1
|
Arostegui MC. Cranial endothermy in mobulid rays: Evolutionary and ecological implications of a thermogenic brain. J Anim Ecol 2024. [PMID: 39434239 DOI: 10.1111/1365-2656.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
The large, metabolically expensive brains of manta and devil rays (Mobula spp.) may act as a thermogenic organ representing a unique mechanistic basis for cranial endothermy among fishes that improves central nervous system function in cold waters. Whereas early hominids in hot terrestrial environments may have experienced a thermal constraint to evolving larger brain size, cetaceans and mobulids in cold marine waters may have experienced a thermal driver for enlargement of a thermogenic brain. The potential for brain enlargement to yield the dual outcomes of cranial endothermy and enhanced cognition in mobulids suggests one may be an evolutionary by-product of selection for the mechanisms underlying the other, and highlights the need to account for non-cognitive functions when translating brain size into cognitive capacity. Computational scientific imaging offers promising avenues for addressing the pressing mechanistic and phylogenetic questions needed to assess the theory that cranial endothermy in mobulids is the result of temperature-driven selection for a brain with augmented thermogenic potential.
Collapse
Affiliation(s)
- M C Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Li Y, Zhuo Z, Liu C, Duan Y, Shi Y, Wang T, Li R, Wang Y, Jiang J, Xu J, Tian D, Zhang X, Shi F, Zhang X, Carass A, Barkhof F, Prince JL, Ye C, Liu Y. Deep learning enables accurate brain tissue microstructure analysis based on clinically feasible diffusion magnetic resonance imaging. Neuroimage 2024; 300:120858. [PMID: 39317273 DOI: 10.1016/j.neuroimage.2024.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) allows non-invasive assessment of brain tissue microstructure. Current model-based tissue microstructure reconstruction techniques require a large number of diffusion gradients, which is not clinically feasible due to imaging time constraints, and this has limited the use of tissue microstructure information in clinical settings. Recently, approaches based on deep learning (DL) have achieved promising tissue microstructure reconstruction results using clinically feasible dMRI. However, it remains unclear whether the subtle tissue changes associated with disease or age are properly preserved with DL approaches and whether DL reconstruction results can benefit clinical applications. Here, we provide the first evidence that DL approaches to tissue microstructure reconstruction yield reliable brain tissue microstructure analysis based on clinically feasible dMRI scans. Specifically, we reconstructed tissue microstructure from four different brain dMRI datasets with only 12 diffusion gradients, a clinically feasible protocol, and the neurite orientation dispersion and density imaging (NODDI) and spherical mean technique (SMT) models were considered. With these results we show that disease-related and age-dependent alterations of brain tissue were accurately identified. These findings demonstrate that DL tissue microstructure reconstruction can accurately quantify microstructural alterations in the brain based on clinically feasible dMRI.
Collapse
Affiliation(s)
- Yuxing Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenghao Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yulu Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingting Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Runzhi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Decai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fudong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaofeng Zhang
- School of Information and Electronics, Beijing Institute of Technology, Zhuhai, China
| | - Aaron Carass
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, 1081 HV, the Netherlands
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | - Chuyang Ye
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China.
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Jokivuolle M, Mahmood F, Madsen KH, Harbo FSG, Johnsen L, Lundell H. Assessing tumor microstructure with time-dependent diffusion imaging: Considerations and feasibility on clinical MRI and MRI-Linac. Med Phys 2024. [PMID: 39387639 DOI: 10.1002/mp.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Quantitative imaging biomarkers (QIBs) can characterize tumor heterogeneity and provide information for biological guidance in radiotherapy (RT). Time-dependent diffusion MRI (TDD-MRI) derived parameters are promising QIBs, as they describe tissue microstructure with more specificity than traditional diffusion-weighted MRI (DW-MRI). Specifically, TDD-MRI can provide information about both restricted diffusion and diffusional exchange, which are the two time-dependent effects affecting diffusion in tissue, and relevant in tumors. However, exhaustive modeling of both effects can require long acquisitions and complex model fitting. Furthermore, several introduced TDD-MRI measurements can require high gradient strengths and/or complex gradient waveforms that are possibly not available in RT settings. PURPOSE In this study, we investigated the feasibility of a simple analysis framework for the detection of restricted diffusion and diffusional exchange effects in the TDD-MRI signal. To promote the clinical applicability, we use standard gradient waveforms on a conventional 1.5 T MRI system with moderate gradient strength (Gmax = 45 mT/m), and on a hybrid 1.5 T MRI-Linac system with low gradient strength (Gmax = 15 mT/m). METHODS Restricted diffusion and diffusional exchange were simulated in geometries mimicking tumor microstructure to investigate the DW-MRI signal behavior and to determine optimal experimental parameters. TDD-MRI was implemented using pulsed field gradient spin echo with the optimized parameters on a conventional MRI system and a MRI-Linac. Experiments in green asparagus and 10 patients with brain lesions were performed to evaluate the time-dependent diffusion (TDD) contrast in the source DW-images. RESULTS Simulations demonstrated how the TDD contrast was able to differentiate only dominating diffusional exchange in smaller cells from dominating restricted diffusion in larger cells. The maximal TDD contrast in simulations with typical cancer cell sizes and in asparagus measurements exceeded 5% on the conventional MRI but remained below 5% on the MRI-Linac. In particular, the simulated TDD contrast in typical cancer cell sizes (r = 5-10 µm) remained below or around 2% with the MRI-Linac gradient strength. In patients measured with the conventional MRI, we found sub-regions reflecting either dominating restricted diffusion or dominating diffusional exchange in and around brain lesions compared to the noisy appearing white matter. CONCLUSIONS On the conventional MRI system, the TDD contrast maps showed consistent tumor sub-regions indicating different dominating TDD effects, potentially providing information on the spatial tumor heterogeneity. On the MRI-Linac, the available TDD contrast measured in asparagus showed the same trends as with the conventional MRI but remained close to typical measurement noise levels when simulated in common cancer cell sizes. On conventional MRI systems with moderate gradient strengths, the TDD contrast could potentially be used as a tool to identify which time-dependent effects to include when choosing a biophysical model for more specific tumor characterization.
Collapse
Affiliation(s)
- Minea Jokivuolle
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Faisal Mahmood
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kristoffer Hougaard Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Lars Johnsen
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
DiPiero MA, Rodrigues PG, Justman M, Roche S, Bond E, Gonzalez JG, Davidson RJ, Planalp EM, Dean DC. Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy. Brain Struct Funct 2024:10.1007/s00429-024-02853-w. [PMID: 39313671 DOI: 10.1007/s00429-024-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The neurodevelopmental epoch from fetal stages to early life embodies a critical window of peak growth and plasticity in which differences believed to be associated with many neurodevelopmental and psychiatric disorders first emerge. Obtaining a detailed understanding of the developmental trajectories of the cortical gray matter microstructure is necessary to characterize differential patterns of neurodevelopment that may subserve future intellectual, behavioral, and psychiatric challenges. The neurite orientation dispersion density imaging (NODDI) Gray-Matter Based Spatial Statistics (GBSS) framework leverages information from the NODDI model to enable sensitive characterization of the gray matter microstructure while limiting partial volume contamination and misregistration errors between images collected in different spaces. However, limited contrast of the underdeveloped brain poses challenges for implementing this framework with infant diffusion MRI (dMRI) data. In this work, we aim to examine the development of cortical microstructure in infants. We utilize the NODDI GBSS framework and propose refinements to the original framework that aim to improve the delineation and characterization of gray matter in the infant brain. Taking this approach, we cross-sectionally investigate age relationships in the developing gray matter microstructural organization in infants within the first month of life and reveal widespread relationships with the gray matter architecture.
