1
|
Gao WY, Chen PY, Hsu HJ, Liou JW, Wu CL, Wu MJ, Yen JH. Xanthohumol, a prenylated chalcone, regulates lipid metabolism by modulating the LXRα/RXR-ANGPTL3-LPL axis in hepatic cell lines and high-fat diet-fed zebrafish models. Biomed Pharmacother 2024; 174:116598. [PMID: 38615609 DOI: 10.1016/j.biopha.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024] Open
Abstract
Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 μM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.
Collapse
Affiliation(s)
- Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Pei-Yi Chen
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan; Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Science and Engineering, Tzu Chi University, Hualien 970374, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| | - Jui-Hung Yen
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan; Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan.
| |
Collapse
|
2
|
Atteia HH, AlFaris NA, Alshammari GM, Alamri E, Ahmed SF, Albalwi R, Abdel-Sattar SAL. The Hepatic Antisteatosis Effect of Xanthohumol in High-Fat Diet-Fed Rats Entails Activation of AMPK as a Possible Protective Mechanism. Foods 2023; 12:4214. [PMID: 38231665 DOI: 10.3390/foods12234214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Obesity is the leading cause of non-alcoholic fatty liver disease by provoking hyperglycemia, hyperlipidemia, insulin resistance, oxidative stress, and inflammation. Low activity of AMP-activated protein kinase (AMPK) is linked to obesity, liver injury, and NAFLD. This study involves examining if the anti-steatosis effect of Xanthohumol (XH) in high-fat diet (HFD)-fed rats involves the regulation of AMPK. Adult male rats were divided into five groups (n = 8 each) as control (3.85 kcal/g); XH (control diet + 20 mg/kg), HFD (4.73 kcl/g), HFD + XH (20 mg/kg), and HFD + XH (30 mg/kg) + compound c (cc) (0.2 mg/kg). All treatments were conducted for 12 weeks. Treatment with XH attenuated the gain in body weight, fat pads, fasting glucose, and insulin in HFD rats. It also lowered serum leptin and free fatty acids (FFAs) and improved glucose and insulin tolerances in these rats. It also attenuated the increase in serum livers of liver marker enzymes and reduced serum and hepatic levels of triglycerides (TGs), cholesterol (CHOL), FFAs, as well as serum levels of low-density lipoproteins cholesterol (LDL-c) oxidized LDL-c. XH also reduced hepatic levels of malondialdehyde (MDA), nuclear accumulation of NF-κB, and the levels of tumor necrosis-factor-α (TNF-α) and interleukin-6 (IL-6) while stimulating the nuclear levels of Nrf2 and total levels of glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) in these HFD-fed rats. At the molecular levels, XH increased hepatic mRNA expression and phosphorylation of AMPK (Thr72) and reduced the expression of lipogenic genes SREBP1c and ACC-1. In concomitance, XH reduced hepatic liver droplet accumulation, reduced the number of apoptotic nuclei, and improved the structures of nuclei, mitochondria, and rough endoplasmic reticulum. Co-treatment with CC, an AMPK inhibitor, completely abolished all these effects of XH. In conclusion, XH attenuates obesity and HFD-mediated hepatic steatosis by activating hepatic AMPK.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk P.O. Box 47512, Saudi Arabia
| | - Nora A AlFaris
- Department of Physical Sports Sciences, College of Sports Sciences & Physical Activity, Princess Nourah bint Abdulrahman University, Riyadh P.O. Box 84428, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eman Alamri
- Department of Food Science and Nutrition, University of Tabuk, Tabuk P.O. Box 47512, Saudi Arabia
| | - Salwa Fares Ahmed
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk P.O. Box 47512, Saudi Arabia
- Department of Histology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Renad Albalwi
- Department of Food Science and Nutrition, University of Tabuk, Tabuk P.O. Box 47512, Saudi Arabia
| | | |
Collapse
|
3
|
Liao G, Liu W, Dai Y, Shi X, Liu Y, Li D, Xu T. Beneficial effects of flavonoids on animal models of atherosclerosis: A systematic review and meta-analysis. iScience 2023; 26:108337. [PMID: 38026172 PMCID: PMC10665821 DOI: 10.1016/j.isci.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases that seriously endanger human health. The existing treatment drugs are effective, but they have some side effects. Accumulating evidence suggests that flavonoids have attracted wide attention due to their multiple cardioprotective effects and fewer side effects. PubMed, Web of Science database, Embase, and Cochrane Library were searched for studies evaluating the effects of flavonoids against atherosclerosis. 119 studies published from August 1954 to April 2023 were included. Random-effects models were performed for synthesis. Compared with the control group, flavonoids significantly reduced longitudinal and cross-sectional plaque area. The findings indicated that flavonoids significantly reduced the concentrations of serum TC, TG, and LDL-C and increased serum HDL-C concentrations. Besides, flavonoids reduced the levels of circulating pro-inflammatory factors, including TNF-α, IL-1β, and IL-6, and increased the serum IL-10 level. This study provides evidence for the potential cardiovascular benefits of flavonoids.
Collapse
Affiliation(s)
- Gege Liao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Wanlu Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Yiming Dai
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Xiangxiang Shi
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Marongiu L, Burkard M, Helling T, Biendl M, Venturelli S. Modulation of the replication of positive-sense RNA viruses by the natural plant metabolite xanthohumol and its derivatives. Crit Rev Food Sci Nutr 2023; 65:429-443. [PMID: 37942943 DOI: 10.1080/10408398.2023.2275169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The COVID-19 pandemic has highlighted the importance of identifying new potent antiviral agents. Nutrients as well as plant-derived substances are promising candidates because they are usually well tolerated by the human body and readily available in nature, and consequently mostly cheap to produce. A variety of antiviral effects have recently been described for the hop chalcone xanthohumol (XN), and to a lesser extent for its derivatives, making these hop compounds particularly attractive for further investigation. Noteworthy, mounting evidence indicated that XN can suppress a wide range of viruses belonging to several virus families, all of which share a common reproductive cycle. As a result, the purpose of this review is to summarize the most recent research on the antiviral properties of XN and its derivatives, with a particular emphasis on the positive-sense RNA viruses human hepatitis C virus (HCV), porcine reproductive and respiratory syndrome virus (PRRSV), and severe acute respiratory syndrome corona virus (SARS-CoV-2).
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Thomas Helling
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Martin Biendl
- HHV Hallertauer Hopfenveredelungsgesellschaft m.b.H, Mainburg, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
5
|
Newman NK, Zhang Y, Padiadpu J, Miranda CL, Magana AA, Wong CP, Hioki KA, Pederson JW, Li Z, Gurung M, Bruce AM, Brown K, Bobe G, Sharpton TJ, Shulzhenko N, Maier CS, Stevens JF, Gombart AF, Morgun A. Reducing gut microbiome-driven adipose tissue inflammation alleviates metabolic syndrome. MICROBIOME 2023; 11:208. [PMID: 37735685 PMCID: PMC10512512 DOI: 10.1186/s40168-023-01637-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/01/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The gut microbiota contributes to macrophage-mediated inflammation in adipose tissue with consumption of an obesogenic diet, thus driving the development of metabolic syndrome. There is a need to identify and develop interventions that abrogate this condition. The hops-derived prenylated flavonoid xanthohumol (XN) and its semi-synthetic derivative tetrahydroxanthohumol (TXN) attenuate high-fat diet-induced obesity, hepatosteatosis, and metabolic syndrome in C57Bl/6J mice. This coincides with a decrease in pro-inflammatory gene expression in the gut and adipose tissue, together with alterations in the gut microbiota and bile acid composition. RESULTS In this study, we integrated and interrogated multi-omics data from different organs with fecal 16S rRNA sequences and systemic metabolic phenotypic data using a Transkingdom Network Analysis. By incorporating cell type information from single-cell RNA-seq data, we discovered TXN attenuates macrophage inflammatory processes in adipose tissue. TXN treatment also reduced levels of inflammation-inducing microbes, such as Oscillibacter valericigenes, that lead to adverse metabolic phenotypes. Furthermore, in vitro validation in macrophage cell lines and in vivo mouse supplementation showed addition of O. valericigenes supernatant induced the expression of metabolic macrophage signature genes that are downregulated by TXN in vivo. CONCLUSIONS Our findings establish an important mechanism by which TXN mitigates adverse phenotypic outcomes of diet-induced obesity and metabolic syndrome. TXN primarily reduces the abundance of pro-inflammatory gut microbes that can otherwise promote macrophage-associated inflammation in white adipose tissue. Video Abstract.
