditioning with cues of different sensory modalities. Here, we compare the involvement of the dorsal and ventral hippocampus in two types of threat conditioning: olfactory and auditory. Our results suggest that the dorsal hippocampus encodes contextual information and is activated upon recall of an olfactory threat memory only if contextual cues are relevant to the threat. Overnight habituation to the context eliminates dorsal hippocampal activation, implying that this area does not directly support cue-dependent threat conditioning. The ventral hippocampus is activated upon recall of olfactory, but not auditory, threat memory regardless of habituation duration. Concurrent activation of the piriform cortex is consistent with its direct connection with the ventral hippocampus. Together, our study suggests a unique role of the ventral hippocampus in olfactory threat conditioning.
Collapse
Affiliation(s)
| | | | - Qi Yuan
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NF, Canada
| |
Collapse
|
8
|
Hu X, Fang Z, Wang F, Mei Z, Huang X, Lin Y, Lin Z. A causal relationship between gut microbiota and subcortical brain structures contributes to the microbiota-gut-brain axis: a Mendelian randomization study. Cereb Cortex 2024; 34:bhae056. [PMID: 38415993 DOI: 10.1093/cercor/bhae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
A correlation between gut microbiota and brain structure, referring to as a component of the gut-brain axis, has been observed in observational studies. However, the causality of this relationship and its specific bacterial taxa remains uncertain. To reveal the causal effects of gut microbiota on subcortical brain volume, we applied Mendelian randomization (MR) studies in this study. Genome-wide association study data were obtained from the MiBioGen Consortium (n = 18,340) and the Enhancing Neuro Imaging Genetics through Meta-Analysis Consortium (n = 13,170). The primary estimate was obtained utilizing the inverse-variance weighted, while heterogeneity and pleiotropy were assessed using the Cochrane Q statistic, MR Pleiotropy RESidual Sum and Outlier, and MR-Egger intercept. Our findings provide strong evidence that a higher abundance of the genus Parasutterella is causally correlated with a decrease in intracranial volume (β = -30,921.33, 95% CI -46,671.78 to -15,170.88, P = 1.19 × 10-4), and the genus FamilyXIIIUCG001 is associated with a decrease in thalamus volume (β = -141.96, 95% CI: -214.81 to -69.12, P = 1.0× 10-4). This MR study offers novel perspectives on the intricate interplay between the gut microbiota and subcortical brain volume, thereby lending some support to the existence of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Xuequn Hu
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Zhiyong Fang
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Feng Wang
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Zhen Mei
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Xiaofen Huang
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Yuanxiang Lin
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Zhangya Lin
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
9
|
Druga R, Mares P, Salaj M, Kubova H. Degenerative Changes in the Claustrum and Endopiriform Nucleus after Early-Life Status Epilepticus in Rats. Int J Mol Sci 2024; 25:1296. [PMID: 38279295 PMCID: PMC10816976 DOI: 10.3390/ijms25021296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The aim of the present study was to analyze the location of degenerating neurons in the dorsal (insular) claustrum (DCL, VCL) and the dorsal, intermediate and ventral endopiriform nucleus (DEn, IEn, VEn) in rat pups following lithium-pilocarpine status epilepticus (SE) induced at postnatal days [P]12, 15, 18, 21 and 25. The presence of Fluoro-Jade B-positive neurons was evaluated at 4, 12, 24, 48 h and 1 week later. A small number of degenerated neurons was observed in the CL, as well as in the DEn at P12 and P15. The number of degenerated neurons was increased in the CL as well as in the DEn at P18 and above and was highest at longer survival intervals. The CL at P15 and 18 contained a small or moderate number of degenerated neurons mainly close to the medial and dorsal margins also designated as DCl ("shell") while isolated degenerated neurons were distributed in the VCl ("core"). In P21 and 25, a larger number of degenerated neurons occurred in both subdivisions of the dorsal claustrum. The majority of degenerated neurons in the endopiriform nucleus were found in the intermediate and caudal third of the DEn. A small number of degenerated neurons was dispersed in the whole extent of the DEn with prevalence to its medial margin. Our results indicate that degenerated neurons in the claustrum CL and endopiriform nucleus are distributed mainly in subdivisions originating from the ventral pallium; their distribution correlates with chemoarchitectonics of both nuclei and with their intrinsic and extrinsic connections.
Collapse
Affiliation(s)
- Rastislav Druga
- Institute of Anatomy, 2nd Medical Faculty, Charles University, 15006 Prague, Czech Republic;
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic;
- Institute of Anatomy, 1st Medical Faculty, Charles University, 12000 Prague, Czech Republic
| | - Pavel Mares
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic;
| | - Martin Salaj
- Institute of Anatomy, 2nd Medical Faculty, Charles University, 15006 Prague, Czech Republic;
| | - Hana Kubova
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic;
| |
Collapse
|
10
|
Muthukutty B, Doan TC, Yoo H. Binary metal oxide (NiO/SnO 2) composite with electrochemical bifunction: Detection of neuro transmitting drug and catalysis for hydrogen evolution reaction. ENVIRONMENTAL RESEARCH 2024; 241:117655. [PMID: 37980995 DOI: 10.1016/j.envres.2023.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
The synergetic effect between dual oxides in binary metal oxides (BMO) makes them promising electrode materials for the detection of toxic chemicals, and biological compounds. In addition, the interaction between the cations and anions of diverse metals in BMO tends to create more oxygen vacancies which are beneficial for energy storage devices. However, specifically targeted synthesis of BMO is still arduous. In this work, we prepared a nickel oxide/tin oxide composite (NiO/SnO2) through a simple solvothermal technique. The crystallinity, specific surface area, and morphology were fully characterized. The synthesized BMO is used as a bifunctional electrocatalyst for the electrochemical detection of dopamine (DPA) and for the hydrogen evolution reaction (HER). As expected, the active metals in the NiO/SnO2 composite afforded a higher redox current at a reduced redox potential with a nanomolar level detection limit (4 nm) and excellent selectivity. Moreover, a better recovery rate is achieved in the real-time detection of DPA in human urine and DPA injection solution. Compared to other metal oxides, NiO/SnO2 composite afforded lower overpotential (157 mV @10 mA cm-2), Tafel slope (155 mV dec-1), and long-term durability, with a minimum retention rate. These studies conclude that NiO/SnO2 composite can act as a suitable electrode modifier for electrochemical sensing and the HER.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Thang Cao Doan
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
11
|
Piquet R, Faugère A, Parkes SL. A hippocampo-cortical pathway detects changes in the validity of an action as a predictor of reward. Curr Biol 2024; 34:24-35.e4. [PMID: 38101404 DOI: 10.1016/j.cub.2023.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Much research has been dedicated to understanding the psychological and neural bases of goal-directed action, yet the relationship between context and goal-directed action is not well understood. Here, we used excitotoxic lesions, chemogenetics, and circuit-specific manipulations to demonstrate the role of the ventral hippocampus (vHPC) in contextual learning that supports sensitivity to action-outcome contingencies, a hallmark of goal-directed action. We found that chemogenetic inhibition of the ventral, but not dorsal, hippocampus attenuated sensitivity to instrumental contingency degradation. We then tested the hypothesis that this deficit was due to an inability to discern the relative validity of the action compared with the context as a predictor of reward. Using latent inhibition and Pavlovian context conditioning, we confirm that degradation of action-outcome contingencies relies on intact context-outcome learning and show that this learning is dependent on vHPC. Finally, we show that chemogenetic inhibition of vHPC terminals in the medial prefrontal cortex also impairs both instrumental contingency degradation and context-outcome learning. These results implicate a hippocampo-cortical pathway in adapting to changes in instrumental contingencies and indicate that the psychological basis of this deficit is an inability to learn the predictive value of the context. Our findings contribute to a broader understanding of the neural bases of goal-directed action and its contextual regulation.
Collapse
Affiliation(s)
- Robin Piquet
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | | | - Shauna L Parkes
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France.
| |
Collapse
|
12
|
Casagrande MA, Porto RR, Haubrich J, Kautzmann A, de Oliveira Álvares L. Emotional Value of Fear Memory and the Role of the Ventral Hippocampus in Systems Consolidation. Neuroscience 2023; 535:184-193. [PMID: 37944583 DOI: 10.1016/j.neuroscience.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Recent studies have explored the circuitry involving the ventral hippocampus (vHPC), the amygdala, and the prefrontal cortex, a pathway mainly activated to store contextual information efficiently. Lesions in the vHPC impair remote memory, but not in the short term. However, how the vHPC is affected by distinct memory strength or its role in systems consolidation has not yet been elucidated. Here, we investigated how distinct training intensities, with strong or weak contextual fear conditioning, affect activation of the dorsal hippocampus (dHPC) and the vHPC. We found that the time course of memory consolidation differs in fear memories of different training intensities in both the dHPC and vHPC. Our results also indicate that memory generalization happens alongside greater activation of the vHPC, and these processes occur faster with stronger fear memories. The vHPC is required for the expression of remote fear memory and may control contextual fear generalization, a view corroborated by the fact that inactivation of the vHPC suppresses generalized fear expression, making memory more precise again. Systems consolidation occurs concomitantly with greater activation of the vHPC, which is accelerated in stronger fear memories. These findings lead us to propose that greater activation of the vHPC could be used as a marker for memory generalization.
