1
|
Coil Combination of Multichannel Single Voxel Magnetic Resonance Spectroscopy with Repeatedly Sampled In Vivo Data. Molecules 2021; 26:molecules26133896. [PMID: 34202302 PMCID: PMC8272065 DOI: 10.3390/molecules26133896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/01/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS), as a noninvasive method for molecular structure determination and metabolite detection, has grown into a significant tool in clinical applications. However, the relatively low signal-to-noise ratio (SNR) limits its further development. Although the multichannel coil and repeated sampling are commonly used to alleviate this problem, there is still potential room for promotion. One possible improvement way is combining these two acquisition methods so that the complementary of them can be well utilized. In this paper, a novel coil-combination method, average smoothing singular value decomposition, is proposed to further improve the SNR by introducing repeatedly sampled signals into multichannel coil combination. Specifically, the sensitivity matrix of each sampling was pretreated by whitened singular value decomposition (WSVD), then the smoothing was performed along the repeated samplings’ dimension. By comparing with three existing popular methods, Brown, WSVD, and generalized least squares, the proposed method showed better performance in one phantom and 20 in vivo spectra.
Collapse
|
2
|
Wilcox M, Wright SM, McDougall M. A Review of Non- 1H RF Receive Arrays in Magnetic Resonance Imaging and Spectroscopy. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:290-300. [PMID: 35402958 PMCID: PMC8975242 DOI: 10.1109/ojemb.2020.3030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
It is now common practice to use radiofrequency (RF) coils to increase the signal-to-noise ratio (SNR) in 1H magnetic resonance imaging and spectroscopy experiments. Use of array coils for non-1H experiments, however, has been historically more limited despite the fact that these nuclei suffer inherently lower sensitivity and could benefit greatly from an increased SNR. Recent advancements in receiver technology and increased support from scanner manufacturers have now opened greater options for the use of array coils for non-1H magnetic resonance experiments. This paper reviews the research in adopting array coil technology with an emphasis on studies of the most commonly studied non-1H nuclei including 31P, 13C, 23Na, and 19F. These nuclei offer complementary information to 1H imaging and spectroscopy and have proven themselves important in the study of numerous disease processes. While recent work with non-1H array coils has shown promising results, the technology is not yet widely utilized and should see substantial developments in the coming years.
Collapse
|
3
|
Lee BY, Zhu XH, Woo MK, Adriany G, Schillak S, Chen W. Interleaved 31 P MRS imaging of human frontal and occipital lobes using dual RF coils in combination with single-channel transmitter-receiver and dynamic B 0 shimming. NMR IN BIOMEDICINE 2018; 31:10.1002/nbm.3842. [PMID: 29073724 PMCID: PMC5736151 DOI: 10.1002/nbm.3842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/10/2017] [Accepted: 09/14/2017] [Indexed: 06/01/2023]
Abstract
In vivo 31 P magnetic resonance spectroscopy (MRS) provides a unique tool for the non-invasive study of brain energy metabolism and mitochondrial function. The assessment of bioenergetic impairment in different brain regions is essential to understand the pathophysiology and progression of human brain diseases. This article presents a simple and effective approach which allows the interleaved measurement of 31 P spectra and imaging from two distinct human brain regions of interest with dynamic B0 shimming capability. A transistor-transistor logic controller was employed to actively switch the single-channel X-nuclear radiofrequency (RF) transmitter-receiver between two 31 P RF surface coils, enabling the interleaved acquisition of two 31 P free induction decays (FIDs) from human occipital and frontal lobes within the same repetition time. Linear gradients were incorporated into the RF pulse sequence to perform the first-order dynamic shimming to further improve spectral resolution. The overall results demonstrate that the approach provides a cost-effective and time-efficient solution for reliable 31 P MRS measurement of cerebral phosphate metabolites and adenosine triphosphate (ATP) metabolic fluxes from two human brain regions with high detection sensitivity and spectral quality at 7 T. The same design concept can be extended to acquire multiple spectra from more than two brain regions or can be employed for other magnetic resonance applications beyond the 31 P spin.
Collapse
Affiliation(s)
- Byeong-Yeul Lee
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Myung Kyun Woo
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455
| | | | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
4
|
Wu M, Fang L, Ray CE, Kumar A, Yang S. Adaptively Optimized Combination (AOC) of Phased-Array MR Spectroscopy Data in the Presence of Correlated Noise: Compared with Noise-Decorrelated or Whitened Methods. Magn Reson Med 2016; 78:848-859. [PMID: 27873353 DOI: 10.1002/mrm.26504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/02/2016] [Accepted: 09/18/2016] [Indexed: 01/13/2023]
Abstract
PURPOSE A method for adaptively optimized combination (AOC) of MR spectroscopic data from a coil array was recently introduced. The superior performance of the AOC method is evident when compared with the methods that assume uncorrelated noise between coil elements. However, it is unclear whether the AOC method represents the most optimal combination in the presence of correlated noise, when compared with the noise-decorrelated or whitened methods that specifically tackle the correlated noise between coil elements. METHODS A new, unified theoretical framework was developed to illustrate the relationship between the AOC method and three noise-decorrelated or whitened methods, namely, noise-decorrelated combination (nd-comb), whitened singular value decomposition (WSVD), and improved WSVD (WSVD+Apod). Simulation-based comparisons and in vivo human brain experiments on a 3 Tesla (T) MRI scanner were performed using an 8-channel phased-array head coil. RESULTS Compared with the noise-decorrelated or whitened methods, the AOC method consistently yielded the best combination in terms of the robustness against noise and maintaining the combined spectrum from distortion, and the superior performance was most evident at a low signal-to-noise ratio (SNR). CONCLUSION The AOC method represents the theoretical optimal combination in the presence of correlated noise between coil elements, whereas the three noise-decorrelated or whitened methods are asymptotically optimal. Magn Reson Med 78:848-859, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Minjie Wu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Liang Fang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Charles E Ray
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anand Kumar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Magnetic Resonance Imaging of Phosphocreatine and Determination of BOLD Kinetics in Lower Extremity Muscles using a Dual-Frequency Coil Array. Sci Rep 2016; 6:30568. [PMID: 27465636 PMCID: PMC4964597 DOI: 10.1038/srep30568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 01/17/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides the unique ability to study metabolic and microvasculature functions in skeletal muscle using phosphorus and proton measurements. However, the low sensitivity of these techniques can make it difficult to capture dynamic muscle activity due to the temporal resolution required for kinetic measurements during and after exercise tasks. Here, we report the design of a dual-nuclei coil array that enables proton and phosphorus MRI of the human lower extremities with high spatial and temporal resolution. We developed an array with whole-volume coverage of the calf and a phosphorus signal-to-noise ratio of more than double that of a birdcage coil in the gastrocnemius muscles. This enabled the local assessment of phosphocreatine recovery kinetics following a plantar flexion exercise using an efficient sampling scheme with a 6 s temporal resolution. The integrated proton array demonstrated image quality approximately equal to that of a clinical state-of-the-art knee coil, which enabled fat quantification and dynamic blood oxygen level-dependent measurements that reflect microvasculature function. The developed array and time-efficient pulse sequences were combined to create a localized assessment of calf metabolism using phosphorus measurements and vasculature function using proton measurements, which could provide new insights into muscle function.
Collapse
|
6
|
Stoll VM, Clarke WT, Levelt E, Liu A, Myerson SG, Robson MD, Neubauer S, Rodgers CT. Dilated Cardiomyopathy: Phosphorus 31 MR Spectroscopy at 7 T. Radiology 2016; 281:409-417. [PMID: 27326664 PMCID: PMC5084974 DOI: 10.1148/radiol.2016152629] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiac phosphorus spectroscopy is demonstrated to be feasible in patients at 7 T,
giving higher signal-to-noise ratios and more precise quantification of the
phosphocreatine to adenosine triphosphate concentration ratio than at 3 T in a group
of 25 patients with dilated cardiomyopathy. Purpose To test whether the increased signal-to-noise ratio of phosphorus 31
(31P) magnetic resonance (MR) spectroscopy at 7 T improves precision
in cardiac metabolite quantification in patients with dilated cardiomyopathy (DCM)
compared with that at 3 T. Materials and Methods Ethical approval was obtained, and participants provided written informe consent.
