1
|
Jang JY, Kim D, Im E, Kim ND. Therapeutic Potential of Pomegranate Extract for Women's Reproductive Health and Breast Cancer. Life (Basel) 2024; 14:1264. [PMID: 39459564 PMCID: PMC11509572 DOI: 10.3390/life14101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pomegranate extract has potential benefits for women's reproductive health, including fertility enhancement, menstrual cycle regulation, pregnancy support, and polycystic ovary syndrome (PCOS) treatment. It possesses antioxidant properties, reducing oxidative stress and improving fertility. Pomegranate extract may help regulate hormonal imbalances and promote regular menstrual cycles. The extract's rich nutrient profile supports placental development and fetal growth and may reduce the risk of preterm birth. Additionally, pomegranate extract shows promise in improving insulin sensitivity and reducing inflammation and oxidative damage in PCOS. Some studies suggest its potential anticancer properties, particularly against breast cancer. However, further research, including human clinical trials, is necessary to establish its effectiveness and safety. The current evidence is limited and primarily based on in vitro studies, animal studies, and clinical trials. This review provides a comprehensive summary of the benefits of pomegranate extract for women's reproductive health and breast cancer, serving as a reference for future research.
Collapse
Affiliation(s)
- Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Donghwan Kim
- Functional Food Materials Research Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea;
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
2
|
Li C, Zhang J, Pan P, Zhang J, Hou X, Wang Y, Chen G, Muhammad P, Reis RL, Ding L, Wang Y. Humanistic Health Management and Cancer: Associations of Psychology, Nutrition, and Exercise with Cancer Progression and Pathogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400665. [PMID: 38526194 PMCID: PMC11165509 DOI: 10.1002/advs.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The incidence rate of cancer is increasing year by year due to the aging of the population, unhealthy living, and eating habits. At present, surgery and medication are still the main treatments for cancer, without paying attention to the impact of individual differences in health management on cancer. However, increasing evidence suggests that individual psychological status, dietary habits, and exercise frequency are closely related to the risk and prognosis of cancer. The reminder to humanity is that the medical concept of the unified treatment plan is insufficient in cancer treatment, and a personalized treatment plan may become a breakthrough point. On this basis, the concept of "Humanistic Health Management" (HHM) is proposed. This concept is a healthcare plan that focuses on self-health management, providing an accurate and comprehensive evaluation of individual lifestyle habits, psychology, and health status, and developing personalized and targeted comprehensive cancer prevention and treatment plans. This review will provide a detailed explanation of the relationship between psychological status, dietary, and exercise habits, and the regulatory mechanisms of cancer. Intended to emphasize the importance of HHM concept in cancer prevention and better prognostic efficacy, providing new ideas for the new generation of cancer treatment.
Collapse
Affiliation(s)
- Chenchen Li
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Pengcheng Pan
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junjie Zhang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Xinyi Hou
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Yan Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Guoping Chen
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Pir Muhammad
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Rui L. Reis
- 3B's Research GroupI3Bs‐Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoGuimarães4805‐017Portugal
| | - Lin Ding
- Translational Medicine Collaborative Innovation CenterShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University)ShenzhenGuangdong518055P. R. China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell TherapyShenzhen Key Laboratory of Stem Cell Research and Clinical TransformationShenzhen Immune Cell Therapy Public Service PlatformShenzhen518020P. R. China
| | - Yanli Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
3
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
4
|
Tian M, Bai Y, Tian H, Zhao X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils-A Review. Molecules 2023; 28:6393. [PMID: 37687222 PMCID: PMC10489903 DOI: 10.3390/molecules28176393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
With population and economic development increasing worldwide, the public is increasingly concerned with the health benefits and nutritional properties of vegetable oils (VOs). In this review, the chemical composition and health-promoting benefits of 39 kinds of VOs were selected and summarized using Web of Science TM as the main bibliographic databases. The characteristic chemical compositions were analyzed from fatty acid composition, tocols, phytosterols, squalene, carotenoids, phenolics, and phospholipids. Health benefits including antioxidant activity, prevention of cardiovascular disease (CVD), anti-inflammatory, anti-obesity, anti-cancer, diabetes treatment, and kidney and liver protection were examined according to the key components in representative VOs. Every type of vegetable oil has shown its own unique chemical composition with significant variation in each key component and thereby illustrated their own specific advantages and health effects. Therefore, different types of VOs can be selected to meet individual needs accordingly. For example, to prevent CVD, more unsaturated fatty acids and phytosterols should be supplied by consuming pomegranate seed oil, flaxseed oil, or rice bran oil, while coconut oil or perilla seed oil have higher contents of total phenolics and might be better choices for diabetics. Several oils such as olive oil, corn oil, cress oil, and rice bran oil were recommended for their abundant nutritional ingredients, but the intake of only one type of vegetable oil might have drawbacks. This review increases the comprehensive understanding of the correlation between health effects and the characteristic composition of VOs, and provides future trends towards their utilization for the general public's nutrition, balanced diet, and as a reference for disease prevention. Nevertheless, some VOs are in the early stages of research and lack enough reliable data and long-term or large consumption information of the effect on the human body, therefore further investigations will be needed for their health benefits.
Collapse
Affiliation(s)
- Mingke Tian
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Yuchen Bai
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Hongyu Tian
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China;
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Minutolo A, Gismondi A, Chirico R, Di Marco G, Petrone V, Fanelli M, D’Agostino A, Canini A, Grelli S, Albanese L, Centritto M, Zabini F, Matteucci C, Meneguzzo F. Antioxidant Phytocomplexes Extracted from Pomegranate ( Punica granatum L.) Using Hydrodynamic Cavitation Show Potential Anticancer Activity In Vitro. Antioxidants (Basel) 2023; 12:1560. [PMID: 37627555 PMCID: PMC10451776 DOI: 10.3390/antiox12081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrodynamic cavitation (HC), as an effective, efficient, and scalable extraction technique for natural products, could enable the affordable production of valuable antioxidant extracts from plant resources. For the first time, whole pomegranate (Punica granatum L.) fruits, rich in bioactive phytochemicals endowed with anti-cancer properties, were extracted in water using HC. Aqueous fractions sequentially collected during the process (M1-M5) were lyophilized (L), filtered (A), or used as such, i.e., crude (C), and analyzed for their biochemical profile and in vitro antioxidant power. The fractions M3 and M4 from the L and C series showed the highest antiradical activity and phytochemical content. While the lyophilized form is preferable for application purposes, sample L-M3, which was produced faster and with lower energy consumption than M4, was used to assess the potential antiproliferative effect on human breast cancer line (AU565-PAR) and peripheral blood mononuclear (PBMC) cells from healthy donors. In a pilot study, cell growth, death, and redox state were assessed, showing that L-M3 significantly reduced tumor cell proliferation and intracellular oxygen reactive species. No effect on PBMCs was detected. Thus, the antioxidant phytocomplex extracted from pomegranate quickly (15 min), at room temperature (30 °C), and efficiently showed potential anticancer activity without harming healthy cells.
Collapse
Affiliation(s)
- Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (R.C.); (V.P.); (M.F.); (S.G.); (C.M.)
| | - Angelo Gismondi
- Department of Biology, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (A.G.); (G.D.M.); (A.D.); (A.C.)
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (R.C.); (V.P.); (M.F.); (S.G.); (C.M.)
| | - Gabriele Di Marco
- Department of Biology, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (A.G.); (G.D.M.); (A.D.); (A.C.)
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (R.C.); (V.P.); (M.F.); (S.G.); (C.M.)
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (R.C.); (V.P.); (M.F.); (S.G.); (C.M.)
| | - Alessia D’Agostino
- Department of Biology, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (A.G.); (G.D.M.); (A.D.); (A.C.)
| | - Antonella Canini
- Department of Biology, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (A.G.); (G.D.M.); (A.D.); (A.C.)
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (R.C.); (V.P.); (M.F.); (S.G.); (C.M.)
- Virology Unit, Policlinic of Tor Vergata, 00133 Rome, Italy
| | - Lorenzo Albanese
- Institute of Bioeconomy, National Research Council of Italy, Via Madonna del Piano 10, 50019 Florence, Italy; (L.A.); (F.Z.)
| | - Mauro Centritto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, 50019 Florence, Italy;
| | - Federica Zabini
- Institute of Bioeconomy, National Research Council of Italy, Via Madonna del Piano 10, 50019 Florence, Italy; (L.A.); (F.Z.)