Collapse
Affiliation(s)
- Marissa A DiPiero
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - McKaylie Justman
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Sophia Roche
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Elizabeth Bond
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Jose Guerrero Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Planalp
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Dean DC, Tisdall MD, Wisnowski JL, Feczko E, Gagoski B, Alexander AL, Edden RAE, Gao W, Hendrickson TJ, Howell BR, Huang H, Humphreys KL, Riggins T, Sylvester CM, Weldon KB, Yacoub E, Ahtam B, Beck N, Banerjee S, Boroday S, Caprihan A, Caron B, Carpenter S, Chang Y, Chung AW, Cieslak M, Clarke WT, Dale A, Das S, Davies-Jenkins CW, Dufford AJ, Evans AC, Fesselier L, Ganji SK, Gilbert G, Graham AM, Gudmundson AT, Macgregor-Hannah M, Harms MP, Hilbert T, Hui SCN, Irfanoglu MO, Kecskemeti S, Kober T, Kuperman JM, Lamichhane B, Landman BA, Lecour-Bourcher X, Lee EG, Li X, MacIntyre L, Madjar C, Manhard MK, Mayer AR, Mehta K, Moore LA, Murali-Manohar S, Navarro C, Nebel MB, Newman SD, Newton AT, Noeske R, Norton ES, Oeltzschner G, Ongaro-Carcy R, Ou X, Ouyang M, Parrish TB, Pekar JJ, Pengo T, Pierpaoli C, Poldrack RA, Rajagopalan V, Rettmann DW, Rioux P, Rosenberg JT, Salo T, Satterthwaite TD, Scott LS, Shin E, Simegn G, Simmons WK, Song Y, Tikalsky BJ, Tkach J, van Zijl PCM, Vannest J, Versluis M, Zhao Y, Zöllner HJ, Fair DA, Smyser CD, Elison JT. Quantifying brain development in the HEALthy Brain and Child Development (HBCD) Study: The magnetic resonance imaging and spectroscopy protocol. Dev Cogn Neurosci 2024; 70:101452. [PMID: 39341120 PMCID: PMC11466640 DOI: 10.1016/j.dcn.2024.101452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. The acquisition of multimodal magnetic resonance-based brain development data is central to the study's core protocol. However, application of Magnetic Resonance Imaging (MRI) methods in this population is complicated by technical challenges and difficulties of imaging in early life. Overcoming these challenges requires an innovative and harmonized approach, combining age-appropriate acquisition protocols together with specialized pediatric neuroimaging strategies. The HBCD MRI Working Group aimed to establish a core acquisition protocol for all 27 HBCD Study recruitment sites to measure brain structure, function, microstructure, and metabolites. Acquisition parameters of individual modalities have been matched across MRI scanner platforms for harmonized acquisitions and state-of-the-art technologies are employed to enable faster and motion-robust imaging. Here, we provide an overview of the HBCD MRI protocol, including decisions of individual modalities and preliminary data. The result will be an unparalleled resource for examining early neurodevelopment which enables the larger scientific community to assess normative trajectories from birth through childhood and to examine the genetic, biological, and environmental factors that help shape the developing brain.
Collapse
Affiliation(s)
- Douglas C Dean
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - M Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica L Wisnowski
- Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA; Department of Radiology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Brittany R Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Hao Huang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Kimberly B Weldon
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Banu Ahtam
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Natacha Beck
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | | | - Sergiy Boroday
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | | | - Bryan Caron
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Samuel Carpenter
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | | | - Ai Wern Chung
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anders Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, USA; Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Samir Das
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Christopher W Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Alexander J Dufford
- Department of Psychiatry and Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Laetitia Fesselier
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Sandeep K Ganji
- MR Clinical Science, Philips Healthcare, Best, the Netherlands
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare, Mississauga, Ontario, Canada
| | - Alice M Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Maren Macgregor-Hannah
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Michael P Harms
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland,; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland,; LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Steve C N Hui
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - M Okan Irfanoglu
- Quantitative Medical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | | | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland,; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland,; LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joshua M Kuperman
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Bidhan Lamichhane
- Center for Health Sciences, Oklahoma State University, Tulsa, OK, USA
| | - Bennett A Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Xavier Lecour-Bourcher
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Erik G Lee
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Xu Li
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Leigh MacIntyre
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; Lasso Informatics, Canada
| | - Cecile Madjar
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Mary Kate Manhard
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Kahini Mehta
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Cristian Navarro
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sharlene D Newman
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA; Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Allen T Newton
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Monroe Carell Jr. Children's Hospital at Vandebrilt, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Elizabeth S Norton
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA; Department of Medical Social Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Regis Ongaro-Carcy
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Minhui Ouyang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Todd B Parrish
- Department of Radiology, Feinberg School of Medicine, Chicago, IL, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - James J Pekar
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Thomas Pengo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Carlo Pierpaoli
- Quantitative Medical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | | | - Vidya Rajagopalan
- Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA; Department of Radiology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | - Pierre Rioux
- McGill Centre for Integrative Neuroscience, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute-Hospital, Montréal, Québec, Canada; McConnell Brain Imaging Centre, McGill University, Montréal, Québec, Canada
| | - Jens T Rosenberg
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Taylor Salo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa S Scott
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Eunkyung Shin
- Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Gizeaddis Simegn
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - W Kyle Simmons
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA; OSU Biomedical Imaging Center, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Barry J Tikalsky
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jean Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jennifer Vannest
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA; Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Yansong Zhao
- MR Clinical Science, Philips Healthcare, Cleveland, OH, USA
| | - Helge J Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
| | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Jed T Elison
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Gilliam JR, Sahu PK, Vendemia JMC, Silfies SP. Association between seated trunk control and cortical sensorimotor white matter brain changes in patients with chronic low back pain. PLoS One 2024; 19:e0309344. [PMID: 39208294 PMCID: PMC11361694 DOI: 10.1371/journal.pone.0309344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Trunk control involves integration of sensorimotor information in the brain. Individuals with chronic low back pain (cLBP) have impaired trunk control and show differences in brain structure and function in sensorimotor areas compared with healthy controls (HC). However, the relationship between brain structure and trunk control in this group is not well understood. This cross-sectional study aimed to compare seated trunk control and sensorimotor white matter (WM) structure in people with cLBP and HC and explore relationships between WM properties and trunk control in each group. Thirty-two people with cLBP and 35 HC were tested sitting on an unstable chair to isolate trunk control; performance was measured using the 95% confidence ellipse area (CEA95) of center-of-pressure tracing. A WM network between cortical sensorimotor regions of interest was derived using probabilistic tractography. WM microstructure and anatomical connectivity between cortical sensorimotor regions were assessed. A mixed-model ANOVA showed that people with cLBP had worse trunk control than HC (F = 12.96; p < .001; ηp2 = .091). There were no differences in WM microstructure or anatomical connectivity between groups (p = 0.564 to 0.940). In the cLBP group, WM microstructure was moderately correlated (|r| = .456 to .565; p ≤ .009) with trunk control. Additionally, the cLBP group demonstrated stronger relationships between anatomical connectivity and trunk control (|r| = .377 to .618 p < .034) compared to the HC group. Unique to the cLBP group, WM connectivity between right somatosensory and left motor areas highlights the importance of interhemispheric information exchange for trunk control. Parietal areas associated with attention and spatial reference frames were also relevant to trunk control. These findings suggest that people with cLBP adopt a more cortically driven sensorimotor integration strategy for trunk control. Future research should replicate these findings and identify interventions to effectively modulate this strategy.
