1
|
Dermitzakis I, Manthou ME, Meditskou S, Miliaras D, Kesidou E, Boziki M, Petratos S, Grigoriadis N, Theotokis P. Developmental Cues and Molecular Drivers in Myelinogenesis: Revisiting Early Life to Re-Evaluate the Integrity of CNS Myelin. Curr Issues Mol Biol 2022; 44:3208-3237. [PMID: 35877446 PMCID: PMC9324160 DOI: 10.3390/cimb44070222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Dimosthenis Miliaras
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC 3004, Australia;
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
- Correspondence:
| |
Collapse
|
2
|
Lee RX, Tang FR. Radiation-induced neuropathological changes in the oligodendrocyte lineage with relevant clinical manifestations and therapeutic strategies. Int J Radiat Biol 2022; 98:1519-1531. [PMID: 35311621 DOI: 10.1080/09553002.2022.2055804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE With technological advancements in radiation therapy for tumors of the central nervous system (CNS), high doses of ionizing radiation can be delivered to the tumors with improved accuracy. Despite the reduction of ionizing radiation-induced toxicity to surrounding tissues of the CNS, a wide array of side effects still occurs, particularly late-delayed changes. These alterations, such as white matter damages and neurocognitive impairments, are often debilitative and untreatable, significantly affecting the quality of life of these patients, especially children. Oligodendrocytes, a major class of glial cells, have been identified to be one of the targets of radiation toxicity and are recognized be involved in late-delayed radiation-induced neuropathological changes. These cells are responsible for forming the myelin sheaths that surround and insulate axons within the CNS. Here, the effects of ionizing radiation on the oligodendrocyte lineage as well as the common clinical manifestations resulting from radiation-induced damage to oligodendrocytes will be discussed. Potential prophylactic and therapeutic strategies against radiation-induced oligodendrocyte damage will also be considered. CONCLUSION Oligodendrocytes and oligodendrocyte progenitor cells (OPCs) are radiosensitive cells of the CNS. Here, general responses of these cells to radiation exposure have been outlined. However, several findings have not been consistent across various studies. For instance, cognitive decline in irradiated animals was observed to be accompanied by obvious demyelination or white matter changes in several studies but not in others. Hence, further studies have to be conducted to elucidate the level of contribution of the oligodendrocyte lineage to the development of late-delayed effects of radiation exposure, as well as to classify the dose and brain region-specific responses of the oligodendrocyte lineage to radiation. Several potential therapeutic approaches against late-delayed changes have been discussed, such as the transplantation of OPCs into irradiated regions and implementation of exercise. Many of these approaches show promising results. Further elucidation of the mechanisms involved in radiation-induced death of oligodendrocytes and OPCs would certainly aid in the development of novel protective and therapeutic strategies against the late-delayed effects of radiation.
Collapse
Affiliation(s)
- Rui Xue Lee
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, Singapore
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Fu X, Zhou G, Zhuang J, Xu C, Zhou H, Peng Y, Cao Y, Zeng H, Li J, Yan F, Wang L, Chen G. White Matter Injury After Intracerebral Hemorrhage. Front Neurol 2021; 12:562090. [PMID: 34177751 PMCID: PMC8222731 DOI: 10.3389/fneur.2021.562090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 15% of all stroke cases. ICH is a devastating form of stroke associated with high morbidity, mortality, and disability. Preclinical studies have explored the mechanisms of neuronal death and gray matter damage after ICH. However, few studies have examined the development of white matter injury (WMI) following ICH. Research on WMI indicates that its pathophysiological presentation involves axonal damage, demyelination, and mature oligodendrocyte loss. However, the detailed relationship and mechanism between WMI and ICH remain unclear. Studies of other acute brain insults have indicated that WMI is strongly correlated with cognitive deficits, neurological deficits, and depression. The degree of WMI determines the short- and long-term prognosis of patients with ICH. This review demonstrates the structure and functions of the white matter in the healthy brain and discusses the pathophysiological mechanism of WMI following ICH. Our review reveals that the development of WMI after ICH is complex; therefore, comprehensive treatment is essential. Understanding the relationship between WMI and other brain cells may reveal therapeutic targets for the treatment of ICH.
Collapse
Affiliation(s)
- Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoyang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Liu W, Rohlman AR, Vetreno R, Crews FT. Expression of Oligodendrocyte and Oligoprogenitor Cell Proteins in Frontal Cortical White and Gray Matter: Impact of Adolescent Development and Ethanol Exposure. Front Pharmacol 2021; 12:651418. [PMID: 34025418 PMCID: PMC8134748 DOI: 10.3389/fphar.2021.651418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Adolescent development of prefrontal cortex (PFC) parallels maturation of executive functions as well as increasing white matter and myelination. Studies using MRI and other methods find that PFC white matter increases across adolescence into adulthood in both humans and rodents. Adolescent binge drinking is common and has been found to alter adult behaviors and PFC functions. This study examines development of oligoprogenitor (OPC) and oligodendrocytes (OLs) in Wistar rats from adolescence to adulthood within PFC white matter, corpus callosum forceps minor (fmi), PFC gray matter, and the neurogenic subventricular zone (SVZ) using immunohistochemistry for marker proteins. In addition, the effects of adolescent intermittent ethanol exposure [AIE; 5.0 g/kg/day, intragastric, 2 days on/2 days off on postnatal day (P)25-54], which is a weekend binge drinking model, were determined. OPC markers NG2+, PDGFRα+ and Olig2+IHC were differentially impacted by both age and PFC region. In both fmi and SVZ, NG2+IHC cells declined from adolescence to adulthood with AIE increasing adult NG2+IHC cells and their association with microglial marker Iba1. PFC gray matter decline in NG2+IHC in adulthood was not altered by AIE. Both adult maturation and AIE impacted OL expression of PLP+, MBP+, MAG+, MOG+, CNPase+, Olig1+, and Olig2+IHC in all three PFC regions, but in region- and marker-specific patterns. These findings are consistent with PFC region-specific changes in OPC and OL markers from adolescence to adulthood as well as following AIE that could contribute to lasting changes in PFC function.
Collapse
Affiliation(s)
| | | | | | - Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Jiang Y, Wei K, Zhang X, Feng H, Hu R. White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1113-1125. [PMID: 31578825 PMCID: PMC6823871 DOI: 10.1111/cns.13226] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The predilection site of intracerebral hemorrhage (ICH) is in the basal ganglia, which is rich in white matter (WM) fiber bundles, such as cerebrospinal tract in the internal capsule. ICH induced damage to this area can easily lead to severe neurological dysfunction and affects the prognosis and quality of life of patients. At present, the pathophysiological mechanisms of white matter injury (WMI) after ICH have attracted researchers' attention, but studies on the repair and recovery mechanisms and therapy strategies remain rare. In this review, we mainly summarized the WM recovery and treatment strategies after ICH by updating the WMI-related content by reviewing the latest researches and proposing the bottleneck of the current research.
Collapse
Affiliation(s)
- Yi‐Bin Jiang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Kai‐Yan Wei
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Xu‐Yang Zhang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Rong Hu
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| |
Collapse
|
6
|
Albrecht S, Korr S, Nowack L, Narayanan V, Starost L, Stortz F, Araúzo‐Bravo MJ, Meuth SG, Kuhlmann T, Hundehege P. The K
2P
‐channel TASK1 affects Oligodendroglial differentiation but not myelin restoration. Glia 2019; 67:870-883. [DOI: 10.1002/glia.23577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Stefanie Albrecht
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Sabrina Korr
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| | - Luise Nowack
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
| | - Venu Narayanan
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
| | - Laura Starost
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Franziska Stortz
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Marcos J. Araúzo‐Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute San Sebastian Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | - Sven G. Meuth
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| | - Tanja Kuhlmann
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| |
Collapse
|
7
|
Flores-Obando RE, Freidin MM, Abrams CK. Rapid and Specific Immunomagnetic Isolation of Mouse Primary Oligodendrocytes. J Vis Exp 2018. [PMID: 29863670 DOI: 10.3791/57543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The efficient and robust isolation and culture of primary oligodendrocytes (OLs) is a valuable tool for the in vitro study of the development of oligodendroglia as well as the biology of demyelinating diseases such as multiple sclerosis and Pelizaeus-Merzbacher-like disease (PMLD). Here, we present a simple and efficient selection method for the immunomagnetic isolation of stage three O4+ preoligodendrocytes cells from neonatal mice pups. Since immature OL constitute more than 80% of the rodent-brain white matter at postnatal day 7 (P7) this isolation method not only ensures high cellular yield, but also the specific isolation of OLs already committed to the oligodendroglial lineage, decreasing the possibility of isolating contaminating cells such as astrocytes and other cells from the mouse brain. This method is a modification of the techniques reported previously, and provides oligodendrocyte preparation purity above 80% in about 4 h.
