1
|
Mufti N, Aertsen M, Thomson D, De Vloo P, Demaerel P, Deprest J, Melbourne A, David AL. Longitudinal MRI in the context of in utero surgery for open spina bifida: A descriptive study. Acta Obstet Gynecol Scand 2024; 103:322-333. [PMID: 37984808 PMCID: PMC10823411 DOI: 10.1111/aogs.14711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/17/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Fetal surgery for open spina bifida (OSB) requires comprehensive preoperative assessment using imaging for appropriate patient selection and to evaluate postoperative efficacy and complications. We explored patient access and conduct of fetal magnetic resonance imaging (MRI) for prenatal assessment of OSB patients eligible for fetal surgery. We compared imaging acquisition and reporting to the International Society of Ultrasound in Obstetrics and Gynecology MRI performance guidelines. MATERIAL AND METHODS We surveyed access to fetal MRI for OSB in referring fetal medicine units (FMUs) in the UK and Ireland, and two NHS England specialist commissioned fetal surgery centers (FSCs) at University College London Hospital, and University Hospitals KU Leuven Belgium. To study MRI acquisition protocols, we retrospectively analyzed fetal MRI images before and after fetal surgery for OSB. RESULTS MRI for fetal OSB was accessible with appropriate specialists available to supervise, perform, and report scans. The average time to arrange a fetal MRI appointment from request was 4 ± 3 days (range, 0-10), the average scan time available was 37 ± 16 min (range, 20-80 min), with 15 ± 11 min (range, 0-30 min) extra time to repeat sequences as required. Specific MRI acquisition protocols, and MRI reporting templates were available in only 32% and 18% of units, respectively. Satisfactory T2-weighted (T2W) brain imaging acquired in three orthogonal planes was achieved preoperatively in all centers, and 6 weeks postoperatively in 96% of FSCs and 78% of referring FMUs. However, for T2W spine image acquisition referring FMUs were less able to provide three orthogonal planes presurgery (98% FSC vs. 50% FMU, p < 0.001), and 6 weeks post-surgery (100% FSC vs. 48% FMU, p < 0.001). Other standard imaging recommendations such as T1-weighted (T1W), gradient echo (GE) or echoplanar fetal brain and spine imaging in one or two orthogonal planes were more likely available in FSCs compared to FMUs pre- and post-surgery (p < 0.001). CONCLUSIONS There was timely access to supervised MRI for OSB fetal surgery assessment. However, the provision of images of the fetal brain and spine in sufficient orthogonal planes, which are required for determining eligibility and to determine the reversal of hindbrain herniation after fetal surgery, were less frequently acquired. Our evidence suggests the need for specific guidance in relation to fetal MRI for OSB. We propose an example guidance for MRI acquisition and reporting.
Collapse
Affiliation(s)
- Nada Mufti
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonUK
- School of Biomedical Engineering and Imaging Sciences (BMEIS)King's College LondonLondonUK
| | - Michael Aertsen
- Department of RadiologyUniversity Hospitals Katholieke Universiteit (KU)LeuvenBelgium
| | - Dominic Thomson
- Pediatric Neurosurgery DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
| | - Phillippe De Vloo
- Department of NeurosurgeryUniversity Hospitals Katholieke Universiteit (KU)LeuvenBelgium
| | - Philippe Demaerel
- Department of RadiologyUniversity Hospitals Katholieke Universiteit (KU)LeuvenBelgium
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonUK
- Department of Obstetrics and GynecologyUniversity Hospitals Katholieke Universiteit (KU)LeuvenBelgium
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences (BMEIS)King's College LondonLondonUK
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Anna L. David
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonUK
- Department of Obstetrics and GynecologyUniversity Hospitals Katholieke Universiteit (KU)LeuvenBelgium
| |
Collapse
|
2
|
Chen R, Sun C, Liu T, Liao Y, Wang J, Sun Y, Zhang Y, Wang G, Wu D. Deciphering the developmental order and microstructural patterns of early white matter pathways in a diffusion MRI based fetal brain atlas. Neuroimage 2022; 264:119700. [PMID: 36270621 DOI: 10.1016/j.neuroimage.2022.119700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
White matter (WM) of the fetal brain undergoes rapid development to form early structural connections. Diffusion magnetic resonance imaging (dMRI) has shown to be a useful tool to depict fetal brain WM in utero, and many studies have observed increasing fractional anisotropy and decreasing diffusivity in the fetal brain during the second-to-third trimester, whereas others reported non-monotonic changes. Unbiased dMRI atlases of the fetal brain are important for characterizing the developmental trajectories of WM and providing normative references for in utero diagnosis of prenatal abnormalities. To date, the sole fetal brain dMRI atlas was collected from a Caucasian/mixed population and was constructed based on the diffusion tensor model with limited spatial resolution. In this work, we proposed a fiber orientation distribution (FOD) based pipeline for generating fetal brain dMRI atlases, which showed better registration accuracy than a diffusion tensor based pipeline. Based on the FOD-based pipeline, we constructed the first Chinese fetal brain dMRI atlas using 89 dMRI scans of normal fetuses at gestational age between 24 and 38 weeks. Complex non-monotonic trends of tensor- and FOD-derived microstructural parameters in eight WM tracts were observed, which jointly pointed to different phases of microstructural development. Specifically, we speculated that the turning point of the diffusivity trajectory may correspond to the starting point of pre-myelination, based on which, the developmental order of WM tracts can be mapped and the order was in agreement with the order of myelination from histological studies. The normative atlas also provided a reference for the detection of abnormal WM development, such as that in congenital heart disease. Therefore, the established high-order fetal brain dMRI atlas depicted the spatiotemporal pattern of early WM development, and findings may help decipher the distinct microstructural events in utero.
Collapse
Affiliation(s)
- Ruike Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Cong Sun
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yuhao Liao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | | | - Yi Sun
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Afacan O, Hoge WS, Wallace TE, Gholipour A, Kurugol S, Warfield SK. Simultaneous Motion and Distortion Correction Using Dual-Echo Diffusion-Weighted MRI. J Neuroimaging 2020; 30:276-285. [PMID: 32374453 DOI: 10.1111/jon.12708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Geometric distortions resulting from large pose changes reduce the accuracy of motion measurements and interfere with the ability to generate artifact-free information. Our goal is to develop an algorithm and pulse sequence to enable motion-compensated, geometric distortion compensated diffusion-weighted MRI, and to evaluate its efficacy in correcting for the field inhomogeneity and position changes, induced by large and frequent head motions. METHODS Dual echo planar imaging (EPI) with a blip-reversed phase encoding distortion correction technique was evaluated in five volunteers in two separate experiments and compared with static field map distortion correction. In the first experiment, dual-echo EPI images were acquired in two head positions designed to induce a large field inhomogeneity change. A field map and a distortion-free structural image were acquired at each position to assess the ability of dual-echo EPI to generate reliable field maps and enable geometric distortion correction in both positions. In the second experiment, volunteers were asked to move to multiple random positions during a diffusion scan. Images were reconstructed using the dual-echo correction and a slice-to-volume registration (SVR) registration algorithm. The accuracy of SVR motion estimates was compared to externally measured ground truth motion parameters. RESULTS Our results show that dual-echo EPI can produce slice-level field maps with comparable quality to field maps generated by the reference gold standard method. We also show that slice-level distortion correction improves the accuracy of SVR algorithms as slices acquired at different orientations have different levels of distortion, which can create errors in the registration process. CONCLUSIONS Dual-echo acquisitions with blip-reversed phase encoding can be used to generate slice-level distortion-free images, which is critical for motion-robust slice to volume registration. The distortion corrected images not only result in better motion estimates, but they also enable a more accurate final diffusion image reconstruction.