Collapse
Affiliation(s)
- N K Newman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Y Zhang
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Present address: Oregon Health & Science University, Portland, OR, USA
| | - J Padiadpu
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - C L Miranda
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - A A Magana
- Department of Chemistry, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - C P Wong
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - K A Hioki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- Present address: UMASS, Amherst, MA, USA
| | - J W Pederson
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Z Li
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - M Gurung
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
- Present address: Children Nutrition Center, USDA, Little Rock, AR, USA
| | - A M Bruce
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - K Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - G Bobe
- Department of Animal Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - T J Sharpton
- Department of Microbiology, Department of Statistics, Oregon State University, Corvallis, OR, USA
| | - N Shulzhenko
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.
| | - C S Maier
- Department of Chemistry, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - J F Stevens
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - A F Gombart
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Corvallis, OR, USA.
| | - A Morgun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
6
|
Wine, beer and Chinese Baijiu in relation to cardiovascular health: the impact of moderate drinking. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Li RL, Wang LY, Liu S, Duan HX, Zhang Q, Zhang T, Peng W, Huang Y, Wu C. Natural Flavonoids Derived From Fruits Are Potential Agents Against Atherosclerosis. Front Nutr 2022; 9:862277. [PMID: 35399657 PMCID: PMC8987282 DOI: 10.3389/fnut.2022.862277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis, as a chronic inflammatory response, is one of the main causes of cardiovascular diseases. Atherosclerosis is induced by endothelial cell dysfunction, migration and proliferation of smooth muscle cells, accumulation of foam cells and inflammatory response, resulting in plaque accumulation, narrowing and hardening of the artery wall, and ultimately leading to myocardial infarction or sudden death and other serious consequences. Flavonoid is a kind of natural polyphenol compound widely existing in fruits with various structures, mainly including flavonols, flavones, flavanones, flavanols, anthocyanins, isoflavones, and chalcone, etc. Because of its potential health benefits, it is now used in supplements, cosmetics and medicines, and researchers are increasingly paying attention to its role in atherosclerosis. In this paper, we will focus on several important nodes in the development of atherosclerotic disease, including endothelial cell dysfunction, smooth muscle cell migration and proliferation, foam cell accumulation and inflammatory response. At the same time, through the classification of flavonoids from fruits, the role and potential mechanism of flavonoids in atherosclerosis were reviewed, providing a certain direction for the development of fruit flavonoids in the treatment of atherosclerosis drugs.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuqin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Peng,
| | - Yongliang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yongliang Huang,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chunjie Wu,
| |
Collapse
|
8
|
Neumann HF, Frank J, Venturelli S, Egert S. Bioavailability and Cardiometabolic Effects of Xanthohumol: Evidence from Animal and Human Studies. Mol Nutr Food Res 2021; 66:e2100831. [PMID: 34967501 DOI: 10.1002/mnfr.202100831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/25/2021] [Indexed: 11/11/2022]
Abstract
Xanthohumol is the main prenylflavonoid in hops and has been associated with a wide range of health benefits, due to its anti-inflammatory, anti-oxidative, and cancer-preventive properties. Increasing evidence suggests that xanthohumol positively affects biomarkers associated with metabolic syndrome and cardiovascular diseases (CVDs). This review summarizes the effects of xanthohumol supplementation on body weight, lipid and glucose metabolism, systemic inflammation, and redox status. In addition, it provides insights into the pharmacokinetics of xanthohumol intake. Animal studies show that xanthohumol exerts beneficial effects on body weight, lipid profile, glucose metabolism, and other biochemical parameters associated with metabolic syndrome and CVDs. Although in vitro studies are increasingly elucidating the responsible mechanisms, the overall in vivo results are currently inconsistent and quantitatively insufficient. Pharmacokinetic and safety studies confirm that intake of xanthohumol is safe and well tolerated in both animals and humans. However, little is known about the metabolism of xanthohumol in the human body, and even less about its effects on body weight and CVD risk factors. There is an urgent need for studies investigating whether the effects of xanthohumol on body weight and cardiometabolic parameters observed in animal studies are reproducible in humans, and what dosage, formulation, and intervention period are required. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hannah F Neumann
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.,Department of Nutrition and Food Sciences, University of Bonn, Germany
| | - Jan Frank
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.,Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Sarah Egert
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.,Department of Nutrition and Food Sciences, University of Bonn, Germany
| |
Collapse
|
9
|
Zhou K, Yang S, Li SM. Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis. Nat Prod Rep 2021; 38:2236-2260. [PMID: 33972962 DOI: 10.1039/d0np00083c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to July 2020Naturally occurring chalcones carrying up to three modified or unmodified C5-, C10-, and C15-prenyl moieties on both rings A and B as well as at the α- and β-carbons are widely distributed in plants of the families of Fabaceae, Moraceae, Zingiberaceae and Cannabaceae. Xanthohumol and isobavachalcone being the most investigated representatives, exhibit diverse and remarkable biological and pharmacological activities. The present review deals with their structural characters, biological activities and occurrence in the plant kingdom. Biosynthesis of prenylated chalcones and metabolism of xanthohumol are also discussed.
Collapse
Affiliation(s)
- Kang Zhou
- Guizhou University, School of Pharmaceutical Sciences, Huaxi Avenue 2708, Guiyang, 550025, China
| | - Song Yang
- Guizhou University, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Huaxi Avenue 2708, Guiyang, 550025, China
| | - Shu-Ming Li
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Biologie und Biotechnologie, Robert-Koch-Straße 4, 35037, Marburg, Germany.
| |
Collapse
|
10
|
Alcoholic and Non-Alcoholic Beer Modulate Plasma and Macrophage microRNAs Differently in a Pilot Intervention in Humans with Cardiovascular Risk. Nutrients 2020; 13:nu13010069. [PMID: 33379359 PMCID: PMC7823561 DOI: 10.3390/nu13010069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Beer is a popular beverage and some beneficial effects have been attributed to its moderate consumption. We carried out a pilot study to test if beer and non-alcoholic beer consumption modify the levels of a panel of 53 cardiometabolic microRNAs in plasma and macrophages. Seven non-smoker men aged 30–65 with high cardiovascular risk were recruited for a non-randomised cross-over intervention consisting of the ingestion of 500 mL/day of beer or non-alcoholic beer for 14 days with a 7-day washout period between interventions. Plasma and urine isoxanthohumol were measured to assess compliance with interventions. Monocytes were isolated and differentiated into macrophages, and plasma and macrophage microRNAs were analysed by quantitative real-time PCR. Anthropometric, biochemistry and dietary parameters were also measured. We found an increase in plasma miR-155-5p, miR-328-3p, and miR-92a-3p after beer and a decrease after non-alcoholic beer consumption. Plasma miR-320a-3p levels decreased with both beers. Circulating miR-320a-3p levels correlated with LDL-cholesterol. We found that miR-17-5p, miR-20a-5p, miR-145-5p, miR-26b-5p, and miR-223-3p macrophage levels increased after beer and decreased after non-alcoholic beer consumption. Functional analyses suggested that modulated microRNAs were involved in catabolism, nutrient sensing, Toll-like receptors signalling and inflammation. We concluded that beer and non-alcoholic beer intake modulated differentially plasma and macrophage microRNAs. Specifically, microRNAs related to inflammation increased after beer consumption and decreased after non-alcoholic beer consumption.