In a prospective study, 31P MR spectroscopy was performed at 3 T and 7
T in 25 patients with DCM. Ten healthy matched control subjects underwent
31P MR spectroscopy at 7 T. Paired Student t tests
were performed to compare results between the 3-T and 7-T studies. Results The phosphocreatine (PCr) signal-to-noise ratio increased 2.5 times at 7 T
compared with that at 3 T. The PCr to adenosine triphosphate (ATP) concentration
ratio (PCr/ATP) was similar at both field strengths (mean ± standard
deviation, 1.48 ± 0.44 at 3 T vs 1.54 ± 0.39 at 7 T, P
= .49), as expected. The Cramér-Rao lower bounds in PCr concentration (a
measure of uncertainty in the measured ratio) were 45% lower at 7 T than at 3 T,
reflecting the higher quality of 7-T 31P spectra. Patients with dilated
cardioyopathy had a significantly lower PCr/ATP than did healthy control subjects
at 7 T (1.54 ± 0.39 vs 1.95 ± 0.25, P = .005),
which is consistent with previous findings. Conclusion 7-T cardiac 31P MR spectroscopy is feasible in patients with DCM and
gives higher signal-to-noise ratios and more precise quantification of the PCr/ATP
than that at 3 T. PCr/ATP was significantly lower in patients with DCM than in
control subjects at 7 T, which is consistent with previous findings at lower field
strengths.
Collapse
Affiliation(s)
- Victoria M Stoll
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Oxford OX3 9DU, England
| | - William T Clarke
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Oxford OX3 9DU, England
| | - Eylem Levelt
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Oxford OX3 9DU, England
| | - Alexander Liu
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Oxford OX3 9DU, England
| | - Saul G Myerson
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Oxford OX3 9DU, England
| | - Matthew D Robson
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Oxford OX3 9DU, England
| | - Stefan Neubauer
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Oxford OX3 9DU, England
| | - Christopher T Rodgers
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Oxford OX3 9DU, England
| |
Collapse
|
7
|
Rutledge O, Kwak T, Cao P, Zhang X. Design and test of a double-nuclear RF coil for (1)H MRI and (13)C MRSI at 7T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 267:15-21. [PMID: 27078089 PMCID: PMC4862922 DOI: 10.1016/j.jmr.2016.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/09/2016] [Accepted: 04/02/2016] [Indexed: 05/20/2023]
Abstract
RF coil operation at the ultrahigh field of 7T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7T.
Collapse
Affiliation(s)
- Omar Rutledge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | - Tiffany Kwak
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA; UCSF - UC Berkeley Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA.
| |
Collapse
|
8
|
Rodgers CT, Robson MD. Coil combination for receive array spectroscopy: Are data-driven methods superior to methods using computed field maps? Magn Reson Med 2016; 75:473-87. [PMID: 25820303 PMCID: PMC4744755 DOI: 10.1002/mrm.25618] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 12/01/2014] [Accepted: 12/22/2014] [Indexed: 11/12/2022]
Abstract
PURPOSE Combining spectra from receive arrays, particularly X-nuclear spectra with low signal-to-noise ratios (SNRs), is challenging. We test whether data-driven combination methods are better than using computed coil sensitivities. THEORY Several combination algorithms are recast into the notation of Roemer's classic formula, showing that they differ primarily in their estimation of coil receive sensitivities. This viewpoint reveals two extensions of the whitened singular-value decomposition (WSVD) algorithm, using temporal or temporal + spatial apodization to improve the coil sensitivities, and thus the combined spectral SNR. METHODS Radiofrequency fields from an array were simulated and used to make synthetic spectra. These were combined with 10 algorithms. The combined spectra were then assessed in terms of their SNR. Validation used phantoms and cardiac (31) P spectra from five subjects at 3T. RESULTS Combined spectral SNRs from simulations, phantoms, and humans showed the same trends. In phantoms, the combined SNR using computed coil sensitivities was lower than with WSVD combination whenever the WSVD SNR was >14 (or >11 with temporal apodization, or >9 with temporal + spatial apodization). These new apodized WSVD methods gave higher SNRs than other data-driven methods. CONCLUSION In the human torso, at frequencies ≥49 MHz, data-driven combination is preferable to using computed coil sensitivities. Magn Reson, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:473-487, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Christopher T. Rodgers
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford, John Radcliffe HospitalOxfordUnited Kingdom
| | - Matthew D. Robson
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford, John Radcliffe HospitalOxfordUnited Kingdom
| |
Collapse
|
9
|
van de Bank BL, Orzada S, Smits F, Lagemaat MW, Rodgers CT, Bitz AK, Scheenen TWJ. Optimized (31)P MRS in the human brain at 7 T with a dedicated RF coil setup. NMR IN BIOMEDICINE 2015; 28:1570-8. [PMID: 26492089 PMCID: PMC4744789 DOI: 10.1002/nbm.3422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 05/03/2023]
Abstract
The design and construction of a dedicated RF coil setup for human brain imaging ((1)H) and spectroscopy ((31)P) at ultra-high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for (1)H (297.2 MHz) and (31)P (120.3 MHz). It consists of an eight-channel (1)H transmit-receive head coil with multi-transmit capabilities, and an insertable, actively detunable (31)P birdcage (transmit-receive and transmit only), which can be combined with a seven-channel receive-only (31)P array. The setup enables anatomical imaging and (31)P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of (31)P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B1-shimmed low-power irradiation of water protons. Together, these features enable acquisition of (31)P MRSI at high spatial resolutions (3.0 cm(3) voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min).
Collapse
Affiliation(s)
- Bart L van de Bank
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephan Orzada
- Erwin L. Hahn Institute, University Hospital Duisburg-Essen, Essen, Germany
| | - Frits Smits
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miriam W Lagemaat
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Andreas K Bitz
- Erwin L. Hahn Institute, University Hospital Duisburg-Essen, Essen, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Erwin L. Hahn Institute, University Hospital Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Abdoli A, Maudsley AA. Phased-array combination for MR spectroscopic imaging using a water reference. Magn Reson Med 2015; 76:733-41. [PMID: 26413752 DOI: 10.1002/mrm.25992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/04/2015] [Accepted: 08/27/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE To evaluate methods for multichannel combination of three-dimensional MR spectroscopic imaging (MRSI) data with a focus on using information from a water-reference spectroscopic image. METHODS Volumetric MRSI data were acquired for a phantom and for human brain using 8- and 32-channel detection. Acquisition included a water-reference dataset that was used to determine the weights for several multichannel combination methods. Results were compared using the signal-to-noise ratio (SNR) of the N-acetylaspartate resonance. RESULTS Performance of all methods was very similar for the phantom study, with the whitened singular value decomposition (WSVD) and signal magnitude (S) weighting combination having a small advantage. For in vivo studies, the S weighting, SNR weighting and signal to noise squared (S/N(2) ) weighting were the three best methods and performed similarly. Example spectra and SNR maps indicated that the SVD and WSVD methods tend to fail for voxels at the outer edges of the brain that include strong lipid signal contributions. CONCLUSION For data combination of MRSI data using water-reference information, the S/N(2) weighting, SNR and S weighting were the best methods in terms of spectral quality SNR. These methods are also computationally efficient and easy to implement. Magn Reson Med 76:733-741, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abas Abdoli
- Department of Radiology, University of Miami School of Medicine, Miami, Florida, USA
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
11
|
Benkhedah N, Hoffmann SH, Biller A, Nagel AM. Evaluation of adaptive combination of 30‐channel head receive coil array data in
23
N
a
MR
imaging. Magn Reson Med 2015; 75:527-36. [DOI: 10.1002/mrm.25572] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/16/2014] [Accepted: 11/17/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Nadia Benkhedah
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology Heidelberg Germany
| | - Stefan H. Hoffmann
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology Heidelberg Germany
| | - Armin Biller
- University Hospital Heidelberg, Department of Neuroradiology Heidelberg Germany
| | - Armin M. Nagel
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology Heidelberg Germany
| |
Collapse
|
12
|
Goluch S, Kuehne A, Meyerspeer M, Kriegl R, Schmid AI, Fiedler GB, Herrmann T, Mallow J, Hong SM, Cho ZH, Bernarding J, Moser E, Laistler E. A form-fitted three channel (31) P, two channel (1) H transceiver coil array for calf muscle studies at 7 T. Magn Reson Med 2014; 73:2376-89. [PMID: 25046817 DOI: 10.1002/mrm.25339] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/05/2014] [Accepted: 06/06/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE To enhance sensitivity and coverage for calf muscle studies, a novel, form-fitted, three-channel phosphorus-31 ((31) P), two-channel proton ((1) H) transceiver coil array for 7 T MR imaging and spectroscopy is presented. METHODS Electromagnetic simulations employing individually generated voxel models were performed to design a coil array for studying nonpathological muscle metabolism. Static phase combinations of the coil elements' transmit fields were optimized based on homogeneity and efficiency for several voxel models. The best-performing design was built and tested both on phantoms and in vivo. RESULTS Simulations revealed that a shared conductor array for (31) P provides more robust interelement decoupling and better homogeneity than an overlap array in this configuration. A static B1 (+) shim setting that suited various calf anatomies was identified and implemented. Simulations showed that the (31) P array provides signal-to-noise ratio (SNR) benefits over a single loop and a birdcage coil of equal radius by factors of 3.2 and 2.6 in the gastrocnemius and by 2.5 and 2.0 in the soleus muscle. CONCLUSION The performance of the coil in terms of B1 (+) and achievable SNR allows for spatially localized dynamic (31) P spectroscopy studies in the human calf. The associated higher specificity with respect to nonlocalized measurements permits distinguishing the functional responses of different muscles.