Collapse
Affiliation(s)
- Rafael E Flores-Obando
- Program in Molecular and Cellular Biology, State University of New York Downstate Medical Center
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, University of Illinois at Chicago
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago;
| |
Collapse
|
8
|
Mitra SS, Feroze AH, Gholamin S, Richard C, Esparza R, Zhang M, Azad TD, Alrfaei B, Kahn SA, Hutter G, Guzman R, Creasey GH, Plant GW, Weissman IL, Edwards MSB, Cheshier S. Neural Placode Tissue Derived From Myelomeningocele Repair Serves as a Viable Source of Oligodendrocyte Progenitor Cells. Neurosurgery 2016. [PMID: 26225855 DOI: 10.1227/neu.0000000000000918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The presence, characteristics, and potential clinical relevance of neural progenitor populations within the neural placodes of myelomeningocele patients remain to be studied. Neural stem cells are known to reside adjacent to ependyma-lined surfaces along the central nervous system axis. OBJECTIVE Given such neuroanatomic correlation and regenerative capacity in fetal development, we assessed myelomeningocele-derived neural placode tissue as a potentially novel source of neural stem and progenitor cells. METHODS Nonfunctional neural placode tissue was harvested from infants during the surgical repair of myelomeningocele and subsequently further analyzed by in vitro studies, flow cytometry, and immunofluorescence. To assess lineage potential, neural placode-derived neurospheres were subjected to differential media conditions. Through assessment of platelet-derived growth factor receptor α (PDGFRα) and CD15 cell marker expression, Sox2+Olig2+ putative oligodendrocyte progenitor cells were successfully isolated. RESULTS PDGFRαCD15 cell populations demonstrated the highest rate of self-renewal capacity and multipotency of cell progeny. Immunofluorescence of neural placode-derived neurospheres demonstrated preferential expression of the oligodendrocyte progenitor marker, CNPase, whereas differentiation to neurons and astrocytes was also noted, albeit to a limited degree. CONCLUSION Neural placode tissue contains multipotent progenitors that are preferentially biased toward oligodendrocyte progenitor cell differentiation and presents a novel source of such cells for use in the treatment of a variety of pediatric and adult neurological disease, including spinal cord injury, multiple sclerosis, and metabolic leukoencephalopathies.
Collapse
Affiliation(s)
- Siddhartha S Mitra
- ‡Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; §Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California; ¶Department of Neurosurgery, VA Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, California; ∥Department of Neurological Surgery, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
After Intracerebral Hemorrhage, Oligodendrocyte Precursors Proliferate and Differentiate Inside White-Matter Tracts in the Rat Striatum. Transl Stroke Res 2016; 7:192-208. [PMID: 26743212 PMCID: PMC4873533 DOI: 10.1007/s12975-015-0445-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/17/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023]
Abstract
Damage to myelinated axons contributes to neurological deficits after acute CNS injury, including ischemic and hemorrhagic stroke. Potential treatments to promote re-myelination will require fully differentiated oligodendrocytes, but almost nothing is known about their fate following intracerebral hemorrhage (ICH). Using a rat model of ICH in the striatum, we quantified survival, proliferation, and differentiation of oligodendrocyte precursor cells (OPCs) (at 1, 3, 7, 14, and 28 days) in the peri-hematoma region, surrounding striatum, and contralateral striatum. In the peri-hematoma, the density of Olig2+ cells increased dramatically over the first 7 days, and this coincided with disorganization and fragmentation of myelinated axon bundles. Very little proliferation (Ki67+) of Olig2+ cells was seen in the anterior subventricular zone from 1 to 28 days. However, by 3 days, many were proliferating in the peri-hematoma region, suggesting that local proliferation expands their population. By 14 days, the density of Olig2+ cells declined in the peri-hematoma region, and, by 28 days, it reached the low level seen in the contralateral striatum. At these later times, many surviving axons were aligned into white-matter bundles, which appeared less swollen or fragmented. Oligodendrocyte cell maturation was prevalent over the 28-day period. Densities of immature OPCs (NG2+Olig2+) and mature (CC-1+Olig2+) oligodendrocytes in the peri-hematoma increased dramatically over the first week. Regardless of the maturation state, they increased preferentially inside the white-matter bundles. These results provide evidence that endogenous oligodendrocyte precursors proliferate and differentiate in the peri-hematoma region and have the potential to re-myelinate axon tracts after hemorrhagic stroke.
Collapse
|
10
|
Kenyon LC, Biswas K, Shindler KS, Nabar M, Stout M, Hingley ST, Grinspan JB, Das Sarma J. Gliopathy of Demyelinating and Non-Demyelinating Strains of Mouse Hepatitis Virus. Front Cell Neurosci 2015; 9:488. [PMID: 26733813 PMCID: PMC4686739 DOI: 10.3389/fncel.2015.00488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/02/2015] [Indexed: 11/24/2022] Open
Abstract
Demyelination in the central nervous system induced by neurovirulent strains of Mouse Hepatitis Virus (MHV) is mediated by the viral spike glycoprotein, but it is not clear whether the mechanism of this disease pathology involves direct viral infection of oligodendrocytes. Detailed studies of glial cell tropism of MHV are presented, demonstrating that direct MHV infection of oligodendrocytes differs between demyelinating (RSA59) and non-demyelinating (RSMHV2) viral strains both in vitro and in vivo. Our results indicate that direct injury of mature oligodendrocytes is an important mechanism of virus-induced demyelination. In vivo, RSA59 infection was identified in spinal cord gray and white matter, but infected oligodendrocytes were restricted to white matter. In contrast, RSMHV2 infection was restricted to gray matter neurons and was not localized to oligodendrocytes. In vitro, RSA59 can infect both oligodendrocyte precursors and differentiated oligodendrocytes, whereas RSMHV2 can infect oligodendrocyte precursors but not differentiated oligodendrocytes. Viral spreading through axonal means to white matter and release of the demyelinating strain MHV at the nerve end is critical for oligodendrocytes infection and subsequent demyelination. Understanding the mechanisms by which known viruses effect demyelination in this animal model has important therapeutic implications in the treatment of human demyelinating disease.
Collapse
Affiliation(s)
- Lawrence C Kenyon
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Philadelphia, PA, USA
| | - Kaushiki Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, India
| | - Kenneth S Shindler
- Scheie Eye Institute and FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania Philadelphia, PA, USA
| | - Manasi Nabar
- Department of Neurology, Thomas Jefferson University Philadelphia, PA, USA
| | - Marjorie Stout
- Department of Neurology, Thomas Jefferson University Philadelphia, PA, USA
| | - Susan T Hingley
- Department of Microbiology, Philadelphia College of Osteopathic Medicine Philadelphia, PA, USA
| | - Judith B Grinspan
- Department of Neurology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Jayasri Das Sarma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Biological Sciences, Indian Institute of Science Education and ResearchKolkata, India; Department of Neurology, Thomas Jefferson UniversityPhiladelphia, PA, USA
| |
Collapse
|
11
|
Jensen BK, Monnerie H, Mannell MV, Gannon PJ, Espinoza CA, Erickson MA, Bruce-Keller AJ, Gelman BB, Briand LA, Pierce RC, Jordan-Sciutto KL, Grinspan JB. Altered Oligodendrocyte Maturation and Myelin Maintenance: The Role of Antiretrovirals in HIV-Associated Neurocognitive Disorders. J Neuropathol Exp Neurol 2015; 74:1093-118. [PMID: 26469251 PMCID: PMC4608376 DOI: 10.1097/nen.0000000000000255] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite effective viral suppression through combined antiretroviral therapy (cART), approximately half of HIV-positive individuals have HIV-associated neurocognitive disorders (HAND). Studies of antiretroviral-treated patients have revealed persistent white matter abnormalities including diffuse myelin pallor, diminished white matter tracts, and decreased myelin protein mRNAs. Loss of myelin can contribute to neurocognitive dysfunction because the myelin membrane generated by oligodendrocytes is essential for rapid signal transduction and axonal maintenance. We hypothesized that myelin changes in HAND are partly due to effects of antiretroviral drugs on oligodendrocyte survival and/or maturation. We showed that primary mouse oligodendrocyte precursor cell cultures treated with therapeutic concentrations of HIV protease inhibitors ritonavir or lopinavir displayed dose-dependent decreases in oligodendrocyte maturation; however, this effect was rapidly reversed after drug removal. Conversely, nucleoside reverse transcriptase inhibitor zidovudine had no effect. Furthermore, in vivo ritonavir administration to adult mice reduced frontal cortex myelin protein levels. Finally, prefrontal cortex tissue from HIV-positive individuals with HAND on cART showed a significant decrease in myelin basic protein compared with untreated HIV-positive individuals with HAND or HIV-negative controls. These findings demonstrate that antiretrovirals can impact myelin integrity and have implications for myelination in juvenile HIV patients and myelin maintenance in adults on lifelong therapy.
Collapse
Affiliation(s)
- Brigid K. Jensen
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hubert Monnerie
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maggie V. Mannell
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick J. Gannon
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay Espinoza
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle A. Erickson
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Annadora J. Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Lisa A. Briand
- Department of Psychology, College of Liberal Arts, Temple University, Philadelphia, Pennsylvania
| | - R. Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly L. Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Judith B. Grinspan
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Barateiro A, Fernandes A. Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1917-29. [PMID: 24768715 DOI: 10.1016/j.bbamcr.2014.04.018] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 03/25/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
Oligodendrocytes are neuroglial cells responsible, within the central nervous system, for myelin sheath formation that provides an electric insulation of axons and accelerate the transmission of electrical signals. In order to be able to produce myelin, oligodendrocytes progress through a series of differentiation steps from oligodendrocyte precursor cells to mature oligodendrocytes (migration, increase in morphologic complexity and expression pattern of specific markers), which are modulated by cross talk with other nerve cells. If during the developmental stage any of these mechanisms is affected by toxic or external stimuli it may result into impaired myelination leading to neurological deficits. Such being the case, several approaches have been developed to evaluate how oligodendrocyte development and myelination may be impaired. The present review aims to summarize changes that oligodendrocytes suffer from precursor cells to mature ones, and to describe and discuss the different in vitro models used to evaluate not only oligodendrocyte development (proliferation, migration, differentiation and ability to myelinate), but also their interaction with neurons and other glial cells. First we discuss the temporal oligodendrocyte lineage progression, highlighting the differences between human and rodent, usually used as tissue supply for in vitro cultures. Second we describe how to perform and characterize the different in vitro cultures, as well as the methodologies to evaluate oligodendrocyte functionality in each culture system, discussing their advantages and disadvantages. Finally, we briefly discuss the current status of in vivo models for oligodendrocyte development and myelination.