Collapse
Affiliation(s)
- John R. Gilliam
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Pradeep K. Sahu
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Jennifer M. C. Vendemia
- Department of Psychology, University of South Carolina, Columbia, SC, United States of America
| | - Sheri P. Silfies
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
7
|
Narvaez O, Yon M, Jiang H, Bernin D, Forssell-Aronsson E, Sierra A, Topgaard D. Nonparametric distributions of tensor-valued Lorentzian diffusion spectra for model-free data inversion in multidimensional diffusion MRI. J Chem Phys 2024; 161:084201. [PMID: 39171708 DOI: 10.1063/5.0213252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
Magnetic resonance imaging (MRI) is the method of choice for noninvasive studies of micrometer-scale structures in biological tissues via their effects on the time- and frequency-dependent (restricted) and anisotropic self-diffusion of water. While new designs of time-dependent magnetic field gradient waveforms have enabled disambiguation between different aspects of translational motion that are convolved in traditional MRI methods relying on single pairs of field gradient pulses, data analysis for complex heterogeneous materials remains a challenge. Here, we propose and demonstrate nonparametric distributions of tensor-valued Lorentzian diffusion spectra, or "D(ω) distributions," as a general representation with sufficient flexibility to describe the MRI signal response from a wide range of model systems and biological tissues investigated with modulated gradient waveforms separating and correlating the effects of restricted and anisotropic diffusion.
Collapse
Affiliation(s)
- Omar Narvaez
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maxime Yon
- Department of Chemistry, Lund University, Lund, Sweden
| | - Hong Jiang
- Department of Chemistry, Lund University, Lund, Sweden
| | - Diana Bernin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Medical Radiation Sciences, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Alejandra Sierra
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
8
|
Han X, Maharjan S, Chen J, Zhao Y, Qi Y, White LE, Johnson GA, Wang N. High-resolution diffusion magnetic resonance imaging and spatial-transcriptomic in developing mouse brain. Neuroimage 2024; 297:120734. [PMID: 39032791 PMCID: PMC11377129 DOI: 10.1016/j.neuroimage.2024.120734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Brain development is a highly complex process regulated by numerous genes at the molecular and cellular levels. Brain tissue exhibits serial microstructural changes during the development process. High-resolution diffusion magnetic resonance imaging (dMRI) affords a unique opportunity to probe these changes in the developing brain non-destructively. In this study, we acquired multi-shell dMRI datasets at 32 µm isotropic resolution to investigate the tissue microstructure alterations, which we believe to be the highest spatial resolution dMRI datasets obtained for postnatal mouse brains. We adapted the Allen Developing Mouse Brain Atlas (ADMBA) to integrate quantitative MRI metrics and spatial transcriptomics. Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and neurite orientation dispersion and density imaging (NODDI) metrics were used to quantify brain development at different postnatal days. We demonstrated that the differential evolutions of fiber orientation distributions contribute to the distinct development patterns in white matter (WM) and gray matter (GM). Furthermore, the genes enriched in the nervous system that regulate brain structure and function were expressed in spatial correlation with age-matched dMRI. This study is the first one providing high-resolution dMRI, including DTI, DKI, and NODDI models, to trace mouse brain microstructural changes in WM and GM during postnatal development. This study also highlighted the genotype-phenotype correlation of spatial transcriptomics and dMRI, which may improve our understanding of brain microstructure changes at the molecular level.
Collapse
Affiliation(s)
- Xinyue Han
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Jie Chen
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA
| | - Leonard E White
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Freire IS, Lopes TS, Afonso SG, Pereira DJ. From images to insights: a neuroradiologist's practical guide on white matter fiber tract anatomy and DTI patterns for pre-surgical planning. Neuroradiology 2024; 66:1251-1265. [PMID: 38635028 DOI: 10.1007/s00234-024-03362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Diffusion tensor imaging (DTI) is a valuable non-invasive imaging modality for mapping white matter tracts and assessing microstructural integrity, and can be used as a "biomarker" in diagnosis, differentiation, and therapeutic monitoring. Although it has gained clinical importance as a marker of neuropathology, limitations in its interpretation underscore the need for caution. METHODS This review provides an overview of the principles and clinical applicability of DTI. We focus on major white matter fiber bundles, detailing their normal anatomy and pathological DTI patterns, with emphasis on tracts routinely requested in our neurosurgical department in the preoperative context (uncinate fasciculus, arcuate fasciculus, pyramidal pathway, optic radiation, and dentatorubrothalamic tract). RESULTS We guide neuroradiologists and neurosurgeons in defining volumes of interest for mapping individual tracts and demonstrating their 3D reconstructions. The intricate trajectories of white matter tracts pose a challenge for accurate fiber orientation recording, with each bundle exhibiting specific characteristics. Tracts adjacent to brain lesions are categorized as displaced, edematous, infiltrated, or disrupted, illustrated with clinical cases of brain neoplasms. To improve structured reporting, we propose a checklist of topics for inclusion in imaging evaluations and MRI reports. CONCLUSION DTI is emerging as a powerful tool for assessing microstructural changes in brain disorders, despite some challenges in standardization and interpretation. This review serves an educational purpose by providing guidance for fiber monitoring and interpretation of pathological patterns observed in clinical cases, highlighting the importance and potential pitfalls of DTI in neuroradiology and surgical planning.
Collapse
Affiliation(s)
- Inês S Freire
- Department of Neuroradiology - Centro Hospitalar Universitário de Lisboa Central (CHULC), Rua José António Serrano, 1150-199, Lisbon, Portugal.
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - Tânia S Lopes
- Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Sónia G Afonso
- Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Daniela J Pereira
- Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
- Functional Unit of Neuroradiology - Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| |
Collapse
|
10
|
Winther S, Peulicke O, Andersson M, Kjer HM, Bærentzen JA, Dyrby TB. Exploring white matter dynamics and morphology through interactive numerical phantoms: the White Matter Generator. Front Neuroinform 2024; 18:1354708. [PMID: 39144684 PMCID: PMC11322502 DOI: 10.3389/fninf.2024.1354708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/25/2024] [Indexed: 08/16/2024] Open
Abstract
Brain white matter is a dynamic environment that continuously adapts and reorganizes in response to stimuli and pathological changes. Glial cells, especially, play a key role in tissue repair, inflammation modulation, and neural recovery. The movements of glial cells and changes in their concentrations can influence the surrounding axon morphology. We introduce the White Matter Generator (WMG) tool to enable the study of how axon morphology is influenced through such dynamical processes, and how this, in turn, influences the diffusion-weighted MRI signal. This is made possible by allowing interactive changes to the configuration of the phantom generation throughout the optimization process. The phantoms can consist of myelinated axons, unmyelinated axons, and cell clusters, separated by extra-cellular space. Due to morphological flexibility and computational advantages during the optimization, the tool uses ellipsoids as building blocks for all structures; chains of ellipsoids for axons, and individual ellipsoids for cell clusters. After optimization, the ellipsoid representation can be converted to a mesh representation which can be employed in Monte-Carlo diffusion simulations. This offers an effective method for evaluating tissue microstructure models for diffusion-weighted MRI in controlled bio-mimicking white matter environments. Hence, the WMG offers valuable insights into white matter's adaptive nature and implications for diffusion-weighted MRI microstructure models, and thereby holds the potential to advance clinical diagnosis, treatment, and rehabilitation strategies for various neurological disorders and injuries.