Collapse
Affiliation(s)
- M A Casagrande
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216, CEP 91.501-970 Porto Alegre, Rio Grande do Sul, Brasil
| | - R R Porto
- Behavioural Neuroscience Laboratory, Western Sydney University, School of Medicine, Cnr David Pilgrim Ave & Goldsmith Ave, Building 30, Campbelltown, NSW 2560, Australia
| | - J Haubrich
- Dept. of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße, 150 MA 4/150, 44780 Bochum, Germany
| | - A Kautzmann
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216, CEP 91.501-970 Porto Alegre, Rio Grande do Sul, Brasil
| | - L de Oliveira Álvares
- Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43422, Sala 216, CEP 91.501-970 Porto Alegre, Rio Grande do Sul, Brasil.
| |
Collapse
|
13
|
Wei Q, Kumar V, Moore S, Li F, Murphy GG, Watson SJ, Akil H. High emotional reactivity is associated with activation of a molecularly distinct hippocampal-amygdala circuit modulated by the glucocorticoid receptor. Neurobiol Stress 2023; 27:100581. [PMID: 37928820 PMCID: PMC10623371 DOI: 10.1016/j.ynstr.2023.100581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Emotions are characterized not only by their valence but also by whether they are stable or labile. Yet, we do not understand the molecular or circuit mechanisms that control the dynamic nature of emotional responses. We have shown that glucocorticoid receptor overexpression in the forebrain (GRov) leads to a highly reactive mouse with increased anxiety behavior coupled with greater swings in emotional responses. This phenotype is established early in development and persists into adulthood. However, the neural circuitry mediating this lifelong emotional lability remains unknown. In the present study, optogenetic stimulation in ventral dentate gyrus (vDG) of GRov mice led to a greater range and a prolonged duration of anxiety behavior. cFos expression analysis showed that the amplified behavioral response to vDG activation in GRov mice is coupled to increased neuronal activity in specific brain regions. Relative to wild type mice, GRov mice displayed glutamatergic/GABAergic activation imbalance in ventral CA1 (vCA1) and selectively increased glutamatergic activation in the basal posterior amygdaloid complex. Moreover, forebrain GR overexpression led to increased activation of molecularly distinct subpopulations of neurons within the hippocampus and the posterior basolateral amygdala (pBLA) as evident from the increased cFos co-labeling in the calbindin1+ glutamatergic neurons in vCA1 and in the DARPP-32/Ppp1r1b+ glutamatergic neurons in pBLA. We propose that a molecularly distinct hippocampal-amygdala circuit is shaped by stress early in life and tunes the dynamics of emotional responses.
Collapse
Affiliation(s)
- Qiang Wei
- Corresponding author. Michigan Neuroscience Institute University of Michigan 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| | - Vivek Kumar
- Corresponding author. Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| | - Shannon Moore
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fei Li
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | |
Collapse
|
14
|
Gonzalez‐Rodriguez M, Villar‐Conde S, Astillero‐Lopez V, Villanueva‐Anguita P, Ubeda‐Banon I, Flores‐Cuadrado A, Martinez‐Marcos A, Saiz‐Sanchez D. Human amygdala involvement in Alzheimer's disease revealed by stereological and dia-PASEF analysis. Brain Pathol 2023; 33:e13180. [PMID: 37331354 PMCID: PMC10467039 DOI: 10.1111/bpa.13180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid-β (Aβ) and Tau proteins. According to the prion-like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved early in the disease, and its widespread connections with other brain regions indicate that it is a hub for propagating pathology. To characterize changes in the AC as well as the involvement of neuronal and glial cells in AD, a combined stereological and proteomic analysis was performed in non-Alzheimer's disease and AD human samples. The synaptic alterations identified by proteomic data analysis could be related to the volume reduction observed in AD by the Cavalieri probe without neuronal loss. The pathological markers appeared in a gradient pattern with the medial region (cortical nucleus, Co) being more affected than lateral regions, suggesting the relevance of connections in the distribution of the pathology among different brain regions. Generalized astrogliosis was observed in every AC nucleus, likely related to deposits of pathological proteins. Astrocytes might mediate phagocytic microglial activation, whereas microglia might play a dual role since protective and toxic phenotypes have been described. These results highlight the potential participation of the amygdala in the disease spreading from/to olfactory areas, the temporal lobe and beyond. Proteomic data are available via ProteomeXchange with identifier PXD038322.
Collapse
Affiliation(s)
- Melania Gonzalez‐Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Sandra Villar‐Conde
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Veronica Astillero‐Lopez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Patricia Villanueva‐Anguita
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Isabel Ubeda‐Banon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Alicia Flores‐Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Alino Martinez‐Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Daniel Saiz‐Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| |
Collapse
|
15
|
Kirstein CF, Güntürkün O, Ocklenburg S. Ultra-high field imaging of the amygdala - A narrative review. Neurosci Biobehav Rev 2023; 152:105245. [PMID: 37230235 DOI: 10.1016/j.neubiorev.2023.105245] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The amygdala is an evolutionarily conserved core structure in emotion processing and one of the key regions of interest in affective neuroscience. Results of neuroimaging studies focusing on the amygdala are, however, often heterogeneous since it is composed of functionally and neuroanatomically distinct subnuclei. Fortunately, ultra-high-field imaging offers several advances for amygdala research, most importantly more accurate representation of functional and structural properties of subnuclei and their connectivity. Most clinical studies using ultra-high-field imaging focused on major depression, suggesting either overall rightward amygdala atrophy or distinct bilateral patterns of subnuclear atrophy and hypertrophy. Other pathologies are only sparsely covered. Connectivity analyses identified widespread networks for learning and memory, stimulus processing, cognition, and social processes. They provide evidence for distinct roles of the central, basal, and basolateral nucleus, and the extended amygdala in fear and emotion processing. Amid largely sparse and ambiguous evidence, we propose theoretical and methodological considerations that will guide ultra-high-field imaging in comprehensive investigations to help disentangle the ambiguity of the amygdala's function, structure, connectivity, and clinical relevance.
Collapse
Affiliation(s)
- Cedric Fabian Kirstein
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany.
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr-University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany; Department of Psychology, MSH Medical School Hamburg, Germany; Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Germany
| |
Collapse
|
16
|
Winzenried ET, Everett AC, Saito ER, Miller RM, Johnson T, Neal E, Boyce Z, Smith C, Jensen C, Kimball S, Brantley A, Melendez G, Moffat D, Davis E, Aponik L, Crofts T, Dabney B, Edwards JG. Effects of a True Prophylactic Treatment on Hippocampal and Amygdala Synaptic Plasticity and Gene Expression in a Rodent Chronic Stress Model of Social Defeat. Int J Mol Sci 2023; 24:11193. [PMID: 37446371 PMCID: PMC10342862 DOI: 10.3390/ijms241311193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a complex stress-related disorder induced by exposure to traumatic stress that is characterized by symptoms of re-experiencing, avoidance, and hyper-arousal. While it is widely accepted that brain regions involved in emotional regulation and memory-e.g., the amygdala and hippocampus-are dysregulated in PTSD, the pathophysiology of the disorder is not well defined and therefore, pharmacological interventions are extremely limited. Because stress hormones norepinephrine and cortisol (corticosterone in rats) are heavily implicated in the disorder, we explored whether preemptively and systemically antagonizing β-adrenergic and glucocorticoid receptors with propranolol and mifepristone are sufficient to mitigate pathological changes in synaptic plasticity, gene expression, and anxiety induced by a modified social defeat (SD) stress protocol. Young adult, male Sprague Dawley rats were initially pre-screened for anxiety. The rats were then exposed to SD and chronic light stress to induce anxiety-like symptoms. Drug-treated rats were administered propranolol and mifepristone injections prior to and continuing throughout SD stress. Using competitive ELISAs on plasma, field electrophysiology at CA1 of the ventral hippocampus (VH) and the basolateral amygdala (BLA), quantitative RT-PCR, and behavior assays, we demonstrate that our SD stress increased anxiety-like behavior, elevated long-term potentiation (LTP) in the VH and BLA, and altered the expression of mineralocorticoid, glucocorticoid, and glutamate receptors. These measures largely reverted to control levels with the administration of propranolol and mifepristone. Our findings indicate that SD stress increases LTP in the VH and BLA and that prophylactic treatment with propranolol and mifepristone may have the potential in mitigating these and other stress-induced effects.
Collapse
Affiliation(s)
| | - Anna C. Everett
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Erin R. Saito
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Roxanne M. Miller
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Taylor Johnson
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Eliza Neal
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Zachary Boyce
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Calvin Smith
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Chloe Jensen
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Spencer Kimball
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Adam Brantley
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Gabriel Melendez
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Devin Moffat
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Erin Davis
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Lyndsey Aponik
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Tyler Crofts
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Bryson Dabney
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Jeffrey G. Edwards
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
17
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
18
|
Alotaibi MM, De Marco M, Venneri A. Sex differences in olfactory cortex neuronal loss in aging. Front Hum Neurosci 2023; 17:1130200. [PMID: 37323926 PMCID: PMC10265738 DOI: 10.3389/fnhum.2023.1130200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Aging plays a major role in neurodegenerative disorders such as Alzheimer's disease, and impacts neuronal loss. Olfactory dysfunction can be an early alteration heralding the presence of a neurodegenerative disorder in aging. Studying alterations in olfaction-related brain regions might help detection of neurodegenerative diseases at an earlier stage as well as protect individuals from any danger caused by loss of sense of smell. Objective To assess the effect of age and sex on olfactory cortex volume in cognitively healthy participants. Method Neurologically healthy participants were divided in three groups based on their age: young (20-35 years; n = 53), middle-aged (36-65 years; n = 66) and older (66-85 years; n = 95). T1-weighted MRI scans acquired at 1.5 T were processed using SPM12. Smoothed images were used to extract the volume of olfactory cortex regions. Results ANCOVA analyses showed significant differences in volume between age groups in the olfactory cortex (p ≤ 0.0001). In women, neuronal loss started earlier than in men (in the 4th decade of life), while in men more substantial neuronal loss in olfactory cortex regions was detected only later in life. Conclusion Data indicate that age-related reduction in the volume of the olfactory cortex starts earlier in women than in men. The findings suggest that volume changes in olfaction-related brain regions in the aging population deserve further attention as potential proxies of increased risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Majed M. Alotaibi
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Li J, Cao D, Yu S, Xiao X, Imbach L, Stieglitz L, Sarnthein J, Jiang T. Functional specialization and interaction in the amygdala-hippocampus circuit during working memory processing. Nat Commun 2023; 14:2921. [PMID: 37217494 PMCID: PMC10203226 DOI: 10.1038/s41467-023-38571-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Both the hippocampus and amygdala are involved in working memory (WM) processing. However, their specific role in WM is still an open question. Here, we simultaneously recorded intracranial EEG from the amygdala and hippocampus of epilepsy patients while performing a WM task, and compared their representation patterns during the encoding and maintenance periods. By combining multivariate representational analysis and connectivity analyses with machine learning methods, our results revealed a functional specialization of the amygdala-hippocampal circuit: The mnemonic representations in the amygdala were highly distinct and decreased from encoding to maintenance. The hippocampal representations, however, were more similar across different items but remained stable in the absence of the stimulus. WM encoding and maintenance were associated with bidirectional information flow between the amygdala and the hippocampus in low-frequency bands (1-40 Hz). Furthermore, the decoding accuracy on WM load was higher by using representational features in the amygdala during encoding and in the hippocampus during maintenance, and by using information flow from the amygdala during encoding and that from the hippocampus during maintenance, respectively. Taken together, our study reveals that WM processing is associated with functional specialization and interaction within the amygdala-hippocampus circuit.