Collapse
Affiliation(s)
- Andreia Barateiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
13
|
Abstract
The SVZ (subventricular zone) contains neural stem cells and progenitors of various potentialities. Although initially parsed into A, B, and C cells, this germinal zone is comprised of a significantly more diverse population of cells. Here, we characterized a subset of postnatal PRPs (PDGF-AA-responsive precursors) that express functional PDGFα and β receptors from birth to adulthood. When grown in PDGF-AA, dissociated neonatal rat SVZ cells divided to produce non-adherent clusters of progeny. Unlike the self-renewing EGF/FGF-2-responsive precursors that produce neurospheres, these PRPs failed to self-renew after three passages; therefore, we refer to the colonies they produce as spheroids. Upon differentiation these spheroids could produce neurons, type 1 astrocytes and oligodendrocytes. When maintained in medium supplemented with BMP-4 they also produced type 2 astrocytes. Using lineage tracing methods, it became evident that there were multiple types of PRPs, including a subset that could produce neurons, oligodendrocytes, and type 1 and type 2 astrocytes; thus some of these PRPs represent a unique population of precursors that are quatropotential. Spheroids also could be generated from the newborn neocortex and they had the same potentiality as those from the SVZ. By contrast, the adult neocortex produced less than 20% of the numbers of spheroids than the adult SVZ and spheroids from the adult neocortex only differentiated into glial cells. Interestingly, SVZ spheroid producing capacity diminished only slightly from birth to adulthood. Altogether these data demonstrate that there are PRPs that persist in the SVZ that includes a unique population of quatropotential PRPs.
Collapse
|
14
|
Brazel CY, Alaythan AA, Felling RJ, Calderon F, Levison SW. Molecular features of neural stem cells enable their enrichment using pharmacological inhibitors of survival-promoting kinases. J Neurochem 2013; 128:376-90. [PMID: 24032666 DOI: 10.1111/jnc.12447] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 11/28/2022]
Abstract
Isolating a pure population of neural stem cells (NSCs) has been difficult since no exclusive surface markers have been identified for panning or FACS purification. Moreover, additional refinements for maintaining NSCs in culture are required, since NSCs generate a variety of neural precursors (NPs) as they proliferate. Here, we demonstrate that post-natal rat NPs express low levels of pro-apoptotic molecules and resist phosphatidylinositol 3'OH kinase and extracellular regulated kinase 1/2 inhibition as compared to late oligodendrocyte progenitors. Furthermore, maintaining subventricular zone precursors in LY294002 and PD98059, inhibitors of PI3K and ERK1/2 signaling, eliminated lineage-restricted precursors as revealed by enrichment for Nestin(+)/SOX-2(+) cells. The cells that survived formed neurospheres and 89% of these neurospheres were tripotential, generating neurons, astrocytes, and oligodendrocytes. Without this enrichment step, less than 50% of the NPs were Nestin(+)/SOX-2(+) and 42% of the neurospheres were tripotential. In addition, neurospheres enriched using this procedure produced 3-times more secondary neurospheres, supporting the conclusion that this procedure enriches for NSCs. A number of genes that enhance survival were more highly expressed in neurospheres compared to late oligodendrocyte progenitors. Altogether, these studies demonstrate that primitive neural precursors can be enriched using a relatively simple and inexpensive means that will facilitate cell replacement strategies using stem cells as well as other studies whose goal is to reveal the fundamental properties of primitive neural precursors.
Collapse
Affiliation(s)
- Christine Y Brazel
- Department of Neurology and Neurosciences, Rutgers University-New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | |
Collapse
|
15
|
Bhatt AJ, Feng Y, Wang J, Famuyide M, Hersey K. Dexamethasone induces apoptosis of progenitor cells in the subventricular zone and dentate gyrus of developing rat brain. J Neurosci Res 2013; 91:1191-202. [PMID: 23686666 DOI: 10.1002/jnr.23232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/09/2013] [Accepted: 03/12/2013] [Indexed: 01/22/2023]
Abstract
The use of dexamethasone in premature infants to prevent and/or treat bronchopulmonary dysplasia adversely affects neurocognitive development and is associated with cerebral palsy. The underlying mechanisms of these effects are multifactorial and likely include apoptosis. The objective of this study was to confirm whether dexamethasone causes apoptosis in different regions of the developing rat brain. On postnatal day 2, pups in each litter were randomly divided into the dexamethasone-treated (n = 91) or vehicle-treated (n = 92) groups. Rat pups in the dexamethasone group received tapering doses of dexamethasone on postnatal days 3-6 (0.5, 0.25, 0.125, and 0.06 mg/kg/day, respectively). Dexamethasone treatment significantly decreased the gain of body and brain weight and increased brain caspase-3 activity, DNA fragments, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and cleaved caspse-3-positive cells at 24 hr after treatment. Dexamethasone increased cleaved caspse-3-positive cells in the cortex, thalamus, hippocampus, cerebellum, dentate gyrus, and subventricular zone. Double-immunofluorescence studies show that progenitor cells in the subventricular zone and dentate gyrus preferentially undergo apoptosis following dexamethasone exposure. These results indicate that dexamethasone-induced apoptosis in immature cells in developing brain is one of the mechanisms of its neurodegenerative effects in newborn rats.
Collapse
Affiliation(s)
- Abhay J Bhatt
- Division of Newborn Medicine, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | | | |
Collapse
|
16
|
Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4. J Neuropathol Exp Neurol 2012; 71:640-53. [PMID: 22710965 DOI: 10.1097/nen.0b013e31825cfa81] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Intrauterine growth retardation (IUGR) is associated with neurological deficits including cerebral palsy and cognitive and behavioral disabilities. The pathogenesis involves oxidative stress that leads to periventricular white matter injury with a paucity of mature oligodendrocytes and hypomyelination. The molecular mechanisms underlying this damage remain poorly understood. We used a rat model of IUGR created by bilateral ligation of the uterine artery at embryonic Day 19 that results in fetal growth retardation and oxidative stress in the developing brain. The IUGR rat pups showed significant delays in oligodendrocyte differentiation and myelination that resolved by 8 weeks. Bone morphogenetic protein 4 (BMP4), which inhibits oligodendrocyte maturation, was elevated in IUGR brains at postnatal time points and returned to near normal by adulthood. Despite the apparent recovery, behavioral deficiencies were found in 8-week-old female animals, suggesting that the early transient myelination defects have permanent effects. In support of these in vivo data, oligodendrocyte precursor cells cultured from postnatal IUGR rats retained increased BMP4 expression and impaired differentiation that was reversed with the BMP inhibitor noggin. Oxidants in oligodendrocyte cultures increased BMP expression, which decreased differentiation; however, abrogating BMP signaling with noggin in vitro and in BMP-deficient mice prevented these effects. Together, these findings suggest that IUGR results in delayed myelination through the generation of oxidative stress that leads to BMP4 upregulation.
Collapse
|
17
|
Development and maturation of the spinal cord: implications of molecular and genetic defects. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:3-30. [PMID: 23098703 DOI: 10.1016/b978-0-444-52137-8.00001-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The human central nervous system (CNS) may be the most complex structure in the universe. Its development and appropriate specification into phenotypically and spatially distinct neural subpopulations involves a precisely orchestrated response, with thousands of transcriptional regulators combining with epigenetic controls and specific temporal cues in perfect synchrony. Understandably, our insight into the sophisticated molecular mechanisms which underlie spinal cord development are as yet limited. Even less is known about abnormalities of this process - putative genetic and molecular causes of well-described defects have only begun to emerge in recent years. Nonetheless, modern scientific techniques are beginning to demonstrate common patterns and principles amid the tremendous complexity of spinal cord development and maldevelopment. These advances are important, given that developmental anomalies of the spinal cord are an important cause of mortality and morbidity (Sadler, 2000); it is hoped that research advances will lead to better methods to detect, treat, and prevent these lesions.
Collapse
|
18
|
Rowland JW, Lee JJ, Salewski RP, Eftekharpour E, van der Kooy D, Fehlings MG. Generation of Neural Stem Cells from Embryonic Stem Cells Using the Default Mechanism: In Vitro and In Vivo Characterization. Stem Cells Dev 2011; 20:1829-45. [DOI: 10.1089/scd.2011.0214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- James W. Rowland
- Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jason J. Lee
- Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
| | - Ryan P. Salewski
- Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Eftekhar Eftekharpour
- Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
| | - Derek van der Kooy
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Wang L, Kamath A, Frye J, Iwamoto GA, Chun JL, Berry SE. Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway. Stem Cells Dev 2011; 21:1069-89. [PMID: 21793703 DOI: 10.1089/scd.2011.0124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesoangioblasts are vessel-derived stem cells that differentiate into mesodermal derivatives. We have isolated postnatal aorta-derived mesoangioblasts (ADMs) that differentiate into smooth, skeletal, and cardiac muscle, and adipocytes, and regenerate damaged skeletal muscle in a murine model for Duchenne muscular dystrophy. We report that the marker profile of ADM is similar to that of mesoangioblasts isolated from embryonic dorsal aorta, postnatal bone marrow, and heart, but distinct from mesoangioblasts derived from skeletal muscle. We also demonstrate that ADM differentiate into myelinating glial cells. ADM localize to peripheral nerve bundles in regenerating muscles and exhibit morphology and marker expression of mature Schwann cells, and myelinate axons. In vitro, ADM spontaneously express markers of oligodendrocyte progenitors, including the chondroitin sulphate proteoglycan NG2, nestin, platelet-derived growth factor (PDGF) receptor α, the A2B5 antigen, thyroid hormone nuclear receptor α, and O4. Pharmacological inhibition of Rho kinase (ROCK) initiated process extension by ADM, and when combined with insulin-like growth factor 1, PDGF, and thyroid hormone, enhanced ADM expression of oligodendrocyte precursor markers and maturation into the oligodendrocyte lineage. ADM injected into the right lateral ventricle of the brain migrate to the corpus callosum, and cerebellar white matter, where they express components of myelin. Because ADM differentiate or mature into cell types of both mesodermal and ectodermal origin, they may be useful for treatment of a variety of degenerative diseases, or repair and regeneration of multiple cell types in severely damaged tissue.