Collapse
Affiliation(s)
- Sidsel Winther
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
| | - Oscar Peulicke
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
| | - Hans M. Kjer
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob A. Bærentzen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
| |
Collapse
|
11
|
Genc S, Ball G, Chamberland M, Raven EP, Tax CM, Ward I, Yang JYM, Palombo M, Jones DK. MRI signatures of cortical microstructure in human development align with oligodendrocyte cell-type expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605934. [PMID: 39131383 PMCID: PMC11312524 DOI: 10.1101/2024.07.30.605934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Neuroanatomical changes to the cortex during adolescence have been well documented using MRI, revealing ongoing cortical thinning and volume loss with age. However, the underlying cellular mechanisms remain elusive with conventional neuroimaging. Recent advances in MRI hardware and new biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular changes driving these morphological observations. This study used ultra-strong gradient MRI to obtain high-resolution, in vivo estimates of cortical neurite and soma microstructure in sample of typically developing children and adolescents. Cortical neurite signal fraction, attributed to neuronal and glial processes, increased with age (mean R2 fneurite=.53, p<3.3e-11, 11.91% increase over age), while apparent soma radius decreased (mean R2 Rsoma=.48, p<4.4e-10, 1% decrease over age) across domain-specific networks. To complement these findings, developmental patterns of cortical gene expression in two independent post-mortem databases were analysed. This revealed increased expression of genes expressed in oligodendrocytes, and excitatory neurons, alongside a relative decrease in expression of genes expressed in astrocyte, microglia and endothelial cell-types. Age-related genes were significantly enriched in cortical oligodendrocytes, oligodendrocyte progenitors and Layer 5-6 neurons (pFDR<.001) and prominently expressed in adolescence and young adulthood. The spatial and temporal alignment of oligodendrocyte cell-type gene expression with neurite and soma microstructural changes suggest that ongoing cortical myelination processes contribute to adolescent cortical development. These findings highlight the role of intra-cortical myelination in cortical maturation during adolescence and into adulthood.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Gareth Ball
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, The Netherlands
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, USA
| | - Chantal Mw Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isobel Ward
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Data and Analysis for Social Care and Health, Office for National Statistics, Newport, United Kingdom
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
12
|
Oeschger JM, Tabelow K, Mohammadi S. Investigating apparent differences between standard DKI and axisymmetric DKI and its consequences for biophysical parameter estimates. Magn Reson Med 2024; 92:69-81. [PMID: 38308141 DOI: 10.1002/mrm.30034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE The purpose of the study is to identify differences between axisymmetric diffusion kurtosis imaging (DKI) and standard DKI, their consequences for biophysical parameter estimates, and the protocol choice influence on parameter estimation. METHODS Noise-free and noisy, synthetic diffusion MRI human brain data is simulated using standard DKI for a standard and the fast "199" acquisition protocol. First the noise-free "baseline" difference between both DKI models is estimated and the influence of fiber complexity is investigated. Noisy data is used to establish the signal-to-noise ratio at which the baseline difference exceeds noise variability. The influence of protocol choices and denoising is investigated. The five axisymmetric DKI tensor metrics (AxTM), the parallel and perpendicular diffusivity and kurtosis and mean of the kurtosis tensor are used to compare both DKI models. Additionally, the baseline difference is also estimated for the five parameters of the WMTI-Watson model. RESULTS The parallel and perpendicular kurtosis and all of the WMTI-Watson parameters had large baseline differences. Using a Westin or FA mask reduced the number of voxels with large baseline difference, that is, by selecting voxels with less complex fibers. For the noisy data, precision was worsened by the fast "199" protocol but adaptive denoising can help counteract these effects. CONCLUSION For the diffusivities and mean of the kurtosis tensor, axisymmetric DKI with a standard protocol delivers similar results as standard DKI. Fiber complexity is one main driver of the baseline differences. Using the "199" protocol worsens precision in noisy data but adaptive denoising mitigates these effects.
Collapse
Affiliation(s)
- Jan Malte Oeschger
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Tabelow
- Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Sachsen, Germany
- Max Planck Research Group MR Physics, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
13
|
Storey P, Novikov DS. Signatures of microstructure in gradient-echo and spin-echo signals. Magn Reson Med 2024; 92:269-288. [PMID: 38520259 PMCID: PMC11178261 DOI: 10.1002/mrm.30022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE To determine whether the spatial scale and magnetic susceptibility of microstructure can be evaluated robustly from the decay of gradient-echo and spin-echo signals. THEORY AND METHODS Gradient-echo and spin-echo images were acquired from suspensions of spherical polystyrene microbeads of 10, 20, and 40 μm nominal diameter. The sizes of the beads and their magnetic susceptibility relative to the medium were estimated from the signal decay curves, using a lookup table generated from Monte Carlo simulations and an analytic model based on the Gaussian phase approximation. RESULTS Fitting Monte Carlo predictions to spin-echo data yielded acceptable estimates of microstructural parameters for the 20 and 40 μm microbeads. Using gradient-echo data, the Monte Carlo lookup table provided satisfactory parameter estimates for the 20 μm beads but unstable results for the diameter of the largest beads. Neither spin-echo nor gradient-echo data allowed accurate parameter estimation for the smallest beads. The analytic model performed poorly over all bead sizes. CONCLUSIONS Microstructural sources of magnetic susceptibility produce distinctive non-exponential signatures in the decay of gradient-echo and spin-echo signals. However, inverting the problem to extract microstructural parameters from the signals is nontrivial and, in certain regimes, ill-conditioned. For microstructure with small characteristic length scales, parameter estimation is hampered by the difficulty of acquiring accurate data at very short echo times. For microstructure with large characteristic lengths, the gradient-echo signal approaches the static-dephasing regime, where it becomes insensitive to size. Applicability of the analytic model was further limited by failure of the Gaussian phase approximation for all but the smallest beads.
Collapse
Affiliation(s)
- Pippa Storey
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
14
|
Uddin MN, Singh MV, Faiyaz A, Szczepankiewicz F, Nilsson M, Boodoo ZD, Sutton KR, Tivarus ME, Zhong J, Wang L, Qiu X, Weber MT, Schifitto G. Tensor-valued diffusion MRI detects brain microstructure changes in HIV infected individuals with cognitive impairment. RESEARCH SQUARE 2024:rs.3.rs-4482269. [PMID: 38946952 PMCID: PMC11213220 DOI: 10.21203/rs.3.rs-4482269/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes. This study aimed to investigate the sensitivity of tensor-valued diffusion encoding in detecting such changes in brain microstructural integrity in cART-treated PWH. Additionally, it explored relationships between these metrics, neurocognitive scores, and plasma levels of neurofilament light (NFL) chain and glial fibrillary acidic protein (GFAP). Using MRI at 3T, 24 PWH and 31 healthy controls underwent cross-sectional examination. The results revealed significant variations in b-tensor encoding metrics across white matter regions, with associations observed between these metrics, cognitive performance, and blood markers of neuronal and glial injury (NFL and GFAP). Moreover, a significant interaction between HIV status and imaging metrics was observed, particularly impacting total cognitive scores in both gray and white matter. These findings suggest that b-tensor encoding metrics offer heightened sensitivity in detecting subtle changes associated with axonal injury in HIV infection, underscoring their potential clinical relevance in understanding neurocognitive impairment in PWH.
Collapse
|
15
|
Zong F, Wang L, Liu H, Xue B, Bai R, Liu Y. A genetic optimisation and iterative reconstruction framework for sparse multi-dimensional diffusion-relaxation correlation MRI. Comput Biol Med 2024; 175:108508. [PMID: 38678941 DOI: 10.1016/j.compbiomed.2024.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
Multi-dimensional diffusion-relaxation correlation (DRC) magnetic resonance imaging (MRI) techniques have recently been developed to investigate tissue microstructures. Sub-voxel tissue heterogeneity is resolved from the local correlation distributions of relaxation time and molecular diffusivity. However, the implementation of these techniques considerably increases the total acquisition time, and simply reducing the scan time may be at the expense of detailed structural resolution. To overcome these limitations, an optimised framework was proposed for acquiring microstructural maps of the human brain on a clinically feasible timescale. First, the acquisition parameters of the multi-dimensional DRC MRI method were sparsely optimised using a genetic algorithm with a fitness function according to the spectral resolution of the correlation map, hardware requirements, and total scan time. Next, the acquired DRC MRI data were processed using a proposed numerical algorithm based on the dynamic inverse Laplace transform (ILT). Prior knowledge from one-dimensional data was then utilised in the iterative procedure to improve the spectral resolution. Finally, the proposed framework was validated using Monte Carlo simulations and experimental data acquired from healthy participants on an MRI scanner. The results demonstrated that the suggested approach is feasible for offering high-resolution DRC maps that correspond to distinct microstructures with a limited amount of optimised acquisition data from two-dimensional DRC sampling space. By significantly reducing scan time while retaining structural resolution, this approach may enable multi-dimensional DRC MRI to be more widely used for quantitative evaluation in biological and medical settings.