Collapse
Affiliation(s)
- Sigrun Goluch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Andre Kuehne
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Roberta Kriegl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), UMR808, Université Paris Sud-CNRS, Orsay, France
| | - Albrecht I Schmid
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Georg B Fiedler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Tim Herrmann
- Department of Biometrics and Medicine Informatics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Mallow
- Department of Biometrics and Medicine Informatics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Suk-Min Hong
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Zang-Hee Cho
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Johannes Bernarding
- Department of Biometrics and Medicine Informatics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Elmar Laistler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Edden RAE, Puts NAJ, Harris AD, Barker PB, Evans CJ. Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J Magn Reson Imaging 2013; 40:1445-52. [PMID: 25548816 DOI: 10.1002/jmri.24478] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The purpose of this study is to describe the Gannet toolkit for the quantitative batch analysis of gamma-aminobutyric acid (GABA) -edited MRS data. MATERIALS AND METHODS Using MEGA-PRESS editing and standard acquisition parameters, four MEGA-PRESS spectra were acquired in three brain regions in 10 healthy volunteers. These 120 datasets were processed without user intervention with Gannet, a Matlab-based tool that takes raw time-domain data input, processes it to generate the frequency-domain edited spectrum, and applies a simple modeling procedure to estimate GABA concentration relative to the creatine or, if provided, the unsuppressed water signal. A comparison of four modeling approaches is also presented. RESULTS All data were successfully processed by Gannet. Coefficients of variation across subjects ranged from 11% for the occipital region to 17% for the dorsolateral prefrontal region. There was no clear difference in fitting performance between the simple Gaussian model used by Gannet and the other more complex models presented. CONCLUSION Gannet, the GABA Analysis Toolkit, can be used to process and quantify GABA-edited MRS spectra without user intervention.
Collapse
|
14
|
Kaggie JD, Hadley JR, Badal J, Campbell JR, Park DJ, Parker DL, Morrell G, Newbould RD, Wood AF, Bangerter NK. A 3 T sodium and proton composite array breast coil. Magn Reson Med 2013; 71:2231-42. [PMID: 24105740 DOI: 10.1002/mrm.24860] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3 T. The secondary objective was to create acceptable proton images with the sodium phased array in place. METHODS A novel composite array for combined proton/sodium 3 T breast MRI is compared with a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multichannel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. RESULTS The composite array coil demonstrates a 2-5× improvement in signal-to-noise ratio for sodium imaging and similar signal-to-noise ratio for proton imaging when compared with a simple single-loop dual resonant design. CONCLUSION The improved signal-to-noise ratio of the composite array gives breast sodium images of unprecedented quality in reasonable scan times.
Collapse
Affiliation(s)
- Joshua D Kaggie
- Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA; Department of Physics, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rodgers CT, Clarke WT, Snyder C, Vaughan JT, Neubauer S, Robson MD. Human cardiac 31P magnetic resonance spectroscopy at 7 Tesla. Magn Reson Med 2013; 72:304-15. [PMID: 24006267 PMCID: PMC4106879 DOI: 10.1002/mrm.24922] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 01/02/2023]
Abstract
Purpose Phosphorus magnetic resonance spectroscopy (31P-MRS) affords unique insight into cardiac energetics but has a low intrinsic signal-to-noise ratio (SNR) in humans. Theory predicts an increased 31P-MRS SNR at 7T, offering exciting possibilities to better investigate cardiac metabolism. We therefore compare the performance of human cardiac 31P-MRS at 7T to 3T, and measure T1s for 31P metabolites at 7T. Methods Matched 31P-MRS data were acquired at 3T and 7T, on nine normal volunteers. A novel Look-Locker CSI acquisition and fitting approach was used to measure T1s on six normal volunteers. Results T1s in the heart at 7T were: phosphocreatine (PCr) 3.05 ± 0.41s, γ-ATP 1.82 ± 0.09s, α-ATP 1.39 ± 0.09s, β-ATP 1.02 ± 0.17s and 2,3-DPG (2,3-diphosphoglycerate) 3.05 ± 0.41s (N = 6). In the field comparison (N = 9), PCr SNR increased 2.8× at 7T relative to 3T, the Cramer-Ráo uncertainty (CRLB) in PCr concentration decreased 2.4×, the mean CRLB in PCr/ATP decreased 2.7× and the PCr/ATP SD decreased 2×. Conclusion Cardiac 31P-MRS at 7T has higher SNR and the spectra can be quantified more precisely than at 3T. Cardiac 31P T1s are shorter at 7T than at 3T. We predict that 7T will become the field strength of choice for cardiac 31P-MRS. Magn Reson Med 72:304–315, 2014. © 2013 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of OxfordLevel 0, John Radcliffe Hospital, Oxford, United Kingdom
- * Correspondence to: Christopher T. Rodgers, D.Phil., Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Oxford, OX3 9DU United Kingdom. E-mail:
| | - William T Clarke
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of OxfordLevel 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Carl Snyder
- Center for Magnetic Resonance Research, University of Minnesota2021 Sixth Street SE, Minneapolis, Minnesota, USA.
| | - J Thomas Vaughan
- Center for Magnetic Resonance Research, University of Minnesota2021 Sixth Street SE, Minneapolis, Minnesota, USA.
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of OxfordLevel 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Matthew D Robson
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of OxfordLevel 0, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
16
|
An L, Willem van der Veen J, Li S, Thomasson DM, Shen J. Combination of multichannel single-voxel MRS signals using generalized least squares. J Magn Reson Imaging 2013; 37:1445-50. [PMID: 23172656 PMCID: PMC3582859 DOI: 10.1002/jmri.23941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/09/2012] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To propose using the generalized least square (GLS) algorithm for combining multichannel single-voxel magnetic resonance spectroscopy (MRS) signals. MATERIALS AND METHODS Phantom and in vivo brain MRS experiments on a 7 T scanner equipped with a 32-channel receiver coil, as well as Monte Carlo simulations, were performed to compare the coefficient of variation (CV) of the GLS method with those of two recently reported spectral combination methods. RESULTS Compared to the two existing methods, the GLS method significantly reduced CV values for the simulation, phantom, and in vivo experiments. CONCLUSION The GLS method can lead to improved precision of peak quantification.