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (R.C.); (V.P.); (M.F.); (S.G.); (C.M.)
| | - Francesco Meneguzzo
- Institute of Bioeconomy, National Research Council of Italy, Via Madonna del Piano 10, 50019 Florence, Italy; (L.A.); (F.Z.)
| |
Collapse
|
6
|
Garg P, Garg R, Horne D, Awasthi S, Salgia R, Singhal SS. Prognostic significance of natural products against multidrug tumor resistance. Cancer Lett 2023; 557:216079. [PMID: 36736532 DOI: 10.1016/j.canlet.2023.216079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Cancer is a pervasive, constantly evolving, and significant public health concern. The number of new cancer cases has risen dramatically in the last decades, making it one of the top causes of poor health and mortality worldwide. Although various treatment strategies, including surgery, radiation, and pharmaceutical therapies, have evolved into more sophisticated, precise methods, there is not much improvement in the cancer-related death toll. Consequently, natural product-based therapeutic discoveries have recently been considered an alternative approach. According to an estimate, one-third of the top twenty medications in today's market have a natural plant-product-based origin. Accordingly, primary prevention is an essential component of worldwide cancer control. This review provides an overview of the mechanisms of action of bioactive ingredients in natural dietary products that may contribute to the prevention and management of multiple malignancies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital, George Town, Grand Cayman, KY1-1104, Cayman Islands
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
Pantiora PD, Balaouras AI, Mina IK, Freris CI, Pappas AC, Danezis GP, Zoidis E, Georgiou CA. The Therapeutic Alliance between Pomegranate and Health Emphasizing on Anticancer Properties. Antioxidants (Basel) 2023; 12:187. [PMID: 36671048 PMCID: PMC9855163 DOI: 10.3390/antiox12010187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Pomegranate is a fruit bearing-plant that is well known for its medicinal properties. Pomegranate is a good source of phenolic acids, tannins, and flavonoids. Pomegranate juice and by-products have attracted the scientific interest due to their potential health benefits. Currently, the medical community has showed great interest in exploiting pomegranate potential as a protective agent against several human diseases including cancer. This is demonstrated by the fact that there are more than 800 reports in the literature reporting pomegranate's anticancer properties. This review is an update on the research outcomes of pomegranate's potential against different types of human diseases, emphasizing on cancer. In addition, perspectives of potential applications of pomegranate, as a natural additive aiming to improve the quality of animal products, are discussed.
Collapse
Affiliation(s)
- Panagiota D. Pantiora
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | | | - Ioanna K. Mina
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Christoforos I. Freris
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios P. Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
8
|
Goncharov NV, Kovalskaia VA, Romanishin AO, Shved NA, Belousov AS, Tiasto VS, Gulaia VS, Neergheen VS, Rummun N, Liskovykh M, Larionov V, Kouprina N, Kumeiko VV. Novel assay to measure chromosome instability identifies Punica granatum extract that elevates CIN and has a potential for tumor- suppressing therapies. Front Bioeng Biotechnol 2022; 10:989932. [PMID: 36601386 PMCID: PMC9806258 DOI: 10.3389/fbioe.2022.989932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Human artificial chromosomes (HACs) have provided a useful tool to study kinetochore structure and function, gene delivery, and gene expression. The HAC propagates and segregates properly in the cells. Recently, we have developed an experimental high-throughput imaging (HTI) HAC-based assay that allows the identification of genes whose depletion leads to chromosome instability (CIN). The HAC carries a GFP transgene that facilitates quantitative measurement of CIN. The loss of HAC/GFP may be measured by flow cytometry or fluorescence scanning microscope. Therefore, CIN rate can be measured by counting the proportion of fluorescent cells. Here, the HAC/GFP-based assay has been adapted to screen anticancer compounds for possible induction or elevation of CIN. We analyzed 24 cytotoxic plant extracts. Punica granatum leaf extract (PLE) indeed sharply increases CIN rate in HT1080 fibrosarcoma cells. PLE treatment leads to cell cycle arrest, reduction of mitotic index, and the increased numbers of micronuclei (MNi) and nucleoplasmic bridges (NPBs). PLE-mediated increased CIN correlates with the induction of double-stranded breaks (DSBs). We infer that the PLE extract contains a component(s) that elevate CIN, making it a candidate for further study as a potential cancer treatment. The data also provide a proof of principle for the utility of the HAC/GFP-based system in screening for natural products and other compounds that elevate CIN in cancer cells.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | | | - Nikita A. Shved
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena S. Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia S. Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vidushi S. Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
| | - Nawraj Rummun
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Vadim V. Kumeiko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
9
|
Lakhani M, Azim S, Akhtar S, Ahmad Z. Inhibition of Escherichia coli ATP synthase and cell growth by dietary pomegranate phenolics. Int J Biol Macromol 2022; 213:195-209. [PMID: 35597381 DOI: 10.1016/j.ijbiomac.2022.05.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022]
Abstract
Historically, people have been using pomegranate to alleviate many disease conditions. Pomegranate is known for its antiinflammatory, antioxidant, neuroprotective, anticancer, and antibacterial properties. In the current study, we examined effects of 8 dietary phenolics present in pomegranate (DPPs)-cyanidin-3-glucoside, cyanin chloride, delphinidin-3-glucoside, delphinidin-3,5-diglucoside, pelargonidin-3-glucoside, pelargonin chloride, punicalagin, and punicalin-on Escherichia coli ATP synthase and cell growth. DPPs caused complete or near complete (89%-100%) inhibition of wild-type E. coli ATP synthase and partial (5%-64%) inhibition of mutant enzymes αR283D, αE284R, βV265Q, and γT273A. Growth inhibition of wild-type, null, and mutant strains in the presence of DPPs were lower than that of isolated wild-type and mutant ATP synthase. On a molar scale, cyanin chloride was the most potent, and pelargonidin-3-glucoside was the least effective inhibitor of wild-type ATP synthase. Partial inhibition of mutant enzymes confirmed that αR283D, αE284R, βV265Q, and γT273A are essential in the formation of the phytochemical binding site. Our results establish that DPPs are potent inhibitors of wild-type E. coli ATP synthase and that the antimicrobial nature of DPPs can be associated with the binding and inhibition of microbial ATP synthase. Additionally, selective inhibition of microbial ATP synthase by DPPs is a useful method to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Muhaib Lakhani
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Samiya Azim
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
| | - Suhail Akhtar
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA.
| |
Collapse
|
10
|
Khan H, Labanca F, Ullah H, Hussain Y, Tzvetkov NT, Akkol EK, Milella L. Advances and challenges in cancer treatment and nutraceutical prevention: the possible role of dietary phenols in BRCA regulation. PHYTOCHEMISTRY REVIEWS 2022; 21:385-400. [DOI: 10.1007/s11101-021-09771-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
AbstractOver the years, the attention towards the role of phytochemicals in dietary natural products in reducing the risk of developing cancer is rising. Cancer is the second primary cause of mortality worldwide. The current therapeutic options for cancer treatment are surgical excision, immunotherapy, chemotherapy, and radiotherapy. Unfortunately, in case of metastases or chemoresistance, the treatment options become very limited. Despite the advances in medical and pharmaceutical sciences, the impact of available treatments on survival is not satisfactory. Recently, natural products are a great deal of interest as potential anti-cancer agents. Among them, phenolic compounds have gained a great deal of interest, thanks to their anti-cancer activity. The present review focuses on the suppression of cancer by targeting BRCA gene expression using dietary polyphenols, as well as the clinical aspects of polyphenolic agents in cancer therapy. They regulate specific key processes involved in cancer progression and modulate the expression of oncogenic proteins, like p27, p21, and p53, which may lead to apoptosis, cell cycle arrest, inhibition of cell proliferation, and, consequently, cancer suppression. Thus, one of the mechanisms underlying the anti-cancer activity of phenolics involves the regulation of tumor suppressor genes. Among them, the BRCA genes, with the two forms (BRCA-1 and BRCA-2), play a pivotal role in cancer protection and prevention. BRCA germline mutations are associated with an increased risk of developing several types of cancers, including ovarian, breast, and prostate cancers. BRCA genes also play a key role in the sensitivity and response of cancer cells to specific pharmacological treatments. As the importance of BRCA-1 and BRCA-2 in reducing cancer invasiveness, repairing DNA damages, oncosoppression, and cell cycle checkpoint, their regulation by natural molecules has been examined.
