1
|
Ji J, Gao D, Wu HY, Xiong M, Stajkovic N, Latte Bovio C, Yang CY, Santoro F, Tu D, Fabiano S. Single-transistor organic electrochemical neurons. Nat Commun 2025; 16:4334. [PMID: 40346056 PMCID: PMC12064751 DOI: 10.1038/s41467-025-59587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
Neuromorphic devices that mimic the energy-efficient sensing and processing capabilities of biological neurons hold significant promise for developing bioelectronic systems capable of precise sensing and adaptive stimulus-response. However, current silicon-based technologies lack biocompatibility and rely on operational principles that differ from those of biological neurons. Organic electrochemical neurons (OECNs) address these shortcomings but typically require multiple components, limiting their integration density and scalability. Here, we report a single-transistor OECN (1T-OECN) that leverages the hysteretic switching of organic electrochemical memtransistors (OECmTs) based on poly(benzimidazobenzophenanthroline). By tuning the electrolyte and driving voltage, the OECmTs switch between high- and low-resistance states, enabling action potential generation, dynamic spiking, and logic operations within a single device with dimensions comparable to biological neurons. The compact 1T-OECN design (~180 µm2 footprint) supports high-density integration, achieving over 62,500 neurons/cm2 on flexible substrates. This advancement highlights the potential for scalable, bio-inspired neuromorphic computing and seamless integration with biological systems.
Collapse
Affiliation(s)
- Junpeng Ji
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Dace Gao
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Miao Xiong
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Nevena Stajkovic
- Institute of Biological Information Processing IBI-3 Bioelectronics, Forschungszentrum Jülich, Jülich, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, Aachen, Germany
| | - Claudia Latte Bovio
- Tissue Electronics, Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Francesca Santoro
- Institute of Biological Information Processing IBI-3 Bioelectronics, Forschungszentrum Jülich, Jülich, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, Aachen, Germany
- Tissue Electronics, Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Deyu Tu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
| |
Collapse
|
2
|
Verduijn K, de Rooster H, Meyer E, Steenbrugge J. Canine organoids: state-of-the-art, translation potential for human medicine and plea for standardization. Front Vet Sci 2025; 12:1562004. [PMID: 40417361 PMCID: PMC12098350 DOI: 10.3389/fvets.2025.1562004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 05/27/2025] Open
Abstract
Organoids have already shown great promise as research tools in human medicine. However, in veterinary medicine, such applications are limited and largely confined to canine organoids. In the Cross Health context, the potential of canine organoids lies in the translation to human diseases, such as cancer. This review provides a state-of-the-art, highlights the current challenges, and at first compares the reported culture conditions of canine organoids derived from both non-neoplastic and neoplastic tissue (i.e., tumoroids), identifying substantial gaps and discrepancies in used culture methods. We make a plea for the standardization of canine organoid culture characteristics and increased rigor in parameter reporting, which will ultimately enhance the reproducibility and applicability of canine organoids in both veterinary and human medicine, especially in the oncology field.
Collapse
Affiliation(s)
- Kim Verduijn
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG)-Veterinary Oncology Network (VON), Ghent, Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG)-Veterinary Oncology Network (VON), Ghent, Belgium
| | - Evelyne Meyer
- Cancer Research Institute Ghent (CRIG)-Veterinary Oncology Network (VON), Ghent, Belgium
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jonas Steenbrugge
- Cancer Research Institute Ghent (CRIG)-Veterinary Oncology Network (VON), Ghent, Belgium
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Küchler J, Vulić K, Yao H, Valmaggia C, Ihle SJ, Weaver S, Vörös J. Engineered biological neuronal networks as basic logic operators. Front Comput Neurosci 2025; 19:1559936. [PMID: 40357001 PMCID: PMC12066566 DOI: 10.3389/fncom.2025.1559936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
We present an in vitro neuronal network with controlled topology capable of performing basic Boolean computations, such as NAND and OR. Neurons cultured within polydimethylsiloxane (PDMS) microstructures on high-density microelectrode arrays (HD-MEAs) enable precise interaction through extracellular voltage stimulation and spiking activity recording. The architecture of our system allows for creating non-linear functions with two inputs and one output. Additionally, we analyze various encoding schemes, comparing the limitations of rate coding with the potential advantages of spike-timing-based coding strategies. This work contributes to the advancement of hybrid intelligence and biocomputing by offering insights into neural information encoding and decoding with the potential to create fully biological computational systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - János Vörös
- Laboratory of Biosensors and Bioelectronics (LBB), Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Pereyra G, Mateo MI, Miaja P, Martin-Bermejo MJ, Martinez-Baños M, Klaassen R, Gruart A, Rueda-Carrasco J, Fernández-Rodrigo A, López-Merino E, Esteve P, Esteban JA, Smit AB, Delgado-García JM, Bovolenta P. SFRP1 upregulation causes hippocampal synaptic dysfunction and memory impairment. Cell Rep 2025; 44:115535. [PMID: 40198223 DOI: 10.1016/j.celrep.2025.115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/30/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Impaired neuronal and synaptic function are hallmarks of early Alzheimer's disease (AD), preceding other neuropathological traits and cognitive decline. We previously showed that SFRP1, a glial-derived protein elevated in AD brains from preclinical stages, contributes to disease progression, implicating glial factors in early pathogenesis. Here, we generate and analyze transgenic mice overexpressing astrocytic SFRP1. SFRP1 accumulation causes early dendritic and synaptic defects in adult mice, followed by impaired synaptic long-term potentiation and cognitive decline, evident only when the animals age, thereby mimicking AD's structural-functional temporal distinction. This phenotype correlates with proteomic changes, including increased structural synaptic proteins like neurexin, which localizes in close proximity with SFRP1 in cultured hippocampal neurons. We conclude that excessive SFRP1 hinders synaptic protein turnover, reducing synaptic plasticity-a mechanism that may underlie the synaptopathy observed in the brains of prodromal AD patients.
Collapse
Affiliation(s)
- Guadalupe Pereyra
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Inés Mateo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Pablo Miaja
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Jesús Martin-Bermejo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Marcos Martinez-Baños
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Remco Klaassen
- Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Javier Rueda-Carrasco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Alba Fernández-Rodrigo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Esperanza López-Merino
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pilar Esteve
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | | | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Shi H, Li Q, Hu F, Liu Y, Wang K. A novel role of the antidepressant paroxetine in inhibiting neuronal Kv7/M channels to enhance neuronal excitability. Transl Psychiatry 2025; 15:116. [PMID: 40175331 PMCID: PMC11965407 DOI: 10.1038/s41398-025-03291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/18/2025] [Accepted: 02/18/2025] [Indexed: 04/04/2025] Open
Abstract
The voltage-gated Kv7/KCNQ/M potassium channels exert inhibitory control over neuronal membrane excitability. The reduction of Kv7 channel function can improve neuronal excitability that defines the fundamental mechanism of learning and memory. This suggests that pharmacological inhibition of Kv7 channels may present a therapeutic strategy for cognitive improvement. Paroxetine, a selective serotonin reuptake inhibitor, is widely used in the treatment of various types of depression with reported improvements in memory and attention. However, the exact mechanism underlying cognitive improvement by paroxetine remains poorly understood. In this study, we demonstrate that paroxetine inhibits whole-cell Kv7.2/Kv7.3 channel currents in a concentration-dependent manner with an IC50 of 3.6 ± 0.2 μΜ. In single-channel recording assay, paroxetine significantly reduces the open probability of Kv7.2/Kv7.3 channels. Moreover, paroxetine exhibits an inhibition of the native M-current and an increase in the firing of action potentials in hippocampal neurons. Taken together, our findings unveil a novel role of the antidepressant paroxetine in inhibiting M-current, providing insights into its pharmacological effects on cognition enhancement.
Collapse
Affiliation(s)
- Huan Shi
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China
| | - Qinqin Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China.
- Institute of Innovative Drugs, Qingdao University, Qingdao, China.
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical college, Qingdao, China.
- Institute of Innovative Drugs, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Koch K, Schlüppmann K, Hüsken S, Stark LM, Förster N, Masjosthusmann S, Klose J, Dönmez A, Fritsche E. Nuclear hormone receptors control fundamental processes of human fetal neurodevelopment: Basis for endocrine disruption assessment. ENVIRONMENT INTERNATIONAL 2025; 198:109400. [PMID: 40147140 DOI: 10.1016/j.envint.2025.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Despite growing awareness of endocrine disrupting chemicals (EDCs), knowledge gaps remain regarding their effects on human brain development. EDC risk assessment focuses primarily on EATS modalities (estrogens, androgens, thyroid hormones, and steroidogenesis), overlooking the broader range of hormone receptors expressed in the developing brain. This limits the evaluation of chemicals for their potential to cause endocrine disruption-mediated developmental neurotoxicity (ED-DNT). The Neurosphere Assay, an in vitro test method for developmental neurotoxicity (DNT) evaluation, is an integral component of the DNT in vitro testing battery, which has been used to screen a broad domain of environmental chemicals. Here, we define the endocrine-related applicability domain of the Neurosphere Assay by assessing the impact and specificity of 14 hormone receptors on seven key neurodevelopmental processes (KNDPs), neural progenitor cell (NPC) proliferation, migration of radial glia, neurons, and oligodendrocytes, neurite outgrowth, and differentiation of neurons and oligodendrocytes. Comparative analyses in human and rat NPCs of both sexes revealed species- and sex-specific responses. Mechanistic insights were obtained through RNA sequencing and agonist/antagonist co-exposures. Most receptor agonists modulated KNDPs at concentrations in the range of physiologically relevant hormone concentrations. Phenotypic effects induced by glucocorticoid receptor (GR), liver X receptor (LXR), peroxisome proliferator-activated receptor beta/delta (PPARβδ), retinoic acid receptor (RAR) and retinoid X receptor (RXR) activation were counteracted by receptor antagonists, confirming specificity. Transcriptomics highlighted receptor crosstalk and the involvement of conserved developmental pathways (e.g. Notch and Wnt). Species comparisons identified limited concordance in hormone receptor-regulated KNDPs between human and rat NPCs. This study presents novel findings on cellular and molecular hormone actions in human fetal NPCs, highlights major species differences, and illustrates the Neurosphere Assay's relevance for detecting endocrine MoAs, supporting its application in human-based ED-DNT risk assessment.
Collapse
Affiliation(s)
- Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany.
| | - Kevin Schlüppmann
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Saskia Hüsken
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Louisa Merit Stark
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Nils Förster
- Bioinformatics Group, Faculty for Biology and Biotechnology, Ruhr-University Bochum, Germany; Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, Bochum, Germany
| | | | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany
| | - Arif Dönmez
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany; SCAHT - Swiss Centre for Applied Human Toxicology, Basel, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Winter-Hjelm N, Klausen KG, Normann AS, Sandvig A, Sandvig I, Sikorski P. Functional Complexity of Engineered Neural Networks Self-Organized on Structured 3D Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410150. [PMID: 40026123 DOI: 10.1002/smll.202410150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Engineered neural networks are indispensable tools for studying neural function and dysfunction in controlled microenvironments. In vitro, neurons self-organize into complex assemblies with structural and functional features reminiscent to those observed for in vivo circuits. Traditionally, these models are established on planar interfaces, but studies suggest that the lack of a 3D growth space affects neuronal organization and function. While methods supporting 3D growth exist, reproducible 3D neuroengineering techniques compatible with electrophysiological recording methods are still needed. In this study, a reproducible biocompatible interface made of the polymer SU-8 to support 3D network development is developed. Using electron microscopy and immunocytochemistry, it is shown that neurons utilize these 3D interfaces to self-assemble into complex, multi-layered 3D networks. Furthermore, interfacing the 3D structures with custom microelectrode arrays enables characterizing of electrophysiological activity. Both planar control networks and 3D networks display complex interactions with integrated and segregated functional dynamics. However, control networks show stronger functional interconnections, higher entropy, and increased firing rates. In summary, the interfaces provide a versatile approach for supporting neural networks with a 3D growth environment, compatible with assorted electrophysiology and imaging techniques. This system can offer new insights into the impact of 3D topologies on neural network organization and function.