Collapse
Affiliation(s)
- Li An
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
17
|
Keil B, Wald LL. Massively parallel MRI detector arrays. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:75-89. [PMID: 23453758 PMCID: PMC3740730 DOI: 10.1016/j.jmr.2013.02.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 05/15/2023]
Abstract
Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas via reception, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called "ultimate" SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays.
Collapse
Affiliation(s)
- Boris Keil
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | |
Collapse
|
18
|
Constantinides C, Angeli S. Elimination of mutual inductance in NMR phased arrays: the paddle design revisited. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 222:59-67. [PMID: 22820010 DOI: 10.1016/j.jmr.2012.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
This study proposes a method to empirically minimize mutual inductance, using passive end-ring circular paddles, with neighboring coil loops placed in a non-overlapped configuration. The proposed concepts are validated through B(1)-field simulations for resonant coils at f(o)=300.5 MHz, having various sizes (3-10 cm), and for paddles with sizes ranging from 16 to 30 mm, and bench tests on constructed 4×4cm(2) two- (1×2) and four-coil loop (2×2) planar arrays. Simulation results yield total mean percentage B(1)-field differences of only 7.03% between the two non-overlapping coil array configurations (paddles vs. no-paddles). Pair-wise comparisons of elicited mean B(1)-field differences from the use of different circular and rectangular paddle sizes, yield values <5.3%. Theoretical calculation of the normalized mutual coupling coefficient in the non-overlapped coil configuration reduces to almost zero with optimally sized-paddles having a radius of approximately 28% the coil's largest dimension. In the absence of paddles, differences in the split of resonance peaks of 9.9 MHz were observed for the two coils in the 1×2 array, which vanished with paddle placement. Single coil responses (unloaded/loaded) without paddles, and responses from array coils with use of optimally-sized paddles yielded quality factor ratios that ranged between 1.1-1.86 and 1.0-1.5, respectively. Phantom and mouse loaded reflection coefficients S(11)/S(22) were -16.7/-16.2dB and -28.2/-16.1 dB, for the two array loops, respectively. Under unloaded conditions and in the absence of paddles, split resonances were observed for the 1×2 array, yielding transmission coefficients of -5.5 to -8.1 dB, reversing to single resonance responses upon paddle placements, with transmission coefficients of -14.4 to -15.6 dB.
Collapse
Affiliation(s)
- Christakis Constantinides
- Department of Mechanical and Manufacturing Engineering, School of Engineering, University of Cyprus, Cyprus.
| | | |
Collapse
|
19
|
Panda A, Jones S, Stark H, Raghavan RS, Sandrasegaran K, Bansal N, Dydak U. Phosphorus liver MRSI at 3 T using a novel dual-tuned eight-channel ³¹P/¹H H coil. Magn Reson Med 2012; 68:1346-56. [PMID: 22287206 DOI: 10.1002/mrm.24164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Abstract
Although phosphorus-31 (³¹P) magnetic resonance spectroscopy holds potential as noninvasive tool to monitor treatment response of liver malignancies, the lack of appropriate coils has so far restricted its use to liver lesions close to the surface. A novel eight-channel phased-array dual-tuned ³¹P/¹H coil that can assess ³¹P metabolism in deeper liver tissue as well is presented in this article. Analysis of its performance demonstrates that this coil can provide good sensitivity across a width of 20 cm, thereby enabling magnetic resonance spectroscopic imaging (MRSI) scans that can fully cover axial views of the abdomen in lean subjects. In vivo results and reproducibility of ³¹P MRSI at 3 T of axial slices covering the full depth of the liver are shown in healthy volunteers. To minimize intrasubject and intersubject data variability, spectra are corrected for coil sensitivities. Methods to maximize the reproducibility of coil placement and spectroscopic planning are discussed. The phosphomonoesters/phosphodiesters ratio calculated in healthy volunteers has an average intrasubject variation of 23% averaged over voxels selected from the entire liver. Finally, the feasibility of using the coil in the clinic is shown by preliminary ³¹P liver MRSI data obtained from a patient with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Anshuman Panda
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Deelchand DK, Van de Moortele PF, Adriany G, Iltis I, Andersen P, Strupp JP, Vaughan JT, Uğurbil K, Henry PG. In vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 206:74-80. [PMID: 20598925 PMCID: PMC2940249 DOI: 10.1016/j.jmr.2010.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 06/04/2010] [Accepted: 06/04/2010] [Indexed: 05/04/2023]
Abstract
In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far (1)H NMR spectra have been reported in the human brain up to 7 T. In this study we show that excellent quality short echo time STEAM and LASER (1)H NMR spectra can be measured in the human brain at 9.4 T. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T(1) relaxation times of metabolites were slightly longer while T(2) relaxation values of metabolites were shorter (<100 ms) at 9.4 T. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/T from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 T. At very high field, B(0) microsusceptibility effects are the main contributor to the minimum achievable linewidth.
Collapse
Affiliation(s)
- Dinesh Kumar Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rodgers CT, Robson MD. Receive array magnetic resonance spectroscopy: Whitened singular value decomposition (WSVD) gives optimal Bayesian solution. Magn Reson Med 2010; 63:881-91. [PMID: 20373389 DOI: 10.1002/mrm.22230] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Receive array coils play a pivotal role in modern MRI. MR spectroscopy can also benefit from the enhanced signal-to-noise ratio and field of view provided by a receive array. In any experiment using an n-element array, n different complex spectra will be recorded and each spectrum unavoidably contains an undesired noise contribution. Previous algorithms for combining spectra have ignored the fact that the noise detected by different array elements is correlated. We introduce here an algorithm for efficiently, robustly, and automatically combining these n spectra using noise whitening and the singular value decomposition to provide the single combined spectrum that has maximum likelihood in the presence of this correlated noise. Simulations are performed that demonstrate the superiority of this approach to previous methods. Experiments in phantoms and in vivo on the brain, heart, and liver of normal volunteers, at 1.5 T and 3 T, using array coils from eight to 32 elements and with (1)H and (31)P nuclei, validate our approach, which provides signal-to-noise ratio improvements of up to 60% in our tests. The whitening and the singular value decomposition algorithm become most advantageous for large arrays, when the noise is markedly correlated, and when the signal-to-noise ratio is low.
Collapse
Affiliation(s)
- Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
22
|
Meise FM, Rivoire J, Terekhov M, Wiggins GC, Keil B, Karpuk S, Salhi Z, Wald LL, Schreiber LM. Design and evaluation of a 32-channel phased-array coil for lung imaging with hyperpolarized 3-helium. Magn Reson Med 2010; 63:456-64. [PMID: 20099333 DOI: 10.1002/mrm.22265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Imaging with hyperpolarized 3-helium is becoming an increasingly important technique for MRI diagnostics of the lung but is hampered by long breath holds (>20 sec), which are not always applicable in patients with severe lung disease like chronic obstructive pulmonary disease (COPD) or alpha-1-anti-trypsin deficiency. Additionally, oxygen-induced depolarization decay during the long breath holds complicates interpretation of functional data such as apparent diffusion coefficients. To address these issues, we describe and validate a 1.5-T, 32-channel array coil for accelerated (3)He lung imaging and demonstrate its ability to speed up imaging (3)He. A signal-to-noise ratio increase of up to a factor of 17 was observed compared to a conventional double-resonant birdcage for unaccelerated imaging, potentially allowing increased image resolution or decreased gas production requirements. Accelerated imaging of the whole lung with one-dimensional and two-dimensional acceleration factors of 4 and 4 x 2, respectively, was achieved while still retaining excellent image quality. Finally, the potential of highly parallel detection in lung imaging is demonstrated with high-resolution morphologic and functional images.