Collapse
|
11
|
Interactions between miRNAs and Double-Strand Breaks DNA Repair Genes, Pursuing a Fine-Tuning of Repair. Int J Mol Sci 2022; 23:ijms23063231. [PMID: 35328651 PMCID: PMC8954595 DOI: 10.3390/ijms23063231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The repair of DNA damage is a crucial process for the correct maintenance of genetic information, thus, allowing the proper functioning of cells. Among the different types of lesions occurring in DNA, double-strand breaks (DSBs) are considered the most harmful type of lesion, which can result in significant loss of genetic information, leading to diseases, such as cancer. DSB repair occurs through two main mechanisms, called non-homologous end joining (NHEJ) and homologous recombination repair (HRR). There is evidence showing that miRNAs play an important role in the regulation of genes acting in NHEJ and HRR mechanisms, either through direct complementary binding to mRNA targets, thus, repressing translation, or by targeting other genes involved in the transcription and activity of DSB repair genes. Therefore, alteration of miRNA expression has an impact on the ability of cells to repair DSBs, which, in turn, affects cancer therapy sensitivity. This latter gives account of the importance of miRNAs as regulators of NHEJ and HRR and places them as a promising target to improve cancer therapy. Here, we review recent reports demonstrating an association between miRNAs and genes involved in NHEJ and HRR. We employed the Web of Science search query TS (“gene official symbol/gene aliases*” AND “miRNA/microRNA/miR-”) and focused on articles published in the last decade, between 2010 and 2021. We also performed a data analysis to represent miRNA–mRNA validated interactions from TarBase v.8, in order to offer an updated overview about the role of miRNAs as regulators of DSB repair.
Collapse
|
12
|
Li W, Swiderski K, Murphy KT, Lynch GS. Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia. Antioxidants (Basel) 2022; 11:183. [PMID: 35204066 PMCID: PMC8868096 DOI: 10.3390/antiox11020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cachexia is the progressive muscle wasting and weakness experienced by many cancer patients. It can compromise the response to gold standard cancer therapies, impair functional capacity and reduce overall quality of life. Cancer cachexia accounts for nearly one-third of all cancer-related deaths and has no effective treatment. The pathogenesis of cancer cachexia and its progression is multifactorial and includes increased oxidative stress derived from both the tumor and the host immune response. Antioxidants have therapeutic potential to attenuate cancer-related muscle loss, with polyphenols, a group of plant-derived antioxidants, being the most widely investigated. This review describes the potential of these plant-derived antioxidants for treating cancer cachexia.
Collapse
Affiliation(s)
| | | | | | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (W.L.); (K.S.); (K.T.M.)
| |
Collapse
|
13
|
Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, Subramaniyan V, Kokare C, Lum PT, Begum MY, Mani S, Meenakshi DU, Sathasivam KV, Fuloria NK. Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:7891-7941. [PMID: 34880614 PMCID: PMC8648329 DOI: 10.2147/ijn.s328135] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in the diagnosis and treatment of breast cancer (BC), it remains a global health issue affecting millions of women annually. Poor prognosis in BC patients is often linked to drug resistance as well as the lack of effective therapeutic options for metastatic and triple-negative BC. In response to these unmet needs, extensive research efforts have been devoted to exploring the anti-BC potentials of natural products owing to their multi-target mechanisms of action and good safety profiles. Various medicinal plant extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activities in preclinical BC models. Despite the promising preclinical results, however, the clinical translation of natural products has often been hindered by their poor stability, aqueous solubility and bioavailability. There have been attempts to overcome these limitations, particularly via the use of nano-based drug delivery systems (NDDSs). This review highlights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the major classes of NDDSs and their current clinical status in BC treatment. Besides, it also discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants' extracts/essential oils and nine natural bioactive compounds; selected via the screening of various scientific databases, including PubMed, Scopus and Google Scholar, based on the following keywords: "Natural Product AND Nanoparticle AND Breast Cancer". Overall, these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, with some demonstrating biocompatibility with normal cell lines and mouse models. Further clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in humans.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society’s, Sinhgad Institute of Pharmacy, Narhe, Pune, 411041, India
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Shankar Mani
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571418, India
| | | | | | | |
Collapse
|
14
|
Teaima MH, Badawi NM, Attia DA, El-Nabarawi MA, Elmazar MM, Mousa SA. Efficacy of pomegranate extract loaded solid lipid nanoparticles transdermal emulgel against Ehrlich ascites carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 39:102466. [PMID: 34587542 DOI: 10.1016/j.nano.2021.102466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/02/2021] [Indexed: 01/16/2023]
Abstract
The purpose of this work was to incorporate an optimized pomegranate extract loaded solid lipid nanoparticles (PE-SLNs) formula in a transdermal emulgel to evaluate its anticancer effect. The prepared emulgel formulae were evaluated for their physicochemical properties. An ex vivo permeation study was done through mouse skin and the kinetic parameters were determined. Kinetic data showed that the ex vivo permeation of PE from SLNs transdermal emulgel through mouse skin followed non-Fickian diffusion transport. Further, in vivo study was done by applying the optimized PE-SLNs transdermal emulgel on mice skin bearing a solid form of Ehrlich ascites carcinoma (EAC) as well as free PE, control, placebo, and standard groups for comparison. In addition, histopathological examinations of the samples obtained from the EAC mice model were performed. The results proved that application of the selected PE-SLNs emulgel formulation on the mice skin bearing solid tumor revealed statistically significant anticancer effects.
Collapse
Affiliation(s)
- Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | | | - Mohey M Elmazar
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
15
|
Eroglu Ozkan E, Seyhan MF, Kurt Sirin O, Yilmaz-Ozden T, Ersoy E, Hatipoglu Cakmar SD, Goren AC, Yilmaz Aydogan H, Ozturk O. Antiproliferative effects of Turkish pomegranate (Punica granatum L.) extracts on MCF-7 human breast cancer cell lines with focus on antioxidant potential and bioactive compounds analyzed by LC-MS/MS. J Food Biochem 2021; 45:e13904. [PMID: 34414576 DOI: 10.1111/jfbc.13904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/06/2021] [Accepted: 08/01/2021] [Indexed: 01/29/2023]
Abstract
In this study, eight different pomegranate (Punica granatum L.) cultivars from Turkey were evaluated for their antioxidant and cytotoxic effects on the MCF-7 breast cancer cell lines and MCF-10A breast fibrocystic epithelial cell lines with a focus on their chemical compositions by LC-MS/MS. Cell lines were treated with pomegranate juice extracts in different doses at selected time intervals (24th, 48th, and 72nd hour). Afterwards, WST-1 cell proliferation assay was performed to investigate the cytotoxicity of the extracts. Accordingly, all extracts decreased the cell viability of MCF-7 breast cancer cell lines and had no cytotoxic effect on the cell viability of MCF-10A cell lines. Among eight extracts, P7 (Izmir 1513), which was rich in anthocyanins such as cyanidin chloride (69.76 ± 8.02 μg/g extract), cyanidin-3-O-glucoside (903.66 ± 101.89 μg/g extract), and punicalagin (992.09 ± 174.53 μg/g extract), was found to demonstrate the strongest cytotoxic activity on MCF-7 breast cancer cell lines by decreasing the cell viability in half at 24th hour with an IC50 value of 49.08 µg/ml. PRACTICAL APPLICATIONS: Eight commercially valuable pomegranate (Punica granatum) cultivars from Turkey were examined. Pelargonidin, cyanidin, cyanidin-3-O-gl, callistephin, and delphinidin-3-O-gl were quantified. Two cultivars (P1 and P3) showed comparatively higher antioxidant effects. A cultivar (P7) showed strongest cytotoxic activity against MCF-7 breast cancer cell line. The cultivars have potential to be used as natural antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Esra Eroglu Ozkan
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Mehmet Fatih Seyhan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Ozlem Kurt Sirin
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Tugba Yilmaz-Ozden
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ezgi Ersoy
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.,Department of Pharmacognosy, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Seda Damla Hatipoglu Cakmar
- Chemistry Group, Organic Chemistry Laboratory, National Metrology Institute, The Scientific & Technological Research Council of Turkey, Kocaeli, Turkey
| | - Ahmet Ceyhan Goren
- Chemistry Group, Organic Chemistry Laboratory, National Metrology Institute, The Scientific & Technological Research Council of Turkey, Kocaeli, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakıf University, Istanbul, Turkey
| | - Hulya Yilmaz Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Wong TL, Strandberg KR, Croley CR, Fraser SE, Nagulapalli Venkata KC, Fimognari C, Sethi G, Bishayee A. Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention. Semin Cancer Biol 2021; 73:265-293. [DOI: 10.1016/j.semcancer.2021.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
|
17
|
Farooqi AA. Regulation of deregulated cell signaling pathways by pomegranate in different cancers: Re-interpretation of knowledge gaps. Semin Cancer Biol 2021; 73:294-301. [DOI: 10.1016/j.semcancer.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022]
|
18
|
Pomegranate Extract (POMx) Induces Mitochondrial Dysfunction and Apoptosis of Oral Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10071117. [PMID: 34356350 PMCID: PMC8301084 DOI: 10.3390/antiox10071117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
The anticancer effect of pomegranate polyphenolic extract POMx in oral cancer cells has rarely been explored, especially where its impact on mitochondrial functioning is concerned. Here, we attempt to evaluate the proliferation modulating function and mechanism of POMx against human oral cancer (Ca9-22, HSC-3, and OC-2) cells. POMx induced ATP depletion, subG1 accumulation, and annexin V/Western blotting-detected apoptosis in these three oral cancer cell lines but showed no toxicity to normal oral cell lines (HGF-1). POMx triggered mitochondrial membrane potential (MitoMP) disruption and mitochondrial superoxide (MitoSOX) generation associated with the differential downregulation of several antioxidant gene mRNA/protein expressions in oral cancer cells. POMx downregulated mitochondrial mass, mitochondrial DNA copy number, and mitochondrial biogenesis gene mRNA/protein expression in oral cancer cells. Moreover, POMx induced both PCR-based mitochondrial DNA damage and γH2AX-detected nuclear DNA damage in oral cancer cells. In conclusion, POMx provides antiproliferation and apoptosis of oral cancer cells through mechanisms of mitochondrial impairment.