Collapse
Affiliation(s)
- Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - W Scott Hoge
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Sila Kurugol
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Deprez M, Price A, Christiaens D, Lockwood Estrin G, Cordero-Grande L, Hutter J, Daducci A, Tournier JD, Rutherford M, Counsell SJ, Cuadra MB, Hajnal JV. Higher Order Spherical Harmonics Reconstruction of Fetal Diffusion MRI With Intensity Correction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1104-1113. [PMID: 31562073 DOI: 10.1109/tmi.2019.2943565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a novel method for higher order reconstruction of fetal diffusion MRI signal that enables detection of fiber crossings. We combine data-driven motion and intensity correction with super-resolution reconstruction and spherical harmonic parametrisation to reconstruct data scattered in both spatial and angular domains into consistent fetal dMRI signal suitable for further diffusion analysis. We show that intensity correction is essential for good performance of the method and identify anatomically plausible fiber crossings. The proposed methodology has potential to facilitate detailed investigation of developing brain connectivity and microstructure in-utero.
Collapse
|
6
|
Abstract
Developmental pathoconnectomics is an emerging field that aims to unravel the events leading to and outcome from disrupted brain connectivity development. Advanced magnetic resonance imaging (MRI) technology enables the portrayal of human brain connectivity before birth and has the potential to offer novel insights into normal and pathological human brain development. This review gives an overview of the currently used MRI techniques for connectomic imaging, with a particular focus on recent studies that have successfully translated these to the in utero or postmortem fetal setting. Possible mechanisms of how pathologies, maternal, or environmental factors may interfere with the emergence of the connectome are considered. The review highlights the importance of advanced image post processing and the need for reproducibility studies for connectomic imaging. Further work and novel data-sharing efforts would be required to validate or disprove recent observations from in utero connectomic studies, which are typically limited by low case numbers and high data drop out. Novel knowledge with regard to the ontogenesis, architecture, and temporal dynamics of the human brain connectome would lead to the more precise understanding of the etiological background of neurodevelopmental and mental disorders. To achieve this goal, this review considers the growing evidence from advanced fetal connectomic imaging for the increased vulnerability of the human brain during late gestation for pathologies that might lead to impaired connectome development and subsequently interfere with the development of neural substrates serving higher cognition.
Collapse
|
7
|
Aertsen M, Diogo MC, Dymarkowski S, Deprest J, Prayer D. Fetal MRI for dummies: what the fetal medicine specialist should know about acquisitions and sequences. Prenat Diagn 2019; 40:6-17. [PMID: 31618472 DOI: 10.1002/pd.5579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Fetal MRI is an increasingly used tool in the field of prenatal diagnosis. While US remains the first line screening tool, as an adjuvant imaging tool, MRI has been proven to increase diagnostic accuracy and change patient counseling. Further, there are instances when US may not be sufficient for diagnosis. As a multidisciplinary field, it is important that every person involved in the referral, diagnosis, counseling and treatment of the patients is familiar with the basic principles, indications and findings of fetal MRI. The purpose of the current paper is to equip radiologists and non-radiologists with basic MRI principles and essential topics in patient preparation and provide illustrative examples of when fetal MRI may be used. This aims to aid the referring clinician in better selecting and improve patient counseling prior to arrival in the radiology department and, ultimately, patient care.
Collapse
Affiliation(s)
- Michael Aertsen
- Department of Imaging and Pathology, Clinical Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - Mariana C Diogo
- Department of Image Guided Therapy, University Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Steven Dymarkowski
- Department of Imaging and Pathology, Clinical Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Academic Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| | - Daniela Prayer
- Department of Image Guided Therapy, University Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Afacan O, Estroff JA, Yang E, Barnewolt CE, Connolly SA, Parad RB, Mulkern RV, Warfield SK, Gholipour A. Fetal Echoplanar Imaging: Promises and Challenges. Top Magn Reson Imaging 2019; 28:245-254. [PMID: 31592991 PMCID: PMC6788763 DOI: 10.1097/rmr.0000000000000219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fetal magnetic resonance imaging (MRI) has been gaining increasing interest in both clinical radiology and research. Echoplanar imaging (EPI) offers a unique potential, as it can be used to acquire images very fast. It can be used to freeze motion, or to get multiple images with various contrast mechanisms that allow studying the microstructure and function of the fetal brain and body organs. In this article, we discuss the current clinical and research applications of fetal EPI. This includes T2*-weighted imaging to better identify blood products and vessels, using diffusion-weighted MRI to investigate connections of the developing brain and using functional MRI (fMRI) to identify the functional networks of the developing brain. EPI can also be used as an alternative structural sequence when banding or standing wave artifacts adversely affect the mainstream sequences used routinely in structural fetal MRI. We also discuss the challenges with EPI acquisitions, and potential solutions. As EPI acquisitions are inherently sensitive to susceptibility artifacts, geometric distortions limit the use of high-resolution EPI acquisitions. Also, interslice motion and transmit and receive field inhomogeneities may create significant artifacts in fetal EPI. We conclude by discussing promising research directions to overcome these challenges to improve the use of EPI in clinical and research applications.
Collapse
Affiliation(s)
- Onur Afacan
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Judy A. Estroff
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Carol E. Barnewolt
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Susan A. Connolly
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Richard B. Parad
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert V. Mulkern
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ali Gholipour
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Khan S, Vasung L, Marami B, Rollins CK, Afacan O, Ortinau CM, Yang E, Warfield SK, Gholipour A. Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images. Neuroimage 2019; 185:593-608. [PMID: 30172006 PMCID: PMC6289660 DOI: 10.1016/j.neuroimage.2018.08.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Altered structural fetal brain development has been linked to neuro-developmental disorders. These structural alterations can be potentially detected in utero using diffusion tensor imaging (DTI). However, acquisition and reconstruction of in utero fetal brain DTI remains challenging. Until now, motion-robust DTI methods have been employed for reconstruction of in utero fetal DTIs. However, due to the unconstrained fetal motion and permissible in utero acquisition times, these methods yielded limited success and have typically resulted in noisy DTIs. Consequently, atlases and methods that could enable groupwise studies, multi-modality imaging, and computer-aided diagnosis from in utero DTIs have not yet been developed. This paper presents the first DTI atlas of the fetal brain computed from in utero diffusion-weighted images. For this purpose an algorithm for computing an unbiased spatiotemporal DTI atlas, which integrates kernel-regression in age with a diffeomorphic tensor-to-tensor registration of motion-corrected and reconstructed individual fetal brain DTIs, was developed. Our new algorithm was applied to a set of 67 fetal DTI scans acquired from healthy fetuses each scanned at a gestational age between 21 and 39 weeks. The neurodevelopmental trends in the fetal brain, characterized by the atlas, were qualitatively and quantitatively compared with the observations reported in prior ex vivo and in utero studies, and with results from imaging gestational-age equivalent preterm infants. Our major findings revealed early presence of limbic fiber bundles, followed by the appearance and maturation of projection pathways (characterized by an age related increase in FA) during late 2nd and early 3rd trimesters. During the 3rd trimester association fiber bundles become evident. In parallel with the appearance and maturation of fiber bundles, from 21 to 39 gestational weeks gradual disappearance of the radial coherence of the telencephalic wall was qualitatively identified. These results and analyses show that our DTI atlas of the fetal brain is useful for reliable detection of major neuronal fiber bundle pathways and for characterization of the fetal brain reorganization that occurs in utero. The atlas can also serve as a useful resource for detection of normal and abnormal fetal brain development in utero.