Collapse
Affiliation(s)
- Florian M Meise
- Section of Medical Physics, Department of Diagnostic and Interventional Radiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tyler DJ, Hudsmith LE, Clarke K, Neubauer S, Robson MD. A comparison of cardiac (31)P MRS at 1.5 and 3 T. NMR IN BIOMEDICINE 2008; 21:793-8. [PMID: 18512846 DOI: 10.1002/nbm.1255] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
(31)P MRS was evaluated on normal volunteers at 1.5 and 3 T, and the signal-to-noise ratio (SNR) of the two field strengths was calculated. The in vivo spin-lattice, T(1), relaxation times for PCr and gamma-ATP, which are essential for correcting for the effects of radiofrequency saturation on the PCr/ATP ratio, were determined at 3 T. The T(1) values for six volunteers were 3.8 +/- 0.7 s for PCr (mean +/- SD) and 2.4 +/- 1.1 s for gamma-ATP, which are similar to reported values at 1.5 T, allowing us to use protocols developed at 1.5 T at the new clinical field strength of 3 T. Direct comparison between 1.5 T and 3 T in the same 10 subjects, using coils of identical geometry and identical pulse sequences gave a mean SNR for PCr at 3 T which was 206 +/- 94% of that at 1.5 T. The linewidth for PCr increased from 13 +/- 6 Hz at 1.5 T to 22 +/- 12 Hz at 3 T. The coefficient of variation in the measurement of PCr/ATP, based on the Cramer-Rao lower bounds, was reduced from 32 +/- 25% at 1.5 T to 18 +/- 13% at 3 T. Thus, (31)P MRS at 3 T is greatly improved by the increase in SNR compared with acquisitions at 1.5 T because of the higher field strength.
Collapse
Affiliation(s)
- Damian J Tyler
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | |
Collapse
|
24
|
Bydder M, Hamilton G, Yokoo T, Sirlin CB. Optimal phased-array combination for spectroscopy. Magn Reson Imaging 2008; 26:847-50. [PMID: 18486392 DOI: 10.1016/j.mri.2008.01.050] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/23/2007] [Accepted: 01/28/2008] [Indexed: 11/16/2022]
Abstract
A method for making weighted linear combinations of the spectra acquired by a phased-array coil is described. Unlike most previous combination methods, no special reference points in the data are chosen to represent the coil weights. Instead, all the data points are used, which results in optimal signal-to-noise ratio more reliable estimation. The method uses singular value decomposition to identify the coil weights and extract the principal component of variation in the signal. Subsequent processing of the combined signal (e.g., Fourier transform, baseline correction, phasing) may proceed as per a single coil acquisition.
Collapse
Affiliation(s)
- Mark Bydder
- MR3T Building, Department of Radiology, University of California San Diego, San Diego, CA 92103-8226, USA.
| | | | | | | |
Collapse
|
25
|
Avdievich NI, Hetherington HP. 4 T Actively detuneable double-tuned 1H/31P head volume coil and four-channel 31P phased array for human brain spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 186:341-6. [PMID: 17379554 PMCID: PMC2677064 DOI: 10.1016/j.jmr.2007.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 02/09/2007] [Accepted: 03/01/2007] [Indexed: 05/14/2023]
Abstract
Typically 31P in vivo magnetic resonance spectroscopic studies are limited by SNR considerations. Although phased arrays can improve the SNR; to date 31P phased arrays for high-field systems have not been combined with 31P volume transmit coils. Additionally, to provide anatomical reference for the 31P studies, without removal of the coil or patient from the magnet, double-tuning (31P/1H) of the volume coil is required. In this work we describe a series of methods for active detuning and decoupling enabling use of phased arrays with double-tuned volume coils. To demonstrate these principles we have built and characterized an actively detuneable 31P/1H TEM volume transmit/four-channel 31P phased array for 4 T magnetic resonance spectroscopic imaging (MRSI) of the human brain. The coil can be used either in volume-transmit/array-receive mode or in TEM transmit/receive mode with the array detuned. Threefold SNR improvement was obtained at the periphery of the brain using the phased array as compared to the volume coil.
Collapse
Affiliation(s)
- N I Avdievich
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
26
|
Doty FD, Entzminger G, Kulkarni J, Pamarthy K, Staab JP. Radio frequency coil technology for small-animal MRI. NMR IN BIOMEDICINE 2007; 20:304-25. [PMID: 17451180 DOI: 10.1002/nbm.1149] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A review of the theory, technology, and use of radio frequency (RF) coils for small-animal MRI is presented. It includes a brief overview of MR signal-to-noise (S/N) analysis and discussions of the various coils commonly used in small-animal MR: surface coils, linear volume coils, birdcages, and their derivatives. The scope is limited to mid-range coils, i.e. coils where the product (fd) of the frequency f and the coil diameter d is in the range 2-30 MHz-m. Common applications include mouse brain and body coils from 125 to 750 MHz, rat body coils up to 500 MHz, and small surface coils at all fields. In this regime, all the sources of loss (coil, capacitor, sample, shield, and transmission lines) are important. All such losses may be accurately captured in some modern full-wave 3D electromagnetics software, and new simulation results are presented for a selection of surface coils using Microwave Studio 2006 by Computer Simulation Technology, showing the dramatic importance of the "lift-off effect". Standard linear circuit simulators have been shown to be useful in optimization of complex coil tuning and matching circuits. There appears to be considerable potential for trading S/N for speed using phased arrays, especially for a larger field of view. Circuit simulators are shown to be useful for optimal mismatching of ultra-low-noise preamps based on the enhancement-mode pseudomorphic high-electron-mobility transistor for optimal coil decoupling in phased arrays. Cryogenically cooled RF coils are shown to offer considerable opportunity for future gains in S/N in smaller samples.
Collapse
Affiliation(s)
- F David Doty
- Doty Scientific Inc., 700 Clemson Road, Columbia, SC 29229, USA.
| | | | | | | | | |
Collapse
|
27
|
Hardy CJ, Cline HE, Giaquinto RO, Niendorf T, Grant AK, Sodickson DK. 32-element receiver-coil array for cardiac imaging. Magn Reson Med 2006; 55:1142-9. [PMID: 16596635 PMCID: PMC2819007 DOI: 10.1002/mrm.20870] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A lightweight 32-element MRI receiver-coil array was designed and built for cardiac imaging. It comprises an anterior array of 21 copper rings (75 mm diameter) and a posterior array of 11 rings (107 mm diameter) that are arranged in hexagonal lattices so as to decouple nearest neighbors, and curved around the left side of the torso. Imaging experiments on phantoms and human volunteers show that it yields superior performance relative to an eight-element cardiac array as well as a 32-element whole-torso array for both traditional nonaccelerated cardiac imaging and 3D parallel imaging with acceleration factors as high as 16.
Collapse
Affiliation(s)
- Christopher J Hardy
- GE Global Research, Niskayuna, New York 12309, USA, and Technical University Aachen, University Hospital, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Wang J, Qiu M, Constable RT. In vivo method for correcting transmit/receive nonuniformities with phased array coils. Magn Reson Med 2005; 53:666-74. [PMID: 15723397 DOI: 10.1002/mrm.20377] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phased array coils are finding widespread applications in both the research and the clinical setting. However, intensity nonuniformities with such coils can reduce the potential benefits of these coils, particularly for applications such as tissue segmentation. In this work, a method is described for correcting the nonuniform signal response based on in vivo measures of both the transmission field of body coil and the reception sensitivity of phased array coils, separately. For a uniform phantom, the reception sensitivity can be calculated using both Bloch equations and transmission field maps. For a heterogeneous object such as a brain, a minimal contrast acquisition must be obtained to map the receiver nonuniformities. This transmit field/receiver sensitivity (TFRS) approach is compared with the standard methods of using the body coil to obtain a reference scan and low-pass filtering. The quantitative comparison results shows that the TFRS approach provides superior results in correcting intensity nonuniformities for a uniform phantom. This approach reduces the ratio between signal intensity SD of an image and its mean intensity from approximately 21% before correction to 13% after correction. Results are also shown demonstrating the utility of this approach in vivo with human brain images. The method is general and can be applied with most pulse sequences, any coil combination for transmission and reception, and in any anatomic region.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Diagnostic Radiology, Yale University School Medical Center, The Anlyan Center, 300 Cedar Street, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
29
|
Brown MA. Time-domain combination of MR spectroscopy data acquired using phased-array coils. Magn Reson Med 2004; 52:1207-13. [PMID: 15508170 DOI: 10.1002/mrm.20244] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new method for efficiently processing MRS data acquired with phased-array coils is presented. The method consists of performing phase compensation (i.e., redefining the signal phase relative to a common reference) of the signals in the time domain prior to combining the signals. The resulting spectra are equivalent to those obtained by previously published methods for phased-array spectral data processing (i.e., processing the signals individually and then combining them in the frequency domain). The method allows spectra acquired with phased-array coils to be processed as efficiently as those acquired with non-phased-array coils. Both single voxel spectroscopy (SVS) and chemical shift imaging (CSI) data sets may be processed by this method.