Collapse
|
19
|
New insights into chemical compositions and health promoting effects of edible oils from new resources. Food Chem 2021; 364:130363. [PMID: 34175621 DOI: 10.1016/j.foodchem.2021.130363] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/13/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022]
Abstract
This paper discusses the chemical compositions and health benefits of several kinds of oils which are extracted from new resources, including avocado seed oil, jackfruit seed oil, papaya seed oil, custard-apple seed oil, pomegranate seed oil, cherry seed oil, and pumpkin seed oil. In addition, the beneficial components found in these oils provide a future trend towards the utilization of seed oils as functional foods in the prevention and management of various chronic diseases. Nevertheless, the development prospects of some seed oils, such as papaya seed oil or custard-apple seed oil, need to be further studied and reconsidered due to the unconfirmed edibility. Furthermore, some other hindrances need to be solved to make better use of these valuable food industry by-products.
Collapse
|
20
|
Imbabi TA, Ahmed-Farid O, Selim DA, Sabeq II. Antioxidant and anti-apoptotic potential of whole-pomegranate extract promoted growth performance, physiological homeostasis, and meat quality of V-line rabbits under hot summer conditions. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Huang X, Gan H, Tan J, Wang T, Zhao J, Zhao Y. BRCC3 promotes activation of the NLRP6 inflammasome following cerebral ischemia/reperfusion (I/R) injury in rats. Neurosci Lett 2021; 756:135954. [PMID: 33979701 DOI: 10.1016/j.neulet.2021.135954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022]
Abstract
NOD-like receptor family pyrin domain containing 6 (NLRP6), a novel member of the NLR family, has been confirmed to have an inflammasome-dependent proinflammatory effect in cerebral ischemia/reperfusion injury. NLRP6 assembles a multimeric inflammasome complex comprising the adaptor ASC and the effector pro-caspase-1 to mediate the activation of caspase-1. The molecular mechanism regulating activation of the NLRP6 inflammasome remains unclear. Previous studies have shown that BRCA1-BRCA2-containing complex subunit 3 (BRCC3), a JAMM domain-containing Zn2+ metalloprotease deubiquitinating enzyme, participates in a variety of cellular activities. In this study, we found that BRCC3 expression was increased in the middle cerebral artery occlusion (MCAO) model. BRCC3 siRNA could reduce nerve damage and inflammation. Interestingly, the result of co-immunoprecipitation showed that the interaction between BRCC3 and NLRP6 was enhanced after model, and the result of immunofluorescence showed that the co-localization of BRCC3 and NLRP6 was increased. At the same time, the expression of NLRP6, cleavated-caspase-1 and IL-1β was decreased after BRCC3 interference. These results illustrate a regulatory mechanism involving the BRCC3-NLRP6 pathway and highlight NLRP6 as a potential therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohuan Huang
- Department of Pathology, Chongqing Medical University, Chongqing, CQ, 400016, China; Department of Pathology, Chongqing Three Gorges Medical College, Wanzhou, WZ, 404120, China
| | - Hui Gan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, CQ, 400016, China
| | - Junyi Tan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, CQ, 400016, China
| | - Tingting Wang
- Department of Pathology, Chongqing Medical University, Chongqing, CQ, 400016, China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, CQ, 400016, China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, CQ, 400016, China.
| |
Collapse
|
22
|
Moga MA, Dimienescu OG, Bălan A, Dima L, Toma SI, Bîgiu NF, Blidaru A. Pharmacological and Therapeutic Properties of Punica granatum Phytochemicals: Possible Roles in Breast Cancer. Molecules 2021; 26:molecules26041054. [PMID: 33671442 PMCID: PMC7921999 DOI: 10.3390/molecules26041054] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Pomgranate (Punica granatum) represents a high source of polyphenols with great bioavailability. The role of this fruit in the prevention and treatment of various malignant pathologies has been long time cited in both scientific and non-scientific literature, making thus important to identify its involvement in the pathophysiological processes. The treatment for breast cancer had focused on the inhibition of the mechanisms that governs the estrogen activity. These mechanisms are covered either by the antagonism of the estrogen receptor (ER) or by the inhibition of the estrogen synthesis. Our interest in identifying a bioactive compound rich in polyphenols, which induces both the antagonism of the estrogen receptor, and the inhibition of the estrogen synthesis, revealed us the pomegranate fruit and its derivatives: peel and seeds. Pomegranates' chemical composition include many biological active substances such as flavonols, flavanols, anthocyanins, proanthocyanidins, ellagitannins and gallotannins. Materials and Methods: We performed a review of the scientific literature by using the following keywords: "pomegranate", "breast cancer", "Punica granatum", "pomegranate polyphenols". Our search was performed in the PubMed and Google Scholar databases, and it included only original research written in English from the last 20 years. None of the articles were excluded due to affiliation. A total number of 28 original papers, which mentioned the beneficial activity of pomegranate against breast cancer, were selected. Both clinical and preclinical studies were considered for this review. Results: Recent discoveries pointed out that polyphenols from Punica granatum possess strong anti-cancer activity, exhibited by a variety of mechanisms, such as anti-estrogenic, anti-proliferative, anti-angiogenetic, anti-inflammatory, and anti-metastatic. Pomegranate extracts induced cell cycle arrest in the G0/G1 phase, and induced cytotoxicity in a dose- and time-dependent manner. Moreover, several polyphenols extracted from pomegranate inhibited the invasion potential, migration and viability of breast cancer cells. The effects of pomegranate juice on serum estrogens and other sexual hormones levels were also investigated on two human cohorts. Conclusions: Punica granatum represents a promising area in oncology. The large availability and low cost, associated with the lack of side effects, made from this natural product a great strategy for the management of breast cancer. There are several mechanistic studies in mouse models and in breast cancer cell lines, suggesting the possible pathways through which polyphenols from pomegranate extracts act, but larger and better-controlled studies are necessary in the future. Only two small clinical trials were conducted on humans until now, but their results are contradictory and should be considered preliminary.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialities, Faculty of Medicine, Transilvania University of Brasov, 500032 Brasov, Romania; (M.A.M.); (O.G.D.); (A.B.)
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialities, Faculty of Medicine, Transilvania University of Brasov, 500032 Brasov, Romania; (M.A.M.); (O.G.D.); (A.B.)
| | - Andreea Bălan
- Department of Medical and Surgical Specialities, Faculty of Medicine, Transilvania University of Brasov, 500032 Brasov, Romania; (M.A.M.); (O.G.D.); (A.B.)
| | - Lorena Dima
- Department of Fundamental, Prophylactical and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500032 Brasov, Romania; (L.D.); (S.I.T.)
| | - Sebastian Ionut Toma
- Department of Fundamental, Prophylactical and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500032 Brasov, Romania; (L.D.); (S.I.T.)
| | - Nicușor Florin Bîgiu
- Department of Medical and Surgical Specialities, Faculty of Medicine, Transilvania University of Brasov, 500032 Brasov, Romania; (M.A.M.); (O.G.D.); (A.B.)
- Correspondence: ; Tel.: +40-728519031
| | - Alexandru Blidaru
- Department of Surgical Oncology, Oncological Institute “Al. Trestioneanu” of Bucharest, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania;
| |
Collapse
|
23
|
Melgarejo-Sánchez P, Núñez-Gómez D, Martínez-Nicolás JJ, Hernández F, Legua P, Melgarejo P. Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: a review. BIORESOUR BIOPROCESS 2021; 8:2. [PMID: 38650225 PMCID: PMC10973758 DOI: 10.1186/s40643-020-00351-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pomegranate (Punica granatum L.) belongs to the Punicaceae plant family. It is an important fruit due to its nutritional and medicinal properties. Pomegranates are widely distributed around the world and, therefore, have a broad genetic diversity, resulting in differences in their phytochemical composition. The scientific community has focused on the positive health effects of pomegranate as a whole, but the different varieties have rarely been compared according to their bioactive compounds and bioactivity. This review aims to provide a holistic overview of the current knowledge on the bioactivity of pomegranate trees, with an emphasis on differentiating both the varieties and the different plant parts. This review intends to provide a general and organized overview of the accumulated knowledge on pomegranates, the identification of the most bioactive varieties, their potential consumption pathways and seeks to provide knowledge on the present gaps to guide future research.