Collapse
Affiliation(s)
- Shadab Khan
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lana Vasung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bahram Marami
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cynthia M Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Hutter J, Christiaens DJ, Schneider T, Cordero-Grande L, Slator PJ, Deprez M, Price AN, Tournier JD, Rutherford M, Hajnal JV. Slice-level diffusion encoding for motion and distortion correction. Med Image Anal 2018; 48:214-229. [PMID: 29966941 PMCID: PMC6191883 DOI: 10.1016/j.media.2018.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/23/2022]
Abstract
Breaks the conventional one-volume one-encoding paradigm in diffusion MRI. Higher temporal sampling of anatomically reliable b0 slices. Allows more robust distortion and motion correction. Additional benefits include quicker scans by reduced thermal heating.
Advances in microstructural modelling are leading to growing requirements on diffusion MRI acquisitions, namely sensitivity to smaller structures and better resolution of the geometric orientations. The resulting acquisitions contain highly attenuated images that present particular challenges when there is motion and geometric distortion. This study proposes to address these challenges by breaking with the conventional one-volume-one-encoding paradigm employed in conventional diffusion imaging using single-shot Echo Planar Imaging. By enabling free choice of the diffusion encoding on the slice level, a higher temporal sampling of slices with low b-value can be achieved. These allow more robust motion correction, and in combination with a second reversed phase-encoded echo, also dynamic distortion correction. These proposed advances are validated on phantom and adult experiments and employed in a study of eight foetal subjects. Equivalence in obtained diffusion quantities with the conventional method is demonstrated as well as benefits in distortion and motion correction. The resulting capability can be combined with any acquisition parameters including multiband imaging and allows application to diffusion MRI studies in general.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the developing Brain, King's College London, London, UK.
| | | | | | | | - Paddy J Slator
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK
| | - Maria Deprez
- Centre for the developing Brain, King's College London, London, UK
| | - Anthony N Price
- Centre for the developing Brain, King's College London, London, UK
| | | | - Mary Rutherford
- Centre for the developing Brain, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the developing Brain, King's College London, London, UK
| |
Collapse
|
11
|
Jakab A, Tuura RL, Kottke R, Ochsenbein-Kölble N, Natalucci G, Nguyen TD, Kellenberger C, Scheer I. Microvascular perfusion of the placenta, developing fetal liver, and lungs assessed with intravoxel incoherent motion imaging. J Magn Reson Imaging 2017; 48:214-225. [PMID: 29281153 DOI: 10.1002/jmri.25933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In utero intravoxel incoherent motion magnetic resonance imaging (IVIM-MRI) provides a novel method for examining microvascular perfusion fraction and diffusion in the developing human fetus. PURPOSE To characterize gestational changes in the microvascular perfusion fraction of the placenta, fetal liver, and lungs using IVIM-MRI. STUDY TYPE Retrospective, cross-sectional study. SUBJECTS Fifty-five datasets from 33 singleton pregnancies were acquired (17-36 gestational weeks). FIELD STRENGTH/SEQUENCE In utero diffusion-weighted echo-planar imaging at 1.5T and 3.0T with b-factors ranging from 0 to 900 s/mm2 in 16 steps. ASSESSMENT Using the IVIM principle, microvascular perfusion fraction (f), pseudodiffusion (D*), and diffusion coefficients (d) were estimated for the placenta, liver, and lungs with a biexponential model. A free-form nonlinear deformation algorithm was used to correct for the frame-by-frame motion of the fetal organs and the placenta. The IVIM parameters were then compared to a Doppler ultrasound-based assessment of the umbilical artery resistance index. STATISTICAL TESTS Pearson product-moment correlation coefficient (PMCC) to reveal outlier corrected correlations between Doppler and IVIM parameters. Gestational age-related changes were assessed using linear regression analysis (LR). RESULTS Placental f (0.29 ± 0.08) indicates high blood volume in the microvascular compartment, moderately increased during gestation (LR, R = 0.338), and correlated negatively with the umbilical artery resistance index (PMCC, R = -0.457). The f of the liver decreased sharply during gestation (LR, R = -0.436). Lung maturation was characterized by increasing perfusion fraction (LR, R = 0.547), and we found no gestational changes in d and D* values (LR, R = -0.013 and R = 0.051, respectively). The Doppler measurements of the umbilical artery and middle cerebral artery did not correlate with the IVIM parameters of the lungs and liver. DATA CONCLUSION Gestational age-associated changes of the placental, liver, and lung IVIM parameters likely reflect changes in placental and fetal circulation, and characterize the trajectory of microstructural and functional maturation of the fetal vasculature. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017.
Collapse
Affiliation(s)
- András Jakab
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland.,Computational Imaging Research Lab (CIR), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Ruth L Tuura
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland
| | | | - Giancarlo Natalucci
- Department of Neonatology, University Hospital and University of Zurich, Switzerland
| | - Thi Dao Nguyen
- Department of Neonatology, University Hospital and University of Zurich, Switzerland
| | | | - Ianina Scheer
- Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
12
|
Evaluation and Minimization of the Pseudohepatic Anisotropy Artifact in Liver Intravoxel Incoherent Motion. J Comput Assist Tomogr 2017; 41:679-687. [PMID: 28708735 DOI: 10.1097/rct.0000000000000604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE The aim of this study was to evaluate the effect of the pseudohepatic anisotropy artifact on liver intravoxel incoherent motion (IVIM) metrics and whether the use of multiple gradient directions in the IVIM acquisition minimizes the artifact. MATERIALS AND METHODS Multiple breath-holding and forced shallow free-breathing IVIM scans were performed on 8 healthy volunteers using 1 and 6 gradient directions. Cluster analysis was carried out to separate motion-contaminated parenchyma from liver parenchyma and vessels. Nonlinear motion analysis was also performed to look for a possible link between IVIM metrics and nonlinear liver motion. RESULTS On the basis of the resulted clusters, motion-contaminated parenchyma is often noted in the left liver lobe, where the prominent pseudohepatic artifact has previously been identified. A significant reduction in outliers was obtained with the acquisition of 6 noncoplanar gradient directions and when using forced shallow free-breathing. CONCLUSION The pseudohepatic anisotropy artifact can be minimized when using multiple diffusion-encoding gradient directions and forced free-breathing during IVIM acquisition.
Collapse
|
13
|
Dean DC, Planalp EM, Wooten W, Adluru N, Kecskemeti SR, Frye C, Schmidt CK, Schmidt NL, Styner MA, Goldsmith HH, Davidson RJ, Alexander AL. Mapping White Matter Microstructure in the One Month Human Brain. Sci Rep 2017; 7:9759. [PMID: 28852074 PMCID: PMC5575288 DOI: 10.1038/s41598-017-09915-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/01/2017] [Indexed: 11/24/2022] Open
Abstract
White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.
Collapse
Affiliation(s)
- D C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA.
| | - E M Planalp
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - W Wooten
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - N Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - S R Kecskemeti
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - C Frye
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - C K Schmidt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - N L Schmidt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - M A Styner
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - H H Goldsmith
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - R J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - A L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
14
|
Vasung L, Raguz M, Kostovic I, Takahashi E. Spatiotemporal Relationship of Brain Pathways during Human Fetal Development Using High-Angular Resolution Diffusion MR Imaging and Histology. Front Neurosci 2017; 11:348. [PMID: 28744187 PMCID: PMC5504538 DOI: 10.3389/fnins.2017.00348] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/06/2017] [Indexed: 01/08/2023] Open
Abstract
In this study, we aimed to identify major fiber pathways and their spatiotemporal relationships within transient fetal zones in the human fetal brain by comparing postmortem high-angular resolution diffusion MR imaging (HARDI) in combination with deterministic streamline tractography and histology. Diffusion weighted imaging was performed on postmortem human fetal brains [N = 9, age = 18–34 post-conceptual weeks (PCW)] that were grossly normal with no pathologic abnormalities. After HARDI was performed, the fibers were reconstructed using Q-ball algorithm and deterministic streamline tractography. The position of major fiber pathways within transient fetal zones was identified both on diffusion weighted images and on histological sections. Our major findings include: (1) the development of massive projection fibers by 18 PCW, as compared to most association fibers (with the exception of limbic fibers) which have only begun to emerge, (2) the characteristic laminar distribution and sagittal plane geometry of reconstructed fibers throughout development, (3) the protracted prenatal development shown of the corpus collosum and its' associated fibers, as well as the association fibers, and (4) the predomination of radial coherence in the telencephalon (i.e., majority of streamlines in the telencephalic wall were radially oriented) during early prenatal period (24 PCW). In conclusion, correlation between histology and HARDI (in combination with Q-ball reconstruction and deterministic streamline tractography) allowed us to detect sequential development of fiber systems (projection, callosal, and association), their spatial relations with transient fetal zones, and their geometric properties.