Collapse
Affiliation(s)
- Fangrong Zong
- School of Artificial Intelligence, Beijing University of Post and Telecommunication, Beijing, 100876, China.
| | - Lixian Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabing Liu
- Beijing Limecho Technology Co., Ltd., Beijing, 102200, China
| | - Bing Xue
- School of Engineering and Computer Science, Victoria University of Wellington, Victoria, 6140, New Zealand
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310020, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310030, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Post and Telecommunication, Beijing, 100876, China.
| |
Collapse
|
16
|
Bonaventura J, Morara K, Carlson R, Comrie C, Twer A, Hutchinson E, Sawyer TW. Evaluating backscattering polarized light imaging microstructural mapping capabilities through neural tissue and analogous phantom imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:052914. [PMID: 38077501 PMCID: PMC10704260 DOI: 10.1117/1.jbo.29.5.052914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/01/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Significance Knowledge of fiber microstructure and orientation in the brain is critical for many applications. Polarized light imaging (PLI) has been shown to have potential for better understanding neural fiber microstructure and directionality due to the anisotropy in myelin sheaths surrounding nerve fibers of the brain. Continuing to advance backscattering based PLI systems could provide a valuable avenue for in vivo neural imaging. Aim To assess the potential of backscattering PLI systems, the ability to resolve crossing fibers, and the sensitivity to fiber inclination and curvature are considered across different imaging wavelengths. Approach Investigation of these areas of relative uncertainty is undergone through imaging potential phantoms alongside analogous regions of interest in fixed ferret brain samples with a five-wavelength backscattering Mueller matrix polarimeter. Results Promising phantoms are discovered for which the retardance, diattenuation and depolarization mappings are derived from the Mueller matrix and studied to assess the sensitivity of this polarimeter configuration to fiber orientations and tissue structures. Conclusions Rich avenues for future study include further classifying this polarimeter's sensitivity to fiber inclination and fiber direction to accurately produce microstructural maps of neural tissue.
Collapse
Affiliation(s)
- Justina Bonaventura
- University of Arizona, Wyant College of Optical Sciences, Tucson, Arizona, United States
| | - Kellys Morara
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| | - Rhea Carlson
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| | - Courtney Comrie
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| | - AnneLeigh Twer
- University of Arizona, Department of Molecular and Cellular Biology, Tucson, Arizona, United States
| | - Elizabeth Hutchinson
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| | - Travis W. Sawyer
- University of Arizona, Wyant College of Optical Sciences, Tucson, Arizona, United States
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| |
Collapse
|
17
|
Kato S, Kurokawa R, Suzuki F, Amemiya S, Shinozaki T, Takanezawa D, Kohashi R, Abe O. White and Gray Matter Abnormality in Burning Mouth Syndrome Evaluated with Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging. Magn Reson Med Sci 2024; 23:204-213. [PMID: 36990741 PMCID: PMC11024709 DOI: 10.2463/mrms.mp.2022-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Burning mouth syndrome (BMS) is defined by a burning sensation or pain in the tongue or other oral sites despite the presence of normal mucosa on inspection. Both psychiatric and neuroimaging investigations have examined BMS; however, there have been no analyses using the neurite orientation dispersion and density imaging (NODDI) model, which provides detailed information of intra- and extracellular microstructures. Therefore, we performed voxel-wise analyses using both NODDI and diffusion tensor imaging (DTI) models and compared the results to better comprehend the pathology of BMS. METHODS Fourteen patients with BMS and 11 age- and sex-matched healthy control subjects were prospectively scanned using a 3T-MRI machine using 2-shell diffusion imaging. Diffusion tensor metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], and radial diffusivity [RD]) and neurite orientation and dispersion index metrics (intracellular volume fraction [ICVF], isotropic volume fraction [ISO], and orientation dispersion index [ODI]) were retrieved from diffusion MRI data. These data were analyzed using tract-based spatial statistics (TBSS) and gray matter-based spatial statistics (GBSS). RESULTS TBSS analysis showed that patients with BMS had significantly higher FA and ICVF and lower MD and RD than the healthy control subjects (family-wise error [FWE] corrected P < 0.05). Changes in ICVF, MD, and RD were observed in widespread white matter areas. Fairly small areas with different FA were included. GBSS analysis showed that patients with BMS had significantly higher ISO and lower MD and RD than the healthy control subjects (FWE-corrected P < 0.05), mainly limited to the amygdala. CONCLUSION The increased ICVF in the BMS group may represent myelination and/or astrocytic hypertrophy, and microstructural changes in the amygdala in GBSS analysis indicate the emotional-affective profile of BMS.
Collapse
Affiliation(s)
- Shimpei Kato
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Fumio Suzuki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Shinozaki
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Daiki Takanezawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kohashi
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Dong Z, Reese TG, Lee HH, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale dMRI and microstructure imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577343. [PMID: 38352481 PMCID: PMC10862730 DOI: 10.1101/2024.01.26.577343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Purpose To overcome the major challenges in dMRI acquisition, including low SNR, distortion/blurring, and motion vulnerability. Methods A novel Romer-EPTI technique is developed to provide distortion-free dMRI with significant SNR gain, high motion-robustness, sharp spatial resolution, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free EPTI encoding. Romer enhances SNR by a simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness through a motion-aware super-resolution reconstruction, which also incorporates slice-profile and real-value diffusion, to resolve high-isotropic-resolution volumes. The in-plane encoding is performed using distortion/blurring-free EPTI, which further improves effective spatial resolution and motion robustness by preventing not only T2/T2*-blurring but also additional blurring resulting from combining encoded volumes with inconsistent geometries caused by dynamic distortions. Self-navigation was incorporated to enable efficient phase correction. Additional developments include strategies to address slab-boundary artifacts, achieve minimal TE for SNR gain at 7T, and achieve high robustness to strong phase variations at high b-values. Results Using Romer-EPTI, we demonstrate distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm-iso) and 7T (485-μm-iso) for the first time, with high SNR efficiency (e.g., 25 × ), and high image quality free from distortion and slab-boundary artifacts with minimal blurring. Motion experiments demonstrate Romer-EPTI's high motion-robustness and ability to recover sharp images in the presence of motion. Romer-EPTI also demonstrates significant SNR gain and robustness in high b-value (b=5000s/mm2) and time-dependent dMRI. Conclusion Romer-EPTI significantly improves SNR, motion-robustness, and image quality, providing a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy G. Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Gabusi I, Battocchio M, Bosticardo S, Schiavi S, Daducci A. Blurred streamlines: A novel representation to reduce redundancy in tractography. Med Image Anal 2024; 93:103101. [PMID: 38325156 DOI: 10.1016/j.media.2024.103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Tractography is a powerful tool to study brain connectivity in vivo, but it is well known to suffer from an intrinsic trade-off between sensitivity and specificity. A critical - but usually underrated - parameter to choose that can heavily impact the quality of the estimates is the number of streamlines to be reconstructed for a given data set. In fact, sensitivity can be improved by generating more and more streamlines, as all real anatomical connections are likely reconstructed, but lots of false positives are inevitably introduced, too. Consequently, so-called tractography filtering techniques have become increasingly popular to get rid of these false positives and improve specificity. However, increasing number of streamlines introduces redundancy in tractography reconstructions, which may negatively impact the performance of filtering algorithms, especially those based on linear formulations. To address this problem, we introduce a novel streamlines representation, called "blurred streamlines", which drastically reduces the redundancy among streamlines by (i) clustering similar trajectories and (ii) spatially blurring the corresponding signal contributions. We tested the effectiveness of the blurred streamlines both on synthetic and in vivo data. Our results clearly show that this new representation is as accurate as state-of-the-art methods despite using only 5% of the input streamlines, thus significantly decreasing the computational complexity of filtering algorithms as well as storage requirements of the resulting reconstructions.