Collapse
Affiliation(s)
- Pablo Melgarejo-Sánchez
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Dámaris Núñez-Gómez
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain.
| | - Juan J Martínez-Nicolás
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Francisca Hernández
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Pilar Legua
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Pablo Melgarejo
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| |
Collapse
|
24
|
Gul HF, Ilhan N, Ilhan N, Ozercan IH, Kuloglu T. The combined effect of pomegranate extract and tangeretin on the DMBA-induced breast cancer model. J Nutr Biochem 2020; 89:108566. [PMID: 33326843 DOI: 10.1016/j.jnutbio.2020.108566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the protective effects of pomegranate extract and tangeretin alone or in combination in DMBA-induced rat breast cancer model. A total of 68 female rats were randomly divided into 8 groups. The first 4 groups were designed as controls for cancer and treatment groups, and the control groups were composed of only control (C), Pomegranate (P), Tangeretin (T), and Pomegranate+Tangeretin (P+T) groups. The other four groups were designed as cancer and treatment groups and were composed of DMBA (D) and DMBA+Pomegranate (D+P), DMBA+Tangeretin (D+T), DMBA+Pomegranate+Tangeretin (D+P+T) groups. Tumor markers and angiogenesis parameters were studied from plasma samples obtained from rats. Histopathological, immunohistochemical, and TUNEL analyses and expressions of proteins affecting apoptosis and cell cycle were determined in breast tissue samples. In the DMBA group, plasma CA15-3, CEA, VEGF, MMP-9, and NF-κB levels were significantly increased compared to the controls, but significant decreases were observed in these parameters except MMP-9 in the treatment groups. It was observed that p53 and Bax expressions significantly increased in both D+P and D+P+T groups compared to the DMBA group, and these findings were supported by Tunel and immunohistochemical findings. Cyclin D1 expressions were found to be significantly decreased only in the D+T group and supported by TUNEL and immunohistochemical findings. Immunohistochemical ER-α and Ki-67 immune reactivities were significantly decreased in all treatment groups compared to the DMBA group. Our results showed that combined application of pomegranate extract and tangeretin may be more beneficial in preventing breast cancer development.
Collapse
Affiliation(s)
- Huseyin Fatih Gul
- Department of Medical Biochemistry, Kafkas University, Faculty of Medicine, Kars, Turkey.
| | - Necip Ilhan
- Department of Medical Biochemistry, Firat University, Faculty of Medicine, Elazıg, Turkey
| | - Nevin Ilhan
- Department of Medical Biochemistry, Firat University, Faculty of Medicine, Elazıg, Turkey
| | | | - Tuncay Kuloglu
- Department of Histology and Embryology, Firat University, Faculty of Medicine, Elazıg, Turkey
| |
Collapse
|
25
|
Kostka T, Ostberg-Potthoff JJ, Briviba K, Matsugo S, Winterhalter P, Esatbeyoglu T. Pomegranate ( Punica granatum L.) Extract and Its Anthocyanin and Copigment Fractions-Free Radical Scavenging Activity and Influence on Cellular Oxidative Stress. Foods 2020; 9:E1617. [PMID: 33172172 PMCID: PMC7694777 DOI: 10.3390/foods9111617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 01/22/2023] Open
Abstract
Secondary plant metabolites, e.g., polyphenols, are widely known as health-improving compounds that occur in natural functional foods such as pomegranates. While extracts generated from these fruits inhibit oxidative stress, the allocation of these effects to the different subgroups of substances, e.g., anthocyanins, "copigments" (polyphenols without anthocyanins), or polymeric compounds, is still unknown. Therefore, in the present study, polyphenols from pomegranate juice were extracted and separated into an anthocyanin and copigment fraction using adsorptive membrane chromatography. Phenolic compounds were determined by high performance liquid chromatography with photodiode array (HPLC-PDA) detection and HPLC-PDA electrospray ionization tandem mass spectrometry (HPLC-PDA-ESI-MS/MS), while the free radical scavenging activity of the pomegranate XAD‑7 extract and its fractions was evaluated by the Trolox equivalent antioxidant capacity (TEAC) assay and electron spin resonance (ESR) spectroscopy. Compared to juice, the total phenolic content and free radical scavenging potential was significantly higher in the pomegranate XAD-7 extract and its fractions. In comparison to the anthocyanin and copigment fraction, pomegranate XAD-7 extract showed the highest radical scavenging activity against galvinoxyl and DPPH radicals. Moreover, the enriched XAD-7 extract and its fractions were able to protect human hepatocellular HepG2 cells against oxidative stress induced by hydrogen peroxide. Overall, these results indicated that anthocyanins and copigments act together in reducing oxidative stress.
Collapse
Affiliation(s)
- Tina Kostka
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Johanna Josefine Ostberg-Potthoff
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany; (J.J.O.-P.); (P.W.)
| | - Karlis Briviba
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str.9, 76131 Karlsruhe, Germany;
| | - Seiichi Matsugo
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany; (J.J.O.-P.); (P.W.)
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str.9, 76131 Karlsruhe, Germany
| |
Collapse
|
26
|
Celiksoy V, Moses RL, Sloan AJ, Moseley R, Heard CM. Evaluation of the In Vitro Oral Wound Healing Effects of Pomegranate ( Punica granatum) Rind Extract and Punicalagin, in Combination with Zn (II). Biomolecules 2020; 10:E1234. [PMID: 32854243 PMCID: PMC7565068 DOI: 10.3390/biom10091234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Pomegranate (Punica granatum) is a well-established folklore medicine, demonstrating benefits in treating numerous conditions partly due to its antimicrobial and anti-inflammatory properties. Such desirable medicinal capabilities are attributed to a high hydrolysable tannin content, especially punicalagin. However, few studies have evaluated the abilities of pomegranate to promote oral healing, during situations such as periodontal disease or trauma. Therefore, this study evaluated the antioxidant and in vitro gingival wound healing effects of pomegranate rind extract (PRE) and punicalagin, alone and in combination with Zn (II). In vitro antioxidant activities were studied using DPPH and ABTS assays, with total PRE phenolic content measured by Folin-Ciocalteu assay. PRE, punicalagin and Zn (II) combination effects on human gingival fibroblast viability/proliferation and migration were investigated by MTT assay and scratch wounds, respectively. Punicalagin demonstrated superior antioxidant capacities to PRE, although Zn (II) exerted no additional influences. PRE, punicalagin and Zn (II) reduced gingival fibroblast viability and migration at high concentrations, but retained viability at lower concentrations without Zn (II). Fibroblast speed and distance travelled during migration were also enhanced by punicalagin with Zn (II) at low concentrations. Therefore, punicalagin in combination with Zn (II) may promote certain anti-inflammatory and fibroblast responses to aid oral healing.