Collapse
Affiliation(s)
- Lana Vasung
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, United States
| | - Marina Raguz
- School of Medicine, Croatian Institute for Brain Research, University of ZagrebZagreb, Croatia
| | - Ivica Kostovic
- School of Medicine, Croatian Institute for Brain Research, University of ZagrebZagreb, Croatia
| | - Emi Takahashi
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
15
|
Marami B, Mohseni Salehi SS, Afacan O, Scherrer B, Rollins CK, Yang E, Estroff JA, Warfield SK, Gholipour A. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage 2017; 156:475-488. [PMID: 28433624 DOI: 10.1016/j.neuroimage.2017.04.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/14/2017] [Indexed: 01/29/2023] Open
Abstract
Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for the analysis of neural microstructure and the structural connectome of the human brain. The application of DWI to map early development of the human connectome in-utero, however, is challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful compensation of motion effects and robust reconstruction to avoid introducing bias based on the degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity analysis. The proposed algorithm involves multiple steps of image registration incorporating a dynamic registration-based motion tracking algorithm to restore the spatial correspondence of DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate space. A weighted linear least squares approach is adapted to remove the effect of intra-slice motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on data obtained from 21 healthy fetuses scanned in-utero at 22-38 weeks gestation. Significantly higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain tractography and group structural connectivity, showed the efficacy of the proposed method compared to the analyses based on original data and previously proposed methods. The results of this study show that slice-level motion correction and robust reconstruction is necessary for reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on graph theoretic measures show high degree of modularity and clustering, and short average characteristic path lengths indicative of small-worldness property of the fetal brain network. These findings comply with previous findings in newborns and a recent study on fetuses. The proposed algorithm can provide valuable information from DWI of the fetal brain not available in the assessment of the original 2D slices and may be used to more reliably study the developing fetal brain connectome.
Collapse
Affiliation(s)
- Bahram Marami
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Seyed Sadegh Mohseni Salehi
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Department of Electrical Engineering, Northeastern University, Boston, MA, USA
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Benoit Scherrer
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Judy A Estroff
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Estimation of the Number of Compartments Associated With the Apparent Diffusion Coefficient in MRI: The Theoretical and Experimental Investigations. AJR Am J Roentgenol 2016; 206:455-62. [PMID: 26901002 DOI: 10.2214/ajr.15.14497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The goal of the present study was to estimate the number of compartments and the mean apparent diffusion coefficient (ADC) value with the use of the DWI signal curve. MATERIALS AND METHODS A useful new mathematic model that includes internal correlation among subcompartments with a distinct number of compartments was proposed. The DWI signal was simulated to estimate the approximate association between the number of subcompartments and the molecular density, with density corresponding to the ratio of the ADC values of the compartments, as determined using the Monte Carlo method. RESULTS Various factors, such as energy depletion, temperature, intracellular water accumulation, changes in the tortuosity of the extracellular diffusion paths, and changes in cell membrane permeability, have all been implicated as factors contributing to changes in the ADC of water (ADCw); therefore, one may consider them as pseudocompartments in the new model proposed in this study. The lower the coefficient is, the lower the contribution of the compartment to the net signal will be. The results of the simulation indicate that when the number of compartments increases, the signal will become significantly lower, because the gradient factor (i.e., the b value) will increase. In other words, the signal curve is approximately linear at all b values when the number of compartments in which the tissues have been severely damaged is low; however, when the number of compartments is high, the curve will become constant at high b values, and the perfusion parameters will prevail on the diffusion parameters at low b values. Therefore, normal tissues will be investigated when the number of compartments and the ADC values are high and the b values are low, whereas damaged tissues will be evaluated when the number of compartments and the ADC values are low and the b values are high. CONCLUSION The present study investigates damaged tissues at high b values for which the effect of eddy currents will also be compensated. These b values will probably be used in functional MRI.
Collapse
|
17
|
Wu D, Lei J, Rosenzweig JM, Burd I, Zhang J. In utero localized diffusion MRI of the embryonic mouse brain microstructure and injury. J Magn Reson Imaging 2014; 42:717-28. [PMID: 25537944 DOI: 10.1002/jmri.24828] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/04/2014] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To develop an in vivo diffusion magnetic resonance imaging (dMRI) technique to study embryonic mouse brain structure and injury. MATERIALS AND METHODS Pregnant CD-1 mice were examined on embryonic day 17 on an 11.7T scanner. Spatially selective excitation pulses were used to achieve localized imaging of individual mouse brains, in combination with a 3D fast imaging sequence to acquire dMRI at 0.16-0.2 mm isotropic resolution. Subject motions were corrected by navigator echoes and image registration. Further acceleration was achieved by simultaneous imaging of two embryos in an interleaved fashion. We applied this technique to detect embryonic brain injury in a mouse model of intrauterine inflammation. RESULTS With the localized imaging technique, we achieved in utero high-resolution T2 -weighted and dMRI of the embryonic mouse brain for the first time. Early embryonic brain structures were delineated from diffusion tensor images, and major white matter tracts were reconstructed in 3D. Comparison with ex vivo data showed significant changes in the apparent diffusion coefficient (ADC), but mostly unchanged fractional anisotropy. In the inflammation-affected embryonic brains, ADC in the cortical regions was reduced at 6 hours after the injury, potentially caused by cellular edema. CONCLUSION The feasibility of in utero dMRI of embryonic mouse brains was demonstrated. The technique is important for noninvasive monitoring of embryonic mouse brain microstructure and injury.
Collapse
Affiliation(s)
- Dan Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jason M Rosenzweig
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Gholipour A, Estroff JA, Barnewolt CE, Robertson RL, Grant PE, Gagoski B, Warfield SK, Afacan O, Connolly SA, Neil JJ, Wolfberg A, Mulkern RV. Fetal MRI: A Technical Update with Educational Aspirations. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2014; 43:237-266. [PMID: 26225129 PMCID: PMC4515352 DOI: 10.1002/cmr.a.21321] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies.