Collapse
Affiliation(s)
- Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Kasper Grøndahl Klausen
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Amund Stensrud Normann
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, 907 37, Sweden
- Department for Neurorehabilitation, Umeå University Hospital, Umeå, 907 37, Sweden
- Department of Community Medicine and Rehabilitatio, Section for Spinal cord and Head Injuries, Umeå University Hospital, Umeå, 907 37, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Pawel Sikorski
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| |
Collapse
|
8
|
Sunkara MR, Singh JN, Meena CL, Pant AB, Jain R, Sharma SS. Amelioration of Glutamate-induced Toxicity by a New Thyrotropin-releasing Hormone (TRH) Analogue PYR-l-(2,5-Dibromo)-His-l-ProNH 2. Ann Neurosci 2025:09727531241305505. [PMID: 40092747 PMCID: PMC11907565 DOI: 10.1177/09727531241305505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2025] Open
Abstract
Background Glutamate has been implicated in the pathophysiology of central nervous system diseases, including stroke. Purpose In this study, the neuroprotective potential of the newly synthesised thyrotropin-releasing hormone (TRH) analogue [Pyr-l-(2,5-dibromo)-His-l-ProNH2; NP-2376] against glutamate-induced injury model were investigated. Methods Cortical neurons isolated from neonatal rats were used to evaluate the effects of the NP-2376. Cortical neurons were pre-treated with NP-2376 (6, 12 and 24 h) prior to glutamate (15 mM) exposure. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake (NRU) assay, and oxidative stress by chloromethyl-2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) and glutathione assays. Results NP-2376 protected against glutamate-induced cortical neuron death and oxidative stress in a dose-dependent manner. Conclusions This study demonstrates the neuroprotective potential of TRH analogue NP-2376 against glutamate-induced toxicity, which is attributed to a decrease in oxidative stress.
Collapse
Affiliation(s)
- Mallikarjuna R. Sunkara
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Jitendra N. Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - C. L. Meena
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - A. B. Pant
- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Shyam S. Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| |
Collapse
|
9
|
Omidi S, Berdichevsky Y. Pathway-like Activation of 3D Neuronal Constructs with an Optical Interface. BIOSENSORS 2025; 15:179. [PMID: 40136976 PMCID: PMC11940104 DOI: 10.3390/bios15030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Three-dimensional neuronal organoids, spheroids, and tissue mimics are increasingly used to model cognitive processes in vitro. These 3D constructs are also used to model the effects of neurological and psychiatric disorders and to perform computational tasks. The brain's complex network of neurons is activated via feedforward sensory pathways. Therefore, an interface to 3D constructs that models sensory pathway-like inputs is desirable. In this work, an optical interface for 3D neuronal constructs was developed. Dendrites and axons extended by cortical neurons within the 3D constructs were guided into microchannel-confined bundles. These neurite bundles were then optogenetically stimulated, and evoked responses were evaluated by calcium imaging. Optical stimulation was designed to deliver distinct input patterns to the network in the 3D construct, mimicking sensory pathway inputs to cortical areas in the intact brain. Responses of the network to the stimulation possessed features of neuronal population code, including separability by input pattern and mixed selectivity of individual neurons. This work represents the first demonstration of a pathway-like activation of networks in 3D constructs. Another innovation of this work is the development of an all-optical interface to 3D neuronal constructs, which does not require the use of expensive microelectrode arrays. This interface may enable the use of 3D neuronal constructs for investigations into cortical information processing. It may also enable studies into the effects of neurodegenerative or psychiatric disorders on cortical computation.
Collapse
Affiliation(s)
- Saeed Omidi
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Yevgeny Berdichevsky
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
10
|
Johnson EA, Nowar R, Viola KL, Huang W, Zhou S, Bicca MA, Zhu W, Kranz DL, Klein WL, Silverman RB. Inhibition of amyloid beta oligomer accumulation by NU-9: A unifying mechanism for the treatment of neurodegenerative diseases. Proc Natl Acad Sci U S A 2025; 122:e2402117122. [PMID: 40030015 PMCID: PMC11912461 DOI: 10.1073/pnas.2402117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/18/2024] [Indexed: 03/19/2025] Open
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases, which connects these neuropathologies by a common phenotype. Various proteins and peptides form aggregates that are poorly degraded, and their ensuing pathological accumulation underlies these neurodegenerative diseases. Similarities may exist in the mechanisms responsible for the buildup of these aggregates. Therefore, therapeutics designed to treat one neurodegenerative disease may be beneficial to others. In ALS models, the compound NU-9 was previously shown to block neurodegeneration produced by aggregation-inducing mutations of SOD-1 and TDP-43 [B. Genç et al., Clin. Transl. Med. 11, e336 (2021)]. Here, we report that NU-9 also prevents the accumulation of amyloid beta oligomers (AβOs), small peptide aggregates that are instigators of Alzheimer's disease neurodegeneration [M. Tolar et al., Int. J. Mol. Sci. 22, 6355 (2021)]. AβO buildup was measured by immunofluorescence imaging of cultured hippocampal neurons exposed to exogenous monomeric Aβ. In this model, AβO buildup occurs via cathepsin L- and dynamin-dependent trafficking. This is prevented by NU-9 through a cellular mechanism that is cathepsin B- and lysosome-dependent, suggesting that NU-9 enhances the ability of endolysosomal trafficking to protect against AβO buildup. This possibility is strongly supported by a quantitative assay for autophagosomes that shows robust stimulation by NU-9. These results contribute additional understanding to the mechanisms of protein aggregation and suggest that multiple neurodegenerative diseases might be treatable by targeting common pathogenic mechanisms responsible for protein aggregation.
Collapse
Affiliation(s)
- Elizabeth A. Johnson
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Raghad Nowar
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Kirsten L. Viola
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Weijian Huang
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Sihang Zhou
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Maíra A. Bicca
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Wei Zhu
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Daniel L. Kranz
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - William L. Klein
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Neurobiology, Northwestern University, Evanston, IL60208
- Department of Neurology, Northwestern University, Chicago, IL60611
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Pharmacology, Northwestern University, Chicago, IL60611
| |
Collapse
|
11
|
Liu X, Yang C, Lin Z, Li J, Yin B, Lei X, Han W, Qiang B, Shu P, Zhang C, Peng X. DTD1 modulates synaptic efficacy by maintaining D-serine and D-aspartate homeostasis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:467-483. [PMID: 39428430 DOI: 10.1007/s11427-023-2681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/09/2024] [Indexed: 10/22/2024]
Abstract
D-serine and D-aspartate are involved in N-methyl-D-aspartate receptor (NMDAR)-related physiological and pathological processes. D-aminoacyl-tRNA deacylase 1 (DTD1) may biochemically contribute to D-serine or D-aspartate production. However, it is unclear thus far whether DTD1 regulates D-serine or D-aspartate content in neurobiological processes. In the present research, we found that DTD1 was essential to maintain the D-serine or D-aspartate homeostasis, which was consistent with the phenomenon that DTD1-deficiency resulted in changes in the quantity changes of functional NMDAR subunits in postsynaptic compartments. Moreover, DTD1 played a considerable role in regulating dendritic morphology and synaptic structure. As a consequence, DTD1 affected neurobiological events, including the synaptic strength of the CA3-to-CA1 circuit, dendritic spine density of hippocampal pyramidal neurons, and behavioral performance of mice in the Morris water maze. These findings highlight the important role of DTD1 in synaptic transmission, neuronal morphology, and spatial learning and memory and suggest an undisclosed mechanism of DTD1 that participates the regulation of D-serine or D-aspartate homeostasis in hippocampal neurons.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chaojuan Yang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Zhuoran Lin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jianing Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xuepei Lei
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Wei Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Boqin Qiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Pengcheng Shu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Xiaozhong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100005, China.
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
12
|
Pukhov SA, Semakov AV, Pukaeva NE, Kukharskaya OA, Ivanova TV, Kryshkova VS, Bachurin SO, Kukharsky MS. Artemisinin Stimulates Neuronal Cell Viability and Possess a Neuroprotective Effect In Vitro. Molecules 2025; 30:198. [PMID: 39795253 PMCID: PMC11723108 DOI: 10.3390/molecules30010198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Artemisinin is a sesquiterpene lactone derived from the plant Artemisia annua L., renowned for its antimalarial activity. Based on this compound, various derivatives and analogues have been obtained that exhibit diverse biological activities, including clinically approved drugs. Recently, increasing evidence has highlighted the neuroprotective potential of artemisinin. In this study, we evaluated the effects of artemisinin on the viability of neuronal-like cells, including primary hippocampal neuronal cultures. Artemisinin exhibited a stimulating effect on SH-SY5Y and HEK-293 cells and enhanced the survival of primary neurons at low concentrations (1 µM). In contrast, artemisinin derivatives, such as dihydroartemisinin, anhydrodihydroartemisinin, and artemisitene, did not display similar stimulatory activity, suggesting that the intact lactone ring is crucial for this property. Furthermore, artemisinin demonstrated a protective effect against endoplasmic reticulum (ER) stress induced by the proteasome inhibitor MG132 in SH-SY5Y cells. However, it did not exhibit protective activity against oxidative stress induced by sodium arsenite. Additionally, artemisinin effectively inhibited the aggregation of mutated TDP-43 protein in transfected SH-SY5Y cells. These findings suggest that artemisinin exerts neuroprotective effects by targeting key molecular pathways associated with neurodegeneration, offering potential therapeutic insights for related conditions.
Collapse
Affiliation(s)
- Sergey A. Pukhov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexey V. Semakov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
| | - Nadezhda E. Pukaeva
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Olga A. Kukharskaya
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Tatyana V. Ivanova
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Viktoriya S. Kryshkova
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
| | - Michail S. Kukharsky
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| |
Collapse
|
13
|
Omidi S, Fabi G, Wang X, Hwang JCM, Berdichevsky Y. Device for detection of activity-dependent changes in neural spheroids at MHz and GHz frequencies. Biosens Bioelectron 2025; 267:116816. [PMID: 39342697 DOI: 10.1016/j.bios.2024.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Intracellular processes triggered by neural activity include changes in ionic concentrations, protein release, and synaptic vesicle cycling. These processes play significant roles in neurological disorders. The beneficial effects of brain stimulation may also be mediated through intracellular changes. There is a lack of label-free techniques for monitoring activity-dependent intracellular changes. Electromagnetic (EM) waves at frequencies larger than 1 × 106 Hz (1 MHz) were previously used to probe intracellular contents of cells, as cell membrane becomes "invisible" at this frequency range. EM waves interact with membranes of intracellular organelles, proteins, and water in the MHz - GHz range. In this work, we developed a device for probing the interaction between active neurons' intracellular contents and EM waves. The device used an array of grounded coplanar waveguides (GCPWs) to deliver EM waves to a three-dimensional (3D) spheroid of rat cortical neurons. Neural activity was evoked using optogenetics, with synchronous detection of propagation of EM waves. Broadband measurements were conducted in the MHz-GHz range to track changes in transmission coefficients. Neuronal activity was found to reversibly alter EM wave transmission. Pharmacological suppression of neuronal activity abolished changes in transmission. Time constants of changes in transmission were in the seconds - tens of seconds range, suggesting the presence of relatively slow, activity-dependent intracellular processes. This study provides the first evidence that EM transmission through neuronal tissue is activity-dependent in MHz - GHz range. Device developed in this work may find future applications in studies of the mechanisms of neurological disorders and the development of new therapies.