Collapse
Affiliation(s)
- Vildan Celiksoy
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK;
| | - Rachael L. Moses
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - Alastair J. Sloan
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Melbourne Dental School, University of Melbourne, Victoria 3010, Australia;
| | - Ryan Moseley
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - Charles M. Heard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK;
| |
Collapse
|
27
|
Peng SY, Hsiao CC, Lan TH, Yen CY, Farooqi AA, Cheng CM, Tang JY, Yu TJ, Yeh YC, Chuang YT, Chiu CC, Chang HW. Pomegranate extract inhibits migration and invasion of oral cancer cells by downregulating matrix metalloproteinase-2/9 and epithelial-mesenchymal transition. ENVIRONMENTAL TOXICOLOGY 2020; 35:673-682. [PMID: 31995279 DOI: 10.1002/tox.22903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Discovering drug candidates for the modulation of metastasis is of great importance in inhibiting oral cancer malignancy. Although most pomegranate extract applications aim at the antiproliferation of cancer cells, its antimetastatic effects remain unclear, especially for oral cancer cells. The aim of this study is to evaluate the change of two main metastasis characters, migration and invasion of oral cancer cells. Further, we want to explore the molecular mechanisms of action of pomegranate extract (POMx) at low cytotoxic concentration. We found that POMx ranged from 0 to 50 μg/mL showing low cytotoxicity to oral cancer cells. In the case of oral cancer HSC-3 and Ca9-22 cells, POMx inhibits wound healing migration, transwell migration, and matrix gel invasion. Mechanistically, POMx downregulates matrix metalloproteinase (MMP)-2 and MMP-9 activities and expressions as well as epithelial-mesenchymal transition (EMT) signaling. POMx upregulates extracellular signal-regulated kinases 1/2 (ERK1/2), but not c-Jun N-terminal kinase (JNK) and p38 expression. Addition of ERK1/2 inhibitor (PD98059) significantly recovered the POMx-suppressed transwell migration and MMP-2/-9 activities in HSC-3 cells. Taken together, these findings suggest to further test low cytotoxic concentrations of POMx as a potential antimetastatic therapy against oral cancer cells.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chou Hsiao
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ting-Hsun Lan
- Division of Prosthodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yui Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Ammad A Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Chih-Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Chiao Yeh
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
29
|
Baradaran Rahimi V, Ghadiri M, Ramezani M, Askari VR. Antiinflammatory and anti‐cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies. Phytother Res 2020; 34:685-720. [DOI: 10.1002/ptr.6565] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/05/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
| | - Mobarakeh Ghadiri
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
| | - Mobina Ramezani
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research CenterMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
30
|
Cao D, Di M, Liang J, Shi S, Tan Q, Wang Z. MicroRNA-183 in Cancer Progression. J Cancer 2020; 11:1315-1324. [PMID: 32047538 PMCID: PMC6995398 DOI: 10.7150/jca.39044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-183(miR-183) is abnormally expressed in many kinds of tumors. It participates in the initiation and development of tumors. There are many pathways regulate the expression of miR-183. The action mechanism of miR-183 in cancer is very extensive, and contradictory conclusions are often drawn. It was upregulated in 18 kinds of cancer, downregulated in 6 kinds of cancer. In addition, there are seven types of cancer, both upregulated and downregulated reports can be found. Evidence showed that miR-183 can not only directly play the role of oncogene or antioncogene, but also regulate the expression of other oncogene or antioncogene in different cancer types. In this review, we discuss the regulator of miR-183 and summarized the expression of miR-183 in different cancers. We also counted the target genes of miR-183 and the functional roles they play. Furthermore, we focused on the roles of miR-183 in cell migration, cell invasion, epithelial-mesenchymal transition (EMT) and microangiogenesis, which play the most important roles in cancer processes. It sheds light on the likely reasons why miR-183 plays different roles in various cancers. In addition, miR-183 and its downstream effectors have the potential to be promising prognostic markers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Dingren Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Min Di
- Sir Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, 310058, P. R. China
| | - Jingjie Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shuang Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiang Tan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
31
|
Bian L, Meng Y, Zhang M, Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer 2019; 18:169. [PMID: 31767017 PMCID: PMC6878665 DOI: 10.1186/s12943-019-1100-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/08/2019] [Indexed: 01/26/2023] Open
Abstract
Genome instability is a hallmark of cancer cells and can be accelerated by defects in cellular responses to DNA damage. This feature of malignant cells opens new avenues for tumor targeted therapy. MRE11-RAD50-NBS1 complex plays a crucial role in sensing and repair of DNA damage. Through interacting with other important players of DNA damage response, MRE11-RAD50-NBS1 complex is engaged in various DNA damage repair pathways. Mutations in any member of this complex may lead to hypersensitivity to genotoxic agents and predisposition to malignancy. It is assumed that the defects in the complex may contribute to tumorigenesis and that treatments targeting the defect may be beneficial to cancer patients. Here, we summarized the recent research findings of the role of MRE11-RAD50-NBS1 complex in tumorigenesis, cancer treatment and discussed the potential approaches of targeting this complex to treat cancer.
Collapse
Affiliation(s)
- Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiling Meng
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 2019; 82:102679. [PMID: 31450085 DOI: 10.1016/j.dnarep.2019.102679] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
33
|
Maruca A, Catalano R, Bagetta D, Mesiti F, Ambrosio FA, Romeo I, Moraca F, Rocca R, Ortuso F, Artese A, Costa G, Alcaro S, Lupia A. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. Eur J Med Chem 2019; 181:111579. [PMID: 31398616 DOI: 10.1016/j.ejmech.2019.111579] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Many bioactive agents have been extracted from plants or belong to functional foods and have been considered in the treatment of serious and multifactorial diseases, such as cancer. In particular, this review is focused on the anti-cancer properties owned by several natural products typically from the Mediterranean area. In some regions of the South of Italy, a lower cancer incidence has been observed. There is increasing evidence that adherence to a Mediterranean dietary pattern correlates with reduced risk of several cancer types. This could be mainly attributed to the typical lifestyle aspects of the Mediterranean diet, such as high consumption of fruit and vegetables. In this review, the main natural products of the Mediterranean area are discussed, with particular attention on their anti-cancer properties endowed with multi-target profiles.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Isabella Romeo
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Chemistry and Chemical Technology, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Federica Moraca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Roberta Rocca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Experimental and Clinical Medicine "Magna Græcia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
34
|
Adefisan A, Owumi S, Adaramoye O. Root bark extract of Calliandra portoricensis (Jacq.) Benth. chemoprevents N-methyl-N-nitrosourea-induced mammary gland toxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:22-33. [PMID: 30599221 DOI: 10.1016/j.jep.2018.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/25/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calliandra portoricensis (CP) is a herb widely used in Nigeria for the treatment of breast engorgement. However, the scientific evidence of this use and its mechanisms of action is not clearly understood. AIM OF THE STUDY We assessed the chemopreventive effects of methanol extract of CP on N-methyl-N-nitrosourea (NMU)-induced mammary gland toxicity in rats. MATERIALS AND METHODS Fingerprinting of methanol extract of CP by Gas Chromatography-Mass Spectrometry (GC-MS) was done. Female Wistar rats were assigned into eight groups: Group 1 (control), group 2 received NMU only, groups 3, 4 and 5 received NMU and treated with CP at doses of 100, 200 and 300 mg/kg, respectively. Group 6 received CP (300 mg/kg), group 7 received NMU and vincristine, while group 8 received vincristine. RESULTS The weight-gain by rats decreased in all groups that received NMU. Administration of NMU significantly increased organo-somatic weight of mammary gland by 52%. The NMU increased serum nitric oxide, total bilirubin, mammary myeloperoxidase and lipid peroxidation by 76%, 87%, 130% and 21%, respectively, as well as activities of serum aspartate aminotransferase and lactate dehydrogenase. Also, NMU-treated rats had decreased total sulphydryl, reduced glutathione and catalase. Immunohistochemistry revealed strong expression of estrogen, progesterone and EGFR-2 proteins in NMU-treated rats. Treatment with CP (200 and 300 mg/kg) attenuated NMU-induced inflammation and oxidative stress. CONCLUSION CP ameliorated NMU-induced toxicity by modulating different cellular targets.
Collapse
Affiliation(s)
- Adedoyin Adefisan
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Owumi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatosin Adaramoye
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
35
|
Andrade MA, Lima V, Sanches Silva A, Vilarinho F, Castilho MC, Khwaldia K, Ramos F. Pomegranate and grape by-products and their active compounds: Are they a valuable source for food applications? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Lorenzo JM, Munekata PE, Putnik P, Kovačević DB, Muchenje V, Barba FJ. Sources, Chemistry, and Biological Potential of Ellagitannins and Ellagic Acid Derivatives. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64181-6.00006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Possible use of Punica granatum (Pomegranate) in cancer therapy. Pharmacol Res 2018; 133:53-64. [DOI: 10.1016/j.phrs.2018.04.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/13/2023]
|
38
|
Singh B, Singh JP, Kaur A, Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem 2018; 261:75-86. [PMID: 29739608 DOI: 10.1016/j.foodchem.2018.04.039] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
Pomegranate peel (PoP), a juice byproduct often considered as a waste, comprises nearly around 30-40% portion of the fruit. Phenolic compounds (one class of bioactive phytochemicals) are primarily concentrated in the peel portion of pomegranate fruit. In PoP, the main phenolic compounds reported in the literature include flavonoids (anthocyanins such as pelargonidin, delphinidin, cyanidin along with their derivatives and anthoxanthins such as catechin, epicatechin and quercetin), tannins (ellagitannins and ellagic acid derivatives such as punicalagin, punicalin and pedunculagin) and phenolic acids (such as chlorogenic, caffeic, syringic, sinapic, p-coumaric, ferulic, ellagic, gallic and cinnamic acid). It is generally accepted that phenolic compounds can be more efficiently recovered from PoP by improving the extraction efficiency. The curative relevance of these compounds has been mainly assessed by in vitro experimentation. Therefore, conclusive clinical trials of the phenolic compounds present in PoP are essential for correct validation of their health benefits.