Collapse
Affiliation(s)
- Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Judith A Estroff
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carol E Barnewolt
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Richard L Robertson
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - P Ellen Grant
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Susan A Connolly
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jeffrey J Neil
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Adam Wolfberg
- Boston Maternal Fetal Medicine, Boston, Massachusetts, USA
| | - Robert V Mulkern
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Dubois J, Kulikova S, Hertz-Pannier L, Mangin JF, Dehaene-Lambertz G, Poupon C. Correction strategy for diffusion-weighted images corrupted with motion: application to the DTI evaluation of infants' white matter. Magn Reson Imaging 2014; 32:981-92. [PMID: 24960369 DOI: 10.1016/j.mri.2014.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/24/2014] [Accepted: 05/26/2014] [Indexed: 01/13/2023]
|
20
|
Nakagawa M, Miyati T, Hayashi T, Kanao S, Taniguchi M, Higashimura K, Toi M, Togashi K. [Triexponential diffusion analysis in invasive ductal carcinoma and fibroadenoma]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2014; 70:199-205. [PMID: 24647056 DOI: 10.6009/jjrt.2014_jsrt_70.3.199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To simultaneously obtain information on diffusion and perfusion in breast lesions by diffusion-weighted magnetic resonance imaging (DWI), we analyzed three diffusion components using a triexponential function. Eighteen subjects [10 with invasive ductal carcinoma (IDC), 8 with fibroadenoma] were evaluated using DWI with multiple b-values. We derived perfusion-related diffusion, fast free diffusion, and slow restricted diffusion coefficients (Dp, Df, Ds) calculated from the triexponential function using the DWI data. Moreover, the triexponential analysis was compared with biexponential and monoexponential analyses. Each diffusion coefficient with a triexponential function was correlated to a relative enhancement ratio (RER) using dynamic contrast-enhanced MRI. In triexponential analysis, Dp and Ds in IDC were significantly higher than those for fibroadenoma. There was no correlation between each diffusion coefficient from the triexponential analysis in any of the groups (Dp, Df, and Ds), but biexponential analysis revealed a positive correlation between each diffusion coefficient in breast lesions. Strong correlations were found between Dp and RERs. Triexponential analysis thus makes it possible to obtain, in noninvasive fashion, more detailed diffusion and perfusion information in breast lesions.
Collapse
|
21
|
Studholme C, Rousseau F. Quantifying and modelling tissue maturation in the living human fetal brain. Int J Dev Neurosci 2014; 32:3-10. [PMID: 23831076 PMCID: PMC4396985 DOI: 10.1016/j.ijdevneu.2013.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/08/2013] [Accepted: 06/13/2013] [Indexed: 01/16/2023] Open
Abstract
Recent advances in medical imaging are beginning to allow us to quantify brain tissue maturation in the growing human brain prior to normal term age, and are beginning to shed new light on early human brain growth. These advances compliment the work already done in cellular level imaging in animal and post mortem studies of brain development. The opportunities for collaborative research that bridges the gap between macroscopic and microscopic windows on the developing brain are significant. The aim of this paper is to provide a review of the current research into MR imaging of the living fetal brain with the aim of motivating improved interfaces between the two fields. The review begins with a description of faster MRI techniques that are capable of freezing motion of the fetal head during the acquisition of a slice, and how these have been combined with advanced post-processing algorithms to build 3D images from motion scattered slices. Such rich data has motivated the development of techniques to automatically label developing tissue zones within MRI data allowing their quantification in 3D and 4D within the normally growing fetal brain. These methods have provided the basis for later work that has created the first maps of tissue growth rate and cortical folding in normally developing brains in-utero. These measurements provide valuable findings that compliment those derived from post-mortem anatomy, and additionally allow for the possibility of larger population studies of the influence of maternal environmental and genes on early brain development.
Collapse
Affiliation(s)
- Colin Studholme
- BICG, Departments of Pediatrics, Bioengineering, Radiology, University of Washington, Seattle, USA.
| | | |
Collapse
|
22
|
Fogtmann M, Seshamani S, Kroenke C, Cheng X, Chapman T, Wilm J, Rousseau F, Studholme C. A unified approach to diffusion direction sensitive slice registration and 3-D DTI reconstruction from moving fetal brain anatomy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:272-89. [PMID: 24108711 PMCID: PMC4271809 DOI: 10.1109/tmi.2013.2284014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and an experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to current state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function.
Collapse
Affiliation(s)
- Mads Fogtmann
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering and Radiology, University of Washington, Seattle, WA 98195 USA, and also with the DTU Informatics, Technical University of Denmark, 2800 Kgs-Lyngby, Denmark
| | - Sharmishtaa Seshamani
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering and Radiology, University of Washington, Seattle, WA 98195 USA
| | - Christopher Kroenke
- Oregon Health and Science University, Advanced Imaging Research Center and Department of Behavioral Neuroscience, University of Washington, Portland, OR 97239 USA
| | - Xi Cheng
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering and Radiology, University of Washington, Seattle, WA 98195 USA
| | - Teresa Chapman
- Department of Radiology, Seattle Children’s Hospital, Seattle, WA 98105 USA
| | - Jakob Wilm
- DTU Informatics, Technical University of Denmark, 2800 Kgs-Lyngby, Denmark
| | | | - Colin Studholme
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering and Radiology, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
23
|
Multi-tiered analysis of brain injury in neonates with congenital heart disease. Pediatr Cardiol 2013; 34:1772-84. [PMID: 23652966 PMCID: PMC3973037 DOI: 10.1007/s00246-013-0712-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/23/2013] [Indexed: 02/06/2023]
Abstract
Early brain injury occurs in newborns with congenital heart disease (CHD) placing them at risk for impaired neurodevelopmental outcomes. Predictors for preoperative brain injury have not been well described in CHD newborns. This study aimed to analyze, retrospectively, brain magnetic resonance imaging (MRI) in a heterogeneous group of newborns who had CHD surgery during the first month of life using a detailed qualitative CHD MRI Injury Score, quantitative imaging assessments (regional apparent diffusion coefficient [ADC] values and brain volumes), and clinical characteristics. Seventy-three newborns who had CHD surgery at 8 ± 5 (mean ± SD) days of life and preoperative brain MRI were included; 38 also had postoperative MRI. Thirty-four (34 of 73, 47 %) had at least one type of preoperative brain injury, and 28 of 38 (74 %) had postoperative brain injury. The 5-min APGAR score was negatively associated with preoperative injury, but there was no difference between CHD types. Infants with intraparenchymal hemorrhage, deep gray matter injury, and/or watershed infarcts had the highest CHD MRI Injury Scores. ADC values and brain volumes were not different in infants with different CHD types or in those with and without brain injury. In a mixed group of CHD newborns, brain injury was found preoperatively on MRI in almost 50 %, and there were no significant baseline characteristic differences to predict this early brain injury except 5-min APGAR score. We conclude that all infants, regardless of CHD type, who require early surgery should be evaluated with MRI because they are all at high risk for brain injury.
Collapse
|
24
|
Abstract
Magnetic resonance imaging (MRI) has been used to image the in utero fetus for the past 3 decades. Although not as commonplace as other patient-oriented MRI, it is a growing field and demonstrating a role in the clinical care of the fetus. Indeed, the body of literature involving fetal MRI exceeds 3000 published articles. Indeed, there is interest in accessing even the healthy fetus with MRI to further understand the development of humans during the fetal stage. On the horizon is fetal imaging using 3.0-T clinical systems. Although a clear path is not necessarily determined, experiments, theoretical calculations, advances in pulse sequence design, new hardware, and experience from imaging at 1.5 T help define the path.
Collapse
Affiliation(s)
- Robert C Welsh
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-5667, USA.
| | | | | |
Collapse
|
25
|
Girard NJ, Chaumoitre K. The brain in the belly: what and how of fetal neuroimaging? J Magn Reson Imaging 2013; 36:788-804. [PMID: 22987757 DOI: 10.1002/jmri.23596] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This work reviews magnetic resonance imaging in the developing human brain. It focuses on fetal brain imaged in vivo and in utero with complementary sections on abnormalities seen in clinical settings, and on potential of diffusion tensor imaging and of proton magnetic resonance spectroscopy. The main purposes are to illustrate the normal fetal developing brain and its abnormalities commonly encountered in utero, and to emphasize the potential role of adjunct techniques such as diffusion imaging and spectroscopy that may help elucidate fetal brain maturation and its abnormalities.