Collapse
Affiliation(s)
- Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Shan Yu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinyu Xiao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland
- Zurich Neuroscience Center, ETH and University of Zurich, 8057, Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland.
- Zurich Neuroscience Center, ETH Zurich, 8057, Zurich, Switzerland.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Research Center for Augmented Intelligence, Zhejiang Lab, 311100, Hangzhou, China.
| |
Collapse
|
20
|
Khatibi VA, Salimi M, Rahdar M, Rezaei M, Nazari M, Dehghan S, Davoudi S, Raoufy MR, Mirnajafi-Zadeh J, Javan M, Hosseinmardi N, Behzadi G, Janahmadi M. Glycolysis inhibition partially resets epilepsy-induced alterations in the dorsal hippocampus-basolateral amygdala circuit involved in anxiety-like behavior. Sci Rep 2023; 13:6520. [PMID: 37085688 PMCID: PMC10119516 DOI: 10.1038/s41598-023-33710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
Pharmacoresistant temporal lobe epilepsy affects millions of people around the world with uncontrolled seizures and comorbidities, like anxiety, being the most problematic aspects calling for novel therapies. The intrahippocampal kainic acid model of temporal lobe epilepsy is an appropriate rodent model to evaluate the effects of novel interventions, including glycolysis inhibition, on epilepsy-induced alterations. Here, we investigated kainic acid-induced changes in the dorsal hippocampus (dHPC) and basolateral amygdala (BLA) circuit and the efficiency of a glycolysis inhibitor, 2-deoxy D-glucose (2-DG), in resetting such alterations using simultaneous local field potentials (LFP) recording and elevated zero-maze test. dHPC theta and gamma powers were lower in epileptic groups, both in the baseline and anxiogenic conditions. BLA theta power was higher in baseline condition while it was lower in anxiogenic condition in epileptic animals and 2-DG could reverse it. dHPC-BLA coherence was altered only in anxiogenic condition and 2-DG could reverse it only in gamma frequency. This coherence was significantly correlated with the time in which the animals exposed themselves to the anxiogenic condition. Further, theta-gamma phase-locking was lower in epileptic groups in the dHPC-BLA circuit and 2-DG could considerably increase it.
Collapse
Affiliation(s)
- Vahid Ahli Khatibi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Salimi
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Rezaei
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Åarhus, Denmark
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Garcia-Garcia B, Mattern H, Vockert N, Yakupov R, Schreiber F, Spallazzi M, Perosa V, Haghikia A, Speck O, Düzel E, Maass A, Schreiber S. Vessel Distance Mapping: A novel methodology for assessing vascular-induced cognitive resilience. Neuroimage 2023; 274:120094. [PMID: 37028734 DOI: 10.1016/j.neuroimage.2023.120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
The association between cerebral blood supply and cognition has been widely discussed in the recent literature. One focus of this discussion has been the anatomical variability of the circle of Willis, with morphological differences being present in more than half of the general population. While previous studies have attempted to classify these differences and explore their contribution to hippocampal blood supply and cognition, results have been controversial. To disentangle these previously inconsistent findings, we introduce Vessel Distance Mapping (VDM) as a novel methodology for evaluating blood supply, which allows for obtaining vessel pattern metrics with respect to the surrounding structures, extending the previously established binary classification into a continuous spectrum. To accomplish this, we manually segmented hippocampal vessels obtained from high-resolution 7T time-of-flight MR angiographic imaging in older adults with and without cerebral small vessel disease, generating vessel distance maps by computing the distances of each voxel to its nearest vessel. Greater values of VDM-metrics, which reflected higher vessel distances, were associated with poorer cognitive outcomes in subjects affected by vascular pathology, while this relation was not observed in healthy controls. Therefore, a mixed contribution of vessel pattern and vessel density is proposed to confer cognitive resilience, consistent with previous research findings. In conclusion, VDM provides a novel platform, based on a statistically robust and quantitative method of vascular mapping, for addressing a variety of clinical research questions.
Collapse
Affiliation(s)
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Niklas Vockert
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Frank Schreiber
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Marco Spallazzi
- Department of Medicine and Surgery, Unit of Neurology, Azienda Ospedalierouniversitaria, 43126 Parma, Italy
| | - Valentina Perosa
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany; J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aiden Haghikia
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London WCIN 3AZ, UK
| | - Anne Maass
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| |
Collapse
|
22
|
Blixhavn CH, Haug FMŠ, Kleven H, Puchades MA, Bjaalie JG, Leergaard TB. A Timm-Nissl multiplane microscopic atlas of rat brain zincergic terminal fields and metal-containing glia. Sci Data 2023; 10:150. [PMID: 36944675 PMCID: PMC10030855 DOI: 10.1038/s41597-023-02012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
The ability of Timm's sulphide silver method to stain zincergic terminal fields has made it a useful neuromorphological marker. Beyond its roles in zinc-signalling and neuromodulation, zinc is involved in the pathophysiology of ischemic stroke, epilepsy, degenerative diseases and neuropsychiatric conditions. In addition to visualising zincergic terminal fields, the method also labels transition metals in neuronal perikarya and glial cells. To provide a benchmark reference for planning and interpretation of experimental investigations of zinc-related phenomena in rat brains, we have established a comprehensive repository of serial microscopic images from a historical collection of coronally, horizontally and sagittally oriented rat brain sections stained with Timm's method. Adjacent Nissl-stained sections showing cytoarchitecture, and customised atlas overlays from a three-dimensional rat brain reference atlas registered to each section image are included for spatial reference and guiding identification of anatomical boundaries. The Timm-Nissl atlas, available from EBRAINS, enables experimental researchers to navigate normal rat brain material in three planes and investigate the spatial distribution and density of zincergic terminal fields across the entire brain.
Collapse
Affiliation(s)
- Camilla H Blixhavn
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Finn-Mogens Š Haug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
23
|
Liu MN, Tian XY, Fang T, Wu N, Li H, Li J. Insights into the Involvement and Therapeutic Target Potential of the Dopamine System in the Posttraumatic Stress Disorder. Mol Neurobiol 2023; 60:3708-3723. [PMID: 36933147 DOI: 10.1007/s12035-023-03312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a neuropsychiatric disease closely related to life-threatening events and psychological stress. Re-experiencing, hyperarousal, avoidance, and numbness are the hallmark symptoms of PTSD, but their underlying neurological processes have not been clearly elucidated. Therefore, the identification and development of drugs for PTSD that targets brain neuronal activities have stalled. Considering that the persistent fear memory induced by traumatic stimulation causes high alertness, high arousal, and cognitive impairment of PTSD symptoms. While the midbrain dopamine system can affect physiological processes such as aversive fear memory learning, consolidation, persistence, and extinction, by altering the functions of the dopaminergic neurons, our viewpoint is that the dopamine system plays a considerable role in the PTSD occurrence and acts as a potential therapeutic target of the disorder. This paper reviews recent findings on the structural and functional connections between ventral tegmental area neurons and the core synaptic circuits involved in PTSD, gene polymorphisms related to the dopamine system that confer susceptibility to clinical PTSD. Moreover, the progress of research on medications that target the dopamine system as PTSD therapies is also discussed. Our goal is to offer some hints for early detection and assist in identifying novel, efficient approaches for treating PTSD.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Yu Tian
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Medical School of Chinese PLA, Beijing, 100853, China
| | - Ting Fang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
24
|
Meng HW, Kim JH, Kim HY, Lee AY, Cho EJ. Paeoniflorin Attenuates Lipopolysaccharide-Induced Cognitive Dysfunction by Inhibition of Amyloidogenesis in Mice. Int J Mol Sci 2023; 24:ijms24054838. [PMID: 36902268 PMCID: PMC10003666 DOI: 10.3390/ijms24054838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, associated with progressive cognitive impairment and memory loss. In the present study, we examined the protective effects of paeoniflorin against memory loss and cognitive decline in lipopolysaccharide (LPS)-induced mice. Treatment with paeoniflorin alleviated LPS-induced neurobehavioral dysfunction, as confirmed by behavioral tests, including the T-maze test, novel-object recognition test, and Morris water maze test. LPS stimulated the amyloidogenic pathway-related proteins (amyloid precursor protein, APP; β-site APP cleavage enzyme, BACE; presenilin1, PS1; presenilin2, PS2) expression in the brain. However, paeoniflorin decreased APP, BACE, PS1, and PS2 protein levels. Therefore, paeoniflorin reverses LPS-induced cognitive impairment via inhibition of the amyloidogenic pathway in mice, which suggests that paeoniflorin may be useful in the prevention of neuroinflammation related to AD.
Collapse
Affiliation(s)
- Hui Wen Meng
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| |
Collapse
|
25
|
Bergeat D, Coquery N, Gautier Y, Clotaire S, Vincent É, Romé V, Guérin S, Le Huërou-Luron I, Blat S, Thibault R, Val-Laillet D. Exploration of fMRI brain responses to oral sucrose after Roux-en-Y gastric bypass in obese yucatan minipigs in relationship with microbiota and metabolomics profiles. Clin Nutr 2023; 42:394-410. [PMID: 36773369 DOI: 10.1016/j.clnu.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS In most cases, Roux-en-Y gastric bypass (RYGBP) is an efficient intervention to lose weight, change eating behavior and improve metabolic outcomes in obese patients. We hypothesized that weight loss induced by RYGBP in obese Yucatan minipigs would induce specific modifications of the gut-brain axis and neurocognitive responses to oral sucrose stimulation in relationship with food intake control. METHODS An integrative study was performed after SHAM (n = 8) or RYGBP (n = 8) surgery to disentangle the physiological, metabolic and neurocognitive mechanisms of RYGBP. BOLD fMRI responses to sucrose stimulations at different concentrations, brain mRNA expression, cecal microbiota, and plasma metabolomics were explored 4 months after surgery and integrated with WGCNA analysis. RESULTS We showed that weight loss induced by RYGBP or SHAM modulated differently the frontostriatal responses to oral sucrose stimulation, suggesting a different hedonic treatment and inhibitory control related to palatable food after RYGBP. The expression of brain genes involved in the serotoninergic and cannabinoid systems were impacted by RYGBP. Cecal microbiota was deeply modified and many metabolite features were differentially increased in RYGBP. Data integration with WGCNA identified interactions between key drivers of OTUs and metabolites features linked to RYGBP. CONCLUSION This longitudinal study in the obese minipig model illustrates with a systemic and integrative analysis the mid-term consequences of RYGBP on brain mRNA expression, cecal microbiota and plasma metabolites. We confirmed the impact of RYGBP on functional brain responses related to food reward, hedonic evaluation and inhibitory control, which are key factors for the success of anti-obesity therapy and weight loss maintenance.