Collapse
Affiliation(s)
- Saeed Omidi
- Department of Bioengineering, Lehigh University, Bethlehem, USA
| | - Gianluca Fabi
- Department of Material Science and Engineering, Cornell University, Ithaca, USA
| | - Xiaopeng Wang
- Department of Material Science and Engineering, Cornell University, Ithaca, USA
| | - James C M Hwang
- Department of Material Science and Engineering, Cornell University, Ithaca, USA.
| | - Yevgeny Berdichevsky
- Department of Bioengineering, Lehigh University, Bethlehem, USA; Department of Electrical and Computer Engineering, Bethlehem, USA.
| |
Collapse
|
14
|
Kang SJ, Nguyen HS, Lee CK, Kim S, Rhee JS, Jeong SW. Optimization of an autaptic culture system for studying cholinergic synapses in sympathetic ganglia. Pflugers Arch 2025; 477:111-129. [PMID: 39325088 DOI: 10.1007/s00424-024-03023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
An autaptic synapse (or 'autapse') is a functional connection between a neuron and itself, commonly used in studying the molecular mechanisms underlying synaptic transmission and plasticity in central neurons. Most previous studies on autonomic synaptic functions have relied on spontaneous connections among neurons in mass cultures. However, growing evidence supports the utility of microcultures cultivating autaptic neurons for examining cholinergic transmission within sympathetic ganglia. Despite these advancements, standardized protocols for culturing autaptic sympathetic neurons have yet to be established. Drawing on historical literature, this study delineates optimal experimental conditions to efficiently and reliably produce cholinergic synapses in sympathetic neurons within a short time frame. Our research emphasizes five key factors: (i) the generation of uniformly sized microislands of growth permissive substrates; (ii) the addition of nerve growth factor, ciliary neurotrophic factor (CNTF), and serum to the culture medium; (iii) independence from specific serum and neuronal medium types; (iv) the reciprocal roles of CNTF and glial cells; and (v) the promotion of cholinergic synaptogenesis in SCG neurons through indirect glia co-cultures, rather than direct glial feeder layer cultures. In conclusion, glia-free monocultures of SCG neurons are relatively simple to prepare and yield robust and reliable synaptic currents. This makes them an effective model system for straightforwardly addressing fundamental questions about neurogenic mechanisms involved in cholinergic synaptic transmission in autonomic ganglia. Furthermore, autaptic culture experiments could eventually be implemented to investigate the roles of functional neuron-satellite glia units in regulating cholinergic functions under physiological and pathological conditions.
Collapse
Affiliation(s)
- Seong Jun Kang
- Department of Physiology, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, Gangwon-do, Republic of Korea
| | - Huu Son Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, Gangwon-do, Republic of Korea
| | - Choong-Ku Lee
- Max-Planck Institute for Multidisciplinary Sciences, City Campus, Synaptic Physiology Group, Göttingen, Germany
| | - Sohyun Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, Gangwon-do, Republic of Korea
| | - Jeong Seop Rhee
- Max-Planck Institute for Multidisciplinary Sciences, City Campus, Synaptic Physiology Group, Göttingen, Germany
| | - Seong-Woo Jeong
- Department of Physiology, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, Gangwon-do, Republic of Korea.
| |
Collapse
|
15
|
Zhou Z, Cai S, Zhou X, Zhao W, Sun J, Zhou Z, Yang Z, Li W, Wang Z, Zou H, Fu H, Wang X, Khoo BL, Yang M. Circulating Tumor Cells Culture: Methods, Challenges, and Clinical Applications. SMALL METHODS 2024:e2401026. [PMID: 39726345 DOI: 10.1002/smtd.202401026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/10/2024] [Indexed: 12/28/2024]
Abstract
Circulating tumor cells (CTCs) play a pivotal role in cancer metastasis and hold considerable potential for clinical diagnosis, therapeutic monitoring, and prognostic evaluation. Nevertheless, the limited quantity of CTCs in liquid biopsy samples poses challenges for comprehensive downstream analysis. In vitro culture of CTCs can effectively address the issue of insufficient CTC numbers. Furthermore, research based on CTC cell lines serves as a valuable complement to traditional cancer cell line-based research. While numerous reports exist on CTC in vitro culture and even the establishment of CTC cell lines, the methods used vary, leading to disparate culture outcomes. This review presents the developmental history and current status of CTC in vitro culture research. Additionally, the culture strategies applied in different methods and analyzed the impact of various steps on culture outcomes are compared. Overall, the review indicates that while the short-term culture of CTCs is relatively straightforward, long-term culture success has been achieved for various specific cancer types but still faces challenges. Further optimization of efficient and widely applicable culture strategies is needed. Additionally, ongoing applications of CTC in vitro culture are summarized, highlighting the potential of expanded CTCs for drug susceptibility testing and as therapeutic tools in personalized treatment.
Collapse
Affiliation(s)
- Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Songhua Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Wei Zhao
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhihang Zhou
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zihan Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhe Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Heng Zou
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Huayang Fu
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Bee Luan Khoo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
16
|
Lanskikh D, Kuziakova O, Baklanov I, Penkova A, Doroshenko V, Buriak I, Zhmenia V, Kumeiko V. Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells 2024; 13:2085. [PMID: 39768176 PMCID: PMC11674823 DOI: 10.3390/cells13242085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Gliomas are a group of primary brain tumors characterized by their aggressive nature and resistance to treatment. Infiltration of surrounding normal tissues limits surgical approaches, wide inter- and intratumor heterogeneity hinders the development of universal therapeutics, and the presence of the blood-brain barrier reduces the efficiency of their delivery. As a result, patients diagnosed with gliomas often face a poor prognosis and low survival rates. The spectrum of anti-glioma drugs used in clinical practice is quite narrow. Alkylating agents are often used as first-line therapy, but their effectiveness varies depending on the molecular subtypes of gliomas. This highlights the need for new, more effective therapeutic approaches. Standard drug-screening methods involve the use of two-dimensional cell cultures. However, these models cannot fully replicate the conditions present in real tumors, making it difficult to extrapolate the results to humans. We describe the advantages and disadvantages of existing glioma cell-based models designed to improve the situation and build future prospects to make drug discovery comprehensive and more effective for each patient according to personalized therapy paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (D.L.); (O.K.); (I.B.); (A.P.); (V.D.); (I.B.); (V.Z.)
| |
Collapse
|
17
|
Barbosa GADC, Rubinho MP, Aquino-Júnior MK, Pedro JR, Donato LF, Trisciuzzi L, Silva AO, Ruginsk SG, Ceron CS, Peixoto N, Dias MVS, Pereira MGAG. Neuritogenesis and protective effects activated by Angiotensin 1-7 in astrocytes-neuron interaction. Neuropeptides 2024; 108:102480. [PMID: 39500142 DOI: 10.1016/j.npep.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/18/2024]
Abstract
The renin angiotensin system (RAS) has been studied for its effects on various neurological disorders. The identification of functional receptors for Ang-(1-7) and Ang II peptides in astrocytes highlights the physiological modulation and the important role of these cells in the central nervous system. The present study aims to understand the role of RAS peptides, particularly Ang-(1-7) and Ang II, in the secretion of trophic factors by astrocytes and their effects on hippocampal neurons. We used primary cultures of astrocytes and neurons from the hippocampus of either sex neonate of Wistar strain rats. In the present study, we demonstrated that the treatment of astrocytes with Ang-(1-7) acts on the modulation of these cells, inducing reactive astrogliosis, identified through the increase in the expression of GFAP. Furthermore, we obtained a conditioned medium from astrocytes treated with Ang-(1-7), which in addition to promoting the secretion of neurotrophic factors essential for neuronal-glial interactions that are fundamental for neuritogenesis and neuronal survival, showed a neuroprotective effect against glutamatergic excitotoxicity. In turn, Ang II does not exhibit the same effects on astrocyte modulation, exacerbating deleterious effects on brain RAS. Neuron-astrocyte interactions have been shown to be an integral part of the central effects mediated by RAS, and this study has significantly contributed to the understanding of the biochemical mechanisms involved in the functioning of this system.
Collapse
Affiliation(s)
| | - Marina Prado Rubinho
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Lívia Fligioli Donato
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Leonardo Trisciuzzi
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Silvia Graciela Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nathalia Peixoto
- Electrical & Computer Engineering Department, George Mason University, Fairfax, VA, United States of America
| | | | | |
Collapse
|
18
|
Haq N, Toczyska KW, Wilson ME, Jacobs M, Zhao M, Lei Y, Shen Z, Pearson JA, Persaud SJ, Pullen TJ, Bewick GA. Reformed islets: a long-term primary cell platform for exploring mouse and human islet biology. Cell Death Discov 2024; 10:480. [PMID: 39580467 PMCID: PMC11585622 DOI: 10.1038/s41420-024-02234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024] Open
Abstract
Pancreatic islets are 3D micro-organs that maintain β-cell functionality through cell-cell and cell-matrix communication. While primary islets, the gold standard for in vitro models, have a short culture life of approximately 1-2 weeks, we developed a novel protocol that employs reformed islets following dispersion coupled with a fine-tuned culture environment. Reformed islets exhibit physiological characteristics similar to primary islets, enabling high-resolution imaging and repeated functional assessment. Unlike other in vitro platforms, reformed islets retain an immune population, allowing the study of interactions between β cells and resident and infiltrating immune cells. Analyses showed that reformed islets have a similar composition and cytoarchitecture to primary islets, including macrophages and T cells, and can secrete insulin in response to glucose. Reformed islets exhibited partial dedifferentiation compared to native islets but were otherwise transcriptionally similar. The reformed islets offer a useful platform for studying diabetes pathology and can recapitulate both T1DM and T2DM disease milieus, providing an advantage over other models, such as mouse and human β-cell lines, which lack the input of non-β-endocrine cells and immune cell crosstalk.
Collapse
Affiliation(s)
- N Haq
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - K W Toczyska
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - M E Wilson
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - M Jacobs
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - Min Zhao
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - Y Lei
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - Z Shen
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - J A Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - S J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - T J Pullen
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK
| | - G A Bewick
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Diabetes Endocrinology and Obesity Clinical Academic Partnership, King's College London and King's Health Partners, Guy's Campus, London, UK.
| |
Collapse
|
19
|
Vulić K, Amos G, Ruff T, Kasm R, Ihle SJ, Küchler J, Vörös J, Weaver S. Impact of microchannel width on axons for brain-on-chip applications. LAB ON A CHIP 2024; 24:5155-5166. [PMID: 39440578 PMCID: PMC11497309 DOI: 10.1039/d4lc00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Technologies for axon guidance for in vitro disease models and bottom up investigations are increasingly being used in neuroscience research. One of the most prevalent patterning methods is using polydimethylsiloxane (PDMS) microstructures due to compatibility with microscopy and electrophysiology which enables systematic tracking of axon development with precision and efficiency. Previous investigations of these guidance platforms have noted axons tend to follow edges and avoid sharp turns; however, the specific impact of spatial constraints remains only partially explored. We investigated the influence of microchannel width beyond a constriction point, as well as the number of available microchannels, on axon growth dynamics. Further, by manipulating the size of micron/submicron-sized PDMS tunnels we investigated the space restriction that prevents growth cone penetration showing that restrictions smaller than 350 nm were sufficient to exclude axons. This research offers insights into the interplay of spatial constraints, axon development, and neural behavior. The findings are important for designing in vitro platforms and in vivo neural interfaces for both fundamental neuroscience and translational applications in rapidly evolving neural implant technologies.
Collapse
Affiliation(s)
- Katarina Vulić
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Giulia Amos
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Revan Kasm
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Joël Küchler
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Sean Weaver
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
20
|
Jiang Y, Palomares AR, Munoz P, Nalvarte I, Acharya G, Inzunza J, Varshney M, Rodriguez-Wallberg KA. Proof-of-Concept for Long-Term Human Endometrial Epithelial Organoids in Modeling Menstrual Cycle Responses. Cells 2024; 13:1811. [PMID: 39513919 PMCID: PMC11545391 DOI: 10.3390/cells13211811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Endometrial disorders, such as infertility and endometriosis, significantly impact reproductive health, thus necessitating better models to study endometrial function. Current in vitro models fail to replicate the complexity of the human endometrium throughout the entire menstrual cycle. This study aimed to assess the physiological response of human endometrial organoids (hEOs) to in vitro hormonal treatments designed to mimic the hormonal fluctuations of the menstrual cycle. Endometrial biopsies from three healthy women were used to develop hEOs, which were treated over 28 days with three hormonal stimulation strategies: (1) estrogen only (E) to mimic the proliferative phase, (2) the addition of progesterone (EP) to simulate the secretory phase, and (3) the further addition of cAMP (EPC) to enhance the secretory functions of hEOs. Gene and protein expression were analyzed using qPCR, IHC, and ELISA. The hEOs exhibited proliferation, gland formation, and appropriate expression of markers such as E-cadherin and Ki67. The hormonal treatments induced significant changes in PR, HSD17B1, PAEP, SPP1, and other genes relevant to endometrial function, closely mirroring in vivo physiological responses. The prominent changes were observed in EPC-treated hEOs (week 4) with significantly high expression of uterine milk components such as glycodelin (PAEP) and osteopontin (SPP1), reflecting mid- to late-secretory phase physiology. This model successfully recapitulates human menstrual cycle dynamics and offers a promising platform for studying endometrial disorders and advancing personalized treatments in gynecology.