Collapse
Affiliation(s)
- Nadine J Girard
- Department of Neuroradiology, Hopital Timone, Marseille, France.
| | | |
Collapse
|
26
|
Roy CW, Seed M, van Amerom JFP, Al Nafisi B, Grosse-Wortmann L, Yoo SJ, Macgowan CK. Dynamic imaging of the fetal heart using metric optimized gating. Magn Reson Med 2013; 70:1598-607. [PMID: 23382068 DOI: 10.1002/mrm.24614] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 11/06/2022]
Abstract
PURPOSE Advances in fetal cardiovascular magnetic resonance imaging have been limited by the absence of a reliable cardiac gating signal. The purpose of this work was to develop and validate metric-optimized gating (MOG) for cine imaging of the fetal heart. THEORY AND METHODS Cine MR and electrocardiogram data were acquired in healthy adult volunteers for validation of the MOG method. Comparison of MOG and electrocardiogram reconstructions was performed based on the image quality for each method, and the difference between MOG and electrocardiogram trigger times. Fetal images were also acquired, their quality evaluated by experienced radiologists, and the theoretical error in the MOG trigger times were calculated. RESULTS Excellent agreement between electrocardiogram and MOG reconstructions was observed. The experimental errors in adult MOG trigger times for all five volunteers were ± (7, 25, 17, 8, and 13) ms. Fetal images captured normal and diseased cardiac dynamics. CONCLUSION MOG for cine imaging of the fetal myocardium was developed and validated in adults. Using MOG, the first gated MR images of the human fetal myocardium were obtained. Small moving structures were visualized during radial contraction, thus capturing normal fetal cardiac wall motion and permitting assessment of cardiac function.
Collapse
Affiliation(s)
- Christopher W Roy
- Departments of Medical Biophysics and Medical Imaging, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Vasung L, Fischi-Gomez E, Hüppi PS. Multimodality evaluation of the pediatric brain: DTI and its competitors. Pediatr Radiol 2013; 43:60-8. [PMID: 23288478 DOI: 10.1007/s00247-012-2515-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 08/29/2012] [Indexed: 12/18/2022]
Abstract
The development of the human brain, from the fetal period until childhood, happens in a series of intertwined neurogenetical and histogenetical events that are influenced by environment. Neuronal proliferation and migration, cell aggregation, axonal ingrowth and outgrowth, dendritic arborisation, synaptic pruning and myelinisation contribute to the 'plasticity of the developing brain'. These events taken together contribute to the establishment of adult-like neuroarchitecture required for normal brain function. With the advances in technology today, mostly due to the development of non-invasive neuroimaging tools, it is possible to analyze these structural events not only in anatomical space but also longitudinally in time. In this review we have highlighted current 'state of the art' neuroimaging tools. Development of the new MRI acquisition sequences (DTI, CHARMED and phase imaging) provides valuable insight into the changes of the microstructural environment of the cortex and white matter. Development of MRI imaging tools dedicated for analysis of the acquired images (i) TBSS and ROI fiber tractography, (ii) new tissue segmentation techniques and (iii) morphometric analysis of the cortical mantle (cortical thickness and convolutions) allows the researchers to map the longitudinal changes in the macrostructure of the developing brain that go hand-in-hand with the acquisition of cognitive skills during childhood. Finally, the latest and the newest technologies, like connectom analysis and resting state fMRI connectivity analysis, today, for the first time provide the opportunity to study the developing brain through the prism of maturation of the systems and networks beyond individual anatomical areas. Combining these methods in the future and modeling the hierarchical organization of the brain might ultimately help to understand the mechanisms underlying complex brain structure function relationships of normal development and of developmental disorders.
Collapse
Affiliation(s)
- Lana Vasung
- Division of Development and Growth, Department of Pediatrics, University of Geneva, University Hospital Geneva, Rue Willy-Donzé 6, 1211 Genève 14, Geneva, Switzerland
| | | | | |
Collapse
|
28
|
Mazaheri Y, Do RK, Shukla-Dave A, Deasy JO, Lu Y, Akin O. Motion correction of multi-b-value diffusion-weighted imaging in the liver. Acad Radiol 2012; 19:1573-80. [PMID: 22963726 DOI: 10.1016/j.acra.2012.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/05/2012] [Accepted: 07/20/2012] [Indexed: 12/16/2022]
Abstract
RATIONALE AND OBJECTIVES Motion artifacts are a significant source of error in the acquisition and quantification of parameters from multi-b-value diffusion-weighted imaging (DWI). The objective of this article is to present a reliable method to reduce motion-related artifacts during free-breathing at higher b-values when signal levels are low. MATERIALS AND METHODS Twelve patients referred for magnetic resonance imaging of the liver underwent a clinical magnetic resonance imaging examination of the abdominal region that included DWI. Conventional single-shot spin-echo echo planar imaging acquisitions of the liver during free breathing were repeated in a "time-resolved" manner during a single acquisition to obtain data for multi-b-value analysis, alternating between low and high b-values. Image registration using a normalized mutual information similarity measure was used to correct for spatial misalignment of diffusion-weighted volumes caused by motion. Registration error was estimated indirectly by comparing the normalized root-mean-square error (NRMSE) values of data fitted to the biexponential intra-voxel incoherent motion model before and after motion correction. Regions of interest (ROIs) were selected in the liver close to the surface of the liver and close to internal structures such as large bile ducts and blood vessels. RESULTS For the 12 patient datasets, the mean NRMSE value for the motion-corrected ROIs (0.38 ± 0.16) was significantly lower than the mean NRMSE values for the non-motion-corrected ROIs (0.41 ± 0.13) (P < .05). In cases where there was substantial respiratory motion during the acquisition, visual inspection verified that the algorithm markedly improved alignment of the liver contours between frames. CONCLUSIONS The proposed method addresses motion-related artifacts to increase robustness in multi-b-value acquisitions.
Collapse
|
29
|
Hoffmann C, Weisz B, Yinon Y, Hogen L, Gindes L, Shrim A, Sivan E, Schiff E, Lipitz S. Diffusion MRI findings in monochorionic twin pregnancies after intrauterine fetal death. AJNR Am J Neuroradiol 2012; 34:212-6. [PMID: 22859276 DOI: 10.3174/ajnr.a3279] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Monochorionic twin pregnancies complicated by the IUFD of 1 twin are associated with substantial morbidity to the survivor twin. The aim of this study was to determine whether fetal sonography, T2 MR imaging, and DWI can diagnose acute cerebral lesions in the survivor of an MC twin pregnancy shortly after fetal death of the co-twin. MATERIALS AND METHODS During the study period (2007-2010) 34 cases of single IUFD were evaluated. Group A included 6 cases complicated by spontaneous IUFD. Group B had 10 cases of fetal death shortly after treatment of severe TTTS. These were compared with group C, with 18 pregnancies treated by selective termination due to severe complications in MC pregnancies. RESULTS Altogether 9/34 patients had abnormal prenatal cerebral findings. In group A, in 2/6 of pregnancies with spontaneous death, MR imaging showed findings of severe cerebral infarct, while cerebral damage was not evident by sonography. In another case, the surviving fetus was found to be hydropic on sonography, while MR imaging findings were normal. In group B, in 1/10 cases, cerebral infarct was demonstrated only by DWI. In 2 other cases, sonographic findings were normal, but MR imaging showed germinal matrix bleeding. In group C, in 1/18 cases, only DWI showed bilateral cerebral ischemia. In 2 other cases, MR imaging findings suggested germinal matrix bleeding and focal changes in the basal ganglia. In both cases, fetal sonographic findings were normal. CONCLUSIONS In our study, early manifestations of cerebral ischemia in monochorionic twin pregnancies were better diagnosed with MR imaging, especially with DWI.