Collapse
|
11
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
12
|
Racis M, Stanisławska-Sachadyn A, Sobiczewski W, Wirtwein M, Krzemiński M, Krawczyńska N, Limon J, Rynkiewicz A, Gruchała M. Association of Genes Related to Oxidative Stress with the Extent of Coronary Atherosclerosis. Life (Basel) 2020; 10:life10090210. [PMID: 32961879 PMCID: PMC7554836 DOI: 10.3390/life10090210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is believed to play a critical role in atherosclerosis initiation and progression. In line with this, in a group of 1099 subjects, we determined eight single nucleotide polymorphisms (SNPs) related to oxidative stress (PON1 c.575A>G, MPO c.−463G>A, SOD2 c.47T>C, GCLM c.−590C>T, NOS3 c.894G>T, NOS3 c.−786T>C, CYBA c.214C>T, and CYBA c.−932A>G) and assessed the extent of atherosclerosis in coronary arteries based on Gensini score. An increased risk of having a Gensini score in the higher half of the distribution was observed for the PON1 c.575G allele (odds ratio (OR) = 1.27, 95% confidence interval (CI): 1.004–1.617, p = 0.046). Next, the genetic risk score (GRS) for the additive effect of the total number of pro-oxidative alleles was assessed. We noted an increase in the risk of having a Gensini score above the median with the maximum number of risk alleles (OR = 2.47, 95% CI: 1.19–5.23, p = 0.014). A univariate Spearman’s test revealed significant correlation between the total number of pro-oxidant alleles (GRS) and the Gensini score (ρ = 0.068, p = 0.03). In conclusion, the PON1 c.575A>G variant and the high number of risk alleles (GRS) were independent risk factors for a high Gensini score. We suggest, however, that GRS might occur as a more valuable component in adding a predictive value to the genetic background of atherosclerosis.
Collapse
Affiliation(s)
- Milena Racis
- First Department of Cardiology, Medical University of Gdańsk, ul. Dębinki 7, 80-211 Gdańsk, Poland; (W.S.); (M.G.)
- Correspondence: ; Fax: +48-58-3461201
| | - Anna Stanisławska-Sachadyn
- Department of Biology and Genetics, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland; (A.S.-S.); (N.K.); (J.L.)
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Wojciech Sobiczewski
- First Department of Cardiology, Medical University of Gdańsk, ul. Dębinki 7, 80-211 Gdańsk, Poland; (W.S.); (M.G.)
| | - Marcin Wirtwein
- Department of Pharmacology, Medical University of Gdańsk, ul. Dębinki 7, 80-211 Gdańsk, Poland;
| | - Michał Krzemiński
- Department of Probability and Biomathematics, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Natalia Krawczyńska
- Department of Biology and Genetics, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland; (A.S.-S.); (N.K.); (J.L.)
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland; (A.S.-S.); (N.K.); (J.L.)
| | - Andrzej Rynkiewicz
- Department of Cardiology and Cardiosurgery, University of Warmia and Mazury in Olsztyn, Al. Warszawska 30, 10-082 Olsztyn, Poland;
| | - Marcin Gruchała
- First Department of Cardiology, Medical University of Gdańsk, ul. Dębinki 7, 80-211 Gdańsk, Poland; (W.S.); (M.G.)
| |
Collapse
|
13
|
Khayyal MT, El-Hazek RM, El-Sabbagh WA, Frank J, Behnam D, Abdel-Tawab M. Micellar solubilization enhances the anti-inflammatory effect of xanthohumol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 71:153233. [PMID: 32454348 DOI: 10.1016/j.phymed.2020.153233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Xanthohumol is known to exert anti-inflammatory properties but has poor oral bioavailability. Using advanced micellization technology, it has been possible to markedly enhance its bioavailability. PURPOSE In the present study, we compared the chronic anti-inflammatory activities of native and micellar xanthohumol in the rat adjuvant arthritis model, using diclofenac as a reference drug. METHODS Adjuvant arthritis was induced by injecting Freund's complete adjuvant into the right hind paw of rats and monitoring paw volume over 3 weeks. The drugs were given daily for 3 weeks, starting from the day of adjuvant inoculation. Serum was collected at the end of the experiment to measure inflammatory and oxidative stress parameters. Statistical comparisons between different groups were carried out by one-way analysis of variance followed by Tukey-Kramer multiple comparison test. RESULTS Micellar solubilized xanthohumol showed a better anti-inflammatory activity than its native form. The reduction in paw volume was reflected in corresponding changes in relevant mediators of inflammation like tumor necrosis factor-α, interleukin-6 and C-reactive protein, myloperoxidase and lipid peroxidation markers. CONCLUSION The findings confirm that micellar solubilization of xanthohumol enhances its anti-inflammatory activity, probably as a result of improving its bioavailabilty. The solubilized xanthohumol may prove to be a promising adjuvant tool for anti-inflammatory treatment and a potential anti-inflammatory alternative to synthetic drugs.
Collapse
Affiliation(s)
- Mohamed T Khayyal
- Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Rania M El-Hazek
- National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| | - Walaa A El-Sabbagh
- National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany.