Collapse
Affiliation(s)
- Yanyu Jiang
- Laboratory of Translational Fertility Preservation, Department of Oncology and Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden; (Y.J.); (A.R.P.)
| | - Arturo Reyes Palomares
- Laboratory of Translational Fertility Preservation, Department of Oncology and Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden; (Y.J.); (A.R.P.)
| | - Patricia Munoz
- Department of Biosciences and Nutrition, Karolinska Institute, 141 52 Huddinge, Sweden; (P.M.); (I.N.); (J.I.)
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institute, 141 52 Huddinge, Sweden; (P.M.); (I.N.); (J.I.)
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Ganesh Acharya
- Department of Clinical Science, Intervention and Technology-CLINTEC, Karolinska Institute, 141 52 Huddinge, Sweden;
- Center for Fetal Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institute, 141 52 Huddinge, Sweden; (P.M.); (I.N.); (J.I.)
- Department of Laboratory Medicine, Karolinska Institute, 141 52 Huddinge, Sweden
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institute, 141 52 Huddinge, Sweden; (P.M.); (I.N.); (J.I.)
- Department of Laboratory Medicine, Karolinska Institute, 141 52 Huddinge, Sweden
| | - Kenny Alexandra Rodriguez-Wallberg
- Laboratory of Translational Fertility Preservation, Department of Oncology and Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden; (Y.J.); (A.R.P.)
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
21
|
Bouyer PG, Salameh AI, Zhou Y, Kolba TN, Boron WF. Effects of extracellular metabolic acidosis and out-of-equilibrium CO 2/HCO 3 - solutions on intracellular pH in cultured rat hippocampal neurons. Front Physiol 2024; 15:1434359. [PMID: 39444753 PMCID: PMC11496273 DOI: 10.3389/fphys.2024.1434359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic acidosis (MAc)-an extracellular pH (pHo) decrease caused by a [HCO3 -]o decrease at constant [CO2]o-usually causes intracellular pH (pHi) to fall. Here we determine the extent to which the pHi decrease depends on the pHo decrease vs the concomitant [HCO3 -]o decrease. We use rapid-mixing to generate out-of-equilibrium CO2/HCO3 - solutions in which we stabilize [CO2]o and [HCO3 -]o while decreasing pHo (pure acidosis, pAc), or stabilize [CO2]o and pHo while decreasing [HCO3 -]o (pure metabolic/down, pMet↓). Using the fluorescent dye 2',7'-bis-2-carboxyethyl)-5(and-6)carboxyfluorescein (BCECF) to monitor pHi in rat hippocampal neurons in primary culture, we find that-in naïve neurons-the pHi decrease caused by MAc is virtually the sum of those caused by pAc (∼70%) + pMet↓ (∼30%). However, if we impose a first challenge (MAc1, pAc1, or pMet↓1), allow the neurons to recover, and then impose a second challenge (MAc2, pAc2, or pMet↓2), we find that pAc/pMet↓ additivity breaks down. In a twin-challenge protocol in which challenge #2 is MAc, the pHo and [HCO3 -]o decreases during challenge #1 must be coincident in order to mimic the effects of MAc1 on MAc2. Conversely, if challenge #1 is MAc, then the pHo and [HCO3 -]o decreases during challenge #2 must be coincident in order for MAc1 to produce its physiological effects during the challenge #2 period. We conclude that the history of challenge #1 (MAc1, pAc1, or pMet↓1)-presumably as detected by one or more acid-base sensors-has a major impact on the pHi response during challenge #2 (MAc2, pAc2, or pMet↓2).
Collapse
Affiliation(s)
- Patrice G. Bouyer
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biology, Valparaiso University, Valparaiso, IN, United States
| | - Ahlam I. Salameh
- Preclinical Sciences Division, Kent State University College of Podiatric Medicine, Independence, OH, United States
- Department of Physiology & Biophysics Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Yuehan Zhou
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Physiology & Biophysics Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tiffany N. Kolba
- Department of Mathematics & Statistics, Valparaiso University, Valparaiso, IN, United States
| | - Walter F. Boron
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Physiology & Biophysics Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
22
|
Whye D, Norabuena EM, Srinivasan GR, Wood D, Polanco TJ, Makhortova NR, Sahin M, Buttermore ED. A Hybrid 2D-to-3D in vitro Differentiation Platform Improves Outcomes of Cerebral Cortical Organoid Generation in hiPSCs. Curr Protoc 2024; 4:e70022. [PMID: 39400999 DOI: 10.1002/cpz1.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Three-dimensional (3D) cerebral cortical organoids are popular in vitro cellular model systems widely used to study human brain development and disease, compared to traditional stem cell-derived methods that use two-dimensional (2D) monolayer cultures. Despite the advancements made in protocol development for cerebral cortical organoid derivation over the past decade, limitations due to biological, mechanistic, and technical variables remain in generating these complex 3D cellular systems. Building from our previously established differentiation system, we have made modifications to our existing 3D cerebral cortical organoid protocol that resolve several of these technical and biological challenges when working with diverse groups of human induced pluripotent stem cell (hiPSC) lines. This improved protocol blends a 2D monolayer culture format for the specification of neural stem cells and expansion of neuroepithelial progenitor cells with a 3D system for improved self-aggregation and subsequent organoid development. Furthermore, this "hybrid" approach is amenable to both an accelerated cerebral cortical organoid protocol as well as an alternative long-term differentiation protocol. In addition to establishing a hybrid technical format, this protocol also offers phenotypic and morphological characterization of stage-specific cellular profiles using antibodies and fluorescent-based dyes for live cell imaging. © 2024 Wiley Periodicals LLC. Basic Protocol 1: hiPSC-based 2D monolayer specification into neural stem cells (NSCs) Basic Protocol 2: Serial passaging and 2D monolayer expansion of neuroepithelial progenitor cells (NPCs) Support Protocol 1: Direct cryopreservation and rapid thawing of NSCs and NPCs Basic Protocol 3: Bulk aggregation of 3D neurospheres and accelerated cerebral cortical organoid differentiation Alternate Protocol 1: Bulk aggregation of 3D neurospheres and long-term cerebral cortical organoid differentiation Support Protocol 2: High-throughput 3D neurosphere formation and 2D neurosphere migration assay Support Protocol 3: LIVE/DEAD stain cell imaging assay of 3D neurospheres Support Protocol 4: NeuroFluor NeuO live cell dye for 3D cerebral cortical organoids.
Collapse
Affiliation(s)
- Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Erika M Norabuena
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Gayathri Rajaram Srinivasan
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Delaney Wood
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Taryn J Polanco
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Nina R Makhortova
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
23
|
Todhunter ME, Jubair S, Verma R, Saqe R, Shen K, Duffy B. Artificial intelligence and machine learning applications for cultured meat. Front Artif Intell 2024; 7:1424012. [PMID: 39381621 PMCID: PMC11460582 DOI: 10.3389/frai.2024.1424012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
Cultured meat has the potential to provide a complementary meat industry with reduced environmental, ethical, and health impacts. However, major technological challenges remain which require time-and resource-intensive research and development efforts. Machine learning has the potential to accelerate cultured meat technology by streamlining experiments, predicting optimal results, and reducing experimentation time and resources. However, the use of machine learning in cultured meat is in its infancy. This review covers the work available to date on the use of machine learning in cultured meat and explores future possibilities. We address four major areas of cultured meat research and development: establishing cell lines, cell culture media design, microscopy and image analysis, and bioprocessing and food processing optimization. In addition, we have included a survey of datasets relevant to CM research. This review aims to provide the foundation necessary for both cultured meat and machine learning scientists to identify research opportunities at the intersection between cultured meat and machine learning.
Collapse
Affiliation(s)
| | - Sheikh Jubair
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Ruchika Verma
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Rikard Saqe
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Kevin Shen
- Department of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
24
|
Chaves-Filho AJM, Soares MVR, Jucá PM, Oliveira TDQ, Clemente DCDS, Monteiro CEDS, Silva FGO, de Aquino PEA, Macedo DS. Doxycycline reversal of amphetamine-induced mania-like behavior is related to adjusting brain monoamine abnormalities and antioxidant effects in primary hippocampal neurons. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6017-6035. [PMID: 38386042 DOI: 10.1007/s00210-024-03009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Mania is associated with disturbed dopaminergic transmission in frontotemporal regions. D-amphetamine (AMPH) causes increased extracellular DA levels, considered an acknowledged mania model in rodents. Doxycycline (DOXY) is a second-generation tetracycline with promising neuroprotective properties. Here, we tested the hypothesis that DOXY alone or combined with Lithium (Li) could reverse AMPH-induced mania-like behavioral alterations in mice by the modulation of monoamine levels in brain areas related to mood regulation, as well as cytoprotective and antioxidant effects in hippocampal neurons. Male Swiss mice received AMPH or saline intraperitoneal (IP) injections for 14 days. Between days 8-14, mice receive further IP doses of DOXY, Li, or their combination. For in vitro studies, we exposed hippocampal neurons to DOXY in the presence or absence of AMPH. DOXY alone or combined with Li reversed AMPH-induced risk-taking behavior and hyperlocomotion. DOXY also reversed AMPH-induced hippocampal and striatal hyperdopaminergia. In AMPH-exposed hippocampal neurons, DOXY alone and combined with Li presented cytoprotective and antioxidant effects, while DOXY+Li also increased the expression of phospho-Ser133-CREB. Our results add novel evidence for DOXY's ability to reverse mania-like features while revealing that antidopaminergic activity in some brain areas, such as the hippocampus and striatum, as well as hippocampal cytoprotective effects may account for this drug's antimanic action. This study provides additional rationale for designing clinical trials investigating its potential as a mood stabilizer agent.
Collapse
Affiliation(s)
- Adriano José Maia Chaves-Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Tatiana de Queiroz Oliveira
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Dino Cesar da Silva Clemente
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Carlos Eduardo da Silva Monteiro
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisca Géssica Oliveira Silva
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Pedro Everson Alexandre de Aquino
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), São Paulo, Brazil.
| |
Collapse
|
25
|
Shi YW, Xu CC, Sun CY, Liu JX, Zhao SY, Liu D, Fan XJ, Wang CP. GM1 Ameliorates Neuronal Injury in Rats after Cerebral Ischemia and Reperfusion: Potential Contribution of Effects on SPTBN1-mediated Signaling. Neuroscience 2024; 551:103-118. [PMID: 38810691 DOI: 10.1016/j.neuroscience.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monosialoganglioside GM1 (GM1) has long been used as a therapeutic agent for neurological diseases in the clinical treatment of ischemic stroke. However, the mechanism underlying the neuroprotective function of GM1 is still obscure until now. In this study, we investigated the effects of GM1 in ischemia and reperfusion (I/R) brain injury models. Middle cerebral artery occlusion and reperfusion (MCAO/R) rats were treated with GM1 (60 mg·kg-1·d-1, tail vein injection) for 2 weeks. The results showed that GM1 substantially attenuated the MCAO/R-induced neurological dysfunction and inhibited the inflammatory responses and cell apoptosis in ischemic parietal cortex. We further revealed that GM1 inhibited the activation of NFκB/MAPK signaling pathway induced by MCAO/R injury. To explore its underlying mechanism of the neuroprotective effect, transcriptome sequencing was introduced to screen the differentially expressed genes (DEGs). By function enrichment and PPI network analyses, Sptbn1 was identified as a node gene in the network regulated by GM1 treatment. In the MCAO/R model of rats and oxygen-glucose deprivation and reperfusion (OGD/R) model of primary culture of rat cortical neurons, we first found that SPTBN1 was involved in the attenuation of I/R induced neuronal injury after GM1 administration. In SPTBN1-knockdown SH-SY5Y cells, the treatment with GM1 (20 μM) significantly increased SPTBN1 level. Moreover, OGD/R decreased SPTBN1 level in SPTBN1-overexpressed SH-SY5Y cells. These results indicated that GM1 might achieve its potent neuroprotective effects by regulating inflammatory response, cell apoptosis, and cytomembrane and cytoskeleton signals through SPTBN1. Therefore, SPTBN1 may be a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun-Wei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China; School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Chun-Cheng Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Chun-Yan Sun
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Jia-Xing Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Shu-Yong Zhao
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.