Collapse
Affiliation(s)
- Mark A Brown
- Siemens Training and Development Center, Siemens Medical Solutions, Cary, North Carolina 27511, USA.
| |
Collapse
|
30
|
Bankson JA, Wright SM. Multi-channel magnetic resonance spectroscopy through time domain multiplexing. Magn Reson Imaging 2001; 19:1001-8. [PMID: 11595372 DOI: 10.1016/s0730-725x(01)00425-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Time domain multiplexing (TDM) is presented as a viable approach to increasing the sensitivity and efficiency of magnetic resonance spectroscopic (MRS) experiments through multi-channel signal acquisition. By switching very rapidly between coils of a receive phased array, TDM receiver extensions allow the acquisition of multiple, independent spectra through a single channel magnetic resonance console. A TDM receiver extension designed for imaging and spectroscopy is described, and the impact of this hardware extension on the processing and quantitation of MRS data is addressed. The primary complication involves the use of fixed bandwidth RF band-pass filters that can not be adjusted to match the spectral width of the desired MRS experiment.MRS sequences whose bandwidths are narrower than the bandwidth provided by TDM band-pass filters can be acquired through TDM with minimal loss of SNR as long as two constraints are met. The first constraint requires that the entire bandwidth of the band-pass filters be sampled at or more rapidly than the Nyquist rate associated with their bandwidth, to prevent extra noise from aliasing into the final spectrum. The second requirement is that spectral resolution be held constant to that of the desired experiment. Results from a two-channel multiplexed MRS experiment, conducted according to these guidelines, illustrate that TDM can be used to allow acquisition of multi-channel MRS experiments through single channel console systems with a minimal loss in SNR.
Collapse
Affiliation(s)
- J A Bankson
- Department of Electrical Engineering, Texas A&M University, College Station, TX, USA.
| | | |
Collapse
|
31
|
Abstract
With the increasing interest in phased arrays in magnetic resonance imaging, imaging system receivers capable of acquiring larger number of parallel signals are needed. Suggested techniques for rapid imaging propose the use of arrays with as many as 128 elements. While simply duplicating the number of receiver chains as needed is a viable technique, it quickly becomes both cumbersome and expensive. Time domain multiplexing offers an alternative solution to this problem. By using RF multiplexing switches, a single receiver can be upgraded to an array receiver capable of multi-channel data acquisition giving users array capability. Additionally, it can be used to dramatically increase acquisition capability of multiple receiver systems. This paper reports results from a multiplexing system upgrade, which converts a single channel standard clinical imaging system to a 16-channel array system. The upgrade includes both the RF multiplexing front-end and an external data acquisition system with image processing capability. Issues concerning the implementation of high channel-count multiplexers are also discussed.
Collapse
Affiliation(s)
- J R Porter
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 7843, USA.
| | | |
Collapse
|
32
|
von Kienlin M, Beer M, Greiser A, Hahn D, Harre K, Köstler H, Landschütz W, Pabst T, Sandstede J, Neubauer S. Advances in human cardiac 31P-MR spectroscopy: SLOOP and clinical applications. J Magn Reson Imaging 2001; 13:521-7. [PMID: 11276095 DOI: 10.1002/jmri.1074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phosphorus magnetic resonance spectroscopy (31P-MRS) has revealed a lot about the biochemistry of physiological and pathological processes in the heart. Nevertheless, until today, cardiac 31P-MRS has not had any clinical impact, albeit some pioneering studies demonstrated that 31P-MRS can indeed provide diagnostic information. In this paper, the development of techniques for human cardiac 31P-MRS over the past decade is reviewed, and the requirements for a reliable clinical measurement protocol are discussed. Spatial localization with optimal pointspread function (SLOOP) is a new method to achieve spatial localization and absolute quantitation. Its properties are detailed, and preliminary findings in patients with dilated cardiomyopathy or myocardial infarction are presented.
Collapse
Affiliation(s)
- M von Kienlin
- Institute of Physics, University of Würzburg, Am Hubland, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- M von Kienlin
- Department of Biophysics, University of Würzburg, Germany.
| |
Collapse
|
34
|
Nittka M, Haase A. Investigation of complex phased array coil designs for cardiac imaging. MAGMA (NEW YORK, N.Y.) 2000; 10:122-30. [PMID: 10873202 DOI: 10.1007/bf02601847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study we present a method to simulate complex phased array coil designs for cardiac imaging. It is based on the combination of numerically calculated B(1) field vectors for each coil of the array and a noise resistance data set, which is acquired only once with a set of test coils. This technique allowed fast assessment of the SNR performance of arbitrary geometries of single coils to be used as building blocks in complex array configurations. In addition, since clinical scanners usually provide only four receiver channels, we used this method to investigate the use of hardware combiners for different array configurations, consisting of up to eight coils. Simulated array geometries resulted in up to approximately 30% gain in SNR for deep cardiac structures, compared to a conventional linear four coil array. This was confirmed by phantom experiments with implemented coils.
Collapse
Affiliation(s)
- M Nittka
- Physikalisches Institut, Experimentelle Physik V, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | |
Collapse
|
35
|
Abstract
The simultaneous acquisition of spatial harmonics (SMASH) method of imaging with detector arrays can reduce the number of phase-encoding steps, and MRI scan time several-fold. The original approach utilized numerical gradient-descent fitting with the coil sensitivity profiles to create a set of composite spatial harmonics to replace the phase-encoding steps. Here, an analytical approach for generating the harmonics is presented. A transform is derived to project the harmonics onto a set of sensitivity profiles. A sequence of Fourier, Hilbert, and inverse Fourier transform is then applied to analytically eliminate spatially dependent phase errors from the different coils while fully preserving the spatial-encoding. By combining the transform and phase correction, the original numerical image reconstruction method can be replaced by an analytical SMASH procedure (ASP). The approach also allows simulation of SMASH imaging, revealing a criterion for the ratio of the detector sensitivity profile width to the detector spacing that produces optimal harmonic generation. When detector geometry is suboptimal, a group of quasi-harmonics arises, which can be corrected and restored to pure harmonics. The simulation also reveals high-order harmonic modulation effects, and a demodulation procedure is presented that enables application of ASP to a large numbers of detectors. The method is demonstrated on a phantom and humans using a standard 4-channel phased-array MRI system.