Collapse
Affiliation(s)
- Balwinder Singh
- P.G. Department of Biotechnology, Khalsa College, Amritsar 143002, Punjab, India
| | - Jatinder Pal Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; P.G. Department of Botany, Dev Samaj College for Women, Ferozepur City 152002, Punjab, India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Narpinder Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
39
|
Wang D, Sun-Waterhouse D, Li F, Xin L, Li D. MicroRNAs as molecular targets of quercetin and its derivatives underlying their biological effects: A preclinical strategy. Crit Rev Food Sci Nutr 2018; 59:2189-2201. [DOI: 10.1080/10408398.2018.1441123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
- Shandong Institute of Pomology, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
- School of Chemical Sciences, the University of Auckland, New Zealand
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| | - Li Xin
- Shandong Institute of Pomology, Taian, P.R. China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| |
Collapse
|
40
|
Badawi NM, Teaima MH, El-Say KM, Attia DA, El-Nabarawi MA, Elmazar MM. Pomegranate extract-loaded solid lipid nanoparticles: design, optimization, and in vitro cytotoxicity study. Int J Nanomedicine 2018; 13:1313-1326. [PMID: 29563789 PMCID: PMC5846752 DOI: 10.2147/ijn.s154033] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Pomegranate extract (PE) is a natural product with potent antioxidant and anticancer activity because of its polyphenols content. The main purpose of this study was to maximize the PE chemotherapeutic efficacy by loading it in an optimized solid lipid nanoparticles (SLNs) formula. Materials and methods The influence of independent variables, which were lipid concentration (X1), surfactant concentration (X2) and cosurfactant concentration (X3), on dependent ones, which were particle size (Y1), polydispersity index (Y2), zeta potential (Y3), entrapment efficiency (Y4) and cumulative % drug release (Y5), were studied and optimized using the Box–Behnken design. Fifteen formulations of PE-SLNs were prepared using hot homogenization followed by ultra-sonication technique. Response surface plots, Pareto charts and mathematical equations were produced to study the impact of independent variables on the dependent quality parameters. The anti-proliferative activity of the optimized formula was then evaluated in three different cancer cell lines, namely, MCF-7, PC-3 and HepG-2, in addition to one normal cell line, HFB-4. Results The results demonstrated that the particle sizes ranged from 407.5 to 651.9 nm and the entrapment efficiencies ranged from 56.02 to 65.23%. Interestingly, the 50% inhibitory concentration of the optimized formula had more than a 40-fold improved effect on the cell growth inhibition in comparison with its free counterpart. Furthermore, it was more selective against cancer cells than normal cells particularly in MCF-7 breast cancer cells. Conclusion These data proved that nanoencapsulation of PE enhanced its anticancer efficacy. Therefore, our results suggested that a PE-loaded SLNs optimized-formula could be a promising chemo therapeutic agent.
Collapse
Affiliation(s)
- Noha M Badawi
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dalia A Attia
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | | | - Mohey M Elmazar
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
41
|
Ganesan K, Xu B. Telomerase Inhibitors from Natural Products and Their Anticancer Potential. Int J Mol Sci 2017; 19:ijms19010013. [PMID: 29267203 PMCID: PMC5795965 DOI: 10.3390/ijms19010013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/10/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
42
|
Liu H, Zeng Z, Wang S, Li T, Mastriani E, Li QH, Bao HX, Zhou YJ, Wang X, Liu Y, Liu W, Hu S, Gao S, Yu M, Qi Y, Shen Z, Wang H, Gao T, Dong L, Johnston RN, Liu SL. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. Cancer Biol Ther 2017; 18:990-999. [PMID: 29173024 PMCID: PMC5718784 DOI: 10.1080/15384047.2017.1394542] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the third most common cancer in the female reproductive organs and epithelial ovarian cancer has the highest lethality of all gynecological cancers. Pomegranate fruit juice (PFJ) has been shown to inhibit the growth of several types of cancer other than ovarian cancer. In this study, we exposed the ovarian cancer cell line A2780 to PFJ and two of its components (ellagic acid and luteolin). MTT and wound healing assays demonstrated that all three treatments suppressed the proliferation and migration of the ovarian cancer cells. In addition, western blotting and ELISA assays showed that the expression levels of MMP2 and MMP9 gradually decreased after treatment with increasing concentrations of ellagic acid and luteolin. To confirm our findings in the in vitro experiments, we used another ovarian cancer cell line, ES-2, in nude mice experiments. All three treatments inhibited tumor growth without obvious side-effects. Furthermore, compared with the control group, the expression levels of MMP2 and MMP9 were depressed. Ellagic acid induced a greater effect than luteolin, suggesting that ellagic acid might be a promising candidate for further preclinical testing for treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Huidi Liu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China.,d Department of Biochemistry and Molecular Biology , University of Calgary , Calgary , Alberta , Canada
| | - Zheng Zeng
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Siwen Wang
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Ting Li
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Emilio Mastriani
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Qing-Hai Li
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Hong-Xia Bao
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Yu-Jie Zhou
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Xiaoyu Wang
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Yongfang Liu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Wei Liu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Sijing Hu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Shan Gao
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Miao Yu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Yingying Qi
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Zhihang Shen
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Hongyue Wang
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Tingting Gao
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Lingqin Dong
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Randal N Johnston
- d Department of Biochemistry and Molecular Biology , University of Calgary , Calgary , Alberta , Canada
| | - Shu-Lin Liu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China.,c Department of Microbiology, Immunology and Infectious Diseases , University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
43
|
Nallanthighal S, Elmaliki KM, Reliene R. Pomegranate Extract Alters Breast Cancer Stem Cell Properties in Association with Inhibition of Epithelial-to-Mesenchymal Transition. Nutr Cancer 2017; 69:1088-1098. [PMID: 28976208 DOI: 10.1080/01635581.2017.1359318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) have become an important target population in cancer therapy and prevention due to their ability to self-renew, initiate tumors, and resist therapy. We examined whether pomegranate extract (PE) alters characteristics of breast CSCs. Ability to grow as mammospheres is a hallmark of breast CSCs. PE inhibited mammosphere formation in two different cell lines, neoplastic mammary epithelial HMLER and breast cancer Hs578T. In addition, mammosphere-derived cells from PE treatment groups showed reduced mammosphere formation for at least two serial passages. These data indicate that PE inhibits CSC's ability to self-renew. In addition, incubation of mammospheres with PE reversed them into adherent cultures, indicating promotion of CSC differentiation. Epithelial-to-mesenchymal transition (EMT) is a key program in generating CSCs and maintaining their characteristics. Thus, we examined the effect of PE on EMT. PE reduced cell migration, a major feature of the EMT phenotype. In addition, PE downregulated genes involved in EMT, including the EMT-inducing transcription factor Twist family basic helix-loop-helix transcription factor 1 (TWIST1). This suggests that PE suppresses CSC characteristics in part due to inhibition of EMT. The ability of PE to suppress CSCs can be exploited in the prevention of breast cancer.
Collapse
Affiliation(s)
- Sameera Nallanthighal
- a Cancer Research Center , University at Albany, State University of New York , Rensselaer , New York , USA.,b Department of Biomedical Sciences , University at Albany, State University of New York , Albany , New York , USA
| | - Kristine M Elmaliki
- a Cancer Research Center , University at Albany, State University of New York , Rensselaer , New York , USA
| | - Ramune Reliene
- a Cancer Research Center , University at Albany, State University of New York , Rensselaer , New York , USA.,c Department of Environmental Health Sciences , University at Albany, State University of New York , Albany , New York , USA
| |
Collapse
|
44
|
Jordan LG, Booth BW. HER2 + breast cancer cells undergo apoptosis upon exposure to tannic acid released from remodeled cross-linked collagen type I. J Biomed Mater Res A 2017; 106:26-32. [PMID: 28877394 DOI: 10.1002/jbm.a.36205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/20/2023]
Abstract
Tannic acid (TA) is a naturally occurring polyphenol that cross-links collagen type I and possesses anticancer potential. In previous studies, we demonstrated the increased sensitivity of estrogen receptor-positive (ER+ ) breast cancer cells to TA as opposed to triple negative breast cancer cells and normal human breast epithelial cells. In the current study, human pre-adipocytes and HER2+ breast cancer cells were grown on TA cross-linked collagen type I beads. Cell attachment, growth, and proliferation of the cells result in remodeling of the collagen matrix and release of the cross-linking TA. TA concentrations in the conditioned media were determined. Induced apoptosis of cells grown on the TA cross-linked collagen type I beads was imaged and quantified. Viability of HER2+ breast cancer cells and normal breast epithelial cells after exposure TA released from bead remodeling was quantified. Caspase gene expression and protein expression were evaluated. HER2+ breast cancer cells underwent caspase-mediated apoptosis in response to TA exposure. TA-induced apoptosis in a concentration- and time-dependent manner, with HER2+ breast cancer cells demonstrating an increased sensitivity to the TA effects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 26-32, 2018.