| | - Xing-Juan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| | - Cai-Ping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Kriedemann N, Manstein F, Hernandez-Bautista CA, Ullmann K, Triebert W, Franke A, Mertens M, Stein ICAP, Leffler A, Witte M, Askurava T, Fricke V, Gruh I, Piep B, Kowalski K, Kraft T, Zweigerdt R. Protein-free media for cardiac differentiation of hPSCs in 2000 mL suspension culture. Stem Cell Res Ther 2024; 15:213. [PMID: 39020441 PMCID: PMC11256493 DOI: 10.1186/s13287-024-03826-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Commonly used media for the differentiation of human pluripotent stem cells into cardiomyocytes (hPSC-CMs) contain high concentrations of proteins, in particular albumin, which is prone to quality variations and presents a substantial cost factor, hampering the clinical translation of in vitro-generated cardiomyocytes for heart repair. To overcome these limitations, we have developed chemically defined, entirely protein-free media based on RPMI, supplemented with L-ascorbic acid 2-phosphate (AA-2P) and either the non-ionic surfactant Pluronic F-68 or a specific polyvinyl alcohol (PVA). METHODS AND RESULTS Both media compositions enable the efficient, directed differentiation of embryonic and induced hPSCs, matching the cell yields and cardiomyocyte purity ranging from 85 to 99% achieved with the widely used protein-based CDM3 medium. The protein-free differentiation approach was readily up-scaled to a 2000 mL process scale in a fully controlled stirred tank bioreactor in suspension culture, producing > 1.3 × 109 cardiomyocytes in a single process run. Transcriptome analysis, flow cytometry, electrophysiology, and contractile force measurements revealed that the mass-produced cardiomyocytes differentiated in protein-free medium exhibit the expected ventricular-like properties equivalent to the well-established characteristics of CDM3-control cells. CONCLUSIONS This study promotes the robustness and upscaling of the cardiomyogenic differentiation process, substantially reduces media costs, and provides an important step toward the clinical translation of hPSC-CMs for heart regeneration.
Collapse
Affiliation(s)
- Nils Kriedemann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Felix Manstein
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
- Evotec SE, Hamburg, Germany
| | - Carlos A Hernandez-Bautista
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kevin Ullmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
- Evotec SE, Hamburg, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mira Mertens
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Merlin Witte
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tamari Askurava
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Veronika Fricke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Birgit Piep
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Kathrin Kowalski
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
27
|
Elahimanesh M, Shokri N, Shabani R, Rahimi M, Najafi M. Exploring the potential of predicted miRNAs on the genes involved in the expansion of hematopoietic stem cells. Sci Rep 2024; 14:15551. [PMID: 38969714 PMCID: PMC11226654 DOI: 10.1038/s41598-024-66614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in therapeutic approaches applying hematopoietic stem cells (HSCs) is the cell quantity. The primary objective of this study was to predict the miRNAs and anti-miRNAs using bioinformatics tools and investigate their effects on the expression levels of key genes predicted in the improvement of proliferation, and the inhibition of differentiation in HSCs isolated from Human umbilical cord blood (HUCB). A network including genes related to the differentiation and proliferation stages of HSCs was constructed by enriching data of text (PubMed) and StemChecker server with KEGG signaling pathways, and was improved using GEO datasets. Bioinformatics tools predicted a profile from miRNAs containing miR-20a-5p, miR-423-5p, and chimeric anti-miRNA constructed from 5'-miR-340/3'-miR-524 for the high-score genes (RB1, SMAD4, STAT1, CALML4, GNG13, and CDKN1A/CDKN1B genes) in the network. The miRNAs and anti-miRNA were transferred into HSCs using polyethylenimine (PEI). The gene expression levels were estimated using the RT-qPCR technique in the PEI + (miRNA/anti-miRNA)-contained cell groups (n = 6). Furthermore, CD markers (90, 16, and 45) were evaluated using flow cytometry. Strong relationships were found between the high-score genes, miRNAs, and chimeric anti-miRNA. The RB1, SMAD4, and STAT1 gene expression levels were decreased by miR-20a-5p (P < 0.05). Additionally, the anti-miRNA increased the gene expression level of GNG13 (P < 0.05), whereas the miR-423-5p decreased the CDKN1A gene expression level (P < 0.01). The cellular count also increased significantly (P < 0.05) but the CD45 differentiation marker did not change in the cell groups. The study revealed the predicted miRNA/anti-miRNA profile expands HSCs isolated from HUCB. While miR-20a-5p suppressed the RB1, SMAD4, and STAT1 genes involved in cellular differentiation, the anti-miRNA promoted the GNG13 gene related to the proliferation process. Notably, the mixed miRNA/anti-miRNA group exhibited the highest cellular expansion. This approach could hold promise for enhancing the cell quantity in HSC therapy.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Anatomy Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahimi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Biochemistry Department, Faculty of Medical Sciences, Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Ionescu MI, Grigoras IF, Ionescu RB, Chitimus DM, Haret RM, Ianosi B, Ceanga M, Zagrean AM. Oxytocin Exhibits Neuroprotective Effects on Hippocampal Cultures under Severe Oxygen-Glucose Deprivation Conditions. Curr Issues Mol Biol 2024; 46:6223-6236. [PMID: 38921042 PMCID: PMC11202210 DOI: 10.3390/cimb46060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Perinatal asphyxia (PA) and hypoxic-ischemic encephalopathy can result in severe, long-lasting neurological deficits. In vitro models, such as oxygen-glucose deprivation (OGD), are used experimentally to investigate neuronal response to metabolic stress. However, multiple variables can affect the severity level of OGD/PA and may confound any measured treatment effect. Oxytocin (OXT) has emerged as a potential neuroprotective agent against the deleterious effects of PA. Previous studies have demonstrated OXT's potential to enhance neuronal survival in immature hippocampal cultures exposed to OGD, possibly by modulating gamma-aminobutyric acid-A receptor activity. Moreover, OXT's precise impact on developing hippocampal neurons under different severities of OGD/PA remains uncertain. In this study, we investigated the effects of OXT (0.1 µM and 1 µM) on 7-day-old primary rat hippocampal cultures subjected to 2 h OGD/sham normoxic conditions. Cell culture viability was determined using the resazurin assay. Our results indicate that the efficacy of 1 µM OXT treatment varied according to the severity of the OGD-induced lesion, exhibiting a protective effect (p = 0.022) only when cellular viability dropped below 49.41% in non-treated OGD cultures compared to normoxic ones. Furthermore, administration of 0.1 µM OXT did not yield significant effects, irrespective of lesion severity (p > 0.05). These findings suggest that 1 µM OXT treatment during OGD confers neuroprotection exclusively in severe lesions in hippocampal neurons after 7 days in vitro. Further research is warranted to elucidate the mechanisms involved in OXT-mediated neuroprotection.
Collapse
Affiliation(s)
- Mara Ioana Ionescu
- Department of Functional Sciences, Division of Physiology II-Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.I.I.); (I.-F.G.); (R.-B.I.); (D.M.C.); (R.M.H.); (B.I.)
| | - Ioana-Florentina Grigoras
- Department of Functional Sciences, Division of Physiology II-Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.I.I.); (I.-F.G.); (R.-B.I.); (D.M.C.); (R.M.H.); (B.I.)
- Wellcome Centre for Integrative Neuroimaging, Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Rosana-Bristena Ionescu
- Department of Functional Sciences, Division of Physiology II-Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.I.I.); (I.-F.G.); (R.-B.I.); (D.M.C.); (R.M.H.); (B.I.)
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
- NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Diana Maria Chitimus
- Department of Functional Sciences, Division of Physiology II-Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.I.I.); (I.-F.G.); (R.-B.I.); (D.M.C.); (R.M.H.); (B.I.)
| | - Robert Mihai Haret
- Department of Functional Sciences, Division of Physiology II-Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.I.I.); (I.-F.G.); (R.-B.I.); (D.M.C.); (R.M.H.); (B.I.)
- Department of Ophthalmology, University Medical Center Gottingen, 37075 Gottingen, Germany
| | - Bogdan Ianosi
- Department of Functional Sciences, Division of Physiology II-Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.I.I.); (I.-F.G.); (R.-B.I.); (D.M.C.); (R.M.H.); (B.I.)
- Department of Neurology, Stroke Unit, Neuromed Campus, Kepler University Hospital, 4020 Linz, Austria
| | - Mihai Ceanga
- Department of Functional Sciences, Division of Physiology II-Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.I.I.); (I.-F.G.); (R.-B.I.); (D.M.C.); (R.M.H.); (B.I.)
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Ana-Maria Zagrean
- Department of Functional Sciences, Division of Physiology II-Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.I.I.); (I.-F.G.); (R.-B.I.); (D.M.C.); (R.M.H.); (B.I.)
| |
Collapse
|
29
|
López-Vázquez S, Villalobos C, Núñez L. SARS-CoV-2 Viroporin E Induces Ca 2+ Release and Neuron Cell Death in Primary Cultures of Rat Hippocampal Cells Aged In Vitro. Int J Mol Sci 2024; 25:6304. [PMID: 38928009 PMCID: PMC11203731 DOI: 10.3390/ijms25126304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic was caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which may lead to serious respiratory, vascular and neurological dysfunctions. The SARS-CoV-2 envelope protein (E protein) is a structural viroporin able to form ion channels in cell membranes, which is critical for viral replication. However, its effects in primary neurons have not been addressed. Here we used fluorescence microscopy and calcium imaging to study SARS-CoV-2 viroporin E localization and the effects on neuron damage and intracellular Ca2+ homeostasis in a model of rat hippocampal neurons aged in vitro. We found that the E protein quickly enters hippocampal neurons and colocalizes with the endoplasmic reticulum (ER) in both short-term (6-8 days in vitro, DIV) and long-term (20-22 DIV) cultures resembling young and aged neurons, respectively. Strikingly, E protein treatment induces apoptosis in aged neurons but not in young neurons. The E protein induces variable increases in cytosolic Ca2+ concentration in hippocampal neurons. Ca2+ responses to the E protein are due to Ca2+ release from intracellular stores at the ER. Moreover, E protein-induced Ca2+ release is very small in young neurons and increases dramatically in aged neurons, consistent with the enhanced Ca2+ store content in aged neurons. We conclude that the SARS-CoV-2 E protein quickly translocates to ER endomembranes of rat hippocampal neurons where it releases Ca2+, probably acting like a viroporin, thus producing Ca2+ store depletion and neuron apoptosis in aged neurons and likely contributing to neurological damage in COVID-19 patients.
Collapse
Affiliation(s)
- Sara López-Vázquez
- Excellence Unit, Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain; (S.L.-V.); (L.N.)
| | - Carlos Villalobos
- Excellence Unit, Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain; (S.L.-V.); (L.N.)
| | - Lucía Núñez
- Excellence Unit, Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain; (S.L.-V.); (L.N.)
- Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
30
|
Cao L, Zhang HQ, He YQ, An PJ, Yang LL, Tan W, Liu G, Wang CQ, Dou XW, Li Q. Culture of cerebrospinal fluid-contacting neurons from neonatal mouse spinal cord. Cell Tissue Bank 2024; 25:443-452. [PMID: 37368142 DOI: 10.1007/s10561-023-10098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) act crucial role in chemosensory and mechanosensory function in spinal cord. Recently, CSF-cNs were found to be an immature neuron and may be involved in spinal cord injury recovery. But how to culture it and explore its function in vitro are not reported in previous research. Here, we first reported culture and identification of CSF-cNs in vitro. We first established a protocol for in vitro culture of CSF-cNs from the cervical spinal cord of mice within 24 h after birth. Polycystic kidney disease 2-like 1 (PKD2L1)+ cells were isolated by fluorescence-activated cell sorting and expressed the neuron marker β-tubulin III and CSF-cNs marker GABA. Intriguingly, PKD2L1+ cells formed neurosphere and expressed neural stem cell markers Nestin, Sox2 and GFAP. Thus, our research provided culture and isolation of CSF-cNs and this facilitate the investigation the CSF-cNs function in vitro.