Collapse
Affiliation(s)
- Ilaria Gabusi
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy.
| | - Matteo Battocchio
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Sara Bosticardo
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Simona Schiavi
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; ASG Superconductors S.p.A., Genova, Italy
| | - Alessandro Daducci
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Lohmeier J, Radbruch H, Brenner W, Hamm B, Hansen B, Tietze A, Makowski MR. Detection of recurrent high-grade glioma using microstructure characteristics of distinct metabolic compartments in a multimodal and integrative 18F-FET PET/fast-DKI approach. Eur Radiol 2024; 34:2487-2499. [PMID: 37672058 PMCID: PMC10957712 DOI: 10.1007/s00330-023-10141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVES Differentiation between high-grade glioma (HGG) and post-treatment-related effects (PTRE) is challenging, but advanced imaging techniques were shown to provide benefit. We aim to investigate microstructure characteristics of metabolic compartments identified from amino acid PET and to evaluate the diagnostic potential of this multimodal and integrative O-(2-18F-fluoroethyl)-L-tyrosine-(FET)-PET and fast diffusion kurtosis imaging (DKI) approach for the detection of recurrence and IDH genotyping. METHODS Fifty-nine participants with neuropathologically confirmed recurrent HGG (n = 39) or PTRE (n = 20) were investigated using static 18F-FET PET and a fast-DKI variant. PET and advanced diffusion metrics of metabolically defined (80-100% and 60-75% areas of 18F-FET uptake) compartments were assessed. Comparative analysis was performed using Mann-Whitney U tests with Holm-Šídák multiple-comparison test and Wilcoxon signed-rank test. Receiver operating characteristic (ROC) curves, regression, and Spearman's correlation analysis were used for statistical evaluations. RESULTS Compared to PTRE, recurrent HGG presented increased 18F-FET uptake and diffusivity (MD60), but lower (relative) mean kurtosis tensor (rMKT60) and fractional anisotropy (FA60) (respectively p < .05). Diffusion metrics determined from the metabolic periphery showed improved diagnostic performance - most pronounced for FA60 (AUC = 0.86, p < .001), which presented similar benefit to 18F-FET PET (AUC = 0.86, p < .001) and was negatively correlated with amino acid uptake (rs = - 0.46, p < .001). When PET and DKI metrics were evaluated in a multimodal biparametric approach, TBRmax + FA60 showed highest diagnostic accuracy (AUC = 0.93, p < .001), which improved the detection of relapse compared to PET alone (difference in AUC = 0.069, p = .04). FA60 and MD60 distinguished the IDH genotype in the post-treatment setting. CONCLUSION Detection of glioma recurrence benefits from a multimodal and integrative PET/DKI approach, which presented significant diagnostic advantage to the assessment based on PET alone. CLINICAL RELEVANCE STATEMENT A multimodal and integrative 18F-FET PET/fast-DKI approach for the non-invasive microstructural characterization of metabolic compartments provided improved diagnostic capability for differentiation between recurrent glioma and post-treatment-related changes, suggesting a role for the diagnostic workup of patients in post-treatment settings. KEY POINTS • Multimodal PET/MRI with integrative analysis of 18F-FET PET and fast-DKI presents clinical benefit for the assessment of CNS cancer, particularly for the detection of recurrent high-grade glioma. • Microstructure markers of the metabolic periphery yielded biologically pertinent estimates characterising the tumour microenvironment, and, thereby, presented improved diagnostic accuracy with similar accuracy to amino acid PET. • Combined 18F-FET PET/fast-DKI achieved the best diagnostic performance for detection of high-grade glioma relapse with significant benefit to the assessment based on PET alone.
Collapse
Affiliation(s)
- Johannes Lohmeier
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, 8000, Aarhus C, Denmark
| | - Anna Tietze
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus R Makowski
- Department of Radiology, Technical University Munich, Ismaninger Str. 22, 81675, München, Germany
| |
Collapse
|
21
|
Nair AK, Adluru N, Finley AJ, Gresham LK, Skinner SE, Alexander AL, Davidson RJ, Ryff CD, Schaefer SM. Purpose in life as a resilience factor for brain health: diffusion MRI findings from the Midlife in the U.S. study. Front Psychiatry 2024; 15:1355998. [PMID: 38505799 PMCID: PMC10948414 DOI: 10.3389/fpsyt.2024.1355998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction A greater sense of purpose in life is associated with several health benefits relevant for active aging, but the mechanisms remain unclear. We evaluated if purpose in life was associated with indices of brain health. Methods We examined data from the Midlife in the United States (MIDUS) Neuroscience Project. Diffusion weighted magnetic resonance imaging data (n=138; mean age 65.2 years, age range 48-95; 80 females; 37 black, indigenous, and people of color) were used to estimate microstructural indices of brain health such as axonal density, and axonal orientation. The seven-item purpose in life scale was used. Permutation analysis of linear models was used to examine associations between purpose in life scores and the diffusion metrics in white matter and in the bilateral hippocampus, adjusting for age, sex, education, and race. Results and discussion Greater sense of purpose in life was associated with brain microstructural features consistent with better brain health. Positive associations were found in both white matter and the right hippocampus, where multiple convergent associations were detected. The hippocampus is a brain structure involved in learning and memory that is vulnerable to stress but retains the capacity to grow and adapt through old age. Our findings suggest pathways through which an enhanced sense of purpose in life may contribute to better brain health and promote healthy aging. Since purpose in life is known to decline with age, interventions and policy changes that facilitate a greater sense of purpose may extend and improve the brain health of individuals and thus improve public health.
Collapse
Affiliation(s)
- Ajay Kumar Nair
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Anna J. Finley
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Lauren K. Gresham
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Sarah E. Skinner
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Richard J. Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, United States
| | - Carol D. Ryff
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Stacey M. Schaefer
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
22
|
Shi Y, Xia Y, Zhou M, Wang Y, Bao J, Zhang Y, Cheng J. Facile synthesis of Gd/Ru-doped fluorescent carbon dots for fluorescent/MR bimodal imaging and tumor therapy. J Nanobiotechnology 2024; 22:88. [PMID: 38431629 PMCID: PMC10908135 DOI: 10.1186/s12951-024-02360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Functional metal doping endows fluorescent carbon dots with richer physical and chemical properties, greatly expanding their potential in the biomedical field. Nonetheless, fabricating carbon dots with integrated functionality for diagnostic and therapeutic modalities remains challenging. Herein, we develop a simple strategy to prepare Gd/Ru bimetallic doped fluorescent carbon dots (Gd/Ru-CDs) via a one-step microwave-assisted method with Ru(dcbpy)3Cl2, citric acid, polyethyleneimine, and GdCl3 as precursors. Multiple techniques were employed to characterize the morphology and properties of the obtained carbon dots. The Gd/Ru-CDs are high mono-dispersity, uniform spherical nanoparticles with an average diameter of 4.2 nm. Moreover, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) confirmed the composition and surface properties of the carbon dots. In particular, the successful doping of Gd/Ru enables the carbon dots not only show considerable magnetic resonance imaging (MRI) performance but also obtain better fluorescence (FL) properties, especially in the red emission area. More impressively, it has low cytotoxicity, excellent biocompatibility, and efficient reactive oxygen species (ROS) generation ability, making it an effective imaging-guided tumor treatment reagent. In vivo experiments have revealed that Gd/Ru-CDs can achieve light-induced tumor suppression and non-invasive fluorescence/magnetic resonance bimodal imaging reagents to monitor the treatment process of mouse tumor models. Thus, this simple and efficient carbon dot manufacturing strategy by doping functional metals has expanded avenues for the development and application of multifunctional all-in-one theranostics.