Collapse
Affiliation(s)
- Lei Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The spontaneous recovery observed in the early stages of multiple sclerosis (MS) is substituted with a later progressive course and failure of endogenous processes of repair and remyelination. Although this is the basic rationale for cell therapy, it is not clear yet to what degree the MS brain is amenable for repair and whether cell therapy has an advantage in comparison to other strategies to enhance endogenous remyelination. Central to the promise of stem cell therapy is the therapeutic plasticity, by which neural precursors can replace damaged oligodendrocytes and myelin, and also effectively attenuate the autoimmune process in a local, nonsystemic manner to protect brain cells from further injury, as well as facilitate the intrinsic capacity of the brain for recovery. These fundamental immunomodulatory and neurotrophic properties are shared by stem cells of different sources. By using different routes of delivery, cells may target both affected white matter tracts and the perivascular niche where the trafficking of immune cells occur. It is unclear yet whether the therapeutic properties of transplanted cells are maintained with the duration of time. The application of neural stem cell therapy (derived from fetal brain or from human embryonic stem cells) will be realized once their purification, mass generation, and safety are guaranteed. However, previous clinical experience with bone marrow stromal (mesenchymal) stem cells and the relative easy expansion of autologous cells have opened the way to their experimental application in MS. An initial clinical trial has established the probable safety of their intravenous and intrathecal delivery. Short-term follow-up observed immunomodulatory effects and clinical benefit justifying further clinical trials.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel.
| |
Collapse
|
21
|
Abstract
OLs (oligodendrocytes) are the myelinating cells of the CNS (central nervous system), wrapping axons in conductive sheathes to ensure effective transmission of neural signals. The regulation of OL development, from precursor to mature myelinating cell, is controlled by a variety of inhibitory and inductive signalling factors. The dorsal spinal cord contains signals that inhibit OL development, possibly to prevent premature and ectopic precursor differentiation. The Wnt and BMP (bone morphogenic protein) signalling pathways have been identified as dorsal spinal cord signals with overlapping temporal activity, and both have similar inhibitory effects on OL differentiation. Both these pathways feature prominently in many developmental processes and demyelinating events after injury, and they are known to interact in complex inductive, inhibitive and synergistic manners in many developing systems. The interaction between BMP and Wnt signalling in OL development, however, has not been extensively explored. In the present study, we examine the relationship between the canonical Wnt and BMP pathways. We use pharmacological and genetic paradigms to show that both Wnt3a and BMP4 will inhibit OL differentiation in vitro. We also show that when the canonical BMP signalling pathway is blocked, neither Wnt3a nor BMP4 have inhibitory effects on OL differentiation. In contrast, abrogating the Wnt signalling pathway does not alter the actions of BMP4 treatment. Our results indicate that the BMP signalling pathway is necessary for the canonical Wnt signalling pathway to exert its effects on OL development, but not vice versa, suggesting that Wnt signals upstream of BMP.
Collapse
|
22
|
French HM, Reid M, Mamontov P, Simmons RA, Grinspan JB. Oxidative stress disrupts oligodendrocyte maturation. J Neurosci Res 2009; 87:3076-87. [PMID: 19479983 PMCID: PMC3138415 DOI: 10.1002/jnr.22139] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Periventricular white matter injury (PWMI) is the leading cause of chronic neurologic injury among survivors of preterm birth. The hallmark of PWMI is hypomyelination and a lack of mature, myelinating oligodendrocytes. Oligodendrocytes undergo a well-characterized lineage progression from neural stem cell to mature oligodendrocyte. Oligodendrocyte precursors have increased susceptibility to oxidative and free radical-mediated injury compared with mature oligodendrocytes as a result of lower levels of antioxidant enzymes and free radical scavengers. In this study, we show that oxidative stress disrupts oligodendrocyte differentiation by two mechanisms. First, oxidizing agents decrease the expression of key genes that promote oligodendrocyte differentiation from neural stem cells and increase the expression of genes known to inhibit differentiation. Second, global histone acetylation persists under conditions of oxidative stress, further contributing to the prevention of oligodendrocyte differentiation. Both of these mechanisms result in the arrest of oligodendrocyte differentiation without an increase in cell death.
Collapse
Affiliation(s)
| | - Mary Reid
- University of Pennsylvania, School of Medicine
| | | | - Rebecca A. Simmons
- Department of Pediatrics, Children's Hospital of Philadelphia
- Department of Neurology, Children's Hospital of Philadelphia
| | | |
Collapse
|
23
|
Annenkov A. The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis. Mol Neurobiol 2009; 40:195-215. [PMID: 19714501 DOI: 10.1007/s12035-009-8081-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 08/14/2009] [Indexed: 02/07/2023]
Abstract
The insulin-like growth factor receptor type 1 (IGF1R) signalling pathway is activated in the mammalian nervous system from early developmental stages. Its major effect on developing neural cells is to promote their growth and survival. This pathway can integrate its action with signalling pathways of growth and morphogenetic factors that induce cell fate specification and selective expansion of specified neural cell subsets. This suggests that during developmental and adult neurogenesis cellular responses to many signalling factors, including ligands of Notch, sonic hedgehog, fibroblast growth factor family members, ligands of the epidermal growth factor receptor, bone morphogenetic proteins and Wingless and Int-1, may be modified by co-activation of the IGF1R. Modulation of cell migration is another possible role that IGF1R activation may play in neurogenesis. Here, I briefly overview neurogenesis and discuss a role for IGF1R-mediated signalling in the developing and mature nervous system with emphasis on crosstalk between the signalling pathways of the IGF1R and other factors regulating neural cell development and migration. Studies on neural as well as on non-neural cells are highlighted because it may be interesting to test in neurogenic paradigms some of the models based on the information obtained in studies on non-neural cell types.
Collapse
Affiliation(s)
- Alexander Annenkov
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK.
| |
Collapse
|
24
|
Feigenson K, Reid M, See J, Crenshaw EB, Grinspan JB. Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 2009; 42:255-65. [PMID: 19619658 DOI: 10.1016/j.mcn.2009.07.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/24/2009] [Accepted: 07/09/2009] [Indexed: 01/06/2023] Open
Abstract
The development of oligodendrocytes, the myelinating cells of the central nervous system, is temporally and spatially controlled by local signaling factors acting as inducers or inhibitors. Dorsal spinal cord tissue has been shown to contain inhibitors of oligodendrogliogenesis, although their identity is not completely known. We have studied the actions of one family of dorsal signaling molecules, the Wnts, on oligodendrocyte development. Using tissue culture models, we have shown that canonical Wnt activity through beta-catenin activation inhibits oligodendrocyte maturation, independently of precursor proliferation, cell death, or diversion to an alternate cell fate. Mice in which Wnt/beta-catenin signaling was constitutively activated in cells of the oligodendrocyte lineage had equal numbers of oligodendrocyte precursors relative to control littermates, but delayed appearance of mature oligodendrocytes, myelin protein, and myelinated axons during development, although these differences largely disappeared by adulthood. These results indicate that activating the Wnt/beta-catenin pathway delays the development of myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Keith Feigenson
- Department of Research Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
25
|
Beta4 tubulin identifies a primitive cell source for oligodendrocytes in the mammalian brain. J Neurosci 2009; 29:7649-57. [PMID: 19535576 DOI: 10.1523/jneurosci.1027-09.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have identified a novel population of cells in the subventricular zone (SVZ) of the mammalian brain that expresses beta4 tubulin (betaT4) and has properties of primitive neuroectodermal cells. betaT4 cells are scattered throughout the SVZ of the lateral ventricles in adult human brain and are significantly increased in the SVZs bordering demyelinated white matter in multiple sclerosis brains. In human fetal brain, betaT4 cell densities peak during the latter stages of gliogenesis, which occurs in the SVZ of the lateral ventricles. betaT4 cells represent <2% of the cells present in neurospheres generated from postnatal rat brain but >95% of cells in neurospheres treated with the anti-mitotic agent Ara C. betaT4 cells produce oligodendrocytes, neurons, and astrocytes in vitro. We compared the myelinating potential of betaT4-positive cells with A2B5-positive oligodendrocyte progenitor cells after transplantation (25,000 cells) into postnatal day 3 (P3) myelin-deficient rat brains. At P20, the progeny of betaT4 cells myelinated up to 4 mm of the external capsule, which significantly exceeded that of transplanted A2B5-positive progenitor cells. Such extensive and rapid mature CNS cell generation by a relatively small number of transplanted cells provides in vivo support for the therapeutic potential of betaT4 cells. We propose that betaT4 cells are an endogenous cell source that can be recruited to promote neural repair in the adult telencephalon.