Collapse
Affiliation(s)
- Liang Cao
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang City, China
| | - Hui-Qian Zhang
- Department of Orthopedic Trauma, Henan Provincial Orthopedic Hospital, Luoyang, China
| | - Yu-Qi He
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Ping-Jiang An
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Lei-Luo Yang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Wei Tan
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Gang Liu
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Chun-Qing Wang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Xiao-Wei Dou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang City, China.
| | - Qing Li
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China.
| |
Collapse
|
31
|
Gopalan AB, van Uden L, Sprenger RR, Fernandez-Novel Marx N, Bogetofte H, Neveu PA, Meyer M, Noh KM, Diz-Muñoz A, Ejsing CS. Lipotype acquisition during neural development is not recapitulated in stem cell-derived neurons. Life Sci Alliance 2024; 7:e202402622. [PMID: 38418090 PMCID: PMC10902711 DOI: 10.26508/lsa.202402622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
During development, different tissues acquire distinct lipotypes that are coupled to tissue function and homeostasis. In the brain, where complex membrane trafficking systems are required for neural function, specific glycerophospholipids, sphingolipids, and cholesterol are highly abundant, and defective lipid metabolism is associated with abnormal neural development and neurodegenerative disease. Notably, the production of specific lipotypes requires appropriate programming of the underlying lipid metabolic machinery during development, but when and how this occurs is unclear. To address this, we used high-resolution MSALL lipidomics to generate an extensive time-resolved resource of mouse brain development covering early embryonic and postnatal stages. This revealed a distinct bifurcation in the establishment of the neural lipotype, whereby the canonical lipid biomarkers 22:6-glycerophospholipids and 18:0-sphingolipids begin to be produced in utero, whereas cholesterol attains its characteristic high levels after birth. Using the resource as a reference, we next examined to which extent this can be recapitulated by commonly used protocols for in vitro neuronal differentiation of stem cells. Here, we found that the programming of the lipid metabolic machinery is incomplete and that stem cell-derived cells can only partially acquire a neural lipotype when the cell culture media is supplemented with brain-specific lipid precursors. Altogether, our work provides an extensive lipidomic resource for early mouse brain development and highlights a potential caveat when using stem cell-derived neuronal progenitors for mechanistic studies of lipid biochemistry, membrane biology and biophysics, which nonetheless can be mitigated by further optimizing in vitro differentiation protocols.
Collapse
Affiliation(s)
- Anusha B Gopalan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Candidate for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Lisa van Uden
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Helle Bogetofte
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pierre A Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
- BRIDGE, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christer S Ejsing
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
32
|
Kim H, Kim BJ, Koh S, Cho HJ, Jin X, Kim BG, Choi JY. A primary culture method for the easy, efficient, and effective acquisition of oligodendrocyte lineage cells from neonatal rodent brains. Heliyon 2024; 10:e29359. [PMID: 38655345 PMCID: PMC11036010 DOI: 10.1016/j.heliyon.2024.e29359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Oligodendrocytes (OL) are myelin-forming glial cells in the central nervous system. In vitro primary OL culture models offer the benefit of a more readily controlled environment that facilitates the examination of diverse OL stages and their intricate dynamics. Although conventional methods for primary OL culture exist, their performance in terms of simplicity and efficiency can be improved. Here, we introduce a novel method for primary OL culture, namely the E3 (easy, efficient, and effective) method, which greatly improves the simplicity and efficiency of the primary OL culture procedure using neonatal rodent brains. We also provided the optimal media composition for the augmentation of oligodendrocyte progenitor cell (OPC) proliferation and more robust maturation into myelin-forming OLs. Overall, E3 offers an undemanding method for obtaining primary OLs with high yield and quality. Alongside its value as a practical tool, in vitro characteristics of the OL lineage additionally identified during the development of the E3 method have implications for advancing research on OL physiology and pathophysiology.
Collapse
Affiliation(s)
- Hanki Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea
| | - Bum Jun Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea
| | - Seungyon Koh
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Hyo Jin Cho
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Xuelian Jin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, South Korea
- Geriatrics Department, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, China
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, South Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jun Young Choi
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, South Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, 16499, South Korea
| |
Collapse
|
33
|
Heir R, Abbasi Z, Komal P, Altimimi HF, Franquin M, Moschou D, Chambon J, Stellwagen D. Astrocytes Are the Source of TNF Mediating Homeostatic Synaptic Plasticity. J Neurosci 2024; 44:e2278222024. [PMID: 38395613 PMCID: PMC10993029 DOI: 10.1523/jneurosci.2278-22.2024] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor necrosis factor α (TNF) mediates homeostatic synaptic plasticity (HSP) in response to chronic activity blockade, and prior work has established that it is released from glia. Here we demonstrate that astrocytes are the necessary source of TNF during HSP. Hippocampal cultures from rats of both sexes depleted of microglia still will increase TNF levels following activity deprivation and still express TTX-driven HSP. Slice cultures from mice of either sex with a conditional deletion of TNF from microglia also express HSP, but critically, slice cultures with a conditional deletion of TNF from astrocytes do not. In astrocytes, glutamate signaling is sufficient to reduce NFκB signaling and TNF mRNA levels. Further, chronic TTX treatment increases TNF in an NFκB-dependent manner, although NFκB signaling is dispensable for the neuronal response to TTX-driven HSP. Thus, astrocytes can sense neuronal activity through glutamate spillover and increase TNF production when activity falls, to drive HSP through the production of TNF.
Collapse
Affiliation(s)
- Renu Heir
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Zahra Abbasi
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Pragya Komal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Haider F Altimimi
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Marie Franquin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Dionysia Moschou
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - Julien Chambon
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montréal, Quebec H3G 1A4, Canada
| |
Collapse
|
34
|
Matrella ML, Valletti A, Gigante I, De Rasmo D, Signorile A, Russo S, Lobasso S, Lobraico D, Dibattista M, Pacelli C, Cocco T. High OXPHOS efficiency in RA-FUdr-differentiated SH-SY5Y cells: involvement of cAMP signalling and respiratory supercomplexes. Sci Rep 2024; 14:7411. [PMID: 38548913 PMCID: PMC10978939 DOI: 10.1038/s41598-024-57613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
Neurons are highly dependent on mitochondria to meet their bioenergetic needs and understanding the metabolic changes during the differentiation process is crucial in the neurodegeneration context. Several in vitro approaches have been developed to study neuronal differentiation and bioenergetic changes. The human SH-SY5Y cell line is a widely used cellular model and several differentiation protocols have been developed to induce a neuron-like phenotype including retinoic acid (RA) treatment. In this work we obtained a homogeneous functional population of neuron-like cells by a two-step differentiation protocol in which SH-SY5Y cells were treated with RA plus the mitotic inhibitor 2-deoxy-5-fluorouridine (FUdr). RA-FUdr treatment induced a neuronal phenotype characterized by increased expression of neuronal markers and electrical properties specific to excitable cells. In addition, the RA-FUdr differentiated cells showed an enrichment of long chain and unsaturated fatty acids (FA) in the acyl chain composition of cardiolipin (CL) and the bioenergetic analysis evidences a high coupled and maximal respiration associated with high mitochondrial ATP levels. Our results suggest that the observed high oxidative phosphorylation (OXPHOS) capacity may be related to the activation of the cyclic adenosine monophosphate (cAMP) pathway and the assembly of respiratory supercomplexes (SCs), highlighting the change in mitochondrial phenotype during neuronal differentiation.
Collapse
Affiliation(s)
- Maria Laura Matrella
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Alessio Valletti
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- MASMEC Biomed S.p.A, 70026, Modugno, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology- IRCCS "Saverio De Bellis", Via Turi 27, Castellana Grotte, 70013, Bari, Italy
| | - Domenico De Rasmo
- Bioenergetics and Molecular Biotechnologies, CNR-Institute of Biomembranes, 70124, Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Silvia Russo
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Simona Lobasso
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Donatella Lobraico
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy.
| | - Tiziana Cocco
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy.
| |
Collapse
|
35
|
Tierney MT, Polak L, Yang Y, Abdusselamoglu MD, Baek I, Stewart KS, Fuchs E. Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices. Science 2024; 383:eadi7342. [PMID: 38452090 PMCID: PMC11177320 DOI: 10.1126/science.adi7342] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.
Collapse
Affiliation(s)
- Matthew T Tierney
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | - Lisa Polak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | | | - Merve Deniz Abdusselamoglu
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | | | - Katherine S Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| |
Collapse
|
36
|
Wang J, Platz-Baudin E, Noetzel E, Offenhäusser A, Maybeck V. Expressing Optogenetic Actuators Fused to N-terminal Mucin Motifs Delivers Targets to Specific Subcellular Compartments in Polarized Cells. Adv Biol (Weinh) 2024; 8:e2300428. [PMID: 38015104 DOI: 10.1002/adbi.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Optogenetics is a powerful approach in neuroscience research. However, other tissues of the body may benefit from controlled ion currents and neuroscience may benefit from more precise optogenetic expression. The present work constructs three subcellularly-targeted optogenetic actuators based on the channelrhodopsin ChR2-XXL, utilizing 5, 10, or 15 tandem repeats (TR) from mucin as N-terminal targeting motifs and evaluates expression in several polarized and non-polarized cell types. The modified channelrhodopsin maintains its electrophysiological properties, which can be used to produce continuous membrane depolarization, despite the expected size of the repeats. This work then shows that these actuators are subcellularly localized in polarized cells. In polarized epithelial cells, all three actuators localize to just the lateral membrane. The TR-tagged constructs also express subcellularly in cortical neurons, where TR5-ChR2XXL and TR10-ChR2XXL mainly target the somatodendrites. Moreover, the transfection efficiencies are shown to be dependent on cell type and tandem repeat length. Overall, this work verifies that the targeting motifs from epithelial cells can be used to localize optogenetic actuators in both epithelia and neurons, opening epithelia processes to optogenetic manipulation and providing new possibilities to target optogenetic tools.
Collapse
Affiliation(s)
- Jiali Wang
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062, Aachen, Germany
| | - Eric Platz-Baudin
- Institute of Biological Information Processing IBI-2, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Erik Noetzel
- Institute of Biological Information Processing IBI-2, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062, Aachen, Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| |
Collapse
|
37
|
Gondarenko E, Mazur D, Masliakova M, Ryabukha Y, Kasheverov I, Utkin Y, Tsetlin V, Shahparonov M, Kudryavtsev D, Antipova N. Subtype-Selective Peptide and Protein Neurotoxic Inhibitors of Nicotinic Acetylcholine Receptors Enhance Proliferation of Patient-Derived Glioblastoma Cell Lines. Toxins (Basel) 2024; 16:80. [PMID: 38393158 PMCID: PMC10891657 DOI: 10.3390/toxins16020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer, with a poor prognosis. GBM cells, which develop in the environment of neural tissue, often exploit neurotransmitters and their receptors to promote their own growth and invasion. Nicotinic acetylcholine receptors (nAChRs), which play a crucial role in central nervous system signal transmission, are widely represented in the brain, and GBM cells express several subtypes of nAChRs that are suggested to transmit signals from neurons, promoting tumor invasion and growth. Analysis of published GBM transcriptomes revealed spatial heterogeneity in nAChR subtype expression, and functional nAChRs of α1*, α7, and α9 subtypes are demonstrated in our work on several patient-derived GBM microsphere cultures and on the U87MG GBM cell line using subtype-selective neurotoxins and fluorescent calcium mobilization assay. The U87MG cell line shows reactions to nicotinic agonists similar to those of GBM patient-derived culture. Selective α1*, α7, and α9 nAChR neurotoxins stimulated cell growth in the presence of nicotinic agonists. Several cultivating conditions with varying growth factor content have been proposed and tested. The use of selective neurotoxins confirmed that cell cultures obtained from patients are representative GBM models, but the use of media containing fetal bovine serum can lead to alterations in nAChR expression and functioning.