Collapse
Affiliation(s)
- R F Lee
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
36
|
Lee RF, Giaquinto R, Constantinides C, Souza S, Weiss RG, Bottomley PA. A broadband phased-array system for direct phosphorus and sodium metabolic MRI on a clinical scanner. Magn Reson Med 2000; 43:269-77. [PMID: 10680691 DOI: 10.1002/(sici)1522-2594(200002)43:2<269::aid-mrm14>3.0.co;2-j] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite their proven gains in signal-to-noise ratio and field-of-view for routine clinical MRI, phased-array detection systems are currently unavailable for nuclei other than protons (1H). A broadband phased-array system was designed and built to convert the 1H transmitter signal to the non-1H frequency for excitation and to convert non-1H phased-array MRI signals to the 1H frequency for presentation to the narrowband 1H receivers of a clinical whole-body 1.5 T MRI system. With this system, the scanner operates at the 1H frequency, whereas phased-array MRI occurs at the frequency of the other nucleus. Pulse sequences were developed for direct phased-array sodium (23Na) and phosphorus (31P) MRI of high-energy phosphates using chemical selective imaging, thereby avoiding the complex processing and reconstruction required for phased-array magnetic resonance spectroscopy data. Flexible 4-channel 31P and 23Na phased-arrays were built and the entire system tested in phantom and human studies. The array produced a signal-to-noise ratio improvement of 20% relative to the best-positioned single coil, but gains of 300-400% were realized in many voxels located outside the effective field-of-view of the single coil. Cardiac phosphorus and sodium MRI were obtained in 6-13 min with 16 and 0.5 mL resolution, respectively. Lower resolution human cardiac 23Na MRI were obtained in as little as 4 sec. The system provides a practical approach to realizing the advantages of phased-arrays for nuclei other than 1H, and imaging metabolites directly.
Collapse
Affiliation(s)
- R F Lee
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287-0843, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Myocardial pH has been shown in animal models to be a sensitive indicator of ischemia. In vivo measurement in humans using 31p magnetic resonance spectroscopy is complicated by the overlap of blood 2,3-diphosphoglycerate peaks with the P(i) peak used for pH measurement. A "saturation transfer" method combined with spatial presaturation of skeletal muscle signal is presented which can obtain spectra from the heart free of contamination of 2,3-DPG signal in which intracellular P(i) resonance can be clearly observed. Application to a group of six normal subjects found that the chemical shift of the intracellular inorganic phosphate peak was 4.95+/-0.06 relative to the phosphocreatine peak. This is equivalent to a pH of 7.11+/-0.05.
Collapse
Affiliation(s)
- A M Blamire
- MRC Biochemical and Clinical Magnetic Resonance Spectroscopy Unit, John Radcliffe Hospital, Headington, Oxford, England
| | | | | |
Collapse
|
38
|
Löffler R, Sauter R, Kolem H, Haase A, von Kienlin M. Localized spectroscopy from anatomically matched compartments: improved sensitivity and localization for cardiac 31P MRS in humans. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1998; 134:287-299. [PMID: 9761704 DOI: 10.1006/jmre.1998.1497] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several pioneering studies have demonstrated that localized 31P NMR spectroscopy of the human heart might become an important diagnostic tool in cardiology. The main limitation is due to the low sensitivity of these experiments, allowing only crude spatial resolution. We have implemented a three-dimensional version of SLOOP ("spectral localization with optimal pointspread function") on a clinical instrument. SLOOP takes advantage of all available a priori information to match the size and the shape of the sensitive volumes to the anatomical structures in the examined subject. Thus, SLOOP reduces the contamination from adjacent organs and improves the sensitivity compared to conventional techniques such as ISIS or chemical shift imaging (CSI). Initial studies were performed on six healthy volunteers at 1.5 T. The good localization properties are demonstrated by the absence of resonances from blood in the heart spectra, and by PCr-free spectra from the liver. Compared to conventional CSI, the signal-to-noise ratio of the SLOOP heart spectra was improved by approximately 30%. Taking into account the varying excitation angle in the inhomogeneous B1 field of the surface coil, the SLOOP model computes the local spin saturation at every point in space. Therefore, no global saturation correction is required in the quantitative evaluation of local spectra. In this study, we found a PCr/gamma-ATP ratio in the left ventricular wall of 1.90 +/- 0.33 (mean +/- standard deviation).
Collapse
Affiliation(s)
- R Löffler
- Physikalisches Institut, Universität Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Abstract
Volume-array coils offer increased signal-to-noise ratio (SNR) over standard volume coils near the array elements while preserving the SNR at the center of the volume. As the number of array elements is increased, the SNR advantage as well as the complexity of actually constructing the array increases also. In this study, a 16-channel receive-only array for imaging of the brain is demonstrated and compared to a circularly polarized (CP) head coil of similar shape and diameter. The array was formed from a 2 x 8 grid of square elements placed on a cylindrical form. Mutual coupling was minimized by a combination of overlapping element placement and current-reducing matching networks. Simultaneous data acquisition from the 16 individual elements was performed using a four-channel receiver system with each channel time domain multiplexed by a factor of 4. Theoretical and experimental comparisons between the array and a standard CP head coil show that the array offers an increase in SNR of nearly a factor of 3 near its surface while maintaining a comparable SNR to that of the CP head coil in the center of the region of interest.
Collapse
Affiliation(s)
- J R Porter
- Department of Electrical Engineering, Texas A&M University, College Station, USA
| | | | | |
Collapse
|
40
|
von Kienlin M, Rösch C, Le Fur Y, Behr W, Roder F, Haase A, Horn M, Illing B, Hu K, Ertl G, Neubauer S. Three-dimensional 31P magnetic resonance spectroscopic imaging of regional high-energy phosphate metabolism in injured rat heart. Magn Reson Med 1998; 39:731-41. [PMID: 9581604 DOI: 10.1002/mrm.1910390510] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of this study was to measure the spatially varying 31P MR signals in global and regional ischemic injury in the isolated, perfused rat heart. Chronic myocardial infarcts were induced by occluding the left anterior descending coronary artery eight weeks before the MR examination. The effects of acute global low-flow ischemia were observed by reducing the perfusate flow. Chemical shift imaging (CSI) with three spatial dimensions was used to obtain 31P spectra in 54-microl voxels. Multislice 1H imaging with magnetization transfer contrast enhancement provided anatomical information. In normal hearts (n = 8), a homogeneous distribution of high-energy phosphate metabolites (HEP) was found. In chronic myocardial infarction (n = 6), scar tissue contained negligible amounts of HEP, but their distribution in residual myocardium was uniform. The size of the infarcted area could be measured from the metabolic images; the correlation of infarct sizes determined by histology and 31P MR CSI was excellent (P < 0.006). In global low-flow ischemia (n = 8), changes of HEP showed substantial regional heterogeneity. Three-dimensional 31P MR CSI should yield new insights into the regionally distinct metabolic consequences of various forms of myocardial injury.
Collapse
Affiliation(s)
- M von Kienlin
- Department of Physics, University of Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The theory and application of array coils are reviewed in the context of phased array spectroscopy. The optimization of the signal-to-noise ratio from an array of coils is developed by considering the efficiency of a phased array transmit coil. This approach avoids the need to consider noise correlation, and should be useful in future considerations of transmit phased array coils for MR spectroscopy. Methods to characterize array coil performance, including fields and coupling are briefly summarized, along with methods to minimize the effects of mutual inductance. The signal-to-noise advantages of array coils over single coils are examined for both planar and cylindrical arrays. Numerical simulations of planar arrays of 2 x 2, 4 x 4 and 8 x 8 elements and constant overall dimension are compared to a single coil of the same size. The results demonstrate a significant improvement in sensitivity near the array coil. Although the benefits of the array decrease as a function of distance from the array, the array sensitivity never drops below that of a single coil with the same overall dimensions, or that of a single element of the array. Similar results are obtained for a sixteen element cylindrical array, which is compared to a standard quadrature birdcage coil using both computational methods and phantom measurements. The phased array techniques reviewed are demonstrated with proton spectroscopic images of the brain.
Collapse
Affiliation(s)
- S M Wright
- Department of Electrical Engineering, Texas A&M University, College Station, USA
| | | |
Collapse
|
42
|
Abstract
The in vivo applications of magnetic resonance spectroscopic imaging (MRSI) have expanded significantly over the past 10 years and have reached the point where clinical trials are underway for a number of different diseases. One of the limiting factors in the widespread use of this technology has been the lack of widely available tools for obtaining data which are localized to sufficiently small tissue volumes to make an impact upon diagnosis and treatment planning. This is especially difficult within the timeframe of a clinical MR examination, which requires that both anatomic and metabolic data are acquired and processed. Recent advances in the hardware and software associated with clinical scanners have provided the potential for improvements in the spatial and time resolution of imaging and spectral data. The two areas which hold the most promise in terms of MRSI data are the use of phased array coils and the implementation of echo planar k-space sampling techniques. These could have immediate impact for 1H MRSI and may prove valuable for future applications of 31P MRSI.