Collapse
Affiliation(s)
- Yupeng Shi
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yaning Xia
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mengyang Zhou
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yifei Wang
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianfeng Bao
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Zhang
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
23
|
Papazoglou S, Ashtarayeh M, Oeschger JM, Callaghan MF, Does MD, Mohammadi S. Insights and improvements in correspondence between axonal volume fraction measured with diffusion-weighted MRI and electron microscopy. NMR IN BIOMEDICINE 2024; 37:e5070. [PMID: 38098204 PMCID: PMC11475374 DOI: 10.1002/nbm.5070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 02/17/2024]
Abstract
Biophysical diffusion-weighted imaging (DWI) models are increasingly used in neuroscience to estimate the axonal water fraction (f AW ), which in turn is key for noninvasive estimation of the axonal volume fraction (f A ). These models require thorough validation by comparison with a reference method, for example, electron microscopy (EM). While EM studies often neglect the unmyelinated axons and solely report the fraction of myelinated axons, in DWI both myelinated and unmyelinated axons contribute to the DWI signal. However, DWI models often include simplifications, for example, the neglect of differences in the compartmental relaxation times or fixed diffusivities, which in turn might affect the estimation off AW . We investigate whether linear calibration parameters (scaling and offset) can improve the comparability between EM- and DWI-based metrics off A . To this end, we (a) used six DWI models based on the so-called standard model of white matter (WM), including two models with fixed compartmental diffusivities (e.g., neurite orientation dispersion and density imaging, NODDI) and four models that fitted the compartmental diffusivities (e.g., white matter tract integrity, WMTI), and (b) used a multimodal data set including ex vivo diffusion DWI and EM data in mice with a broad dynamic range of fibre volume metrics. We demonstrated that the offset is associated with the volume fraction of unmyelinated axons and the scaling factor is associated with different compartmentalT 2 and can substantially enhance the comparability between EM- and DWI-based metrics off A . We found that DWI models that fitted compartmental diffusivities provided the most accurate estimates of the EM-basedf A . Finally, we introduced a more efficient hybrid calibration approach, where only the offset is estimated but the scaling is fixed to a theoretically predicted value. Using this approach, a similar one-to-one correspondence to EM was achieved for WMTI. The method presented can pave the way for use of validated DWI-based models in clinical research and neuroscience.
Collapse
Affiliation(s)
- Sebastian Papazoglou
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
- Max Planck Research Group MR PhysicsMax Planck Institute for Human DevelopmentBerlinGermany
| | - Mohammad Ashtarayeh
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
| | - Jan Malte Oeschger
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Mark D. Does
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Electrical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Siawoosh Mohammadi
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
- Max Planck Research Group MR PhysicsMax Planck Institute for Human DevelopmentBerlinGermany
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
24
|
Wang J, Chen Z, Cai C, Cai S. Ultrafast diffusion tensor imaging based on deep learning and multi-slice information sharing. Phys Med Biol 2024; 69:035011. [PMID: 38211309 DOI: 10.1088/1361-6560/ad1d6d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Objective. Diffusion tensor imaging (DTI) is excellent for non-invasively quantifying tissue microstructure. Theoretically DTI can be achieved with six different diffusion weighted images and one reference image, but the tensor estimation accuracy is poor in this case. Increasing the number of diffusion directions has benefits for the tensor estimation accuracy, which results in long scan time and makes DTI sensitive to motion. It would be beneficial to decrease the scan time of DTI by using fewer diffusion-weighted images without compromising reconstruction quality.Approach. A novel DTI scan scheme was proposed to achieve fast DTI, where only three diffusion directions per slice was required under a specific direction switching manner, and a deep-learning based reconstruction method was utilized using multi-slice information sharing and correspondingT1-weighted image for high-quality DTI reconstruction. A network with two encoders developed from U-Net was implemented for better utilizing the diffusion data redundancy between neighboring slices. The method performed direct nonlinear mapping from diffusion-weighted images to diffusion tensor.Main results. The performance of the proposed method was verified on the Human Connectome Project public data and clinical patient data. High-quality mean diffusivity, fractional anisotropy, and directionally encoded colormap can be achieved with only three diffusion directions per slice.Significance. High-quality DTI-derived maps can be achieved in less than one minute of scan time. The great reduction of scan time will help push the wider application of DTI in clinical practice.
Collapse
Affiliation(s)
- Jiechao Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zunquan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
25
|
Nelson MC, Royer J, Lu WD, Leppert IR, Campbell JSW, Schiavi S, Jin H, Tavakol S, Vos de Wael R, Rodriguez-Cruces R, Pike GB, Bernhardt BC, Daducci A, Misic B, Tardif CL. The human brain connectome weighted by the myelin content and total intra-axonal cross-sectional area of white matter tracts. Netw Neurosci 2023; 7:1363-1388. [PMID: 38144691 PMCID: PMC10697181 DOI: 10.1162/netn_a_00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/19/2023] [Indexed: 12/26/2023] Open
Abstract
A central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features, which facilitates mechanistic interpretation of brain function. However, the interpretability of structure-function brain models remains limited by a lack of biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features including total intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length, and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, networks weighted by either fractional anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain functional connectivity. We conclude that the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content could improve our understanding of the mechanisms mediating the structure-function brain relationship.
Collapse
Affiliation(s)
- Mark C. Nelson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jessica Royer
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Wen Da Lu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Ilana R. Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jennifer S. W. Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Hyerang Jin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Shahin Tavakol
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Reinder Vos de Wael
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Raul Rodriguez-Cruces
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - G. Bruce Pike
- Hotchkiss Brain Institute and Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Boris C. Bernhardt
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | - Bratislav Misic
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Christine L. Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Lehmann N, Aye N, Kaufmann J, Heinze HJ, Düzel E, Ziegler G, Taubert M. Changes in Cortical Microstructure of the Human Brain Resulting from Long-Term Motor Learning. J Neurosci 2023; 43:8637-8648. [PMID: 37875377 PMCID: PMC10727185 DOI: 10.1523/jneurosci.0537-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
The mechanisms subserving motor skill acquisition and learning in the intact human brain are not fully understood. Previous studies in animals have demonstrated a causal relationship between motor learning and structural rearrangements of synaptic connections, raising the question of whether neurite-specific changes are also observable in humans. Here, we use advanced diffusion magnetic resonance imaging (MRI), sensitive to dendritic and axonal processes, to investigate neuroplasticity in response to long-term motor learning. We recruited healthy male and female human participants (age range 19-29) who learned a challenging dynamic balancing task (DBT) over four consecutive weeks. Diffusion MRI signals were fitted using Neurite Orientation Dispersion and Density Imaging (NODDI), a theory-driven biophysical model of diffusion, yielding measures of tissue volume, neurite density and the organizational complexity of neurites. While NODDI indices were unchanged and reliable during the control period, neurite orientation dispersion increased significantly during the learning period mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor areas. Importantly, reorganization of cortical microstructure during the learning phase predicted concurrent behavioral changes, whereas there was no relationship between microstructural changes during the control phase and learning. Changes in neurite complexity were independent of alterations in tissue density, cortical thickness, and intracortical myelin. Our results are in line with the notion that structural modulation of neurites is a key mechanism supporting complex motor learning in humans.SIGNIFICANCE STATEMENT The structural correlates of motor learning in the human brain are not fully understood. Results from animal studies suggest that synaptic remodeling (e.g., reorganization of dendritic spines) in sensorimotor-related brain areas is a crucial mechanism for the formation of motor memory. Using state-of-the-art diffusion magnetic resonance imaging (MRI), we found a behaviorally relevant increase in the organizational complexity of neocortical microstructure, mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor regions, following training of a challenging dynamic balancing task (DBT). Follow-up analyses suggested structural modulation of synapses as a plausible mechanism driving this increase, while colocalized changes in cortical thickness, tissue density, and intracortical myelin could not be detected. These results advance our knowledge about the neurobiological basis of motor learning in humans.