Collapse
|
26
|
Sypecka J, Sarnowska A, Domanska-Janik K. Crucial role of the local micro-environment in fate decision of neonatal rat NG2 progenitors. Cell Prolif 2009; 42:661-71. [PMID: 19614677 DOI: 10.1111/j.1365-2184.2009.00618.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The fate choice of neural progenitor cells could be dictated by local cellular environment of the adult CNS. The aim of our study was to investigate the effect of hippocampal tissue on differentiation and maturation of oligodendrocyte NG2 precursor cells. MATERIALS AND METHODS Hippocampal slice culture was established from the brains of 7-day-old rats. NG2 precursor cells, obtained from a 12-day-old mixed primary culture of neonatal rat cerebral hemispheres, were labelled with chloromethyl-fluorescein-diacetete and seeded on the hippocampal slices. After 7-14 days in co-culture, cells were stained with neural markers. RESULTS NG2 cells differentiated predominantly into oligodendrocytes, presenting various stages of maturation: progenitors (NG2), pre-oligodendrocytes (O4) and finally mature GalC-positive cells. However, except for a few cells with astrocyte-specific S100b staining, a considerable number of these cells differentiated into neurons: TUJ(+) and even MAP-2(+) cells were frequently observed. Moreover, a certain population of these cells preserved proliferative properties of primary precursor cells, as revealed by Ki67 expression. CONCLUSIONS The neuronal micro-environment provided by the culture of hippocampal slices is potent for induction of neurogenesis from oligodendrocyte NG2(+)/PDGFRalpha(+)/CNP(+) progenitor cells and promotes their differentiation not only into macroglia but also into neurons. It also sustains their proliferative capacity. The results indicate the crucial role of the local cellular environment in fate decision of primary NG2(+) multipotent neural progenitor cells, which may affect their behaviour after transplantation into the central nervous system.
Collapse
Affiliation(s)
- J Sypecka
- NeuroRepair Department, Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
27
|
|
28
|
Das Sarma J, Ciric B, Marek R, Sadhukhan S, Caruso ML, Shafagh J, Fitzgerald DC, Shindler KS, Rostami A. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J Neuroinflammation 2009; 6:14. [PMID: 19400960 PMCID: PMC2689857 DOI: 10.1186/1742-2094-6-14] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 04/28/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood. METHODS EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. RESULTS Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. CONCLUSION IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Platelet-derived growth factor promotes repair of chronically demyelinated white matter. J Neuropathol Exp Neurol 2007; 66:975-88. [PMID: 17984680 DOI: 10.1097/nen.0b013e3181587d46] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In multiple sclerosis, remyelination becomes limited after repeated or prolonged episodes of demyelination. To test the effect of platelet-derived growth factor-A (PDGF-A) in recovery from chronic demyelination we induced corpus callosum demyelination using cuprizone treatment in hPDGF-A transgenic (tg) mice with the human PDGF-A gene under control of an astrocyte-specific promoter. After chronic demyelination and removal of cuprizone from the diet, remyelination and oligodendrocyte density improved significantly in hPDGF-A tg mice compared with wild-type mice. In hPDGF-A tg mice, oligodendrocyte progenitor density and proliferation values were increased in the corpus callosum during acute demyelination but not during chronic demyelination or the subsequent recovery period, compared with hPDGF-A tg mice without cuprizone or to treatment-matched wild-type mice. Proliferation within the subventricular zone and subcallosal zone was elevated throughout cuprizone treatment but was not different between hPDGF-A tg and wild-type mice. Importantly, hPDGF-A tg mice had reduced apoptosis in the corpus callosum during the recovery period after chronic demyelination. Therefore, PDGF-A may support oligodendrocyte generation and survival to promote remyelination of chronic lesions. Furthermore, preventing oligodendrocyte apoptosis may be important not only during active demyelination but also for supporting the generation of new oligodendrocytes to remyelinate chronic lesions.
Collapse
|
30
|
Abstract
NG2 cells, or polydendrocytes, are defined as glial cells that express the NG2 proteoglycan and represent a fourth major glial cell population in the mammalian central nervous system. They are morphologically, antigenically, and functionally distinct from mature astrocytes, oligodendrocytes, and microglia. Although they are most often equated with oligodendrocyte progenitor cells, they exhibit some properties that are not commonly associated with those of progenitor cells that generate myelinating cells. This review discusses recent observations and unanswered issues related to their lineage and their role in remyelination, neural signaling, and axonal growth.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA.
| |
Collapse
|
31
|
See J, Mamontov P, Ahn K, Wine-Lee L, Crenshaw EB, Grinspan JB. BMP signaling mutant mice exhibit glial cell maturation defects. Mol Cell Neurosci 2007; 35:171-82. [PMID: 17391983 PMCID: PMC1950488 DOI: 10.1016/j.mcn.2007.02.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 01/16/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022] Open
Abstract
Bone morphogenetic proteins have been implicated in the development of oligodendrocytes and astrocytes, however, a role for endogenous BMP signaling in glial development has not been demonstrated in a genetic model. Using mice in which signaling via type I BMP receptors Bmpr1a and Bmpr1b have been inactivated in the neural tube, we demonstrate that BMP signaling contributes to the maturation of glial cells in vivo. At P0, mutant mice exhibited a 25-40% decrease in GFAP+ or S100beta+ astrocytes in the cervical spinal cord. The number of oligodendrocyte precursors and the timing of their emergence was unchanged in the mutant mice compared to the normals, however myelin protein expression and mature oligodendrocyte numbers were significantly reduced. These data indicate that BMP signaling promotes the generation of astrocytes and mature, myelinating oligodendrocytes in vivo but does not affect oligodendrocyte precursor development, thus suggesting tight regulation of BMP signaling to ensure proper gliogenesis.
Collapse
Affiliation(s)
- Jill See
- Department of Research Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
32
|
Huang Y, Grinspan JB, Abrams CK, Scherer SS. Pannexin1 is expressed by neurons and glia but does not form functional gap junctions. Glia 2007; 55:46-56. [PMID: 17009242 DOI: 10.1002/glia.20435] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pannexins are a newly described family of proteins that may form gap junctions. We made antisera against mouse pannexin1 (Panx1). HeLa cells expressing Panx1 have cell surface labeling, but not gap junction plaques, and do not transfer small fluorescent dyes or neurobiotin in a scrape-loading assay. Neuro2a cells expressing Panx1 are not electrophysiologically coupled. Intracellular Panx1-immunoreactivity, but not gap junction plaques, is seen in cultured oligodendrocytes, astrocytes, and hippocampal neurons. Thus, at least in these mammalian cells lines, Panx1 does not form morphological or functional gap junctions, and it remains to be demonstrated that Panx1 forms gap junction-forming protein in the CNS.
Collapse
Affiliation(s)
- Yan Huang
- Department of Neurology, The University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6077, USA.
| | | | | | | |
Collapse
|
33
|
Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 2006; 80:129-64. [PMID: 17029752 DOI: 10.1016/j.pneurobio.2006.08.003] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/04/2006] [Accepted: 08/21/2006] [Indexed: 12/14/2022]
Abstract
Polysialic acid (PSA) is a linear homopolymer of alpha2-8-N acetylneuraminic acid whose major carrier in vertebrates is the neural cell adhesion molecule (NCAM). PSA serves as a potent negative regulator of cell interactions via its unusual biophysical properties. PSA on NCAM is developmentally regulated thus playing a prominent role in different forms of neural plasticity spanning from embryonic to adult nervous system, including axonal growth, outgrowth and fasciculation, cell migration, synaptic plasticity, activity-induced plasticity, neuronal-glial plasticity, embryonic and adult neurogenesis. The cellular distribution, developmental changes and possible function(s) of PSA-NCAM in the central nervous system of mammals here are reviewed, along with recent findings and theories about the relationships between NCAM protein and PSA as well as the role of different polysialyltransferases. Particular attention is focused on postnatal/adult neurogenesis, an issue which has been deeply investigated in the last decade as an example of persisting structural plasticity with potential implications for brain repair strategies. Adult neurogenic sites, although harbouring all subsequent steps of cell differentiation, from stem cell division to cell replacement, do not faithfully recapitulate development. After birth, they undergo morphological and molecular modifications allowing structural plasticity to adapt to the non-permissive environment of the mature nervous tissue, that are paralled by changes in the expression of PSA-NCAM. The use of PSA-NCAM as a marker for exploring differences in structural plasticity and neurogenesis among mammalian species is also discussed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Morphophysiology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy.
| |
Collapse
|
34
|
Albrecht PJ, Enterline JC, Cromer J, Levison SW. CNTF-Activated Astrocytes Release a Soluble Trophic Activity for Oligodendrocyte Progenitors. Neurochem Res 2006; 32:263-71. [PMID: 17004130 DOI: 10.1007/s11064-006-9151-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
CNTF (ciliary neurotrophic factor) has been suggested to be an important survival factor for oligodendrocytes; however, this effect is inconsistently obtained and myelination appears normal in CNTF null animals. On the other hand, CNTF stimulates astrocytes to produce growth and trophic factors. Therefore, we tested the hypothesis that CNTF acts indirectly through astrocytes to promote oligodendrocyte survival. We show that CNTF-stimulated astrocytes release a trophic factor(s) that leads to more than double the number of oligodendrocyte progenitor cells (OPCs) by 48 h. The trophic activity fractionates at greater than 30 kD. By contrast, OPCs grown in CNTF supplemented chemically defined medium fared no better than cells grown without CNTF. Untreated astrocytes, and CNTF- and IL-1beta -stimulated astrocytes all promoted the proliferation of OPCs to a similar extent, but only the CNTF-stimulated astrocyte conditioned media (CM) resulted in increased OPCs numbers. Cumulatively, these results confirm previous data indicating that astrocytes release potent mitogens for oligodendroglia, and demonstrate that CNTF stimulates astrocytes to release an OPC survival-promoting activity.