Collapse
Affiliation(s)
- Damien Bergeat
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France; Department of Digestive Surgery, CHU Rennes, Rennes, France
| | - Nicolas Coquery
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Yentl Gautier
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sarah Clotaire
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Émilie Vincent
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Véronique Romé
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sylvie Guérin
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Isabelle Le Huërou-Luron
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sophie Blat
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Ronan Thibault
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France; Department of Endocrinology-Diabetology-Nutrition, Home Parenteral Nutrition Centre, CHU Rennes, Rennes, France.
| | - David Val-Laillet
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France.
| |
Collapse
|
26
|
Ito W, Palmer AJ, Morozov A. Social Synchronization of Conditioned Fear in Mice Requires Ventral Hippocampus Input to the Amygdala. Biol Psychiatry 2023; 93:322-330. [PMID: 36244803 PMCID: PMC10069289 DOI: 10.1016/j.biopsych.2022.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Social organisms synchronize behaviors as an evolutionary-conserved means of thriving. Synchronization under threat, in particular, benefits survival and occurs across species, including humans, but the underlying mechanisms remain unknown because of the scarcity of relevant animal models. Here, we developed a rodent paradigm in which mice synchronized a classically conditioned fear response and identified an underlying neuronal circuit. METHODS Male and female mice were trained individually using auditory fear conditioning and then tested 24 hours later as dyads while allowing unrestricted social interaction during exposure to the conditioned stimulus under visible or infrared illumination to eliminate visual cues. The synchronization of the immobility or freezing bouts was quantified by calculating the effect size Cohen's d for the difference between the actual freezing time overlap and the overlap by chance. The inactivation of the dorsomedial prefrontal cortex, dorsal hippocampus, or ventral hippocampus was achieved by local infusions of muscimol. The chemogenetic disconnection of the hippocampus-amygdala pathway was performed by expressing hM4D(Gi) in the ventral hippocampal neurons and infusing clozapine N-oxide in the amygdala. RESULTS Mice synchronized cued but not contextual fear. It was higher in males than in females and attenuated in the absence of visible light. Inactivation of the ventral but not dorsal hippocampus or dorsomedial prefrontal cortex abolished fear synchronization. Finally, the disconnection of the hippocampus-amygdala pathway diminished fear synchronization. CONCLUSIONS Mice synchronize expression of conditioned fear relying on the ventral hippocampus-amygdala pathway, suggesting that the hippocampus transmits social information to the amygdala to synchronize threat response.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia.
| | - Alexander J Palmer
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia
| | - Alexei Morozov
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia; Carilion Clinic Department of Psychiatry and Behavioral Medicine, Roanoke, Virginia.
| |
Collapse
|
27
|
Chong YS, Wong LW, Gaunt J, Lee YJ, Goh CS, Morris RGM, Ch'ng TH, Sajikumar S. Distinct contributions of ventral CA1/amygdala co-activation to the induction and maintenance of synaptic plasticity. Cereb Cortex 2023; 33:676-690. [PMID: 35253866 DOI: 10.1093/cercor/bhac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
The amygdala is known to modulate hippocampal synaptic plasticity. One role could be an immediate effect of basolateral amygdala (BLA) in priming synaptic plasticity in the hippocampus. Another role could be through associative synaptic co-operation and competition that triggers events involved in the maintenance of synaptic potentiation. We present evidence that the timing and activity level of BLA stimulation are important factors for the induction and maintenance of long-term potentiation (LTP) in ventral hippocampal area CA1. A 100 Hz BLA co-stimulation facilitated the induction of LTP, whereas 200 Hz co-stimulation attenuated induction. A 100 Hz BLA co-stimulation also caused enhanced persistence, sufficient to prevent synaptic competition. This maintenance effect is likely through translational mechanisms, as mRNA expression of primary response genes was unaffected, whereas protein level of plasticity-related products was increased. Further understanding of the neural mechanisms of amygdala modulation on hippocampus could provide insights into the mechanisms of emotional disorders.
Collapse
Affiliation(s)
- Yee Song Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Jessica Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637335, Singapore
| | - Cai Shan Goh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Richard G M Morris
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, Scotland
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
28
|
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023; 22:1. [PMID: 36593487 PMCID: PMC9809121 DOI: 10.1186/s12938-022-01062-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Artificial, de-novo manufactured materials (with controlled nano-sized characteristics) have been progressively used by neuroscientists during the last several decades. The introduction of novel implantable bioelectronics interfaces that are better suited to their biological targets is one example of an innovation that has emerged as a result of advanced nanostructures and implantable bioelectronics interfaces, which has increased the potential of prostheses and neural interfaces. The unique physical-chemical properties of nanoparticles have also facilitated the development of novel imaging instruments for advanced laboratory systems, as well as intelligently manufactured scaffolds and microelectrodes and other technologies designed to increase our understanding of neural tissue processes. The incorporation of nanotechnology into physiology and cell biology enables the tailoring of molecular interactions. This involves unique interactions with neurons and glial cells in neuroscience. Technology solutions intended to effectively interact with neuronal cells, improved molecular-based diagnostic techniques, biomaterials and hybridized compounds utilized for neural regeneration, neuroprotection, and targeted delivery of medicines as well as small chemicals across the blood-brain barrier are all purposes of the present article.
Collapse
Affiliation(s)
- Leili Shabani
- grid.412571.40000 0000 8819 4698Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Azarnew
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- grid.412571.40000 0000 8819 4698Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
He Z, Wang X, Ma K, Zheng L, Zhang Y, Liu C, Sun T, Wang P, Rong W, Niu J. Selective activation of the hypothalamic orexinergic but not melanin-concentrating hormone neurons following pilocarpine-induced seizures in rats. Front Neurosci 2022; 16:1056706. [DOI: 10.3389/fnins.2022.1056706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionSleep disorders are common comorbidities in patients with temporal lobe epilepsy (TLE), but the underlying mechanisms remain poorly understood. Since the lateral hypothalamic (LH) and the perifornical orexinergic (ORX) and melanin-concentrating hormone (MCH) neurons are known to play opposing roles in the regulation of sleep and arousal, dysregulation of ORX and MCH neurons might contribute to the disturbance of sleep-wakefulness following epileptic seizures.MethodsTo test this hypothesis, rats were treated with lithium chloride and pilocarpine to induce status epilepticus (SE). Electroencephalogram (EEG) and electromyograph (EMG) were recorded for analysis of sleep-wake states before and 24 h after SE. Double-labeling immunohistochemistry of c-Fos and ORX or MCH was performed on brain sections from the epileptic and control rats. In addition, anterograde and retrograde tracers in combination with c-Fos immunohistochemistry were used to analyze the possible activation of the amygdala to ORX neural pathways following seizures.ResultsIt was found that epileptic rats displayed prolonged wake phase and decreased non-rapid eye movement (NREM) and rapid eye movement (REM) phase compared to the control rats. Prominent neuronal activation was observed in the amygdala and the hypothalamus following seizures. Interestingly, in the LH and the perifornical nucleus, ORX but not MCH neurons were significantly activated (c-Fos+). Neural tracing showed that seizure-activated (c-Fos+) ORX neurons were closely contacted by axon terminals originating from neurons in the medial amygdala.DiscussionThese findings suggest that the spread of epileptic activity from amygdala to the hypothalamus causes selective activation of the wake-promoting ORX neurons but not sleep-promoting MCH neurons, which might contribute to the disturbance of sleep-wakefulness in TLE.
Collapse
|
30
|
Wang B, Fu C, Wei Y, Xu B, Yang R, Li C, Qiu M, Yin Y, Qin D. Ferroptosis-related biomarkers for Alzheimer's disease: Identification by bioinformatic analysis in hippocampus. Front Cell Neurosci 2022; 16:1023947. [PMID: 36467613 PMCID: PMC9709107 DOI: 10.3389/fncel.2022.1023947] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Globally, Alzheimer's Disease (AD) accounts for the majority of dementia, making it a public health concern. AD treatment is limited due to the limited understanding of its pathogenesis. Recently, more and more evidence shows that ferroptosis lead to cell death in the brain, especially in the regions of the brain related to dementia. MATERIALS AND METHODS Three microarray datasets (GSE5281, GSE9770, GSE28146) related to AD were downloaded from Gene Expression Omnibus (GEO) datasets. Ferroptosis-related genes were extracted from FerrDb database. Data sets were separated into two groups. GSE5281 and GSE9770 were used to identify ferroptosis-related genes, and GSE28146 was used to verify results. During these processes, protein-protein interaction (PPI), the Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. Finally, the differentiated values of ferroptosis-related genes were determined by receiver operator characteristic (ROC) monofactor analysis to judge their potential quality as biomarkers. RESULTS Twenty-four ferroptosis-related genes were obtained. Using STRING (https://cn.string-db.org/) and Cytoscape with CytoHubba, the top 10 genes (RB1, AGPAT3, SESN2, KLHL24, ALOX15B, CA9, GDF15, DPP4, PRDX1, UBC, FTH1, ASNS, GOT1, PGD, ATG16L1, SLC3A2, DDIT3, RPL8, VDAC2, GLS2, MTOR, HSF1, AKR1C3, NCF2) were identified as target genes. GO analysis revealed that response to carboxylic acid catabolic process, organic acid catabolic process, alpha-amino acid biosynthetic process and cellular amino acid biosynthetic process were the most highly enriched terms. KEGG analysis showed that these overlapped genes were enriched in p53 signaling pathways, longevity regulating pathway, mTOR signaling pathway, type 2 diabetes mellitus and ferroptosis. Box plots and violine plots were created and verified to confirm the significance of identified target genes. Moreover, ROC monofactor analysis was performed to determine the diagnostic value of identified genes. Two genes (ASNS, SESN2) were subsequently obtained. For the tow genes, STRING was used to obtain the five related genes and determined enriched GO terms and KEGG pathways for those genes. CONCLUSION Our results suggest that ASNS and SENS2 may serve as potential diagnostic biomarkers for AD and provide additional evidence regarding the essential role of ferroptosis in AD.