Collapse
Affiliation(s)
- C Hoffmann
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Clouchoux C, Limperopoulos C. Novel applications of quantitative MRI for the fetal brain. Pediatr Radiol 2012; 42 Suppl 1:S24-32. [PMID: 22395718 DOI: 10.1007/s00247-011-2178-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/27/2011] [Indexed: 11/30/2022]
Abstract
The advent of ultrafast MRI acquisitions is offering vital insights into the critical maturational events that occur throughout pregnancy. Concurrent with the ongoing enhancement of ultrafast imaging has been the development of innovative image-processing techniques that are enabling us to capture and quantify the exuberant growth, and organizational and remodeling processes that occur during fetal brain development. This paper provides an overview of the role of advanced neuroimaging techniques to study in vivo brain maturation and explores the application of a range of new quantitative imaging biomarkers that can be used clinically to monitor high-risk pregnancies.
Collapse
Affiliation(s)
- Cédric Clouchoux
- Division of Diagnostic Imaging and Radiology, Children's National Medical Center, Washington, DC, USA.
| | | |
Collapse
|
31
|
Zanin E, Ranjeva J, Confort‐Gouny S, Guye M, Denis D, Cozzone PJ, Girard N. White matter maturation of normal human fetal brain. An in vivo diffusion tensor tractography study. Brain Behav 2011; 1:95-108. [PMID: 22399089 PMCID: PMC3236541 DOI: 10.1002/brb3.17] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/08/2011] [Accepted: 08/01/2011] [Indexed: 01/02/2023] Open
Abstract
We demonstrate for the first time the ability to determine in vivo and in utero the transitions between the main stages of white matter (WM) maturation in normal human fetuses using magnetic resonance diffusion tensor imaging (DTI) tractography. Biophysical characteristics of water motion are used as an indirect probe to evaluate progression of the tissue matrix organization in cortico-spinal tracts (CSTs), optic radiations (OR), and corpus callosum (CC) in 17 normal human fetuses explored between 23 and 38 weeks of gestation (GW) and selected strictly on minimal motion artifacts. Nonlinear polynomial (third order) curve fittings of normalized longitudinal and radial water diffusivities (Z-scores) as a function of age identify three different phases of maturation with specific dynamics for each WM bundle type. These phases may correspond to distinct cellular events such as axonal organization, myelination gliosis, and myelination, previously reported by other groups on post-mortem fetuses using immunostaining methods. According to the DTI parameter dynamics, we suggest that myelination (phase 3) appears early in the CSTs, followed by the OR and by the CC, respectively. DTI tractography provides access to a better understanding of fetal WM maturation.
Collapse
Affiliation(s)
- Emilie Zanin
- Centre de Résonance Magnétique Biologique et Médicale UMR CNRS 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Aix‐Marseille II, France
- Service d’Ophtalmologie, Centre hospitalo‐universitaire Nord, Assistance Publique des Hôpitaux de Marseille, France
| | - Jean‐Philippe Ranjeva
- Centre de Résonance Magnétique Biologique et Médicale UMR CNRS 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Aix‐Marseille II, France
| | - Sylviane Confort‐Gouny
- Centre de Résonance Magnétique Biologique et Médicale UMR CNRS 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Aix‐Marseille II, France
| | - Maxime Guye
- Centre de Résonance Magnétique Biologique et Médicale UMR CNRS 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Aix‐Marseille II, France
| | - Daniele Denis
- Service d’Ophtalmologie, Centre hospitalo‐universitaire Nord, Assistance Publique des Hôpitaux de Marseille, France
| | - Patrick J. Cozzone
- Centre de Résonance Magnétique Biologique et Médicale UMR CNRS 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Aix‐Marseille II, France
| | - Nadine Girard
- Centre de Résonance Magnétique Biologique et Médicale UMR CNRS 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Aix‐Marseille II, France
- Service de Neuroradiologie Diagnostique et Interventionelle, Centre hospitalo‐universitaire de la Timone, Assistance Publique des Hôpitaux de Marseille, France
| |
Collapse
|
32
|
Oubel E, Koob M, Studholme C, Dietemann JL, Rousseau F. Reconstruction of scattered data in fetal diffusion MRI. Med Image Anal 2011; 16:28-37. [PMID: 21636311 DOI: 10.1016/j.media.2011.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 02/14/2011] [Accepted: 04/17/2011] [Indexed: 11/29/2022]
Abstract
In this paper we present a method for reconstructing diffusion-weighted MRI data on regular grids from scattered data. The proposed method has the advantage that no specific diffusion model needs to be assumed. Previous work assume the tensor model, but this is not suitable under certain conditions like intravoxel orientational heterogeneity (IVOH). Data reconstruction is particularly important when studying the fetal brain in utero, since registration methods applied for movement and distortion correction produce scattered data in spatial and diffusion domains. We propose the use of a groupwise registration method, and a dual spatio-angular interpolation by using radial basis functions (RBF). Leave-one-out experiments performed on adult data showed a high accuracy of the method. The application to fetal data showed an improvement in the quality of the sequences according to objective criteria based on fractional anisotropy (FA) maps, and differences in the tractography results.
Collapse
|
33
|
Vasung L, Huang H, Jovanov-Milošević N, Pletikos M, Mori S, Kostović I. Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat 2011; 217:400-17. [PMID: 20609031 DOI: 10.1111/j.1469-7580.2010.01260.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP-25 (SNAP-25-immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico-frontal pathways (external capsule, cerebral stalk-internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13-14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24-26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and 'waiting' compartments during the path-finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.
Collapse
Affiliation(s)
- Lana Vasung
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
34
|
Prominent periventricular fiber system related to ganglionic eminence and striatum in the human fetal cerebrum. Brain Struct Funct 2010; 215:237-53. [DOI: 10.1007/s00429-010-0279-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/21/2010] [Indexed: 01/25/2023]
|
35
|
Cartry C, Viallon V, Hornoy P, Adamsbaum C. [Diffusion-weighted MR imaging of the normal fetal brain: marker of fetal brain maturation]. ACTA ACUST UNITED AC 2010; 91:561-6. [PMID: 20657355 DOI: 10.1016/s0221-0363(10)70088-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine the reliability and variations of apparent diffusion coefficient (ADC) values in normal fetuses. Materials and methods. Retrospective study (2007-2008) on 22 normal fetal MR examinations, performed between 30 and 34 of gestation, using a routine protocol (T1W and T2W images in 3 planes, b=1,000 diffusion-weighted imaging) without sedation. ADC values were measured by placing 3 adjacent regions of interest (ROI) including a centrally located ROI over the right frontal and occipital white matter (6 ROI). STATISTICAL ANALYSIS reproducibility of adjacent ADC values (intraclass correlation coefficient: ICC) and comparison between frontal and occipital ADC values (Wilcoxon). RESULTS The mean ADC value was 1.78 mm(2)/s for the frontal white matter (+ or - 0.10) and 1.66 mm(2)/s for the occipital white matter (+ or - 0.12) with excellent reproducibility (ICC=0.91 in the frontal lobe) and good reproducibility for adjacent measurements (ICC=0.7). A linear inverse correlation existed between ADC values and gestational age in the occipital lobes, and a significant fronto-occipital gradient existed after 32 weeks of gestational age. CONCLUSION ADC value measurements are reliable and inversely correlated with gestational age due to fetal brain maturation. The existence of a fronto-occipital gradient after 32 weeks of gestational age could be a marker of normal maturation used in clinical practice.