Collapse
Affiliation(s)
- Phillip J Albrecht
- Center for Neuropharmacolgy and Neuroscience, Albany Medical Center, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
35
|
Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A. PDGFRα-Positive B Cells Are Neural Stem Cells in the Adult SVZ that Form Glioma-like Growths in Response to Increased PDGF Signaling. Neuron 2006; 51:187-99. [PMID: 16846854 DOI: 10.1016/j.neuron.2006.06.012] [Citation(s) in RCA: 352] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 04/19/2006] [Accepted: 06/09/2006] [Indexed: 02/09/2023]
Abstract
Neurons and oligodendrocytes are produced in the adult brain subventricular zone (SVZ) from neural stem cells (B cells), which express GFAP and have morphological properties of astrocytes. We report here on the identification B cells expressing the PDGFRalpha in the adult SVZ. Specifically labeled PDGFRalpha expressing B cells in vivo generate neurons and oligodendrocytes. Conditional ablation of PDGFRalpha in a subpopulation of postnatal stem cells showed that this receptor is required for oligodendrogenesis, but not neurogenesis. Infusion of PDGF alone was sufficient to arrest neuroblast production and induce SVZ B cell proliferation contributing to the generation of large hyperplasias with some features of gliomas. The work demonstrates that PDGFRalpha signaling occurs early in the adult stem cell lineage and may help regulate the balance between oligodendrocyte and neuron production. Excessive PDGF activation in the SVZ in stem cells is sufficient to induce hallmarks associated with early stages of tumor formation.
Collapse
Affiliation(s)
- Erica L Jackson
- Department of Neurological Surgery and Program in Developmental and Stem Cell Biology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mehler MF, Gokhan S. Postnatal cerebral cortical multipotent progenitors: regulatory mechanisms and potential role in the development of novel neural regenerative strategies. Brain Pathol 2006; 9:515-26. [PMID: 10416991 PMCID: PMC8098555 DOI: 10.1111/j.1750-3639.1999.tb00539.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In the developing postnatal cerebral cortex, protracted generation of glia and neurons occurs and precise matching of local cell types is needed for the functional organization of regional microdomains characteristic of complex CNS tissues. Recent studies have suggested that multipotent progenitors play an important role in neural lineage elaboration during neurogenesis and gliogenesis after migration from paramedian generative zones. The presence of a separate reservoir of cerebral cortical multipotent cells under strict local environmental regulation would provide an appropriate mechanism for terminal developmental sculpting and for reconstitution of regional cellular pools after injury. We have isolated distinct pools of EGF- and bFGF-responsive multipotent progenitors from the postnatal mammalian cerebral cortex independent of the subventricular zone. These progenitor populations are under tight environmental regulation by specific hierarchies of cytokine subclasses that program the progressive elaboration of intermediate lineage-restricted progenitors and differentiated type I and II astrocytes, myelinating oligodendrocytes and neuronal subtypes that express specific neuromodulatory proteins. Neural lineage development from these cortical multipotent progenitors is a graded developmental process involving sequential induction of specific cytokine receptors, acquisition of factor responsiveness and complex lineage interdependence. The cortical multipotent progenitor pathways program the elaboration of neural lineage species with distinct cellular response properties when compared with analogous species derived from subventricular zone progenitors, indicating that the cortical multipotent cells contribute to the establishment of lineage diversity within the developing cortical cortex. In addition, the cortical multipotent cells generate dynamic intermediate progenitor pools that utilize temporally-coded environmental cues to alter neural fate decisions. These cumulative observations suggest that postnatal cerebral cortical multipotent cells represent a novel set of progenitor pathways necessary for normal mammalian cortical maturation, and may have important implications for our understanding of a wide variety of neuropathological conditions and for the development of more effective regenerative strategies to combat these pervasive neurological disorders.
Collapse
Affiliation(s)
- M F Mehler
- Department of Neurology, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein Coll. of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
37
|
Einstein O, Ben-Menachem-Tzidon O, Mizrachi-Kol R, Reinhartz E, Grigoriadis N, Ben-Hur T. Survival of neural precursor cells in growth factor-poor environment: Implications for transplantation in chronic disease. Glia 2006; 53:449-55. [PMID: 16345032 DOI: 10.1002/glia.20305] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A key issue for therapeutic neural stem cell transplantation in chronic diseases is the long-term survival of transplanted cells in the brain. The normal adult central nervous system does not support the survival of transplanted cells. Presumably, the limited availability of trophic factors maintains the survival of resident cells but is insufficient for supporting the survival of transplanted cells. Specifically, in multiple sclerosis, a chronic relapsing disease, it would be necessary to maintain long-term survival of transplanted cells through phases of relapses and remissions. It may be beneficial to transplant cells as early as possible, in a form that will keep their survival independent of tissue support and ready for immediate mobilization upon tissue demand during disease relapse. In the present study, we examined whether, in the form of neurospheres, multipotential neural precursor cells (NPCs) survive in a growth factor-poor environment while maintaining their potential to respond to environmental cues. We found that after removal of growth factors from the culture medium of neurospheres in vitro, NPC proliferation decreased significantly, but most cells survived for a prolonged time and maintained their stem cell characteristics. After re-exposure to growth factors, neurosphere cells resumed proliferation and could differentiate along neural lineages. Furthermore, neurospheres, but not single NPCs, that were transplanted into the brain ventricles of intact animals survived within the ventricles for at least a month and responded to induction of experimental autoimmune encephalomyelitis and brain inflammation by extensive migration into the brain white matter and differentiated into glial lineage cells.
Collapse
Affiliation(s)
- Ofira Einstein
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Bernard F, Vanhoutte P, Bennasroune A, Labourdette G, Perraut M, Aunis D, Gaillard S. pH is an intracellular effector controlling differentiation of oligodendrocyte precursors in culture via activation of the ERK1/2 pathway. J Neurosci Res 2006; 84:1392-401. [PMID: 16983661 DOI: 10.1002/jnr.21051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We reported previously that onset of oligodendrocyte precursor cell (OPC) differentiation is accompanied by an increase in intracellular pH (pH(i)). We show that OPC differentiation is dependent primarily on a permissive pH(i) value. The highest differentiation levels were observed for pH(i) values around 7.15 and inhibition of differentiation was observed at slightly more acidic or alkaline values. Clamping the pH(i) of OPCs at 7.15 caused a transient activation of ERK1/2 that was not observed at more acidic or alkaline values. Furthermore, inhibition of ERK activation with the UO126 compound totally prevented OPC differentiation in response to pH(i) shift. These results indicate that pH(i), acting through the ERK1/2 pathway, is a key determinant for oligodendrocyte differentiation. We also show that this pH(i) pathway is involved in the process of retinoic acid-induced OPC differentiation.
Collapse
Affiliation(s)
- Frédéric Bernard
- Inserm U 575, Physiopathologie du Système Nerveux, IFR des Neurosciences, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Tseng HC, Ruegg SJ, Maronski M, Messam CA, Grinspan JB, Dichter MA. Injuring neurons induces neuronal differentiation in a population of hippocampal precursor cells in culture. Neurobiol Dis 2005; 22:88-97. [PMID: 16330214 DOI: 10.1016/j.nbd.2005.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 10/12/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022] Open
Abstract
A novel population of hippocampal precursor cells (HPCs) that can be induced to differentiate into astrocytes and oligodendrocytes can be derived from hippocampal cultures grown in serum-free media. The HPCs are PDGF-responsive, do not proliferate with bFGF, and grow as sheets of cells rather than gathering into neurospheres. The HPCs share many markers (A2B5, GD3, poly-sialylated neuronal common adhesion molecule (PSA-NCAM), and NG2) with oligodendrocyte precursor cells (OPCs). The HPCs do not express markers for mature neurons, astrocytes, or oligodendrocytes. Like OPCs, the HPCs differentiate into glial fibrillary acidic protein (GFAP)+ astrocytes and GalC+ oligodendrocytes with the addition of bone morphogenetic protein-4 (BMP-4) and triiodothyronine (T3), respectively. They do not differentiate into neurons with the addition or withdrawal of basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), or retinoic acid (RA). These HPCs can be stimulated to differentiate into neuron-like cells by the induction of neuronal injury or cell death in nearby cultured neurons or by conditioned medium from injured neuronal cultures. Under these conditions, HPCs grow larger, develop more extensive dendritic processes, become microtubule-associated protein-2-immunoreactive, express large voltage-dependent sodium currents, and form synaptic connections. The conversion of endogenous pluripotent precursor cells into neurons in response to local brain injury may be an important component of central nervous system homeostasis.
Collapse
Affiliation(s)
- Henry C Tseng
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ghoumari AM, Baulieu EE, Schumacher M. Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures. Neuroscience 2005; 135:47-58. [PMID: 16054770 DOI: 10.1016/j.neuroscience.2005.05.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/08/2005] [Accepted: 05/12/2005] [Indexed: 11/17/2022]
Abstract
We have previously demonstrated that progesterone significantly increases the rate of myelination in organotypic slice cultures of 7-day-old rat and mouse cerebellum. Here, we show that progesterone (20microM) stimulates the proliferation of oligodendrocyte precursors in cultured cerebellar slices of 7-day-old rats. The steroid increased the number of pre-oligodendrocytes (NG2(+), O4(+)) and to some extent of oligodendrocyte precursors, corresponding to an earlier developmental stage (nestin(+), PDGFalphaR(+), NG2(+), O4(-)). Progesterone stimulated the proliferation of both NG2(+) and O4(+) cells as shown by increased double-immunolabeling with the cell proliferation marker Ki67. The mitogenic effect of progesterone was inhibited by the progesterone receptor antagonist mifepristone (10microM) and could not be mimicked by its GABA-active metabolite 3alpha,5alpha-tetrahydroprogesterone (allopregnanolone), even at the high concentration of 50microM. Results indicate that progesterone first strongly and transiently stimulates the proliferation of oligodendrocyte precursors, and that it may thereafter accelerate their maturation into myelinating oligodendrocytes. Although oligodendrocyte precursors may be a direct target for the actions of progesterone, their number may also be indirectly influenced by the effects of the steroid on neurons and microglial cells, since treatment of the cerebellar slices with progesterone enhanced staining of the neuronal cytoskeleton marker microtubule-associated protein-2 and increased the number of OX-42(+) microglia. A small percentage (about 0.1%) of the NG2(+) cells transiently became OX-42(+) in response to progesterone. These results point to novel mechanisms by which progesterone may promote myelination in the CNS, specifically by stimulating the proliferation and maturation of oligodendrocyte precursors into myelinating oligodendrocytes.