Collapse
Affiliation(s)
- Lauren G Jordan
- Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Brian W Booth
- Department of Bioengineering, Clemson University, Clemson, South Carolina.,Institute for Biological Interfaces of Engineering, Clemson University, Clemson, South Carolina
| |
Collapse
|
45
|
Ahmed HH, El-Abhar HS, Hassanin EAK, Abdelkader NF, Shalaby MB. Punica granatum suppresses colon cancer through downregulation of Wnt/β-Catenin in rat model. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line. Adv Med Sci 2017; 62:357-367. [PMID: 28521254 DOI: 10.1016/j.advms.2017.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE Polymer-based nanoparticles are used as vectors for cancer drug delivery. The bioactive compounds (quercetin, ellagic acid and gallic acid) are well known to be not only antioxidants but also chemopreventive candidates against various types of cancers. To circumvent the low bioavailability and the short half-life time obstacles, we hypothesized a novel PLGA nano-platform functionalized with CS and PEG to encapsulate these phytochemicals. This encapsulation will protect the compounds from the phagocytic uptake and deliver PLGA-CS-PEG nano-prototype with high biodegradability and biosafety. MATERIALS AND METHODS Three consequent types of PLGA-based nanocomposites were prepared and characterized. Furthermore, we investigated the newly synthesized nano-formulations against human hepatocellular carcinoma (HepG2) and colorectal cancer (HCT 116) cell lines using cell growth inhibition assays, followed by apoptosis and necrosis assays using flow cytometry to detect the underlying mechanism of HepG2 cell death. RESULTS Through Malvern Zeta Sizer, we recorded that the average diameters of the nano-prototypes ranged from 150 to 300nm. The cytotoxic activity of quercetin, ellagic acid, and gallic acid-encapsulated PLGA, PLGA-CS, and PLGA-CS-PEG nano-prototypes it has been found that they reduce the IC50s of the HepG2 cells values by 2.2, 2.9, 2.8-folds, 1, 1.5, 2.7-folds, and 0.9, 0.7, 1.5-folds, respectively. Mechanistically, the nano-platforms of quercetin seem to be dependent on both apoptosis and necrosis, while those of ellagic acid and gallic acid are mainly dependent on apoptosis. CONCLUSIONS CS-PEG-blended PLGA nano-delivery system of quercetin, ellagic acid and gallic acid can potentiate apoptosis-mediated cell death in HepG2 cell line.
Collapse
|
47
|
PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomed Pharmacother 2017; 94:944-954. [PMID: 28810532 DOI: 10.1016/j.biopha.2017.07.151] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/16/2017] [Accepted: 07/30/2017] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancers (TNBC) are aggressive cancers, which do not control by hormonal therapy or therapies that target HER-2 receptors. Curcumin (Cur) has shown cytotoxic effects in multiple cancer cell lines. However, its medical uses remain limited due to low aqueous solubility and poor bioavailability. Therefore, present study was aimed to fabricate the small positive charge curcumin nanoparticles (CN) by nanoprecipitation methods using PLGA and CTAB, and to evaluate its anticancer efficacy and underlying the mechanism in triple negative breast cancer cell lines (MDA-MB-231 cells). In in-vitro drug release assay, Cur was released from CN by flicking diffusion and anomalous transport process. CN showed a higher cellular incorporation than free Cur resulted in higher cytotoxicity. Checking the anticancer activity at the molecular level, Cur has shown to induce the reactive oxygen species production that subsequently causes the DNA damage and resulting in p38-MAPK activation. The p38-MAPK induce the expression of p16/INKK4a, p21/waf1/cip1 and p53 resulting in a reduction in the level of CDK2, CDK4, cyclin D1 and cyclin E and subsequently cell cycle arrest at G1/S and G2/M phase. It also reduces the expression of DNA repair gene, i.e. BRCA1, BRCA2, Rad51, Rad50, Mre11 and NBS1 resulting in apoptosis induction due to persistent DNA damage. This study presents an effective delivery of curcumin in TNBC cancer cells and it could open the new frontiers in clinical cancer chemotherapy.
Collapse
|
48
|
Adaramoye O, Erguen B, Nitzsche B, Höpfner M, Jung K, Rabien A. Punicalagin, a polyphenol from pomegranate fruit, induces growth inhibition and apoptosis in human PC-3 and LNCaP cells. Chem Biol Interact 2017; 274:100-106. [PMID: 28709945 DOI: 10.1016/j.cbi.2017.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is an international health problem and search for its effective treatment is in progress. Punicalagin (PN), polyphenol from pomegranate fruit, is known to exhibit potent anticancer activity in lung, breast and cervical cells. However, there is paucity of information on its effect in PCa. This study evaluated anti-proliferative effects of PN and its effects on extrinsic pathway of apoptosis in PCa cells, and angiogenesis in chicken chorioallantoic membrane (CAM). Antioxidant activities of PN were determined by 2,2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging and inhibition of lipid peroxidation (LPO) methods. PCa (PC-3 and LNCaP) and normal prostate (BPH-1) cells were cultured and treated with PN (10, 50 and 100 μM). Cytotoxicity and viability effects of PN were determined by lactate dehydrogenase (LDH) and XTT assays, respectively. Antiangiogenic effects were measured using CAM assay, while apoptosis was assessed by DNA fragmentation, enrichment factor by Cell Death Detection ELISA kit and expressions of caspases-3 and -8. Results showed that PN (10-200 μM) significantly scavenged DPPH and inhibited LPO in a concentration-dependent manner. Furthermore, PN (10-100 μM) concentration-dependently inhibited viability in PC-3 and LNCaP, while viability in BPH-1 was insignificantly affected. PN had low toxicity on cells in vitro at concentrations tested. Also, PN (100 μM) increased enrichment factor in PC-3 (2.34 ± 0.05) and LNCaP (2.31 ± 0.26) relative to control (1.00 ± 0.00). In addition, PN (50 μM) decreased the network of vessels in CAM, suggesting its anti-angiogenic effect. Moreso, PN increased the expressions of caspases-3 and -8 in PC-3. Overall, PN exerts anti-proliferative activity in PCa cells via induction of apoptosis and anti-angiogenic effect.
Collapse
Affiliation(s)
- Oluwatosin Adaramoye
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Drug Metabolism and Toxicology Section, Department of Biochemistry, University of Ibadan, Nigeria.
| | - Bettina Erguen
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute for Urologic Research, Berlin, Germany
| | - Anja Rabien
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute for Urologic Research, Berlin, Germany
| |
Collapse
|
49
|
Dietary Natural Products for Prevention and Treatment of Breast Cancer. Nutrients 2017; 9:nu9070728. [PMID: 28698459 PMCID: PMC5537842 DOI: 10.3390/nu9070728] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer among females worldwide. Several epidemiological studies suggested the inverse correlation between the intake of vegetables and fruits and the incidence of breast cancer. Substantial experimental studies indicated that many dietary natural products could affect the development and progression of breast cancer, such as soy, pomegranate, mangosteen, citrus fruits, apple, grape, mango, cruciferous vegetables, ginger, garlic, black cumin, edible macro-fungi, and cereals. Their anti-breast cancer effects involve various mechanisms of action, such as downregulating ER-α expression and activity, inhibiting proliferation, migration, metastasis and angiogenesis of breast tumor cells, inducing apoptosis and cell cycle arrest, and sensitizing breast tumor cells to radiotherapy and chemotherapy. This review summarizes the potential role of dietary natural products and their major bioactive components in prevention and treatment of breast cancer, and special attention was paid to the mechanisms of action.
Collapse
|
50
|
Naderlinger E, Holzmann K. Epigenetic Regulation of Telomere Maintenance for Therapeutic Interventions in Gliomas. Genes (Basel) 2017; 8:E145. [PMID: 28513547 PMCID: PMC5448019 DOI: 10.3390/genes8050145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
High-grade astrocytoma of WHO grade 4 termed glioblastoma multiforme (GBM) is a common human brain tumor with poor patient outcome. Astrocytoma demonstrates two known telomere maintenance mechanisms (TMMs) based on telomerase activity (TA) and on alternative lengthening of telomeres (ALT). ALT is associated with lower tumor grades and better outcome. In contrast to ALT, regulation of TA in tumors by direct mutation and epigenetic activation of the hTERT promoter is well established. Here, we summarize the genetic background of TMMs in non-malignant cells and in cancer, in addition to clinical and pathological features of gliomas. Furthermore, we present new evidence for epigenetic mechanisms (EMs) involved in regulation of ALT and TA with special emphasis on human diffuse gliomas as potential therapeutic drug targets. We discuss the role of TMM associated telomeric chromatin factors such as DNA and histone modifying enzymes and non-coding RNAs including microRNAs and long telomeric TERRA transcripts.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | - Klaus Holzmann
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|