Collapse
Affiliation(s)
- Elena Gondarenko
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (E.G.); (I.K.); (V.T.); (D.K.)
| | - Diana Mazur
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (D.M.); (M.M.); (Y.R.); (M.S.); (N.A.)
| | - Marina Masliakova
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (D.M.); (M.M.); (Y.R.); (M.S.); (N.A.)
| | - Yana Ryabukha
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (D.M.); (M.M.); (Y.R.); (M.S.); (N.A.)
| | - Igor Kasheverov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (E.G.); (I.K.); (V.T.); (D.K.)
| | - Yuri Utkin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (E.G.); (I.K.); (V.T.); (D.K.)
| | - Victor Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (E.G.); (I.K.); (V.T.); (D.K.)
| | - Mikhail Shahparonov
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (D.M.); (M.M.); (Y.R.); (M.S.); (N.A.)
| | - Denis Kudryavtsev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (E.G.); (I.K.); (V.T.); (D.K.)
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Nadine Antipova
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (D.M.); (M.M.); (Y.R.); (M.S.); (N.A.)
| |
Collapse
|
38
|
Leek AN, Quinn JA, Krapf D, Tamkun MM. GLT-1a glutamate transporter nanocluster localization is associated with astrocytic actin and neuronal Kv2 clusters at sites of neuron-astrocyte contact. Front Cell Dev Biol 2024; 12:1334861. [PMID: 38362041 PMCID: PMC10867268 DOI: 10.3389/fcell.2024.1334861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Astrocytic GLT-1 glutamate transporters ensure the fidelity of glutamic neurotransmission by spatially and temporally limiting glutamate signals. The ability to limit neuronal hyperactivity relies on the localization and diffusion of GLT-1 on the astrocytic surface, however, little is known about the underlying mechanisms. We show that two isoforms of GLT-1, GLT-1a and GLT-1b, form nanoclusters on the surface of transfected astrocytes and HEK-293 cells. Methods: We used both fixed and live cell super-resolution imaging of fluorescent protein and epitope tagged proteins in co-cultures of rat astrocytes and neurons. Immunofluorescence techniques were also used. GLT1 diffusion was assessed via single particle tracking and fluorescence recovery after photobleach (FRAP). Results: We found GLT-1a, but not GLT-1b, nanoclusters concentrated adjacent to actin filaments which was maintained after addition of glutamate. GLT-1a nanocluster concentration near actin filaments was prevented by expression of a cytosolic GLT-1a C-terminus, suggesting the C-terminus is involved in the localization adjacent to cortical actin. Using super-resolution imaging, we show that astrocytic GLT-1a and actin co-localize in net-like structures around neuronal Kv2.1 clusters at points of neuron/astrocyte contact. Conclusion: Overall, these data describe a novel relationship between GLT-1a and cortical actin filaments, which localizes GLT-1a near neuronal structures responsive to ischemic insult.
Collapse
Affiliation(s)
- Ashley N. Leek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
| | - Josiah A. Quinn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
39
|
Hardman D, Hennig K, Gomes ER, Roman W, Bernabeu MO. An in vitro agent-based modelling approach to optimization of culture medium for generating muscle cells. J R Soc Interface 2024; 21:20230603. [PMID: 38228184 PMCID: PMC10791523 DOI: 10.1098/rsif.2023.0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
Methodologies for culturing muscle tissue are currently lacking in terms of quality and quantity of mature cells produced. We analyse images from in vitro experiments to quantify the effects of culture media composition on mouse-derived myoblast behaviour and myotube quality. Metrics of early indicators of cell quality were defined. Images of muscle cell differentiation reveal that altering culture media significantly affects quality indicators and myoblast migratory behaviours. To study the effects of early-stage cell behaviours on mature cell quality, metrics drawn from experimental images or inferred by approximate Bayesian computation (ABC) were applied as inputs to an agent-based model (ABM) of skeletal muscle cell differentiation with quality indicator metrics as outputs. Computational modelling was used to inform further in vitro experiments to predict the optimum media composition for culturing muscle cells. Our results suggest that myonuclei production in myotubes is inversely related to early-stage nuclei fusion index and that myonuclei density and spatial distribution are correlated with residence time of fusing myoblasts, the age at which myotube-myotube fusion ends and the repulsion force between myonuclei. Culture media with 5% serum was found to produce the optimum cell quality and to make muscle cells cultured in a neuron differentiation medium viable.
Collapse
Affiliation(s)
- David Hardman
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Katharina Hennig
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Edgar R. Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - William Roman
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK
- The Bayes Centre, University of Edinburgh, Edinburgh EH8 9BT, UK
| |
Collapse
|
40
|
Monko TR, Tripp EH, Burr SE, Gunderson KN, Lanier LM, Georgieff MK, Bastian TW. Cellular Iron Deficiency Disrupts Thyroid Hormone Regulated Gene Expression in Developing Hippocampal Neurons. J Nutr 2024; 154:49-59. [PMID: 37984740 PMCID: PMC10808837 DOI: 10.1016/j.tjnut.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Developing neurons have high thyroid hormone and iron requirements to support their metabolically demanding growth. Early-life iron and thyroid-hormone deficiencies are prevalent and often coexist, and each independently increases risk of permanently impaired neurobehavioral function in children. Early-life dietary iron deficiency reduces thyroid-hormone concentrations and impairs thyroid hormone-responsive gene expression in the neonatal rat brain, but it is unclear whether the effect is cell-intrinsic. OBJECTIVES This study determined whether neuronal-specific iron deficiency alters thyroid hormone-regulated gene expression in developing neurons. METHODS Iron deficiency was induced in primary mouse embryonic hippocampal neuron cultures with the iron chelator deferoxamine (DFO) beginning at 3 d in vitro (DIV). At 11DIV and 18DIV, thyroid hormone-regulated gene messenger ribonucleic acid (mRNA)concentrations indexing thyroid hormone homeostasis (Hairless, mu-crystallin, Type II deiodinase, solute carrier family member 1c1, and solute carrier family member 16a2) and neurodevelopment (neurogranin, Parvalbumin, and Krüppel-like factor 9) were quantified. To assess the effect of iron repletion, DFO was removed at 14DIV from a subset of DFO-treated cultures, and gene expression and adenosine 5'-triphosphate (ATP) concentrations were quantified at 21DIV. RESULTS At 11DIV and 18DIV, neuronal iron deficiency decreased neurogranin, Parvalbumin, and mu-crystallin, and by 18DIV, solute carrier family member 16a2, solute carrier family member 1c1, Type II deiodinase, and Hairless were increased, suggesting cellular sensing of a functionally abnormal thyroid hormone state. Dimensionality reduction with Principal component analysis reveals that thyroid hormone homeostatic genes strongly correlate with and predict iron status. Iron repletion from 14-21DIV did not restore ATP concentration, and Principal component analysis suggests that, after iron repletion, cultures maintain a gene expression signature indicative of previous iron deficiency. CONCLUSIONS These novel findings suggest there is an intracellular mechanism coordinating cellular iron/thyroid hormone activities. We speculate this is a part of the homeostatic response to acutely match neuronal energy production and growth signaling. However, the adaptation to iron deficiency may cause permanent deficits in thyroid hormone-dependent neurodevelopmental processes even after recovery from iron deficiency.
Collapse
Affiliation(s)
- Timothy R Monko
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Emma H Tripp
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sierra E Burr
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karina N Gunderson
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Lorene M Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Michael K Georgieff
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Thomas W Bastian
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
41
|
Wallace JL, Pollen AA. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat Rev Neurosci 2024; 25:7-29. [PMID: 37996703 DOI: 10.1038/s41583-023-00760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
The delayed and prolonged postmitotic maturation of human neurons, compared with neurons from other species, may contribute to human-specific cognitive abilities and neurological disorders. Here we review the mechanisms of neuronal maturation, applying lessons from model systems to understand the specific features of protracted human cortical maturation and species differences. We cover cell-intrinsic features of neuronal maturation, including transcriptional, epigenetic and metabolic mechanisms, as well as cell-extrinsic features, including the roles of activity and synapses, the actions of glial cells and the contribution of the extracellular matrix. We discuss evidence for species differences in biochemical reaction rates, the proposed existence of an epigenetic maturation clock and the contributions of both general and modular mechanisms to species-specific maturation timing. Finally, we suggest approaches to measure, improve and accelerate the maturation of human neurons in culture, examine crosstalk and interactions among these different aspects of maturation and propose conceptual models to guide future studies.
Collapse
Affiliation(s)
- Jenelle L Wallace
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
42
|
Kuhn TB, Minamide LS, Tahtamouni LH, Alderfer SA, Walsh KP, Shaw AE, Yanouri O, Haigler HJ, Ruff MR, Bamburg JR. Chemokine Receptor Antagonists Prevent and Reverse Cofilin-Actin Rod Pathology and Protect Synapses in Cultured Rodent and Human iPSC-Derived Neurons. Biomedicines 2024; 12:93. [PMID: 38255199 PMCID: PMC10813319 DOI: 10.3390/biomedicines12010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Synapse loss is the principal cause of cognitive decline in Alzheimer's disease (AD) and related disorders (ADRD). Synapse development depends on the intricate dynamics of the neuronal cytoskeleton. Cofilin, the major protein regulating actin dynamics, can be sequestered into cofilactin rods, intra-neurite bundles of cofilin-saturated actin filaments that can disrupt vesicular trafficking and cause synaptic loss. Rods are a brain pathology in human AD and mouse models of AD and ADRD. Eliminating rods is the focus of this paper. One pathway for rod formation is triggered in ~20% of rodent hippocampal neurons by disease-related factors (e.g., soluble oligomers of Amyloid-β (Aβ)) and requires cellular prion protein (PrPC), active NADPH oxidase (NOX), and cytokine/chemokine receptors (CCRs). FDA-approved antagonists of CXCR4 and CCR5 inhibit Aβ-induced rods in both rodent and human neurons with effective concentrations for 50% rod reduction (EC50) of 1-10 nM. Remarkably, two D-amino acid receptor-active peptides (RAP-103 and RAP-310) inhibit Aβ-induced rods with an EC50 of ~1 pM in mouse neurons and ~0.1 pM in human neurons. These peptides are analogs of D-Ala-Peptide T-Amide (DAPTA) and share a pentapeptide sequence (TTNYT) antagonistic to several CCR-dependent responses. RAP-103 does not inhibit neuritogenesis or outgrowth even at 1 µM, >106-fold above its EC50. N-terminal methylation, or D-Thr to D-Ser substitution, decreases the rod-inhibiting potency of RAP-103 by 103-fold, suggesting high target specificity. Neither RAP peptide inhibits neuronal rod formation induced by excitotoxic glutamate, but both inhibit rods induced in human neurons by several PrPC/NOX pathway activators (Aβ, HIV-gp120 protein, and IL-6). Significantly, RAP-103 completely protects against Aβ-induced loss of mature and developing synapses and, at 0.1 nM, reverses rods in both rodent and human neurons (T½ ~ 3 h) even in the continuous presence of Aβ. Thus, this orally available, brain-permeable peptide should be highly effective in reducing rod pathology in multifactorial neurological diseases with mixed proteinopathies acting through PrPC/NOX.
Collapse
Affiliation(s)
- Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Sydney A. Alderfer
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Keifer P. Walsh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Omar Yanouri
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Henry J. Haigler
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - Michael R. Ruff
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
43
|
Yuan H, Su H, Wu C, Ji Y, Zhou L, Wang L, Zhang H, Zhang X, Tian X, Zhu F. Scalable expansion of human pluripotent stem cells under suspension culture condition with human platelet lysate supplementation. Front Cell Dev Biol 2023; 11:1280682. [PMID: 37900272 PMCID: PMC10601454 DOI: 10.3389/fcell.2023.1280682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
The large-scale production of human pluripotent stem cells (hPSCs), including both embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), shows potential for advancing the translational realization of hPSC technology. Among multiple cell culture methods, suspension culture, also known as three-dimensional (3D) culture, stands out as a promising method to fulfill the large-scale production requirements. Under this 3D culture condition, cell expansion and the preservation of pluripotency and identity during long-term culture heavily relies on the culture medium. However, the xenogeneic supplements in culture medium remains an obstacle for the translation of cell and gene therapy applications from bench to bedside. Here, we tested human platelet lysate (hPL), a xeno-free and serum-free biological material, as a supplement in the 3D culture of hPSCs. We observed reduced intercellular variability and enhanced proliferation in both hESC and hiPSC lines. These cells, after extended culture in the hPL-supplemented system, maintained pluripotency marker expression, the capacity to differentiate into cells of all three germ layers, and normal karyotype, confirming the practicability and safety of hPL supplementation. Furthermore, through RNA-sequencing analysis, we found an upregulation of genes associated with cell cycle regulations in hPL-treated cells, consistent with the improved cellular division efficiency. Taken together, our findings underscore the potential of hPL as a xeno-free and serum-free supplement for the large-scale production of hPSCs, which holds promise for advancing clinical applications of these cells.