Collapse
Affiliation(s)
- A M Ghoumari
- INSERM U488, Batiment Gregory Pincus, 80 rue du Général Leclerc, 94276 Bicêtre, France.
| | | | | |
Collapse
|
41
|
Gago N, El-Etr M, Sananès N, Cadepond F, Samuel D, Avellana-Adalid V, Baron-Van Evercooren A, Schumacher M. 3alpha,5alpha-Tetrahydroprogesterone (allopregnanolone) and gamma-aminobutyric acid: autocrine/paracrine interactions in the control of neonatal PSA-NCAM+ progenitor proliferation. J Neurosci Res 2005; 78:770-83. [PMID: 15523635 DOI: 10.1002/jnr.20348] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The earliest identified neonatal neural progenitors are cells that express the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). One of these progenitors is the early PSA-NCAM+ progenitor (ePSA-NCAM+ progenitor; Gago et al. [2003] Mol Cell Neurosci 22:162-178), which corresponds to a multipotential cell with a default differentiation through glial lineages. The ePSA-NCAM+ progenitor can synthesize the neurosteroid progesterone (PROG) and its reduced metabolite 3alpha,5alpha-tetrahydroprogesterone (3alpha,5alpha-THP, or allopregnanolone; Gago et al. [ 2001] Glia 36:295-308). The latter is a potent positive allosteric modulator of gamma-aminobutyric acid type A (GABAA) receptors. In the present work, we demonstrate that PROG and 3alpha,5alpha-THP both stimulate ePSA-NCAM+ progenitor proliferation. PROG exerted its mitogenic effect indirectly, through its conversion to 3alpha,5alpha-THP, since it could be abolished by an inhibitor of the 5alpha-reductase (L685-273) and mimicked by 3alpha,5alpha-THP. A dose-response curve revealed a bell-shaped effect of 3alpha,5alpha-THP on ePSA-NCAM+ progenitor proliferation, with greatest stimulation at nanomolar concentrations. The mitogenic effect of 3 alpha,5 alpha-THP was mediated by GABAA receptors, insofar as it could be blocked by the selective antagonist bicuculline. ePSA-NCAM+ progenitors indeed expressed mRNAs for GABAA receptor subunits, and GABA enhanced cell proliferation, an effect that was also bicuculline sensitive. Moreover, these cells synthesized GABA, which was involved in a tonic stimulation of their proliferation. These results reveal complex autocrine/paracrine loops in the control of ePSA-NCAM+ progenitor proliferation, involving both neurosteroid and GABA signaling, and suggest a novel key role for 3alpha,5alpha-THP in the development of the nervous system.
Collapse
|
42
|
GUO CHANGJIANG, DOUGLAS STEVEND, GAO ZHIYONG, WOLF BRYANA, GRINSPAN JUDITH, LAI JIANPING, RIEDEL ERIC, HO WENZHE. Interleukin-1beta upregulates functional expression of neurokinin-1 receptor (NK-1R) via NF-kappaB in astrocytes. Glia 2005; 48:259-66. [PMID: 15390113 PMCID: PMC4016813 DOI: 10.1002/glia.20079] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cytokines and neuropeptides are modulators of neuroimmunoregulation in the central nervous system (CNS). The interaction of these modulators may have important implications in CNS diseases. We investigated whether interleukin-1beta (IL-1beta) modulates the expression of neurokinin-1 receptor (NK-1R), the primary receptor for substance P (SP), a potent neuropeptide in the CNS. IL-1beta upregulated NK-1R expression in human astroglioma cells (U87 MG) and primary rat astrocytes at both mRNA and protein levels. IL-1beta treatment of U87 MG cells and primary rat astrocytes led to an increase in cytosolic Ca(2+) in response to SP stimulation, indicating that IL-1beta-induced NK-1R is functional. CP-96,345, a specific non-peptide NK-1R antagonist, inhibited SP-induced rise of [Ca(2+)](i) in the astroglioma cells. Investigation of the mechanism responsible for IL-1beta action revealed that IL-1beta has the ability of activating nuclear factor-kappab (NF-kappaB). Caffeic acid phenethyl ester (CAPE), a specific inhibitor of NF-kappaB activation, not only abrogated IL-1beta-induced NF-kappaB promoter activation, but also blocked IL-1beta-mediated induction of NK-1R gene expression. These findings provide additional evidence that there is a biological interaction between IL-1beta and the neuropeptide SP in the CNS, which may have important implications in the inflammatory diseases in the CNS.
Collapse
Affiliation(s)
- CHANG-JIANG GUO
- Division of Allergy and Immunology, Department of Pediatrics, Joseph Stokes Jr. Research Institute of Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - STEVEN D. DOUGLAS
- Division of Allergy and Immunology, Department of Pediatrics, Joseph Stokes Jr. Research Institute of Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - ZHIYONG GAO
- Departments of Pathology and Laboratory Medicine, Joseph Stokes Jr. Research Institute of Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - BRYAN A. WOLF
- Departments of Pathology and Laboratory Medicine, Joseph Stokes Jr. Research Institute of Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - JUDITH GRINSPAN
- Neurology and Neurology Research, Joseph Stokes Jr. Research Institute of Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - JIAN-PING LAI
- Division of Allergy and Immunology, Department of Pediatrics, Joseph Stokes Jr. Research Institute of Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - ERIC RIEDEL
- Division of Allergy and Immunology, Department of Pediatrics, Joseph Stokes Jr. Research Institute of Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - WEN-ZHE HO
- Division of Allergy and Immunology, Department of Pediatrics, Joseph Stokes Jr. Research Institute of Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Correspondence to: Wen-Zhe Ho, Division of Allergy-Immunology, Children’s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104.
| |
Collapse
|
43
|
Glaser T, Perez-Bouza A, Klein K, Brüstle O. Generation of purified oligodendrocyte progenitors from embryonic stem cells. FASEB J 2004; 19:112-4. [PMID: 15486057 DOI: 10.1096/fj.04-1931fje] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Demyelination is a key component in the pathogenesis of many neurological disorders. Transplantation of myelinating cells may offer a therapeutic approach to restore neurological function in these diseases. Recent findings suggest that pluripotent embryonic stem (ES) cells can serve as an unlimited donor source for neural transplantation. The clinical application of ES cells for myelin repair will depend critically on the ability to enrich oligodendroglial progenitors in high purity. Combining controlled differentiation in the presence of growth factors and genetic lineage selection, we devised a cell culture protocol yielding highly purified oligodendrocyte progenitors. Murine ES cell clones stably transfected with a construct encoding the beta-galactosidase-neomycine phosphotransferase fusion protein (beta(geo)) under control of the 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter were differentiated into bipotential glial precursors. Subsequent induction of a CNP-positive stage and selection in neomycine resulted in a homogenous cell population with a pre-oligodendrocyte phenotype. The selected cells continued to proliferate in the presence of FGF-2 and PDGF and, upon growth factor withdrawal, differentiated into mature galactocerebroside (GalC)-positive oligodendrocytes. Transplantation studies in myelin-deficient (md) rats indicate that ES cell-derived oligodendrocyte progenitors generated with this method may serve as an attractive donor source for myelin repair.
Collapse
Affiliation(s)
- Tamara Glaser
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Bonn, Germany
| | | | | | | |
Collapse
|
44
|
See J, Zhang X, Eraydin N, Mun SB, Mamontov P, Golden JA, Grinspan JB. Oligodendrocyte maturation is inhibited by bone morphogenetic protein. Mol Cell Neurosci 2004; 26:481-92. [PMID: 15276151 DOI: 10.1016/j.mcn.2004.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 04/07/2004] [Accepted: 04/12/2004] [Indexed: 11/28/2022] Open
Abstract
Mature oligodendrocytes myelinate axons in the CNS. The development of the myelin sheath is dependent on the proper maturation of oligodendrocytes from precursors cells, a spatially restricted process that is regulated by inductive and repressive cues. Several members of the bone morphogenetic protein family (BMP2 and 4) have been implicated as repressors of oligodendrocyte development in vitro by shifting oligodendrocyte precursors into the astrocyte lineage. We now report on a second role of BMPs in oligodendrocyte development, regulation of myelin protein expression in immature oligodendrocytes. Purified immature rodent oligodendrocytes treated with BMP4 maintained galactocerebroside (GalC) expression, whereas the expression of three key myelin proteins, proteolipid protein (PLP), myelin basic protein (MBP), and 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP), was severely decreased. Paradoxically, BMP-treated oligodendrocytes show increased process extension and complexity, normally a feature of oligodendrocyte maturation. We also investigated whether BMP4 could inhibit myelin protein expression in an E 12.5 mouse explant culture of cervical spinal cord and hindbrain that maintains the in vivo cellular relationships and architecture. Beads soaked in BMP protein implanted into these explants inhibited the expression of myelin proteins, proteolipid protein, and myelin-associated glycoprotein (MAG), in the local area surrounding the bead. Since these explants also contained precursors cells, expression of galactocerebroside and O4, an oligodendrocyte marker, were also decreased by BMP treatment but to a much lesser degree than the myelin markers. Together, these data indicate that BMPs have multiple roles in oligodendrocyte development. At earlier stages, they affect cell lineage decisions and at later stages, they inhibit cell specialization.