| | | | | |
Collapse
|
14
|
Jiao Y, Cao Y, Lu X, Wang J, Saitgareeva A, Kong X, Song C, Li J, Tian K, Zhang S, Bai M, Li S, Zhang H, Wang L. Xanthohumol protects neuron from cerebral ischemia injury in experimental stroke. Mol Biol Rep 2020; 47:2417-2425. [PMID: 32108303 DOI: 10.1007/s11033-019-05128-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
Treatment of antioxidants is necessary to protect ischemic stroke associated neuronal damage. Xanthohumol (XN), a natural flavonoid extracted from hops, has been reported to have potential function as an antioxidant and can be used for neuro protection. However, the role of XN in ischemic stroke remains unclear. Here, we studied the neuroprotective effects of XN through experimental stroke models. Middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD) was used as in vivo and in vitro model, respectively. We found that the treatment of XN improved MCAO-induced brain injury by reducing infarct size, improving neurological deficits, reversing neuronal damage, reducing oxidative stress injury and cell apoptosis. Further experimental studies showed that XN could revive neuronal apoptosis induced by OGD by preventing oxidative stress injury. In addition, our study suggested that these effects were related to the inhibition of phosphorylation of p38-MAPK and the mediation of nuclear Nrf2 activation. In conclusion, the neuroprotective effects of XN showed in this study make XN a promising supplement for ischemic stroke protection.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yuze Cao
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China.,Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Aigul Saitgareeva
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Chang Song
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Kuo Tian
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shuoqi Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Ming Bai
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 245 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
15
|
Zhang Y, Bobe G, Revel JS, Rodrigues R, Sharpton TJ, Fantacone ML, Raslan K, Miranda CL, Lowry MB, Blakemore PR, Morgun A, Shulzhenko N, Maier CS, Stevens JF, Gombart AF. Improvements in Metabolic Syndrome by Xanthohumol Derivatives Are Linked to Altered Gut Microbiota and Bile Acid Metabolism. Mol Nutr Food Res 2020; 64:e1900789. [PMID: 31755244 PMCID: PMC7029812 DOI: 10.1002/mnfr.201900789] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/21/2019] [Indexed: 12/21/2022]
Abstract
SCOPE Two hydrogenated xanthohumol (XN) derivatives, α,β-dihydro-XN (DXN) and tetrahydro-XN (TXN), improved parameters of metabolic syndrome (MetS), a critical risk factor of cardiovascular disease (CVD) and type 2 diabetes, in a diet-induced obese murine model. It is hypothesized that improvements in obesity and MetS are linked to changes in composition of the gut microbiota, bile acid metabolism, intestinal barrier function, and inflammation. METHODS AND RESULTS To test this hypothesis, 16S rRNA genes were sequenced and bile acids were measured in fecal samples from C57BL/6J mice fed a high-fat diet (HFD) or HFD containing XN, DXN or TXN. Expression of genes associated with epithelial barrier function, inflammation, and bile acid metabolism were measured in the colon, white adipose tissue (WAT), and liver, respectively. Administration of XN derivatives decreases intestinal microbiota diversity and abundance-specifically Bacteroidetes and Tenericutes-alters bile acid metabolism, and reduces inflammation. In WAT, TXN supplementation decreases pro-inflammatory gene expression by suppressing macrophage infiltration. Transkingdom network analysis connects changes in the microbiota to improvements in MetS in the host. CONCLUSION Changes in the gut microbiota and bile acid metabolism may explain, in part, the improvements in obesity and MetS associated with administration of XN and its derivatives.
Collapse
Affiliation(s)
- Yang Zhang
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Animal Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Johana S. Revel
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Richard Rodrigues
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Statistics, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Mary L. Fantacone
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Kareem Raslan
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Cristobal L. Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Malcolm B. Lowry
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Paul R. Blakemore
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Andrey Morgun
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine; Oregon State University, Corvallis, Oregon, 97331, USA
| | - Claudia S. Maier
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Adrian F. Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97331, USA
| |
Collapse
|
16
|
Miki S, Suzuki JI, Kunimura K, Morihara N. Mechanisms underlying the attenuation of chronic inflammatory diseases by aged garlic extract: Involvement of the activation of AMP-activated protein kinase. Exp Ther Med 2019; 19:1462-1467. [PMID: 32010323 PMCID: PMC6966139 DOI: 10.3892/etm.2019.8372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is an ubiquitously expressed serine/threonine kinase and an important regulator of energy metabolism. The decreased activity of AMPK induced by low-grade chronic inflammation has been implicated in several diseases, including type 2 diabetes and atherosclerosis. However, the activation of AMPK by natural and synthetic products can ameliorate these diseases through the inhibition of inflammation. For example, aged garlic extract (AGE) has been shown to enhance the phosphorylation of Thr172 of the α-subunit of AMPK in several tissues of disease model animals. In addition, AGE has been reported to suppress the progression of atherosclerotic plaque formation in an animal model of atherosclerosis. Moreover, AGE has been found to decrease the level of plasma glycated albumin and to improve hyperglycemia in an animal model of type 2 diabetes. These inhibitory effects of AGE are induced by the suppression of the inflammatory response. In the present review, we discuss the mechanisms through which AGE activates AMPK, as well as the mechanisms through which the activation of AMPK by AGE modulates the inflammatory response in disease models.
Collapse
Affiliation(s)
- Satomi Miki
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| | - Jun-Ichiro Suzuki
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| | - Kayo Kunimura
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan
| | - Naoaki Morihara
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata-shi, Hiroshima 739-1195, Japan.,Research and Development, Wakunaga of America Co., Ltd., Mission Viejo, CA 92691, USA
| |
Collapse
|
17
|
Thang SK, Chen PY, Gao WY, Wu MJ, Pan MH, Yen JH. Xanthohumol Suppresses NPC1L1 Gene Expression through Downregulation of HNF-4α and Inhibits Cholesterol Uptake in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11119-11128. [PMID: 31525874 DOI: 10.1021/acs.jafc.9b05221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Xanthohumol (Xan) is a prenylated chalcone mainly found in hops; it has been demonstrated to function against hypercholesterolemia, hyperlipidemia, and atherosclerosis. In this study, we focused on the hypocholesterolemic effect of Xan on cholesterol uptake and the underlying molecular mechanisms of Xan in human intestinal Caco-2 cells. The microarray data showed that Niemann-Pick C1-like 1 (NPC1L1), an essential transporter for dietary cholesterol absorption, was significantly downregulated in Xan-treated Caco-2 cells. We demonstrated that Xan (10 and 20 μM) suppressed the mRNA and protein expression of NPC1L1 by 0.65 ± 0.12-fold and 0.54 ± 0.15-fold and 0.72 ± 0.04-fold and 0.44 ± 0.12-fold, respectively, compared to that of the vehicle-treated Caco-2 cells. Moreover, Xan (10 and 20 μM) significantly inhibited cholesterol uptake by approximately 12 and 32% in Caco-2 cells. NPC1L1 promoter activity was significantly suppressed by Xan, and a DNA element within the NPC1L1 promoter involved in Xan-mediated NPC1L1 reduction located between the -120 and -20 positions was identified. Moreover, Xan markedly decreased the mRNA and protein levels of hepatocyte nuclear factor 4α (HNF-4α), a critical activator of NPC1L1 transcription, and subsequently attenuated HNF-4α/NPC1L1 promoter complex formation, resulting in the suppression of NPC1L1 gene expression. Finally, we demonstrated that Xan markedly abolished lovastatin-induced NPC1L1 overexpression in Caco-2 cells. These findings reveal that Xan suppresses NPC1L1 expression via downregulation of HNF-4α and exerts inhibitory effects on cholesterol uptake in the intestinal Caco-2 cells. Our findings suggest Xan could serve as a potential cholesterol-lowering agent and supplement for statin therapy.