Collapse
Affiliation(s)
- Binyang Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Chenyang Fu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Bonan Xu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Rongxing Yang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Chuanxiong Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Meihua Qiu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Yong Yin
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
31
|
Sedwick VM, Autry AE. Anatomical and molecular features of the amygdalohippocampal transition area and its role in social and emotional behavior processes. Neurosci Biobehav Rev 2022; 142:104893. [PMID: 36179917 PMCID: PMC11106034 DOI: 10.1016/j.neubiorev.2022.104893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 02/04/2023]
Abstract
The amygdalohippocampal transition area (AHi) has emerged as a critical nucleus of sociosexual behaviors such as mating, parenting, and aggression. The AHi has been overlooked in rodent and human amygdala studies until recently. The AHi is hypothesized to play a role in metabolic and cognitive functions as well as social behaviors based on its connectivity and molecular composition. The AHi is small nucleus rich in neuropeptide and hormone receptors and is contiguous with the ventral subiculum of the hippocampus-hence its designation as a "transition area". Literature focused on the AHi can be difficult to interpret because of changing nomenclature and conflation with neighboring nuclei. Here we summarize what is currently known about AHi structure and development, connections throughout the brain, molecular composition, and functional significance. We aim to delineate current knowledge regarding the AHi, identify potential functions with supporting evidence, and ultimately make clear the importance of the AHi in sociosexual function.
Collapse
Affiliation(s)
- Victoria M Sedwick
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anita E Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
32
|
Dong X, Huang R. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154355. [PMID: 35908520 DOI: 10.1016/j.phymed.2022.154355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Depression, one of the most common mental illnesses and mood disorder syndromes, can seriously harm physical and mental health. As the pathophysiology of depression remains unclear, there is a need to find novel therapeutic agents. Ferulic acid (FA), a phenolic compound found in various Chinese herbal medicines, has anti-inflammatory and free radical scavenging properties as well as a wide range of therapeutic effects against depression. PURPOSE In this review, we appraised preclinical research to fully discuss the anti-depression capacity of FA and discussed FAs' holistic characteristics that can contribute to better management of depression. STUDY DESIGN We reviewed the results of in vitro and in vivo experiments using FA to treat depression and explored the possible antidepressant pharmacological mechanisms of FA for the clinical treatment of depression. METHODS Electronic databases, including PubMed, Google Scholar, and China National Knowledge Infrastructure, were searched from the beginning of the database creation to December 2021. RESULTS Studies on the antidepressant effects of FA show that it may exert such effects through various mechanisms. These include the following: the regulation of monoamine and non-monoamine neurotransmitter levels, inhibition of hypothalamic-pituitary-adrenal axis hyperfunction and neuroinflammation, promotion of hippocampal neurogenesis and upregulation brain-derived neurotrophic factor level, neuroprotection (inhibition of neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis), and downregulation of oxidative stress. CONCLUSION Preclinical studies on the antidepressant effects of FA were reviewed in this study, and research on the antidepressant mechanisms of FA was summarized, confirming that FA can exert antidepressant effects through various pharmacological mechanisms. However, more multicenter clinical case-control studies are needed to confirm the clinical efficacy of FA.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR China.
| |
Collapse
|
33
|
Social defeat drives hyperexcitation of the piriform cortex to induce learning and memory impairment but not mood-related disorders in mice. Transl Psychiatry 2022; 12:380. [PMID: 36088395 PMCID: PMC9464232 DOI: 10.1038/s41398-022-02151-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Clinical studies have shown that social defeat is an important cause of mood-related disorders, accompanied by learning and memory impairment in humans. The mechanism of mood-related disorders has been widely studied. However, the specific neural network involved in learning and memory impairment caused by social defeat remains unclear. In this study, behavioral test results showed that the mice induced both learning and memory impairments and mood-related disorders after exposure to chronic social defeat stress (CSDS). c-Fos immunofluorescence and fiber photometry recording confirmed that CaMKIIα expressing neurons of the piriform cortex (PC) were selectively activated by exposure to CSDS. Next, chemogenetics and optogenetics were performed to activate PC CaMKIIα expressing neurons, which showed learning and memory impairment but not mood-related disorders. Furthermore, chemogenetic inhibition of PC CaMKIIα expressing neurons significantly alleviated learning and memory impairment induced by exposure to CSDS but did not relieve mood-related disorders. Therefore, our data suggest that the overactivation of PC CaMKIIα expressing neurons mediates CSDS-induced learning and memory impairment, but not mood-related disorders, and provides a potential therapeutic target for learning and memory impairment induced by social defeat.
Collapse
|
34
|
Mu JL, Liu XD, Dong YH, Fang YY, Qiu SD, Zhang F, Liu KX. Peripheral interleukin-6-associated microglial QUIN elevation in basolateral amygdala contributed to cognitive dysfunction in a mouse model of postoperative delirium. Front Med (Lausanne) 2022; 9:998397. [PMID: 36160165 PMCID: PMC9500157 DOI: 10.3389/fmed.2022.998397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Developing effective approaches for postoperative delirium has been hampered due to the lack of a pathophysiologically similar animal model to offer insights into the pathogenesis. The study, therefore, aimed to develop a delirium-like mouse model and explore the underlying mechanism. Methods The three cycles of 10-min clamp following 5-min reopening of the superior mesenteric artery (SMA) were performed in adult male C57BL/6 mice to induce a delirium-like phenotype. Composite Z score calculated based on the results of Open Field, Y Maze and Buried Food Tests was employed to assess the delirium phenotype in mice. Microglia activities were monitored by immunofluorescence staining and comprehensive morphological analysis. Systemic administration of minocycline (MINO), IL-6 antibody or IL-6 neutralizing antibody, was applied to manipulate microglia. The expressions of Indoleamine 2,3-dioxygenase-1 (IDO-1) and quinolinic acid (QUIN) were examined by RT-PCR and High-Performance Liquid Chromatography/Mass Spectrometry, respectively. Cytokines were measured using fluorescence activated cell sorting method. Results The repeated ischemia/reperfusion (I/R) surgery caused significant anxiety (P < 0.05) and cognition decline in working memory and orientation (P < 0.05) in mice at postoperative 24 h. The composite Z score, indicating an overall disturbance of brain function, fluctuated over 24 h after I/R surgery (P < 0.001). Immunofluorescent staining showed that the percentage of microglia in the basolateral amygdala (BLA) (P < 0.05) was reactivated after I/R surgery and was negatively correlated with dwell time at Y maze (R = −0.759, P = 0.035). Inhibiting microglia activities by MINO reduced QUIN productions (P < 0.01) that improved cognitive deficits (P < 0.05). The peripheral IL-6 might cause IL-6 elevation in the BLA. Systemic administration of IL-6 antibodies suppressed I/R-induced IL-6 elevations (P < 0.05), microglial reactivations (P < 0.05), IDO-1 expressions (P < 0.01), and neuroactive metabolite QUIN productions (P < 0.05) in the BLA, resulting in a recovery of cognitive deficits (P < 0.05). Injection of IL-6 exerted opposite effects. Conclusion The repeated intestinal I/R surgery-induced mouse model is a simple and reproducible one of postoperative delirium. Peripheral IL-6-associated microglial QUIN elevations in the BLA contributed to cognitive dysfunction in the model of postoperative delirium.
Collapse
Affiliation(s)
- Jing-Lan Mu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Dong Liu
- Department of Anesthesia and Intensive Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ye-Hong Dong
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying-Ying Fang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Da Qiu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fu Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Ke-Xuan Liu,
| |
Collapse
|
35
|
Tong H, Maloney TC, Payne MF, King CD, Ting TV, Kashikar-Zuck S, Coghill RC, López-Solà M. Processing of pain by the developing brain: evidence of differences between adolescent and adult females. Pain 2022; 163:1777-1789. [PMID: 35297790 PMCID: PMC9391252 DOI: 10.1097/j.pain.0000000000002571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adolescence is a sensitive period for both brain development and the emergence of chronic pain particularly in females. However, the brain mechanisms supporting pain perception during adolescence remain unclear. This study compares perceptual and brain responses to pain in female adolescents and adults to characterize pain processing in the developing brain. Thirty adolescent (ages 13-17 years) and 30 adult (ages 35-55 years) females underwent a functional magnetic resonance imaging scan involving acute pain. Participants received 12 ten-second noxious pressure stimuli that were applied to the left thumbnail at 2.5 and 4 kg/cm 2 , and rated pain intensity and unpleasantness on a visual analogue scale. We found a significant group-by-stimulus intensity interaction on pain ratings. Compared with adults, adolescents reported greater pain intensity and unpleasantness in response to 2.5 kg/cm 2 but not 4 kg/cm 2 . Adolescents showed greater medial-lateral prefrontal cortex and supramarginal gyrus activation in response to 2.5 kg/cm 2 and greater medial prefrontal cortex and rostral anterior cingulate responses to 4 kg/cm 2 . Adolescents showed greater pain-evoked responses in the neurologic pain signature and greater activation in the default mode and ventral attention networks. Also, the amygdala and associated regions played a stronger role in predicting pain intensity in adolescents, and activity in default mode and ventral attention regions more strongly mediated the relationship between stimulus intensity and pain ratings. This study provides first evidence of greater low-pain sensitivity and pain-evoked brain responses in female adolescents (vs adult women) in regions important for nociceptive, affective, and cognitive processing, which may be associated with differences in peripheral nociception.