Collapse
Affiliation(s)
- Jill See
- Department of Research Neurology, Children's Hospital of Philadelphia, 516D Abramson Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Romanko MJ, Rothstein RP, Levison SW. Neural stem cells in the subventricular zone are resilient to hypoxia/ischemia whereas progenitors are vulnerable. J Cereb Blood Flow Metab 2004; 24:814-25. [PMID: 15241190 DOI: 10.1097/01.wcb.0000123906.17746.00] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Perinatal hypoxic-ischemic (H/I) brain injury remains a major cause of neurologic disability. Because we have previously demonstrated that this insult depletes cells from the subventricular zone (SVZ), the goal of the present investigation was to compare the relative vulnerability to H/I of neural stem cells versus progenitors. The dorsolateral SVZs of P6 rats were examined at 2 to 48 hours of recovery from H/I using hematoxylin and eosin, in situ end labeling (ISEL), terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL), electron microscopy, and immunofluorescence. Pyknotic nuclei and ISEL cells were observed by 4 hours of recovery, peaked at 12 hours, and persisted for at least 48 hours. Many active-caspase-3 cells were observed at 12 hours and they comprised one third of the total TUNEL population. Electron microscopy revealed that hybrid cell deaths predominated at 12 hours of recovery. Importantly, few dying cells were observed in the medial SVZ, where putative stem cells reside, and no nestin medial SVZ cells showed caspase-3 activation. By contrast, active-caspase-3/PSA-NCAM progenitors were prominent in the lateral SVZ. These data demonstrate that early progenitors are vulnerable to H/I, whereas neural stem cells are resilient. The demise of these early progenitors may lead to the depletion of neuronal and late oligodendrocyte progenitors, contributing to cerebral dysgenesis after perinatal insults.
Collapse
Affiliation(s)
- Michael J Romanko
- Department of Neural and Behavioral Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
46
|
Diemel LT, Jackson SJ, Cuzner ML. Role for TGF-beta1, FGF-2 and PDGF-AA in a myelination of CNS aggregate cultures enriched with macrophages. J Neurosci Res 2004; 74:858-67. [PMID: 14648590 DOI: 10.1002/jnr.10837] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The increase in myelin basic protein (MBP) synthesis observed in brain aggregate cultures supplemented with macrophages is reflected in elevated supernatant protein levels of the key promoters of oligodendrocyte proliferation, fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-AA (PDGF-AA), during the premyelinating phase. Although supernatant levels of transforming growth factor-beta1 (TGF-beta1), the most abundant growth factor produced at the transcriptional and translational levels by phagocytic macrophages, were reduced at this stage, it was the only growth factor for which mRNA expression was increased significantly in macrophage-enriched cultures. TGF-beta1, which supports oligodendrocyte differentiation, was increased in the supernatant of macrophage-enriched cultures only after the onset of myelinogenesis. Hence, standard cultures treated with TGF-beta1 during the premyelinating period reproduced effects of macrophage supplementation, inducing an increase in MBP synthesis and in PDGF-AA and FGF-2 bioavailability. A similar increase in MBP synthesis in PDGF-AA treated cultures emphasises its central role in oligodendrocyte progenitor proliferation. In contrast, FGF-2 blocked MBP synthesis in the cultures. In cultures treated with anti-TGF-beta1 antibody before or after the first detection of MBP, supernatant levels of TGF-beta1, FGF-2, and PDGF-AA were reduced with resultant inhibition of myelination. Paradoxically, supraphysiological TGF-beta1 treatment after the onset of myelination had the same effect on myelin accumulation. These results indicate an enabling and regulatory role for TGF-beta1 in oligodendrocyte development and, as a source of TGF-beta1, macrophages in the inflammatory multiple sclerosis lesion, may have the potential to promote remyelination by modulating the growth factor repertoire in demyelinating disease.
Collapse
Affiliation(s)
- Lara T Diemel
- Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom.
| | | | | |
Collapse
|
47
|
Autocrine/paracrine activation of the GABA(A) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum. J Neurosci 2003. [PMID: 12716935 DOI: 10.1523/jneurosci.23-08-03278.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA and its type A receptor (GABA(A)R) are present in the immature CNS and may function as growth-regulatory signals during the development of embryonic neural precursor cells. In the present study, on the basis of their isopycnic properties in a buoyant density gradient, we developed an isolation procedure that allowed us to purify proliferative neural precursor cells from early postnatal rat striatum, which expressed the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). These postnatal striatal PSA-NCAM+ cells were shown to proliferate in the presence of epidermal growth factor (EGF) and formed spheres that preferentially generated neurons in vitro. We demonstrated that PSA-NCAM+ neuronal precursors from postnatal striatum expressed GABA(A)R subunits in vitro and in situ. GABA elicited chloride currents in PSA-NCAM+ cells by activation of functional GABA(A)R that displayed a typical pharmacological profile. GABA(A)R activation in PSA-NCAM+ cells triggered a complex intracellular signaling combining a tonic inhibition of the mitogen-activated protein kinase cascade and an increase of intracellular calcium concentration by opening of voltage-gated calcium channels. We observed that the activation of GABA(A)R in PSA-NCAM+ neuronal precursors from postnatal striatum inhibited cell cycle progression both in neurospheres and in organotypic slices. Furthermore, postnatal PSA-NCAM+ striatal cells synthesized and released GABA, thus creating an autocrine/paracrine mechanism that controls their proliferation. We showed that EGF modulated this autocrine/paracrine loop by decreasing GABA production in PSA-NCAM+ cells. This demonstration of GABA synthesis and GABA(A)R function in striatal PSA-NCAM+ cells may shed new light on the understanding of key extrinsic cues that regulate the developmental potential of postnatal neuronal precursors in the CNS.
Collapse
|
48
|
Gago N, Avellana-Adalid V, Baron-Van Evercooren A, Schumacher M. Control of cell survival and proliferation of postnatal PSA-NCAM(+) progenitors. Mol Cell Neurosci 2003; 22:162-78. [PMID: 12676527 DOI: 10.1016/s1044-7431(02)00030-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In the present work, we studied the effects of several growth factors on survival and proliferation of freshly isolated neural progenitors expressing the polysialylated form of neural cell adhesion molecule (PSA-NCAM). Cells were obtained from postnatal day 2 rat forebrain, using isolation method. We found that (1) insulin-like growth factor 1 (IGF-1) exerts a powerful survival effect by inhibiting apoptotic cell death, (2) epidermal growth factor (EGF) strongly increases cell proliferation, (3) the combination of IGF-1 plus EGF promotes cellular expansion, (4) basic fibroblast growth factor displays only a weak mitogenic effect, and (5) platelet-derived growth factor-AA (PDGF-AA) has no effect on cell survival and proliferation. These results suggest that the postnatal PSA-NCAM(+) progenitors characterized in the present work may represent a transitional stage, between the embryonic EGF-responsive neural progenitors and the postnatal PSA-NCAM(+) progenitors already described that are PDGF-responsive. For these "early PSA-NCAM(+) progenitors," insulin-like growth factor 1 and EGF seem to play a pivotal role in the control of cell death and cell proliferation.
Collapse
Affiliation(s)
- Nathalie Gago
- INSERM U 488, 80, rue du Général Leclerc, 94276, Bicêtre, France.
| | | | | | | |
Collapse
|
49
|
Brazel CY, Romanko MJ, Rothstein RP, Levison SW. Roles of the mammalian subventricular zone in brain development. Prog Neurobiol 2003; 69:49-69. [PMID: 12637172 DOI: 10.1016/s0301-0082(03)00002-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There has been enormous progress in uncovering the contributions of the subventricular zone (SVZ) to the developing brain. Here, we review the roles of four anatomically defined embryologic divisions of the SVZ of the mammalian brain: the lateral ganglionic eminence (LGE), the medial ganglionic eminence (MGE), the caudal ganglionic eminence (CGE), and the fetal neocortical SVZ (SVZn), as well as the roles of the two major anatomically defined regions of the postnatal SVZ, the anterior SVZ (SVZa) and the dorsolateral SVZ (SVZdl). We describe the types of cells within each subdivision of the SVZ, the types of brain cells that they generate during embryonic, fetal, and perinatal development, and when known the mechanisms that regulate their differentiation. This review provides a critical analysis of the literature, from which current and future studies on the SVZ can be formulated and evaluated.
Collapse
Affiliation(s)
- Christine Y Brazel
- Department of Neuroscience and Anatomy, H109 Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
50
|
Goings GE, Wibisono BL, Szele FG. Cerebral cortex lesions decrease the number of bromodeoxyuridine-positive subventricular zone cells in mice. Neurosci Lett 2002; 329:161-4. [PMID: 12165402 DOI: 10.1016/s0304-3940(02)00611-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously showed that cortical lesions in rats increase the number of subventricular zone (SVZ) cells. Here, we examined the response of the SVZ to cortical lesions in mice from 6 h to 35 days later. Whereas the total number of cells did not change, the number of cells in S-phase (bromodeoxyuridine-positive) decreased in a biphasic manner (from 6 h to day 3, and again at days 25-35). In addition, there was a delayed (days 25-35) increase in immunoreactivity for polysialylated neural cell adhesion molecule, a marker of neuroblasts. The results suggest that in mice there are rapid as well as delayed responses in the SVZ to injury of the overlying cerebral cortex. They also show that the SVZ of different mammalian species can exhibit widely divergent responses to the same brain injury.
Collapse
Affiliation(s)
- Gwendolyn E Goings
- CMIER Neurobiology Program, Children's Memorial Hospital, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 2430 N. Halsted, No. 209, Chicago, IL 60614-3394, USA
| | | | | |
Collapse
|