Collapse
Affiliation(s)
- C Cartry
- Service d'Imagerie Pédiatrique, Hôpital St-Vincent-de-Paul, AP-HP, 82, avenue Denfert Rochereau, 75674 Paris cedex 14
| | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Fetal magnetic resonance imaging (MRI) is a relatively new clinical application but is becoming increasingly used in fetal medicine in combination with the established technique of antenatal ultrasound. A review of the literature to date provides information for clinicians to help assess which patients they should be referring for fetal MRI and what additional information to ultrasound they can obtain. RECENT FINDINGS This review covers recent articles on practical aspects of imaging, MR findings in common disorders and comparisons with ultrasound. It includes information on current applications for fetal MRI, new sequence acquisitions and postprocessing techniques. Fetal motion is the single most important barrier to improving image data. SUMMARY Fetal MR has become an established tool for assessing the fetal brain. It provides complementary information to ultrasound. However, further optimization of this technique is still required to ensure it is exploited to the full in fetal medicine.
Collapse
|
37
|
Lee W, Krisko A, Shetty A, Yeo L, Hassan SS, Gotsch F, Mody S, Gonçalves LF, Romero R. Non-invasive fetal lung assessment using diffusion-weighted imaging. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2009; 34:673-7. [PMID: 19859908 PMCID: PMC2789899 DOI: 10.1002/uog.7446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/03/2009] [Indexed: 05/28/2023]
Abstract
OBJECTIVES The main goal was to develop a reproducible method for estimating the diffusion of water in human fetal lung tissue using diffusion-weighted imaging (DWI). A secondary objective was to determine the relationship of the apparent diffusion coefficients (ADCs) in the fetal lung to menstrual age and total lung volume. METHODS Normal pregnant volunteers were scanned on a 1.5-Tesla (T) magnetic resonance imaging (MRI) system. The MRI system was equipped with 40-mT/m gradients (slew rate 200 T/m/s, rise time 0.2 ms). A six-channel body array coil was used for signal reception. Single-shot DWI utilized TE/TR 125/3400 ms, slice thickness 4 mm, field of view 280 mm x 280 mm, interslice gap 0.8 mm and a matrix of 128 x 128. The voxel size was 2.5 mm x 2.5 mm x 4.0 mm. Two b-values (0 and 1000) were chosen along three orthogonal directions. ADC maps were created using assigned b-values. Simple linear regression was performed with Pearson correlation coefficient. Interexaminer and intraexaminer bias, and 95% limits of agreement (LOA) were determined using Bland-Altman plots. RESULTS Forty-seven scans were performed at a mean +/- SD of 29.2 +/- 4.5 weeks. The median coefficient of variation for ADC was 5.6% (interquartile range, 4.0-8.1%). No differences in ADC values were found between right and left lungs. Normally distributed ADC measurements were not significantly correlated with either total lung volume (r(2) = 0.0001, P = 0.94) or menstrual age (r(2) = 0.003, P = 0.70). The mean ADC value was 1.75 (95% CI, 1.63-1.86). Mean +/- SD intraexaminer bias was -0.15 +/- 2.3 (95% LOA, -4.7 to + 4.4) and interexaminer bias was 2.2 +/- 3.5 (95% LOA, -4.7 to + 9.1). CONCLUSIONS Our findings suggest that ADC measurements of the fetal lung are reproducible between blinded examiners and are independent of menstrual age, as well as lung volume.
Collapse
Affiliation(s)
- W Lee
- Division of Fetal Imaging, Department of Obstetrics and Gynecology, William Beaumont Hospital, Royal Oak, MI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jiang S, Xue H, Counsell S, Anjari M, Allsop J, Rutherford M, Rueckert D, Hajnal JV. Diffusion tensor imaging (DTI) of the brain in moving subjects: application to in-utero fetal and ex-utero studies. Magn Reson Med 2009; 62:645-55. [PMID: 19526505 DOI: 10.1002/mrm.22032] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present a methodology to achieve 3D high-resolution diffusion tensor image reconstruction of the brain in moving subjects. The source data is diffusion-sensitized single-shot echo-planar images. After continuous scanning to acquire a repeated series of parallel slices with 15 diffusion directions, image registration is used to realign the images to correct for subject motion. Once aligned, the diffusion images are treated as irregularly-sampled data where each voxel is associated with an appropriately rotated diffusion direction. This data is used to estimate the diffusion tensor on a regular grid. The method has been tested on data acquired at 1.5T from adults who deliberately moved and from eight fetuses imaged in utero. Maps of apparent diffusion coefficient (ADC) were reliably produced in all cases and promising performance was achieved for fractional anisotropy maps. Results from normal fetal brains were found to be consistent with published data from premature infants of similar gestational age.
Collapse
Affiliation(s)
- Shuzhou Jiang
- Imaging Science Department, MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital Campus, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bammer R, Holdsworth SJ, Veldhuis WB, Skare ST. New methods in diffusion-weighted and diffusion tensor imaging. Magn Reson Imaging Clin N Am 2009; 17:175-204. [PMID: 19406353 DOI: 10.1016/j.mric.2009.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Considerable strides have been made by countless individual researchers in diffusion-weighted imaging (DWI) to push DWI from an experimental tool, limited to a few institutions with specialized instrumentation, to a powerful tool used routinely for diagnostic imaging. The field of DWI constantly evolves, and progress has been made on several fronts. These developments are primarily composed of improved robustness against patient and physiologic motion, increased spatial resolution, new biophysical and tissue models, and new clinical applications for DWI. This article aims to provide a succinct overview of some of these new developments and a description of some of the major challenges associated with DWI.
Collapse
Affiliation(s)
- Roland Bammer
- Department of Radiology, Stanford University, 1201 Welch Road, Lucas Center, PS08, Stanford, CA 94305-5488, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
Fetal MRI is becoming an increasingly powerful imaging tool for studying brain development in vivo. Until recently, the application of advanced magnetic resonance imaging techniques was limited by motion in the nonsedated fetus. Extensive research efforts currently underway are focusing on the development of dedicated magnetic resonance imaging sequences and sophisticated postprocessing techniques that are revolutionizing our ability to study the healthy and compromised fetus. The ongoing refinement of these magnetic resonance imaging techniques will undoubtedly lead to the development of cornerstone biomarkers that will provide healthcare caregivers with vital, and currently lacking, information upon which to counsel parents effectively, and base rational decisions regarding the timing and type of novel medical and surgical interventions currently on the horizon.
Collapse
|
41
|
Trivedi R, Gupta RK, Husain N, Rathore RKS, Saksena S, Srivastava S, Malik GK, Das V, Pradhan M, Sarma MK, Pandey CM, Narayana PA. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology. Neuroradiology 2009; 51:567-76. [PMID: 19421746 DOI: 10.1007/s00234-009-0533-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 04/22/2009] [Indexed: 11/28/2022]
Abstract
INTRODUCTION In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. METHODS DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. RESULTS The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r = 0.31, p = 0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA < or = 28 weeks for frontal cortical region and GA < or = 22 weeks for rest of the lobes. CONCLUSIONS The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain.
Collapse
Affiliation(s)
- Richa Trivedi
- Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, UP, India, 226014
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Scher MS. Neonatal Hypertonia: II. differential diagnosis and proposed neuroprotection. Pediatr Neurol 2008; 39:373-80. [PMID: 19027581 DOI: 10.1016/j.pediatrneurol.2008.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 01/08/2023]
Abstract
More accurate documentation of a neonate's specific hypertonic state could be helpful as part of serial neurologic examinations. The clinician would then be in a more advantageous position to choose the appropriate neuroprotective drug or the procedure that best fits with the etiology, localization, and timing of injury. Ideally, choices for neuroprotection will integrate history, examination, and diagnostic findings before considering options for prophylaxis, neurorescue, or neurorepair. Measuring the efficacy of a neuroprotection protocol should include a complete list of life-course challenges, including motor, epileptic, cognitive, and behavioral outcomes as expressed at successively older ages.
Collapse
Affiliation(s)
- Mark S Scher
- Program in Fetal and Neonatal Neurology, Division of Pediatric Neurology, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106-6090, USA.
| |
Collapse
|