Collapse
Affiliation(s)
- Han Tong
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Thomas C. Maloney
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael F. Payne
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Christopher D. King
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Tracy V. Ting
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Susmita Kashikar-Zuck
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Robert C. Coghill
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marina López-Solà
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Serra Hunter Program, Unit of Psychological Medicine, Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Chen X, Yan Z, Liu L, Zhang R, Zhang X, Peng C, Geng Y, Zhou F, Han Y, Hou X. Characteristics of gut microbiota of term small gestational age infants within 1 week and their relationship with neurodevelopment at 6 months. Front Microbiol 2022; 13:912968. [PMID: 36090083 PMCID: PMC9449527 DOI: 10.3389/fmicb.2022.912968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Small for gestational age (SGA) infants are at a higher risk of neurodevelopmental delay than infants appropriate for gestational age (AGA). Previous studies have confirmed that gut microbiota in early life influences subsequent neurodevelopment. However, few studies have reported corresponding data in SGA populations. Objective We aimed to evaluate the characteristics of the gut microbiota of term SGA infants and the associations between the gut microbiota in SGA infants and neurodevelopmental outcomes at 6 months of age. Methods Fecal samples were collected on days 1, 3, 5, and 7 from term SGA and AGA infants born between June 2020 and June 2021 at the Peking University First Hospital. 16S ribosomal deoxyribonucleic acid amplicon sequencing was used to analyze the fecal microbiota. We followed up for 6 months and used the Ages and Stages Questionnaires-3 (ASQ-3) to evaluate the neurodevelopmental outcomes among SGA infants. Results A total of 162 neonates were enrolled, with 41 SGA infants (25.3%) in the study group and 121 AGA infants (74.7%) in the control group. The gut microbial diversity in the SGA group was lower than that in the AGA group on days 1, 3, 5, and 7. Non-metric multidimensional scaling and analysis of similarities showed significant differences between the two groups. The SGA group had increased relative abundances of Ralstonia (3, 5, and 7 days) and Clostridium (3 and 7 days). The dominant microorganisms of the SGA group were Ralstonia on day 1, Escherichia_Shigella on days 3 and 7, and Clostridia on day 5. We found that the gut microbial diversity of SGA infants with poor communication scores was higher than that of SGA infants with good communication scores on day 3. Fine motor scores were negatively correlated with the relative abundance of Bacteroides_fragilis on day 1. A negative correlation was observed between gross motor scores and relative abundance of Clostridium_saccharobutylicum on day 7. Bacteroidota, Bacteroidia, Bacteroides, and Bacteroides_fragilis were the dominant microorganisms in the good communication score group on day 7. Communication scores were positively correlated with the relative abundance of Bacteroidota, Bacteroides, and Bacteroides_fragilis on day 7. Conclusion The gut microbial diversity of term SGA infants was significantly lower in the first week of life than that of term AGA infants. Certain pathogenic and conditional pathogenic bacteria, such as Escherichia_Shigella, Ralstonia and Clostridium increased or formed the dominant microbiota in SGA infants. Alpha diversity, Bacteroidota, Bacteroides, Bacteroides_fragilis, and Clostridium_saccharobutylicum found in SGA infants may be associated with neurodevelopmental outcomes at 6 months of age, indicating possible therapeutic targets for clinical intervention.
Collapse
|
37
|
Immature excitatory neurons in the amygdala come of age during puberty. Dev Cogn Neurosci 2022; 56:101133. [PMID: 35841648 PMCID: PMC9289873 DOI: 10.1016/j.dcn.2022.101133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The human amygdala is critical for emotional learning, valence coding, and complex social interactions, all of which mature throughout childhood, puberty, and adolescence. Across these ages, the amygdala paralaminar nucleus (PL) undergoes significant structural changes including increased numbers of mature neurons. The PL contains a large population of immature excitatory neurons at birth, some of which may continue to be born from local progenitors. These progenitors disappear rapidly in infancy, but the immature neurons persist throughout childhood and adolescent ages, indicating that they develop on a protracted timeline. Many of these late-maturing neurons settle locally within the PL, though a small subset appear to migrate into neighboring amygdala subnuclei. Despite its prominent growth during postnatal life and possible contributions to multiple amygdala circuits, the function of the PL remains unknown. PL maturation occurs predominately during late childhood and into puberty when sex hormone levels change. Sex hormones can promote developmental processes such as neuron migration, dendritic outgrowth, and synaptic plasticity, which appear to be ongoing in late-maturing PL neurons. Collectively, we describe how the growth of late-maturing neurons occurs in the right time and place to be relevant for amygdala functions and neuropsychiatric conditions.
Collapse
|
38
|
Lidauer K, Pulli EP, Copeland A, Silver E, Kumpulainen V, Hashempour N, Merisaari H, Saunavaara J, Parkkola R, Lähdesmäki T, Saukko E, Nolvi S, Kataja EL, Karlsson L, Karlsson H, Tuulari JJ. Subcortical and hippocampal brain segmentation in 5-year-old children: validation of FSL-FIRST and FreeSurfer against manual segmentation. Eur J Neurosci 2022; 56:4619-4641. [PMID: 35799402 PMCID: PMC9543285 DOI: 10.1111/ejn.15761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Developing accurate subcortical volumetric quantification tools is crucial for neurodevelopmental studies, as they could reduce the need for challenging and time‐consuming manual segmentation. In this study, the accuracy of two automated segmentation tools, FSL‐FIRST (with three different boundary correction settings) and FreeSurfer, were compared against manual segmentation of the hippocampus and subcortical nuclei, including the amygdala, thalamus, putamen, globus pallidus, caudate and nucleus accumbens, using volumetric and correlation analyses in 80 5‐year‐olds. Both FSL‐FIRST and FreeSurfer overestimated the volume on all structures except the caudate, and the accuracy varied depending on the structure. Small structures such as the amygdala and nucleus accumbens, which are visually difficult to distinguish, produced significant overestimations and weaker correlations with all automated methods. Larger and more readily distinguishable structures such as the caudate and putamen produced notably lower overestimations and stronger correlations. Overall, the segmentations performed by FSL‐FIRST's default pipeline were the most accurate, whereas FreeSurfer's results were weaker across the structures. In line with prior studies, the accuracy of automated segmentation tools was imperfect with respect to manually defined structures. However, apart from amygdala and nucleus accumbens, FSL‐FIRST's agreement could be considered satisfactory (Pearson correlation > 0.74, intraclass correlation coefficient (ICC) > 0.68 and Dice score coefficient (DSC) > 0.87) with highest values for the striatal structures (putamen, globus pallidus, caudate) (Pearson correlation > 0.77, ICC > 0.87 and DSC > 0.88, respectively). Overall, automated segmentation tools do not always provide satisfactory results, and careful visual inspection of the automated segmentations is strongly advised.
Collapse
Affiliation(s)
- Kristian Lidauer
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| | - Elmo P Pulli
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Anni Copeland
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Eero Silver
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Venla Kumpulainen
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| | - Niloofar Hashempour
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| | - Harri Merisaari
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Radiology, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku, Turku, Finland.,Department of Radiology, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Paediatric Neurology, Turku University Hospital and University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Saara Nolvi
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Turku Institute for Advanced Studies, University of Turku, Turku, Finland.,Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Eeva-Leena Kataja
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| | - Linnea Karlsson
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jetro J Tuulari
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.,Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland.,Department of Psychiatry, University of Oxford, UK (Sigrid Juselius Fellowship), United Kingdom
| |
Collapse
|
39
|
Totty MS, Maren S. Neural Oscillations in Aversively Motivated Behavior. Front Behav Neurosci 2022; 16:936036. [PMID: 35846784 PMCID: PMC9284508 DOI: 10.3389/fnbeh.2022.936036] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Fear and anxiety-based disorders are highly debilitating and among the most prevalent psychiatric disorders. These disorders are associated with abnormal network oscillations in the brain, yet a comprehensive understanding of the role of network oscillations in the regulation of aversively motivated behavior is lacking. In this review, we examine the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the theta and gamma-range. First, we describe neural oscillations and their link to neural function by detailing the role of well-studied theta and gamma rhythms to spatial and memory functions of the hippocampus. We then describe how theta and gamma oscillations act to synchronize brain structures to guide adaptive fear and anxiety-like behavior. In short, that hippocampal network oscillations act to integrate spatial information with motivationally salient information from the amygdala during states of anxiety before routing this information via theta oscillations to appropriate target regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop in the amygdala and neocortical areas during the encoding of fear memories, and interregional synchronization reflects the retrieval of both recent and remotely encoded fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic extinction memories in the hippocampus.
Collapse
|
40
|
Le Grand Q, Satizabal CL, Sargurupremraj M, Mishra A, Soumaré A, Laurent A, Crivello F, Tsuchida A, Shin J, Macalli M, Singh B, Beiser AS, DeCarli C, Fletcher E, Paus T, Lathrop M, Adams HHH, Bis JC, Seshadri S, Tzourio C, Mazoyer B, Debette S. Genomic Studies Across the Lifespan Point to Early Mechanisms Determining Subcortical Volumes. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:616-628. [PMID: 34700051 PMCID: PMC9395126 DOI: 10.1016/j.bpsc.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Subcortical brain structures play a key role in pathological processes of age-related neurodegenerative disorders. Mounting evidence also suggests that early-life factors may have an impact on the development of common late-life neurological diseases, including genetic factors that can influence both brain maturation and neurodegeneration. METHODS Using large population-based brain imaging datasets across the lifespan (N ≤ 40,628), we aimed to 1) estimate the heritability of subcortical volumes in young (18-35 years), middle (35-65 years), and older (65+ years) age, and their genetic correlation across age groups; 2) identify whether genetic loci associated with subcortical volumes in older persons also show associations in early adulthood, and explore underlying genes using transcriptome-wide association studies; and 3) explore their association with neurological phenotypes. RESULTS Heritability of subcortical volumes consistently decreased with increasing age. Genetic risk scores for smaller caudate nucleus, putamen, and hippocampus volume in older adults were associated with smaller volumes in young adults. Individually, 10 loci associated with subcortical volumes in older adults also showed associations in young adults. Within these loci, transcriptome-wide association studies showed that expression of several genes in brain tissues (especially MYLK2 and TUFM) was associated with subcortical volumes in both age groups. One risk variant for smaller caudate nucleus volume (TUFM locus) was associated with lower cognitive performance. Genetically predicted Alzheimer's disease was associated with smaller subcortical volumes in middle and older age. CONCLUSIONS Our findings provide novel insights into the genetic determinants of subcortical volumes across the lifespan. More studies are needed to decipher the underlying biology and clinical impact.