Collapse
Affiliation(s)
- Sang Kim Thang
- Institute of Medical Sciences , Tzu Chi University , Hualien 970 , Taiwan
| | - Pei-Yi Chen
- Center of Medical Genetics , Hualien Tzu Chi Hospital, Buddhist Tzu Chi Foundation , Hualien 970 , Taiwan
| | - Wan-Yun Gao
- Department of Molecular Biology and Human Genetics , Tzu Chi University , Hualien 970 , Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology , Chia-Nan University of Pharmacy and Science , Tainan 717 , Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology , National Taiwan University , Taipei 10617 , Taiwan
| | - Jui-Hung Yen
- Institute of Medical Sciences , Tzu Chi University , Hualien 970 , Taiwan
- Department of Molecular Biology and Human Genetics , Tzu Chi University , Hualien 970 , Taiwan
| |
Collapse
|
18
|
Beneficial and Deleterious Effects of Female Sex Hormones, Oral Contraceptives, and Phytoestrogens by Immunomodulation on the Liver. Int J Mol Sci 2019; 20:ijms20194694. [PMID: 31546715 PMCID: PMC6801544 DOI: 10.3390/ijms20194694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is considered the laboratory of the human body because of its many metabolic processes. It accomplishes diverse activities as a mixed gland and is in continuous cross-talk with the endocrine system. Not only do hormones from the gastrointestinal tract that participate in digestion regulate the liver functions, but the sex hormones also exert a strong influence on this sexually dimorphic organ, via their receptors expressed in liver, in both health and disease. Besides, the liver modifies the actions of sex hormones through their metabolism and transport proteins. Given the anatomical position and physiological importance of liver, this organ is evidenced as an immune vigilante that mediates the systemic immune response, and, in turn, the immune system regulates the hepatic functions. Such feedback is performed by cytokines. Pro-inflammatory and anti-inflammatory cytokines are strongly involved in hepatic homeostasis and in pathological states; indeed, female sex hormones, oral contraceptives, and phytoestrogens have immunomodulatory effects in the liver and the whole organism. To analyze the complex and interesting beneficial or deleterious effects of these drugs by their immunomodulatory actions in the liver can provide the basis for either their pharmacological use in therapeutic treatments or to avoid their intake in some diseases.
Collapse
|
19
|
Mahli A, Seitz T, Freese K, Frank J, Weiskirchen R, Abdel-Tawab M, Behnam D, Hellerbrand C. Therapeutic Application of Micellar Solubilized Xanthohumol in a Western-Type Diet-Induced Mouse Model of Obesity, Diabetes and Non-Alcoholic Fatty Liver Disease. Cells 2019; 8:cells8040359. [PMID: 30999670 PMCID: PMC6523748 DOI: 10.3390/cells8040359] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023] Open
Abstract
Xanthohumol (XN), a prenylated chalcone from hops, has been reported to exhibit a variety of health-beneficial effects. However, poor bioavailability may limit its application in the prevention and therapy of diseases. The objective of this study was to determine whether a micellar solubilization of xanthohumol could enhance the bioavailability and biological efficacy of xanthohumol in a Western-type diet (WTD) induced model of obesity, diabetes and non-alcoholic fatty liver disease (NAFLD). After 3 weeks feeding with WTD, XN was additionally applied per oral gavage as micellar solubilizate (s-XN) or native extract (n-XN) at a daily dose of 2.5 mg/kg body weight for a further 8 weeks. Control mice received vehicle only in addition to the WTD. WTD-induced body weight-gain and glucose intolerance were significantly inhibited by s-XN application. Furthermore, WTD-induced hepatic steatosis, pro-inflammatory gene expression (MCP-1 and CXCL1) and immune cell infiltration as well as activation of hepatic stellate cells (HSC) and expression of collagen alpha I were significantly reduced in the livers of s-XN-treated mice compared to WTD controls. In contrast, application of n-XN had no or only slight effects on the WTD-induced pathological effects. In line with this, plasma XN concentration ranged between 100–330 nmol/L in the s-XN group while XN was not detectable in the serum samples of n-XN-treated mice. In conclusion, micellar solubilization enhanced the bioavailability and beneficial effects of xanthohumol on different components of the metabolic syndrome including all pathological steps of NAFLD. Notably, this was achieved in a dose more than 10-fold lower than effective beneficial doses of native xanthohumol reported in previous in vivo studies.
Collapse
Affiliation(s)
- Abdo Mahli
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Tatjana Seitz
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Kim Freese
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Jan Frank
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Mona Abdel-Tawab
- Central Laboratory of German Pharmacists, Carl-Mannich-Str. 20, D-65760 Eschborn, Germany.
| | - Dariush Behnam
- AQUANOVA AG, Birkenweg 8-10, D-64295 Darmstadt, Germany.
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| |
Collapse
|
20
|
Cheng X, Li J, Guo D. SCAP/SREBPs are Central Players in Lipid Metabolism and Novel Metabolic Targets in Cancer Therapy. Curr Top Med Chem 2018; 18:484-493. [PMID: 29788888 DOI: 10.2174/1568026618666180523104541] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/02/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023]
Abstract
Lipid metabolism reprogramming emerges as a new hallmark of malignancies. Sterol regulatory element-binding proteins (SREBPs), which are central players in lipid metabolism, are endoplasmic reticulum (ER)-bound transcription factors that control the expression of genes important for lipid synthesis and uptake. Their transcriptional activation requires binding to SREBP cleavageactivating protein (SCAP) to translocate their inactive precursors from the ER to the Golgi to undergo cleavage and subsequent nucleus translocation of their NH2-terminal forms. Recent studies have revealed that SREBPs are markedly upregulated in human cancers, providing the mechanistic link between lipid metabolism alterations and malignancies. Pharmacological or genetic inhibition of SCAP or SREBPs significantly suppresses tumor growth in various cancer models, demonstrating that SCAP/SREBPs could serve as promising metabolic targets for cancer therapy. In this review, we will summarize recent progress in our understanding of the underlying molecular mechanisms regulating SCAP/SREBPs and lipid metabolism in malignancies, discuss new findings about SREBP trafficking, which requires SCAP N-glycosylation, and introduce a newly identified microRNA-29-mediated negative feedback regulation of the SCAP/SREBP pathway. Moreover, we will review recently developed inhibitors targeting the SCAP/SREBP pathway for cancer treatment.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, United States
| | - Jianying Li
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, United States
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, United States
| |
Collapse
|
21
|
Suh KS, Choi EM, Kim HS, Park SY, Chin SO, Rhee SY, Pak YK, Choe W, Ha J, Chon S. Xanthohumol ameliorates 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cellular toxicity in cultured MC3T3-E1 osteoblastic cells. J Appl Toxicol 2018. [DOI: 10.1002/jat.3613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Hyun-Sook Kim
- Department of Biomedical Laboratory Science, College of Health Sciences; Cheongju University; Cheongju Chungbuk 360-764 Republic of Korea
| | - So Young Park
- Department of Medicine, Graduate School; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology; Kyung Hee University, College of Medicine; Seoul 130-701 Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| |
Collapse
|
22
|
Gallo C, Dallaglio K, Bassani B, Rossi T, Rossello A, Noonan DM, D'Uva G, Bruno A, Albini A. Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation. Oncotarget 2018; 7:59917-59931. [PMID: 27494895 PMCID: PMC5312358 DOI: 10.18632/oncotarget.10990] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/06/2016] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Recently, increased attention has been addressed to the ability of flavonoids to prevent cancer by suppressing angiogenesis, strategy that we named "angioprevention". Several natural compounds exert their anti-tumor properties by activating 5' adenosine monophosphate-activated protein kinase (AMPK), a key regulator of metabolism in cancer cells. Drugs with angiopreventive activities, in particular metformin, regulate AMPK in endothelial cells. Here we investigated the involvement of AMPK in the anti-angiogenic effects of xanthohumol (XN), the major prenylated flavonoid of the hop plant, and mechanisms of action. The anti-angiogenic activity of XN was more potent than epigallocatechin-3-gallate (EGCG). Treatment of endothelial cells with XN led to increased AMPK phosphorylation and activity. Functional studies using biochemical approaches confirmed that AMPK mediates XN anti-angiogenic activity. AMPK activation by XN was mediated by CAMMKβ, but not LKB1. Analysis of the downstream mechanisms showed that XN-induced AMPK activation reduced nitric oxide (NO) levels in endothelial cells by decreasing eNOS phosphorylation. Finally, AKT pathway was inactivated by XN as part of its anti-angiogenic activity, but independently from AMPK, suggesting that these two signaling pathways proceed autonomously. Our study dissects the molecular mechanism by which XN exerts its potent anti-angiogenic activity, pointing out AMPK as a crucial signal transducer.