Collapse
Affiliation(s)
- Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Su
- HemaCell Biotechnology Inc., Suzhou, China
| | - Chen Wu
- HemaCell Biotechnology Inc., Suzhou, China
| | - Yibing Ji
- HemaCell Biotechnology Inc., Suzhou, China
| | - Lili Zhou
- HemaCell Biotechnology Inc., Suzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Xin Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaopeng Tian
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- HemaCell Biotechnology Inc., Suzhou, China
| |
Collapse
|
44
|
Agarwal D, Dash N, Mazo KW, Chopra M, Avila MP, Patel A, Wong RM, Jia C, Do H, Cheng J, Chiang C, Jurlina SL, Roshan M, Perry MW, Rho JM, Broyer R, Lee CD, Weinreb RN, Gavrilovici C, Oesch NW, Welsbie DS, Wahlin KJ. Human retinal ganglion cell neurons generated by synchronous BMP inhibition and transcription factor mediated reprogramming. NPJ Regen Med 2023; 8:55. [PMID: 37773257 PMCID: PMC10541876 DOI: 10.1038/s41536-023-00327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/31/2023] [Indexed: 10/01/2023] Open
Abstract
In optic neuropathies, including glaucoma, retinal ganglion cells (RGCs) die. Cell transplantation and endogenous regeneration offer strategies for retinal repair, however, developmental programs required for this to succeed are incompletely understood. To address this, we explored cellular reprogramming with transcription factor (TF) regulators of RGC development which were integrated into human pluripotent stem cells (PSCs) as inducible gene cassettes. When the pioneer factor NEUROG2 was combined with RGC-expressed TFs (ATOH7, ISL1, and POU4F2) some conversion was observed and when pre-patterned by BMP inhibition, RGC-like induced neurons (RGC-iNs) were generated with high efficiency in just under a week. These exhibited transcriptional profiles that were reminiscent of RGCs and exhibited electrophysiological properties, including AMPA-mediated synaptic transmission. Additionally, we demonstrated that small molecule inhibitors of DLK/LZK and GCK-IV can block neuronal death in two pharmacological axon injury models. Combining developmental patterning with RGC-specific TFs thus provided valuable insight into strategies for cell replacement and neuroprotection.
Collapse
Affiliation(s)
- Devansh Agarwal
- Shu Chien-Gene Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Nicholas Dash
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Kevin W Mazo
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Manan Chopra
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Maria P Avila
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Amit Patel
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Ryan M Wong
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Cairang Jia
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Hope Do
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Jie Cheng
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Colette Chiang
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Shawna L Jurlina
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Mona Roshan
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Michael W Perry
- Department of Biological Sciences, UC San Diego, La Jolla, CA, USA
| | - Jong M Rho
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Risa Broyer
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Cassidy D Lee
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Robert N Weinreb
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | | | - Nicholas W Oesch
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
- Department of Psychology, UC San Diego, La Jolla, CA, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Karl J Wahlin
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
45
|
Amel A, Rabeling A, Rossouw S, Goolam M. Wnt and BMP signalling direct anterior-posterior differentiation in aggregates of mouse embryonic stem cells. Biol Open 2023; 12:bio059981. [PMID: 37622734 PMCID: PMC10508691 DOI: 10.1242/bio.059981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Stem-cell-based embryo models have allowed greater insight into peri-implantation mammalian developmental events that are otherwise difficult to manipulate due to the inaccessibility of the early embryo. The rapid development of this field has resulted in the precise roles of frequently used supplements such as N2, B27 and Chiron in driving stem cell lineage commitment not being clearly defined. Here, we investigate the effects of these supplements on embryoid bodies to better understand their roles in stem cell differentiation. We show that Wnt signalling has a general posteriorising effect on stem cell aggregates and directs differentiation towards the mesoderm, as confirmed through the upregulation of posterior and mesodermal markers. N2 and B27 can mitigate these effects and upregulate the expression of anterior markers. To control the Wnt gradient and the subsequent anterior versus posterior fate, we make use of a BMP4 signalling centre and show that aggregates in these conditions express cephalic markers. These findings indicate that there is an intricate balance between various culture supplements and their ability to guide differentiation in stem cell embryo models.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Alexa Rabeling
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Simoné Rossouw
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| |
Collapse
|
46
|
Irollo E, Nash B, Luchetta J, Brandimarti R, Meucci O. The Endolysosomal Transporter DMT1 is Required for Morphine Regulation of Neuronal Ferritin Heavy Chain. J Neuroimmune Pharmacol 2023; 18:495-508. [PMID: 37661197 PMCID: PMC10577102 DOI: 10.1007/s11481-023-10082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
NeuroHIV and other neurologic disorders present with altered iron metabolism in central nervous system neurons. Many people with HIV also use opioids, which can worsen neuroHIV symptoms by further dysregulating neuronal iron metabolism. Our previous work demonstrated that the μ-opioid agonist morphine causes neuronal endolysosomes to release their iron stores, and neurons respond by upregulating ferritin heavy chain (FHC), an iron storage protein associated with cognitive impairment in neuroHIV. Here, we investigated if this process required divalent metal transporter 1 (DMT1), a well-known iron transporter expressed on endolysosomes. We first optimized conditions to detect DMT1 isoforms (DMT1 1B ± iron responsive element) using fluorescently labeled rat DMT1 constructs expressed in HEK-293 cells. We also expressed these constructs in primary rat cortical neurons to compare their expression and subcellular distribution with endogenous DMT1 isoforms. We found endogenous DMT1 isoforms in the cytoplasm that colocalized with lysosomal-associated protein 1 (LAMP1), a marker of endolysosomes. Next, we blocked endogenous DMT1 isoforms using ebselen, a potent pharmacological inhibitor of DMT1 iron transport. Ebselen pre-treatment blocked morphine's ability to upregulate FHC protein, suggesting this pathway requires DMT1 iron transport from endolysosomes. This was further validated using viral-mediated genetic silencing of DMT1±IRE in cortical neurons, which also blocked FHC upregulation in the presence of morphine. Overall, our work demonstrates that the μ-opioid agonist morphine utilizes the endolysosomal iron transporter DMT1 to modulate neuronal cellular iron metabolism, upregulate FHC protein, and contribute to cognitive decline in neuroHIV. Morphine requires DMT1 to upregulate neuronal FHC. Cortical neurons treated with morphine release their endolysosomal iron stores to the cytoplasm and upregulate FHC, an iron storage protein associated with dendritic spine deficits and cognitive impairment in neuroHIV. This pathway requires the endolysosomal iron transporter DMT1, as pharmacological and genetic inhibitors of the transporter completely block morphine's ability to upregulate FHC. Created with BioRender.com .
Collapse
Affiliation(s)
- Elena Irollo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | - Bradley Nash
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | - Jared Luchetta
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | - Renato Brandimarti
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Via Marsala, 49, Bologna, BO, 40126, Italy
| | - Olimpia Meucci
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA.
- Department of Microbiology & Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA.
- Center for Neuroimmunology & CNS Therapeutics, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
47
|
Huang H, Li S, Zhang Y, He C, Hua Z. Microglial Priming in Bilirubin-Induced Neurotoxicity. Neurotox Res 2023; 41:338-348. [PMID: 37058197 DOI: 10.1007/s12640-023-00643-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Neuroinflammation is a major contributor to bilirubin-induced neurotoxicity, which results in severe neurological deficits. Microglia are the primary immune cells in the brain, with M1 microglia promoting inflammatory injury and M2 microglia inhibiting neuroinflammation. Controlling microglial inflammation could be a promising therapeutic strategy for reducing bilirubin-induced neurotoxicity. Primary microglial cultures were prepared from 1-3-day-old rats. In the early stages of bilirubin treatment, pro-/anti-inflammatory (M1/M2) microglia mixed polarization was observed. In the late stages, bilirubin persistence induced dominant proinflammatory microglia, forming an inflammatory microenvironment and inducing iNOS expression as well as the release of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Simultaneously, nuclear factor-kappa B (NF-κB) was activated and translocated into the nucleus, upregulating inflammatory target genes. As well known, neuroinflammation can have an effect on N-methyl-D-aspartate receptor (NMDAR) expression or function, which is linked to cognition. Treatment with bilirubin-treated microglia-conditioned medium did affect the expression of IL-1β, NMDA receptor subunit 2A (NR2A), and NMDA receptor subunit 2B (NR2B) in neurons. However, VX-765 effectively reduces the levels of proinflammatory cytokines TNF-α, IL-6, and IL-1β, as well as the expressions of CD86, and increases the expressions of anti-inflammatory related Arg-1. A timely reduction in proinflammatory microglia could protect against bilirubin-induced neurotoxicity.
Collapse
Affiliation(s)
- Hongmei Huang
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Siyu Li
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yan Zhang
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Chunmei He
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Ziyu Hua
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.
| |
Collapse
|
48
|
Kohler TN, De Jonghe J, Ellermann AL, Yanagida A, Herger M, Slatery EM, Weberling A, Munger C, Fischer K, Mulas C, Winkel A, Ross C, Bergmann S, Franze K, Chalut K, Nichols J, Boroviak TE, Hollfelder F. Plakoglobin is a mechanoresponsive regulator of naive pluripotency. Nat Commun 2023; 14:4022. [PMID: 37419903 PMCID: PMC10329048 DOI: 10.1038/s41467-023-39515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2023] [Indexed: 07/09/2023] Open
Abstract
Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of β-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.
Collapse
Affiliation(s)
- Timo N Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Ayaka Yanagida
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Veterinary Anatomy, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Michael Herger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Erin M Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Antonia Weberling
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Katrin Fischer
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Carla Mulas
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Alex Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Connor Ross
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 91, 91052, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Kevin Chalut
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Thorsten E Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
49
|
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez‐Nievas BG, Jimenez‐Sanchez M. Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ. J Neurochem 2023; 166:346-366. [PMID: 37303123 PMCID: PMC10952722 DOI: 10.1111/jnc.15875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Collapse
Affiliation(s)
| | - Alena Gorb
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Fangjia Yang
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Wendy Noble
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Angela Bachi
- IFOM ETS‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Beatriz Gomez Perez‐Nievas
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Maria Jimenez‐Sanchez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
50
|
Poggio F, Brofiga M, Callegari F, Tedesco M, Massobrio P. Developmental conditions and culture medium influence the neuromodulated response of in vitro cortical networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083479 DOI: 10.1109/embc40787.2023.10340933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Goal of this work is to show how the developmental conditions of in vitro neuronal networks influence the effect of drug delivery. The proposed experimental neuronal model consists of dissociated cortical neurons plated to Micro-Electrode Arrays (MEAs) and grown according to different conditions (i.e., by varying both the adopted culture medium and the number of days needed to let the network grow before performing the chemical modulation). We delivered rising amount of bicuculline (BIC), a competitive antagonist of GABAA receptors, and we computed the firing rate dose-response curve for each culture. We found that networks matured in BrainPhys for 18 days in vitro exhibited a decreasing firing trend as a function of the BIC concentration, quantified by an average IC50 (i.e., half maximal inhibitory concentration) of 4.64 ± 4.02 µM. On the other hand, both cultures grown in the same medium for 11 days, and ones matured in Neurobasal for 18 days displayed an increasing firing rate when rising amounts of BIC were delivered, characterized by average EC50 values (i.e., half maximal excitatory concentration) of 0.24 ± 0.05 µM and 0.59 ± 0.46 µM, respectively.Clinical Relevance- This research proves the relevance of the experimental factors that can influence the network development as key variables when developing a neuronal model to conduct drug delivery in vitro, simulating the in vivo environment. Our findings suggest that not considering the consequences of the chosen growing conditions when performing in vitro pharmacological studies could lead to incomplete predictions of the chemically induced alterations.
Collapse
|