Collapse
Affiliation(s)
- Quentin Le Grand
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas; Department of Population Health Sciences, UT Health San Antonio, San Antonio, Texas; Framingham Heart Study, Framingham, Massachusetts; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Muralidharan Sargurupremraj
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Aicha Soumaré
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Alexandre Laurent
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France
| | - Fabrice Crivello
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France
| | - Ami Tsuchida
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France
| | - Jean Shin
- Department of Physiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Department of Nutritional Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mélissa Macalli
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Baljeet Singh
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California Davis, Davis, California
| | - Alexa S Beiser
- Framingham Heart Study, Framingham, Massachusetts; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Charles DeCarli
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California Davis, Davis, California
| | - Evan Fletcher
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California Davis, Davis, California
| | - Tomas Paus
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Centre Hospitalier Universitaire Sainte-Justine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Mark Lathrop
- McGill Genome Center, McGill University, Montreal, Quebec, Canada
| | - Hieab H H Adams
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas; Department of Population Health Sciences, UT Health San Antonio, San Antonio, Texas; Framingham Heart Study, Framingham, Massachusetts; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Christophe Tzourio
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France; Bordeaux University Hospital, Department of Medical Informatics, Bordeaux, France
| | - Bernard Mazoyer
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional imaging group, Bordeaux, France; Bordeaux University Hospital, Department of Neuroradiology, Bordeaux, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France; Bordeaux University Hospital, Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux, France.
| |
Collapse
|
41
|
Guan L, Shi X, Tang Y, Yan Y, Chen L, Chen Y, Gao G, Lin C, Chen A. Contribution of Amygdala Histone Acetylation in Early Life Stress-Induced Visceral Hypersensitivity and Emotional Comorbidity. Front Neurosci 2022; 16:843396. [PMID: 35600618 PMCID: PMC9120649 DOI: 10.3389/fnins.2022.843396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Patients with irritable bowel syndrome (IBS) experience not only enhanced visceral pain but also emotional comorbidities, such as anxiety and depression. Early life stress (ELS) is a high-risk for the development of IBS. Literatures have reported an important epigenetic modulation in sustaining extrinsic phenotypes. The amygdala is closely related to the regulation of visceral functions and emotional experiences. In this study, we hypothesized that ELS-induced reprogramming inappropriate adaptation of histone acetylation modification in the amygdala may result in visceral hypersensitivity and anxiety-like behaviors in ELS rats. To test this hypothesis, the model of ELS rats was established by neonatal colorectal dilatation (CRD). Visceral hypersensitivity was assessed based on the electromyography response of the abdominal external oblique muscle to CRD. Emotional comorbidities were examined using the elevated plus maze test, open field test, and sucrose preference test. Trichostatin A (TSA) and C646 were microinjected into the central amygdala (CeA) individually to investigate the effects of different levels of histone acetylation modification on visceral hypersensitivity and emotion. We found neonatal CRD resulted in visceral hypersensitivity and anxiety-like behaviors after adulthood. Inhibiting histone deacetylases (HDACs) in the CeA by TSA enhanced visceral sensitivity but did not affect anxiety-like behaviors, whereas inhibiting HAT by C646 attenuated visceral hypersensitivity in ELS rats. Interestingly, CeA treatment with TSA induced visceral sensitivity and anxiety-like behaviors in the control rats. Western blot showed that the expressions of acetylated 9 residue of Histone 3 (H3K9) and protein kinase C zeta type (PKMζ) were higher in the ELS rats compared to those of the controls. The administration of the PKMζ inhibitor ZIP into the CeA attenuated visceral hypersensitivity of ELS rats. Furthermore, the expression of amygdala PKMζ was enhanced by TSA treatment in control rats. Finally, western blot and immunofluorescence results indicated the decrease of HDAC1 and HDAC2 expressions, but not HDAC3 expression, contributed to the enhancement of histone acetylation in ELS rats. Our results support our hypothesis that amygdala-enhanced histone acetylation induced by stress in early life results in visceral hypersensitivity and anxiety-like behaviors in ELS rats, and reversing the abnormal epigenetic mechanisms may be crucial to relieve chronic symptoms in ELS rats.
Collapse
Affiliation(s)
- Le Guan
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Xi Shi
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Tang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Yan Yan
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Liang Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Yu Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Guangcheng Gao
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Chun Lin
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Chun Lin,
| | - Aiqin Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Aiqin Chen,
| |
Collapse
|
42
|
Hernandez CM, Jackson NL, Hernandez AR, McMahon LL. Impairments in Fear Extinction Memory and Basolateral Amygdala Plasticity in the TgF344-AD Rat Model of Alzheimer's Disease Are Distinct from Nonpathological Aging. eNeuro 2022; 9:ENEURO.0181-22.2022. [PMID: 35998297 PMCID: PMC9239848 DOI: 10.1523/eneuro.0181-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Fear-based disorders such as post-traumatic stress disorder (PTSD) steepen age-related cognitive decline and double the risk for developing Alzheimer's disease (AD). Because of the seemingly hyperactive properties of fear memories, PTSD symptoms can worsen with age. Perturbations in the synaptic circuitry supporting fear memory extinction are key neural substrates of PTSD. The basolateral amygdala (BLA) is a medial temporal lobe structure that is critical in the encoding, consolidation, and retrieval of fear memories. As little is known about fear extinction memory and BLA synaptic dysfunction within the context of aging and AD, the goal of this study was to investigate how fear extinction memory deficits and basal amygdaloid nucleus (BA) synaptic dysfunction differentially associate in nonpathologic aging and AD in the TgF344AD (TgAD) rat model of AD. Young, middle-aged, and older-aged WT and TgAD rats were trained on a delay fear conditioning and extinction procedure before ex vivo extracellular field potential recording experiments in the BA. Relative to young WT rats, long-term extinction memory was impaired, and in general, was associated with a hyperexcitable BA and impaired LTP in TgAD rats at all ages. In contrast, long-term extinction memory was impaired in aged WT rats and was associated with impaired LTP but not BA hyperexcitability. Interestingly, the middle-aged TgAD rats showed intact short-term extinction and BA LTP, which is suggestive of a compensatory mechanism, whereas differential neural recruitment in older-aged WT rats may have facilitated short-term extinction. As such, associations between fear extinction memory and amygdala deficits in nonpathologic aging and AD are dissociable.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Cellular, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2182
| | - Nateka L Jackson
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2182
| | - Abbi R Hernandez
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2182
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Lori L McMahon
- Department of Cellular, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2182
- Nathan Shock Center of Excellence in the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama 35294
- Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
43
|
Ponce-Regalado MD, Salazar-Juárez A, Oscar RE, Contis-Montes de Oca A, Hurtado-Alvarado G, Arce-Paredes P, Pérez-Sánchez G, Pavón L, Girón-Pérez MI, Hernández-Pando R, Alvarez-Sánchez ME, Enrique BV. Development of Anxiolytic and Depression-like Behavior in Mice Infected with Mycobacterium lepraemurium. Neuroscience 2022; 493:15-30. [PMID: 35447197 DOI: 10.1016/j.neuroscience.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022]
Abstract
Murine leprosy is a systemic infectious disease of mice caused by Mycobacterium lepraemurium (MLM) in which the central nervous system (CNS) is not infected; nevertheless, diseased animals show measurable cognitive alterations. For this reason, in this study, we explored the neurobehavioral changes in mice chronically infected with MLM. BALB/c mice were infected with MLM, and 120 days later, the alterations in mice were evaluated based on immunologic, histologic, endocrine, neurochemical, and behavioral traits. We found increases in the levels of IL-4 and IL-10 associated with high bacillary loads. We also found increase in the serum levels of corticosterone, epinephrine, and norepinephrine in the adrenal gland, suggesting neuroendocrine deregulation. Mice exhibited depression-like behavior in the tail suspension and forced swimming tests and anxiolytic behavior in the open field and elevated plus maze tests. The neurobehavioral alterations of mice were correlated with the histologic damage in the prefrontal cortex, ventral hippocampus, and amygdala, as well as with a blood-brain barrier disruption in the hippocampus. These results reveal an interrelated response of the neuroimmune-endocrinological axis in unresolved chronic infections that result in neurocognitive deterioration.
Collapse
Affiliation(s)
- M D Ponce-Regalado
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Carretera a Yahualica, Km. 7.5 Tepatitlán de Morelos, Jalisco 47600, Mexico
| | - A Salazar-Juárez
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry "Ramón de la Fuente", Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Rojas-Espinosa Oscar
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Colonia Santo Tomás, 11340, Ciudad de México, Mexico.
| | - A Contis-Montes de Oca
- Sección de estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Diaz Miron y Plan de San Luis S/N, Miguel Hidalgo, 11340 Mexico City, Mexico
| | - G Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, Area of Neurosciences, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - P Arce-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - G Pérez-Sánchez
- Laboratory of Psychoimmunology, National Institute of Psychiatry "Ramón de la Fuente", Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - L Pavón
- Laboratory of Psychoimmunology, National Institute of Psychiatry "Ramón de la Fuente", Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - M I Girón-Pérez
- Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado Universidad Autónoma de Nayarit, Boulevard Tepic-Xalisco s/n. Cd, de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, México
| | - R Hernández-Pando
- Experimental Pathology Section, Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Vasco de Quiroga 15, Colonia Belisario Dominguez Seccion XVI, 14080, Deleg. Tlalpan, México City, Mexico
| | - M E Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100 México City, México
| | - Becerril-Villanueva Enrique
- Laboratory of Psychoimmunology, National Institute of Psychiatry "Ramón de la Fuente", Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico.