Collapse
Affiliation(s)
- Cristina Gallo
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Katiuscia Dallaglio
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Barbara Bassani
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Teresa Rossi
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | | | - Douglas M Noonan
- Department of Biotechnologies and Life Sciencies, University of Insubria, Varese, Italy
| | - Gabriele D'Uva
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
23
|
O'Connor A, Konda V, Reed RL, Christensen JM, Stevens JF, Contractor N. Rice Protein Matrix Enhances Circulating Levels of Xanthohumol Following Acute Oral Intake of Spent Hops in Humans. Mol Nutr Food Res 2018; 62:e1700692. [PMID: 29322620 DOI: 10.1002/mnfr.201700692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/14/2017] [Indexed: 12/12/2022]
Abstract
SCOPE Xanthohumol (XN), a prenylated flavonoid found in hops, exhibits anti-inflammatory and antioxidant properties. However, poor bioavailability may limit therapeutic applications. As food components are known to modulate polyphenol absorption, the objective is to determine whether a protein matrix could enhance the bioavailability of XN post oral consumption in humans. METHODS AND RESULTS This is a randomized, double-blind, crossover study in healthy participants (n = 6) evaluating XN and its major metabolites (isoxanthohumol [IX], 6- and 8-prenylnaringenin [6-PN, 8-PN]) for 6 h following consumption of 12.4 mg of XN delivered via a spent hops-rice protein matrix preparation or a control spent hops preparation. Plasma XN and metabolites are measured by LC-MS/MS. Cmax , Tmax , and area-under-the-curve (AUC) values were determined. Circulating XN and metabolite response to each treatment was not bioequivalent. Plasma concentrations of XN and XN + metabolites (AUC) are greater with consumption of the spent hops-rice protein matrix preparation. CONCLUSION Compared to a standard spent hops powder, a protein-rich spent hops matrix demonstrates enhanced plasma levels of XN and metabolites following acute oral intake.
Collapse
Affiliation(s)
| | | | - Ralph L Reed
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.,Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | | - Jan F Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.,Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
24
|
Non-estrogenic Xanthohumol Derivatives Mitigate Insulin Resistance and Cognitive Impairment in High-Fat Diet-induced Obese Mice. Sci Rep 2018; 8:613. [PMID: 29330372 PMCID: PMC5766630 DOI: 10.1038/s41598-017-18992-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Xanthohumol (XN), a prenylated flavonoid from hops, improves dysfunctional glucose and lipid metabolism in animal models of metabolic syndrome (MetS). However, its metabolic transformation into the estrogenic metabolite, 8-prenylnaringenin (8-PN), poses a potential health concern for its use in humans. To address this concern, we evaluated two hydrogenated derivatives, α,β-dihydro-XN (DXN) and tetrahydro-XN (TXN), which showed negligible affinity for estrogen receptors α and β, and which cannot be metabolically converted into 8-PN. We compared their effects to those of XN by feeding C57BL/6J mice a high-fat diet (HFD) containing XN, DXN, or TXN for 13 weeks. DXN and TXN were present at higher concentrations than XN in plasma, liver and muscle. Mice administered XN, DXN or TXN showed improvements of impaired glucose tolerance compared to the controls. DXN and TXN treatment resulted in a decrease of HOMA-IR and plasma leptin. C2C12 embryonic muscle cells treated with DXN or TXN exhibited higher rates of uncoupled mitochondrial respiration compared to XN and the control. Finally, XN, DXN, or TXN treatment ameliorated HFD-induced deficits in spatial learning and memory. Taken together, DXN and TXN could ameliorate the neurocognitive-metabolic impairments associated with HFD-induced obesity without risk of liver injury and adverse estrogenic effects.
Collapse
|
25
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
26
|
Chen SF, Chen PY, Hsu HJ, Wu MJ, Yen JH. Xanthohumol Suppresses Mylip/Idol Gene Expression and Modulates LDLR Abundance and Activity in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7908-7918. [PMID: 28812343 DOI: 10.1021/acs.jafc.7b02282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthohumol, a prenylated flavonoid found in hops (Humulus lupulus L.), exhibits multiple biological activities such as antiatherosclerosis and hypolipidemic activities. In this study, we aim to investigate the hypocholesterolemic effects and molecular mechanisms of xanthohumol in hepatic cells. We found that xanthohumol (10 and 20 μM) increased the amount of cell-surface low-density lipoprotein receptor (LDLR) from 100.0 ± 2.1% to 115.0 ± 1.3% and 135.2 ± 2.7%, and enhanced the LDL uptake activity from 100.0 ± 0.9% to 139.1 ± 13.2% in HepG2 cells (p < 0.01). The mRNA levels of LDLR, HMGCR, and PCSK9 were not altered. Xanthohumol (20 μM) reduced the expression of inducible degrader of the LDL receptor (Mylip/Idol) mRNA and protein by approximately 45% (p < 0.01), which was reported to be associated with increases of LDLR level. We demonstrated that xanthohumol suppressed hepatic Mylip/Idol expression via counteracting liver X receptor (LXR) activation. The molecular docking results predicted that xanthohumol has a high binding affinity to interact with the LXRα ligand-binding domain, which may result in attenuation of LXRα-induced Mylip/Idol expression. Finally, we demonstrated that the Mylip/Idol expression and LDLR activity were synergistically changed by a combination of xanthohumol and simvastatin treatment. Our findings indicated that xanthohumol may regulate the LXR-Mylip/Idol axis to modulate hepatic LDLR abundance and activity.
Collapse
Affiliation(s)
- Shih-Fen Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University , Hualien 970, Taiwan
| | - Pei-Yi Chen
- Center of Medical Genetics, Buddhist Tzu Chi General Hospital , Hualien 970, Taiwan
| | - Hao-Jen Hsu
- Department of Life Science, Tzu Chi University , Hualien 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science , Tainan 717, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University , Hualien 970, Taiwan
| |
Collapse
|
27
|
Hirata H, Uto-Kondo H, Ogura M, Ayaori M, Shiotani K, Ota A, Tsuchiya Y, Ikewaki K. Xanthohumol, a hop-derived prenylated flavonoid, promotes macrophage reverse cholesterol transport. J Nutr Biochem 2017; 47:29-34. [PMID: 28501703 DOI: 10.1016/j.jnutbio.2017.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 04/09/2017] [Accepted: 04/14/2017] [Indexed: 12/27/2022]
Abstract
Xanthohumol, a prominent prenyl flavonoid from the hop plant (Humulus lupulus L.), is suggested to be antiatherogenic since it reportedly increases high-density lipoprotein (HDL) cholesterol levels. It is not clear whether xanthohumol promotes reverse cholesterol transport (RCT), the most important antiatherogenic property of HDL; therefore, we investigated the effects of xanthohumol on macrophage-to-feces RCT using a hamster model as a CETP-expressing species. In vivo RCT experiments showed that xanthohumol significantly increased fecal appearance of the tracer derived from intraperitoneally injected [3H]-cholesterol-labeled macrophages. Ex vivo experiments were then employed to investigate the detailed mechanism by which xanthohumol enhanced RCT. Cholesterol efflux capacity from macrophages was 1.5-fold higher in xanthohumol-fed hamsters compared with the control group. In addition, protein expression and lecithin-cholesterol acyltransferase activity in the HDL fraction were significantly higher in xanthohumol-fed hamsters compared with the control, suggesting that xanthohumol promoted HDL maturation. Hepatic transcript analysis revealed that xanthohumol increased mRNA expression of abcg8 and cyp7a1. In addition, protein expressions of liver X receptor α and bile pump export protein were increased in the liver by xanthohumol administration when compared with the control, implying that it stimulated bile acid synthesis and cholesterol excretion to feces. In conclusion, our data demonstrate that xanthohumol improves RCT in vivo through cholesterol efflux from macrophages and excretion to feces, leading to antiatherosclerosis effects. It remains to be elucidated whether enhancement of RCT by xanthohumol could prove valuable in humans.