Collapse
Affiliation(s)
- S J Nelson
- Department of Radiology, University of California San Francisco 94143, USA.
| | | | | | | |
Collapse
|
43
|
Constantinides CD, Atalar E, McVeigh ER. Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 1997; 38:852-7. [PMID: 9358462 PMCID: PMC2570034 DOI: 10.1002/mrm.1910380524] [Citation(s) in RCA: 368] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A method is proposed to estimate signal-to-noise ratio (SNR) values in phased array magnitude images, based on a region-of-interest (ROI) analysis. It is shown that the SNR can be found by correcting the measured signal intensity for the noise bias effects and by evaluating the noise variance as the mean square value of all the pixel intensities in a chosen background ROI, divided by twice the number of receivers used. Estimated SNR values are shown to vary spatially within a bound of 20% with respect to the true SNR values as a result of noise correlations between receivers.
Collapse
Affiliation(s)
- C D Constantinides
- Department of Biomedical Engineering, Johns-Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
44
|
Bottomley PA, Lugo Olivieri CH, Giaquinto R. What is the optimum phased array coil design for cardiac and torso magnetic resonance? Magn Reson Med 1997; 37:591-9. [PMID: 9094082 DOI: 10.1002/mrm.1910370419] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To determine the optimum configuration of a phased array MR coil system for human cardiac applications, the sensitivity of 10 flexible array designs operating under ideal conditions was calculated at 13 points circling the myocardium of a model torso whose geometry was determined from healthy volunteers. The array geometries that were evaluated included continuous strips of 2, 4, 6, and 10 circular coils of diameter equal to half the torso thickness wrapped laterally around the torso, 2 pairs of coils located on the left side of the chest and back, clusters of 3 coils in 2 orientations, clusters of 4 and 6 coils, and a hybrid cross of 6 coils. The 4-, 6-, and 10-coil strip arrays out-performed the other designs for a given number of coils, yielding average theoretical sensitivity improvements of 45%, 53%, and 55% relative to a single flexible coil positioned at the point closest to the anterior myocardium, compared with about 30% for 4- and 6-coil clusters and the 2-pair geometry (P < 0.02). A flexible 4-coil strip array was constructed for a clinical 1.5 T scanner with 15-cm diameter circular surface coils on flexible circuit board. The signal-to-noise ratio (SNR) of this coil at the 13 cardiac locations was measured in 15 normal volunteers and compared with the SNR measured in images acquired with standard commercial MR coils: a body coil, a flexible torso array, a general purpose flexible coil, and, in 4 subjects, a dual array coil. In the prone orientation, the average myocardial SNR improvement of the 4-coil strip array was 650% relative to the whole body coil, compared with 310-340% for the other commercial coils (P < 0.00005). The twofold advantage over the commercial coils persisted in supine studies (P < 0.00005, n = 5). Thus, flexible circumferential phased arrays of strips of surface coils of diameter comparable with the depth of the heart generally out-perform many other standard geometries for a given number of coils, and can yield dramatically improved SNR over coils available for general use in the torso.
Collapse
Affiliation(s)
- P A Bottomley
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21287-0843, USA
| | | | | |
Collapse
|
45
|
Wald LL, Moyher SE, Day MR, Nelson SJ, Vigneron DB. Proton spectroscopic imaging of the human brain using phased array detectors. Magn Reson Med 1995; 34:440-5. [PMID: 7500884 DOI: 10.1002/mrm.1910340322] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Two and four-coil phased array detectors have been developed to increase the sensitivity of proton spectroscopic imaging of the human brain. These include a quadrature figure-8 coil for the study of the vertex, several arrays of 2-4 small overlapping (6-8 cm diameter) circular coils and a combination figure-8 coil plus circular coil. These were constructed in our laboratory and tested to assess their utility for brain spectroscopy. Methods for optimally combining the data from the independent receivers based on the analytical coil maps or measured signal to noise ratios (SNRs) of the data were investigated. High spatial resolution (0.2-0.4 cm3 voxel size) two- or three-dimensional chemical shift images of normal brain were obtained in 17-minute acquisitions. These spatial resolutions are comparable to those previously obtained with conventional small surface coils, but the specialized detectors allow this sensitivity to be achieved for a larger region or for previously inaccessible areas such as the top of the head. The coverage and SNR increases demonstrated are similar to those obtained in magnetic resonance phased array imaging.
Collapse
Affiliation(s)
- L L Wald
- Department of Radiology, University of California at San Francisco 94143-1290, USA
| | | | | | | | | |
Collapse
|
46
|
Wald LL, Carvajal L, Moyher SE, Nelson SJ, Grant PE, Barkovich AJ, Vigneron DB. Phased array detectors and an automated intensity-correction algorithm for high-resolution MR imaging of the human brain. Magn Reson Med 1995; 34:433-9. [PMID: 7500883 DOI: 10.1002/mrm.1910340321] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Two- and four-coil phased array detectors were developed to increase the sensitivity and resolution of MR imaging of the human brain cortex, especially for detecting cortical dysplasias in pediatric epilepsy patients. An automated intensity correction algorithm based on an edge-completed, low-pass filtered image was used to correct the image intensity for the inhomogenous reception profile of the coils. Seven phased array coils were constructed and tested. The sensitivity of these coils was up to 600% higher at the surface of the cortex than that achieved with a conventional head coil and up to 30% greater at the center of the head. The sensitivity obtained was comparable with that of a conventional small surface coil, but extended over the larger dimensions of the array and previously inaccessible areas such as the top of the head. The advantages of the improved sensitivity are demonstrated with high resolution images of the brain.
Collapse
Affiliation(s)
- L L Wald
- Magnetic Resonance Science Center, University of California at San Francisco 94143-1290, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Fayad ZA, Connick TJ, Axel L. An improved quadrature or phased-array coil for MR cardiac imaging. Magn Reson Med 1995; 34:186-93. [PMID: 7476077 DOI: 10.1002/mrm.1910340209] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A tailored receive-only coil for cardiac imaging has been designed. The coil consists of two overlapping coil elements and can be used either as a quadrature surface coil or as a phased-array coil. Through phantom experiments and images of the heart, the authors have shown that the improved cardiac coil provided a signal-to-noise ratio 1.6 times higher than a conventional quadrature spine coil, 1.4 times higher than that of a single coil (having the same shape and total dimension), and three times higher than the body coil at the depth of the posterior wall of the heart. The authors have also shown that the cardiac coil improved image quality everywhere in the heart. This coil will enhance routine clinical cardiac studies as well as other examinations such as myocardial perfusion, wall motion, and coronary artery imaging.
Collapse
Affiliation(s)
- Z A Fayad
- Department of Bioengineering, University of Pennsylvania, Philadelphia 19104-6086, USA
| | | | | |
Collapse
|
48
|
Constantinides CD, Westgate CR, O'Dell WG, Zerhouni EA, McVeigh ER. A phased array coil for human cardiac imaging. Magn Reson Med 1995; 34:92-8. [PMID: 7674903 PMCID: PMC2396277 DOI: 10.1002/mrm.1910340114] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A prototype cardiac phased array receiver coil was constructed that comprised a cylindrical array and a separate planar array. Both arrays had two coil loops with the same coil dimensions. Data acquisition with the cylindrical array placed on the human chest, and the planar array placed under the back, yielded an overall enhancement of the signal-to-noise ratio (SNR) over the entire heart by a factor of 1.1-2.85 over a commercially available flexible coil and a commercially available four-loop planar phased array coil. This improvement in SNR can be exploited in cardiac imaging to increase the spatial resolution and reduce the image acquisition time.
Collapse
Affiliation(s)
- C D Constantinides
- Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
49
|
|