| |
Collapse
|
44
|
McIntosh R, Lobo JD, Carvalho N, Ironson G. Learning to forget: Hippocampal-amygdala connectivity partially mediates the effect of sexual trauma severity on verbal recall in older women undiagnosed with posttraumatic stress disorder. J Trauma Stress 2022; 35:631-643. [PMID: 35156236 PMCID: PMC11021133 DOI: 10.1002/jts.22778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Verbal learning deficits are common among sexually traumatized women who have not been formally diagnosed with posttraumatic stress disorder (PTSD). Aberrant resting-state functional connectivity (rsFC) of the amygdala and hippocampus are implicated in PTSD and verbal memory impairment. We tested rsFC between bilateral dentate gyrus (DG) and both centromedial (CM) and basolateral (BL) nuclei of the amygdala as statistical mediators for the effect of sexual trauma-related symptom severity on delayed verbal recall performance in 63 older women (age: 60-85 years) undiagnosed with PTSD. Participant data were drawn from the NKI-Rockland Study. Individuals completed a 10-min resting-state scan, Rey Auditory Verbal Learning Test (RAVLT), and the Sexual Abuse Trauma Index (SATI) from the Trauma Symptom Checklist. Z-scores indicating rsFC of DG with BL and CM amygdala seeds were evaluated in two separate mediation models. Higher SATI scores were associated with lower RAVLT after controlling for age, β = -.23, 95% CI [.48, .03], p = .039. This effect was negated upon adding a negative path from SATI to rsFC of left DG and right CM, β = -.29, 95% CI [-.52, -.02], p = .022, and a positive path from that seed pair to RAVLT List A recall, β = .28, 95% CI [.03, 0.48], p = .015. Chi-square fit indices supported partial mediation by this seed pair, p = .762. In the absence of PTSD sexual trauma symptoms partially relate to verbal learning deficits as a function of aberrant rsFC between left hippocampus DG and right amygdala CM nuclei.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Judith D Lobo
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Nicole Carvalho
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Gail Ironson
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
45
|
The Medial Prefrontal Cortex, Nucleus Accumbens, Basolateral Amygdala, and Hippocampus Regulate the Amelioration of Environmental Enrichment and Cue in Fear Behavior in the Animal Model of PTSD. Behav Neurol 2022; 2022:7331714. [PMID: 35178125 PMCID: PMC8843982 DOI: 10.1155/2022/7331714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
A growing body of evidence showed that environmental enrichment (EE) ameliorated footshock-induced fear behavior of posttraumatic stress disorder (PTSD). However, no research comprehensively tested the effect of EE, cue, and the combination of EE and cue in footshock-induced fear behavior of PTSD symptoms. The present study addressed this issue and examined whether the medial prefrontal cortex (mPFC, including the cingulate cortex 1 (Cg1), prelimbic cortex (PrL), and infralimbic cortex (IL)), the nucleus accumbens (NAc), the basolateral amygdala (BLA), and the hippocampus (e.g., CA1, CA3, and dentate gyrus (DG)) regulated the amelioration of the EE, cue, or the combination of EE and cue. The results showed that EE or cue could reduce fear behavior. The combination of EE and cue revealed a stronger decrease in fear behavior. The cue stimulus may play an occasion setting or a conditioned stimulus to modulate the reduction in fear behavior induced by footshock. Regarding the reduction of the EE in fear behavior, the Cg1 and IL of the mPFC and the NAc upregulated the c-Fos expression; however, the BLA downregulated the c-Fos expression. The mPFC (i.e., the Cg1, PrL, and IL) and the hippocampus (i.e., the CA1, CA3, and DG) downregulated the c-Fos expression in the suppression of the cue in fear behavior. The interaction of EE and cue in reduction of fear behavior occurred in the Cg1 and NAc for the c-Fos expression. The data of c-Fos mRNA were similar to the findings of the c-Fos protein expression. These findings related to the EE and cue modulations in fear behavior may develop a novel nonpharmacological treatment in PTSD.
Collapse
|
46
|
The Entorhinal Cortex as a Gateway for Amygdala Influences on Memory Consolidation. Neuroscience 2022; 497:86-96. [PMID: 35122874 DOI: 10.1016/j.neuroscience.2022.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022]
Abstract
The amygdala, specifically its basolateral nucleus (BLA), is a critical site integrating neuromodulatory influences on memory consolidation in other brain areas. Almost 20 years ago, we reported the first direct evidence that BLA activity is required for modulatory interventions in the entorhinal cortex (EC) to affect memory consolidation (Roesler, Roozendaal, and McGaugh, 2002). Since then, significant advances have been made in our understanding of how the EC participates in memory. For example, the characterization of grid cells specialized in processing spatial information in the medial EC (mEC) that act as major relayers of information to the hippocampus (HIP) has changed our view of memory processing by the EC; and the development of optogenetic technologies for manipulation of neuronal activity has recently enabled important new discoveries on the role of the BLA projections to the EC in memory. Here, we review the current evidence on interactions between the BLA and EC in synaptic plasticity and memory formation. The findings suggest that the EC may function as a gateway and mediator of modulatory influences from the BLA, which are then processed and relayed to the HIP. Through extensive reciprocal connections among the EC, HIP, and several cortical areas, information related to new memories is then consolidated by these multiple brain systems, through various molecular and cellular mechanisms acting in a distributed and highly concerted manner, during several hours after learning. A special note is made on the contribution by Ivan Izquierdo to our understanding of memory consolidation at the brain system level.
Collapse
|
47
|
AlSubaie R, Wee RWS, Ritoux A, Mishchanchuk K, Passlack J, Regester D, MacAskill AF. Control of parallel hippocampal output pathways by amygdalar long-range inhibition. eLife 2021; 10:e74758. [PMID: 34845987 PMCID: PMC8654375 DOI: 10.7554/elife.74758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons and avoids prefrontal cortex-projecting vH neurons, while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.
Collapse
Affiliation(s)
- Rawan AlSubaie
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Ryan WS Wee
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Anne Ritoux
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Karyna Mishchanchuk
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Jessica Passlack
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Daniel Regester
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
48
|
Kong MS, Kim EJ, Park S, Zweifel LS, Huh Y, Cho J, Kim JJ. 'Fearful-place' coding in the amygdala-hippocampal network. eLife 2021; 10:e72040. [PMID: 34533133 PMCID: PMC8500711 DOI: 10.7554/elife.72040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
Animals seeking survival needs must be able to assess different locations of threats in their habitat. However, the neural integration of spatial and risk information essential for guiding goal-directed behavior remains poorly understood. Thus, we investigated simultaneous activities of fear-responsive basal amygdala (BA) and place-responsive dorsal hippocampus (dHPC) neurons as rats left the safe nest to search for food in an exposed space and encountered a simulated 'predator.' In this realistic situation, BA cells increased their firing rates and dHPC place cells decreased their spatial stability near the threat. Importantly, only those dHPC cells synchronized with the predator-responsive BA cells remapped significantly as a function of escalating risk location. Moreover, optogenetic stimulation of BA neurons was sufficient to cause spatial avoidance behavior and disrupt place fields. These results suggest a dynamic interaction of BA's fear signalling cells and dHPC's spatial coding cells as animals traverse safe-danger areas of their environment.
Collapse
Affiliation(s)
- Mi-Seon Kong
- Department of Psychology, University of WashingtonSeattleUnited States
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Eun Joo Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| | - Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Yeowool Huh
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
- Department of Medical Science, College of Medicine, Catholic Kwandong UniversityGangneungRepublic of Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| |
Collapse
|
49
|
Plassard AJ, Bao S, McHugo M, Beason-Held L, Blackford JU, Heckers S, Landman BA. Automated, open-source segmentation of the Hippocampus and amygdala with the open Vanderbilt archive of the temporal lobe. Magn Reson Imaging 2021; 81:17-23. [PMID: 33901584 PMCID: PMC8715642 DOI: 10.1016/j.mri.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Examining volumetric differences of the amygdala and anterior-posterior regions of the hippocampus is important for understanding cognition and clinical disorders. However, the gold standard manual segmentation of these structures is time and labor-intensive. Automated, accurate, and reproducible techniques to segment the hippocampus and amygdala are desirable. Here, we present a hierarchical approach to multi-atlas segmentation of the hippocampus head, body and tail and the amygdala based on atlases from 195 individuals. The Open Vanderbilt Archive of the temporal Lobe (OVAL) segmentation technique outperforms the commonly used FreeSurfer, FSL FIRST, and whole-brain multi-atlas segmentation approaches for the full hippocampus and amygdala and nears or exceeds inter-rater reproducibility for segmentation of the hippocampus head, body and tail. OVAL has been released in open-source and is freely available.
Collapse
Affiliation(s)
- Andrew J Plassard
- Vanderbilt University, Computer Science, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | - Shunxing Bao
- Vanderbilt University, Computer Science, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | - Maureen McHugo
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, 31 Center Dr, #5C27 MSC 2292, Building 31, Room 5C27, Bethesda, Maryland, 20892-0001, USA.
| | - Jennifer U Blackford
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | - Stephan Heckers
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | - Bennett A Landman
- Vanderbilt University, Computer Science, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University, Electrical Engineering, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| |
Collapse
|
50
|
Ontaneda D, Raza PC, Mahajan KR, Arnold DL, Dwyer MG, Gauthier SA, Greve DN, Harrison DM, Henry RG, Li DKB, Mainero C, Moore W, Narayanan S, Oh J, Patel R, Pelletier D, Rauscher A, Rooney WD, Sicotte NL, Tam R, Reich DS, Azevedo CJ. Deep grey matter injury in multiple sclerosis: a NAIMS consensus statement. Brain 2021; 144:1974-1984. [PMID: 33757115 PMCID: PMC8370433 DOI: 10.1093/brain/awab132] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although multiple sclerosis has traditionally been considered a white matter disease, extensive research documents the presence and importance of grey matter injury including cortical and deep regions. The deep grey matter exhibits a broad range of pathology and is uniquely suited to study the mechanisms and clinical relevance of tissue injury in multiple sclerosis using magnetic resonance techniques. Deep grey matter injury has been associated with clinical and cognitive disability. Recently, MRI characterization of deep grey matter properties, such as thalamic volume, have been tested as potential clinical trial end points associated with neurodegenerative aspects of multiple sclerosis. Given this emerging area of interest and its potential clinical trial relevance, the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative held a workshop and reached consensus on imaging topics related to deep grey matter. Herein, we review current knowledge regarding deep grey matter injury in multiple sclerosis from an imaging perspective, including insights from histopathology, image acquisition and post-processing for deep grey matter. We discuss the clinical relevance of deep grey matter injury and specific regions of interest within the deep grey matter. We highlight unanswered questions and propose future directions, with the aim of focusing research priorities towards better methods, analysis, and interpretation of results.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Praneeta C Raza
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Kedar R Mahajan
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas N Greve
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Roland G Henry
- Department of Neurology, Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
- The UC San Francisco and Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA 94143, USA
| | - David K B Li
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Alexander Rauscher
- Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roger Tam
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
| | - Christina J Azevedo
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|