Collapse
Affiliation(s)
- Hiroshi Hirata
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan.
| | - Harumi Uto-Kondo
- Division of Neurology, Anti-Aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Masatsune Ogura
- Division of Neurology, Anti-Aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Makoto Ayaori
- Tokorozawa Heart Center, 1-4-1-101 Midoricho, Tokorozawa, Saitama 359-1111, Japan
| | - Kazusa Shiotani
- Division of Neurology, Anti-Aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Ami Ota
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - Youichi Tsuchiya
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - Katsunori Ikewaki
- Division of Neurology, Anti-Aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
28
|
Luzak B, Kassassir H, Rój E, Stanczyk L, Watala C, Golanski J. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity. Arch Physiol Biochem 2017; 123:54-60. [PMID: 27855519 DOI: 10.1080/13813455.2016.1247284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hop cones (Humulus lupulus L.), very rich source of phenolic compounds, possessing anticancer, antioxidant and anti-inflammatory activities, are considered as beneficial diet ingredients improving human health. In this study, the antiplatelet action of xanthohumol (XN), the principal flavonoid in hop cones, was investigated. XN significantly attenuated ADP-induced blood platelet aggregation (97.2 ± 35.7 AU for 6 μg/ml of XN vs. 120.4 ± 30.1 AU for 0.17% dimethyl sulfoxide (DMSO), p < 0.001) and significantly reduced the expression of fibrinogen receptor (activated form of GPIIbIIIa) on platelets' surface (47.6 ± 15.8 for 1.5 μg/ml XN, 44.6 ± 17.3% for 3 μg/ml XN vs. 54.5 ± 19.2% for control or 43.3 ± 18.4% for 6 μg/ml XN vs. 49.7 ± 19.4% for 0.17% DMSO, p < 0.05 or less). These findings suggest that the phenolic compounds originating from hops (XN) have a novel role as antiplatelet agents and can likely be used as dietary supplements in prophylactic approaches.
Collapse
Affiliation(s)
- Boguslawa Luzak
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland and
| | - Hassan Kassassir
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland and
| | - Edward Rój
- b New Chemical Syntheses Institute , Pulawy , Poland
| | - Lidia Stanczyk
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland and
| | - Cezary Watala
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland and
| | - Jacek Golanski
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland and
| |
Collapse
|
29
|
Miranda CL, Elias VD, Hay JJ, Choi J, Reed RL, Stevens JF. Xanthohumol improves dysfunctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice. Arch Biochem Biophys 2016; 599:22-30. [PMID: 26976708 PMCID: PMC4875845 DOI: 10.1016/j.abb.2016.03.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
Xanthohumol (XN) is a prenylated flavonoid found in hops (Humulus lupulus) and beer. The dose-dependent effects of XN on glucose and lipid metabolism in a preclinical model of metabolic syndrome were the focus of our study. Forty-eight male C57BL/6J mice, 9 weeks of age, were randomly divided into three XN dose groups of 16 animals. The mice were fed a high-fat diet (60% kcal as fat) supplemented with XN at dose levels of 0, 30, or 60 mg/kg body weight/day, for 12 weeks. Dietary XN caused a dose-dependent decrease in body weight gain. Plasma levels of glucose, total triglycerides, total cholesterol, and MCP-1 were significantly decreased in mice on the 60 mg/kg/day treatment regimen. Treatment with XN at 60 mg/kg/day resulted in reduced plasma LDL-cholesterol (LDL-C), IL-6, insulin and leptin levels by 80%, 78%, 42%, and 41%, respectively, compared to the vehicle control group. Proprotein Convertase Subtilisin Kexin 9 (PCSK-9) levels were 44% lower in the 60 mg/kg dose group compared to the vehicle control group (p ≤ 0.05) which may account for the LDL-C lowering activity of XN. Our results show that oral administration of XN improves markers of systemic inflammation and metabolic syndrome in diet-induced obese C57BL/6J mice.
Collapse
Affiliation(s)
- Cristobal L Miranda
- Linus Pauling Institute and Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Valerie D Elias
- Linus Pauling Institute and Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Joshua J Hay
- Linus Pauling Institute and Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute and Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Ralph L Reed
- Linus Pauling Institute and Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Jan F Stevens
- Linus Pauling Institute and Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
30
|
Rahman SM, Baquero KC, Choudhury M, Janssen RC, de la Houssaye BA, Sun M, Miyazaki-Anzai S, Wang S, Moustaid-Moussa N, Miyazaki M, Friedman JE. C/EBPβ in bone marrow is essential for diet induced inflammation, cholesterol balance, and atherosclerosis. Atherosclerosis 2016; 250:172-9. [PMID: 27072340 DOI: 10.1016/j.atherosclerosis.2016.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/11/2016] [Accepted: 03/30/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Atherosclerosis is both a chronic inflammatory disease and a lipid metabolism disorder. C/EBPβ is well documented for its role in the development of hematopoietic cells and integration of lipid metabolism. However, C/EBPβ's role in atherosclerotic progression has not been examined. We assessed the impact of hematopoietic CEBPβ deletion in ApoE(-/-) mice on hyperlipidemia, inflammatory responses and lesion formation in the aorta. METHODS AND RESULTS ApoE(-/-) mice were reconstituted with bone marrow cells derived from either WT or C/EBPβ(-/-) mice and placed on low fat or high fat/high cholesterol diet for 11 weeks. Hematopoietic C/EBPβ deletion in ApoE(-/-) mice reduced blood and hepatic lipids and gene expression of hepatic stearoyl CoA desaturase 1 and fatty acid synthase while expression of ATP binding cassette transporter G1, cholesterol 7-alpha-hydroxylase, and liver X receptor alpha genes were significantly increased. ApoE(-/-) mice reconstituted with C/EBPβ(-/-) bone marrow cells also significantly reduced blood cytokine levels and reduced lesion area in aortic sinuses compared with ApoE(-/-) mice reconstituted with WT bone marrow cells. Silencing of C/EBPβ in RAW264.7 macrophage cells prevented oxLDL-mediated foam cell formation and inflammatory cytokine secretion in conditioned medium. CONCLUSION C/EBPβ in hematopoietic cells is crucial to regulate diet-induced inflammation, hyperlipidemia and atherosclerosis development.
Collapse
Affiliation(s)
- Shaikh M Rahman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.
| | - Karalee C Baquero
- Departments of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Mahua Choudhury
- Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX, USA
| | - Rachel C Janssen
- Departments of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | | | - Ming Sun
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Makoto Miyazaki
- Renal and Hypertension, University of Colorado Denver, Aurora, CO, USA
| | - Jacob E Friedman
- Departments of Pediatrics, University of Colorado Denver, Aurora, CO, USA; Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
31
|
Zimmermann K, Baldinger J, Mayerhofer B, Atanasov AG, Dirsch VM, Heiss EH. Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response. Free Radic Biol Med 2015; 88:417-426. [PMID: 25843659 PMCID: PMC4568300 DOI: 10.1016/j.freeradbiomed.2015.03.030] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/20/2022]
Abstract
In light of the emerging interplay between redox and metabolic signaling pathways we investigated the potential cross talk between nuclear factor E2-related factor 2 (Nrf2) and AMP-activated kinase (AMPK), central regulators of the cellular redox and energy balance, respectively. Making use of xanthohumol (XN) as an activator of both the AMPK and the Nrf2 signaling pathway we show that AMPK exerts a positive influence on Nrf2/heme oxygenase (HO)-1 signaling in mouse embryonic fibroblasts. Genetic ablation and pharmacological inhibition of AMPK blunts Nrf2-dependent HO-1 expression by XN already at the mRNA level. XN leads to AMPK activation via interference with mitochondrial function and activation of liver kinase B1 as upstream AMPK kinase. The subsequent AMPK-mediated enhancement of the Nrf2/HO-1 response does not depend on inhibition of the mammalian target of rapamycin, inhibition of glycogen synthase kinase 3β, or altered abundance of Nrf2 (total and nuclear). However, reduced endoplasmic reticulum stress was identified and elaborated as a step in the AMPK-augmented Nrf2/HO-1 response. Overall, we shed more light on the hitherto incompletely understood cross talk between the LKB1/AMPK and the Nrf2/HO-1 axis revealing for the first time involvement of the unfolded protein response as an additional player and suggesting tight cooperation between signaling pathways controlling cellular redox, energy, or protein homeostasis.
Collapse
Affiliation(s)
- Kristin Zimmermann
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Johannes Baldinger
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Barbara Mayerhofer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
32
|
Miyata S, Inoue J, Shimizu M, Sato R. Xanthohumol Improves Diet-induced Obesity and Fatty Liver by Suppressing Sterol Regulatory Element-binding Protein (SREBP) Activation. J Biol Chem 2015; 290:20565-79. [PMID: 26140926 DOI: 10.1074/jbc.m115.656975] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 02/02/2023] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that stimulate the expression of genes involved in fatty acid and cholesterol biosynthesis. Here, we demonstrate that a prenylated flavonoid in hops, xanthohumol (XN), is a novel SREBP inactivator that reduces the de novo synthesis of fatty acid and cholesterol. XN independently suppressed the maturation of SREBPs of insulin-induced genes in a manner different from sterols. Our results suggest that XN impairs the endoplasmic reticulum-to-Golgi translocation of the SREBP cleavage-activating protein (SCAP)-SREBP complex by binding to Sec23/24 and blocking SCAP/SREBP incorporation into common coated protein II vesicles. Furthermore, in diet-induced obese mice, dietary XN suppressed SREBP-1 target gene expression in the liver accompanied by a reduction of the mature form of hepatic SREBP-1, and it inhibited the development of obesity and hepatic steatosis. Altogether, our data suggest that XN attenuates the function of SREBP-1 by repressing its maturation and that it has the potential of becoming a nutraceutical food or pharmacological agent for improving metabolic syndrome.
Collapse
Affiliation(s)
- Shingo Miyata
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Jun Inoue
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Shimizu
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuichiro Sato
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
33
|
Weiskirchen R, Mahli A, Weiskirchen S, Hellerbrand C. The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Front Physiol 2015; 6:140. [PMID: 25999863 PMCID: PMC4422013 DOI: 10.3389/fphys.2015.00140] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/20/2015] [Indexed: 01/17/2023] Open
Abstract
Xanthohumol is the principal prenylated flavonoid of the female inflorescences of the hop plant. In recent years, various beneficial xanthohumol effects including anti-inflammatory, antioxidant, hypoglycemic activities, and anticancer effects have been revealed. This review summarizes present studies indicating that xanthohumol also inhibits several critical pathophysiological steps during the development and course of chronic liver disease, including the activation and pro-fibrogenic genotype of hepatic stellate cells. Also the various mechanism of action and molecular targets of the beneficial xanthohumol effects will be described. Furthermore, the potential use of xanthohumol or a xanthohumol-enriched hop extract as therapeutic agent to combat the progression of chronic liver disease will be discussed. It is notable that in addition to its hepatoprotective effects, xanthohumol also holds promise as a therapeutic agent for treating obesity, dysregulation of glucose metabolism and other components of the metabolic syndrome including hepatic steatosis. Thus, therapeutic xanthohumol application appears as a promising strategy, particularly in obese patients, to inhibit the development as well as the progression of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Abdo Mahli
- Department of Internal Medicine I, University Hospital Regensburg Regensburg, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg Regensburg, Germany
| |
Collapse
|
34
|
Van De Wier B, Koek GH, Bast A, Haenen GRMM. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit Rev Food Sci Nutr 2015; 57:834-855. [DOI: 10.1080/10408398.2014.952399] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Yao J, Zhang B, Ge C, Peng S, Fang J. Xanthohumol, a polyphenol chalcone present in hops, activating Nrf2 enzymes to confer protection against oxidative damage in PC12 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1521-31. [PMID: 25587858 DOI: 10.1021/jf505075n] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
UNLABELLED Xanthohumol (2',4',4-trihydroxy-6'-methoxy-3'-prenylchalcone, Xn), a polyphenol chalcone from hops (Humulus lupulus), has received increasing attention due to its multiple pharmacological activities. As an active component in beers, its presence has been suggested to be linked to the epidemiological observation of the beneficial effect of regular beer drinking. In this work, we synthesized Xn with a total yield of 5.0% in seven steps and studied its neuroprotective function against oxidative-stress-induced neuronal cell damage in the neuronlike rat pheochromocytoma cell line PC12. Xn displays moderate free-radical-scavenging capacity in vitro. More importantly, pretreatment of PC12 cells with Xn at submicromolar concentrations significantly upregulates a panel of phase II cytoprotective genes as well as the corresponding gene products, such as glutathione, heme oxygenase, NAD(P)H quinone oxidoreductase, thioredoxin, and thioredoxin reductase. A mechanistic study indicates that the α,β-unsaturated ketone structure in Xn and activation of the transcription factor Nrf2 are key determinants for the cytoprotection of Xn. Targeting the Nrf2 by Xn discloses a previously unrecognized mechanism underlying the biological action of Xn. Our results demonstrate that Xn is a novel small-molecule activator of Nrf2 in neuronal cells and suggest that Xn might be a potential candidate for the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou, Gansu 730000, China
| | | | | | | | | |
Collapse
|
36
|
Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 2015; 20:754-79. [PMID: 25574819 PMCID: PMC6272297 DOI: 10.3390/molecules20010754] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/30/2014] [Indexed: 11/17/2022] Open
Abstract
The female inflorescences of hops (Humulus lupulus L.), a well-known bittering agent used in the brewing industry, have long been used in traditional medicines. Xanthohumol (XN) is one of the bioactive substances contributing to its medical applications. Among foodstuffs XN is found primarily in beer and its natural occurrence is surveyed. In recent years, XN has received much attention for its biological effects. The present review describes the pharmacological aspects of XN and summarizes the most interesting findings obtained in the preclinical research related to this compound, including the pharmacological activity, the pharmacokinetics, and the safety of XN. Furthermore, the potential use of XN as a food additive considering its many positive biological effects is discussed.
Collapse
|