Collapse
Affiliation(s)
- Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg 39120, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
- Leibniz-Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg 39120, Germany
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg 39120, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
27
|
He J, Zhang F, Pan Y, Feng Y, Rushmore J, Torio E, Rathi Y, Makris N, Kikinis R, Golby AJ, O'Donnell LJ. Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods. Hum Brain Mapp 2023; 44:6055-6073. [PMID: 37792280 PMCID: PMC10619402 DOI: 10.1002/hbm.26497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.
Collapse
Affiliation(s)
- Jianzhong He
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Fan Zhang
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yiang Pan
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Yuanjing Feng
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Jarrett Rushmore
- Departments of Psychiatry, Neurology and RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Erickson Torio
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nikos Makris
- Departments of Psychiatry, Neurology and RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexandra J. Golby
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
28
|
Sairanen V, Andersson J. Outliers in diffusion-weighted MRI: Exploring detection models and mitigation strategies. Neuroimage 2023; 283:120397. [PMID: 37820862 DOI: 10.1016/j.neuroimage.2023.120397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Diffusion-weighted MRI (dMRI) is a medical imaging method that can be used to investigate the brain microstructure and structural connections between different brain regions. The method, however, requires relatively complex data processing frameworks and analysis pipelines. Many of these approaches are vulnerable to signal dropout artefacts that can originate from subjects moving their head during the scan. To combat these artefacts and eliminate such outliers, researchers have proposed two approaches: to replace outliers or to downweight outliers during modelling and analysis. With the rising interest in dMRI for clinical research, these types of corrections are increasingly important. Therefore, we set out to investigate the differences between outlier replacement and weighting approaches to help the dMRI community to select the best tool for their data processing pipelines. We evaluated dMRI motion correction registration and single tensor model fit pipelines using Gaussian Process and Spherical Harmonic based replacement approaches and outlier downweighting using highly realistic whole-brain simulations. As a proof of concept, we applied these approaches to dMRI infant data sets that contained varying numbers of dropout artefacts. Based on our results, we concluded that the Gaussian Process based outlier replacement provided similar tensor fit results to Gaussian Process based outlier detection and downweighting. Therefore, if only the least-squares estimate of the single tensor model is of interest, our recommendation is to use outlier replacement. However, outlier downweighting can potentially provide a more accurate estimate of the model precision which could be relevant for applications such as probabilistic tractoraphy.
Collapse
Affiliation(s)
- Viljami Sairanen
- Baby Brain Activity Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Department of Radiology, Kanta-Häme Central Hospital, Hämeenlinna, Finland.
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
29
|
Slator PJ, Cromb D, Jackson LH, Ho A, Counsell SJ, Story L, Chappell LC, Rutherford M, Hajnal JV, Hutter J, Alexander DC. Non-invasive mapping of human placenta microenvironments throughout pregnancy with diffusion-relaxation MRI. Placenta 2023; 144:29-37. [PMID: 37952367 DOI: 10.1016/j.placenta.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In-vivo measurements of placental structure and function have the potential to improve prediction, diagnosis, and treatment planning for a wide range of pregnancy complications, such as fetal growth restriction and pre-eclampsia, and hence inform clinical decision making, ultimately improving patient outcomes. MRI is emerging as a technique with increased sensitivity to placental structure and function compared to the current clinical standard, ultrasound. METHODS We demonstrate and evaluate a combined diffusion-relaxation MRI acquisition and analysis pipeline on a sizable cohort of 78 normal pregnancies with gestational ages ranging from 15 + 5 to 38 + 4 weeks. Our acquisition comprises a combined T2*-diffusion MRI acquisition sequence - which is simultaneously sensitive to oxygenation, microstructure and microcirculation. We analyse our scans with a data-driven unsupervised machine learning technique, InSpect, that parsimoniously identifies distinct components in the data. RESULTS We identify and map seven potential placental microenvironments and reveal detailed insights into multiple microstructural and microcirculatory features of the placenta, and assess their trends across gestation. DISCUSSION By demonstrating direct observation of micro-scale placental structure and function, and revealing clear trends across pregnancy, our work contributes towards the development of robust imaging biomarkers for pregnancy complications and the ultimate goal of a normative model of placental development.
Collapse
Affiliation(s)
- Paddy J Slator
- Cardiff University Brain Research Imaging Centre, School of Psychology, Maindy Road, Cardiff, CF24 4HQ, UK; School of Computer Science and Informatics, Cardiff University, Cardiff, UK; Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK.
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Laurence H Jackson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alison Ho
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Lisa Story
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Lucy C Chappell
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK
| |
Collapse
|
30
|
Lampinen B, Szczepankiewicz F, Lätt J, Knutsson L, Mårtensson J, Björkman-Burtscher IM, van Westen D, Sundgren PC, Ståhlberg F, Nilsson M. Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding. Neuroimage 2023; 282:120338. [PMID: 37598814 DOI: 10.1016/j.neuroimage.2023.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden.
| | | | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Linda Knutsson
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Danielle van Westen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Pia C Sundgren
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden; Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Freddy Ståhlberg
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Weaver JM, DiPiero M, Rodrigues PG, Cordash H, Davidson RJ, Planalp EM, Dean DC. Automated motion artifact detection in early pediatric diffusion MRI using a convolutional neural network. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:10.1162/imag_a_00023. [PMID: 38344118 PMCID: PMC10854394 DOI: 10.1162/imag_a_00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Diffusion MRI (dMRI) is a widely used method to investigate the microstructure of the brain. Quality control (QC) of dMRI data is an important processing step that is performed prior to analysis using models such as diffusion tensor imaging (DTI) or neurite orientation dispersion and density imaging (NODDI). When processing dMRI data from infants and young children, where intra-scan motion is common, the identification and removal of motion artifacts is of the utmost importance. Manual QC of dMRI data is (1) time-consuming due to the large number of diffusion directions, (2) expensive, and (3) prone to subjective errors and observer variability. Prior techniques for automated dMRI QC have mostly been limited to adults or school-age children. Here, we propose a deep learning-based motion artifact detection tool for dMRI data acquired from infants and toddlers. The proposed framework uses a simple three-dimensional convolutional neural network (3DCNN) trained and tested on an early pediatric dataset of 2,276 dMRI volumes from 121 exams acquired at 1 month and 24 months of age. An average classification accuracy of 95% was achieved following four-fold cross-validation. A second dataset with different acquisition parameters and ages ranging from 2-36 months (consisting of 2,349 dMRI volumes from 26 exams) was used to test network generalizability, achieving 98% classification accuracy. Finally, to demonstrate the importance of motion artifact volume removal in a dMRI processing pipeline, the dMRI data were fit to the DTI and NODDI models and the parameter maps were compared with and without motion artifact removal.
Collapse
Affiliation(s)
- Jayse Merle Weaver
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Marissa DiPiero
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Hassan Cordash
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Richard J. Davidson
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Psychology, University of Wisconsin–Madison, Madison, WI, United States
- Center for Healthy Minds, University of Wisconsin–Madison, Madison WI, United States
- Department of Psychiatry, University of Wisconsin–Madison, Madison, WI, United States
| | - Elizabeth M. Planalp
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Medicine, University of Wisconsin–Madison, Madison, WI, United States
| | - Douglas C. Dean
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
32
|
Raspe J, Harder FN, Rupp S, McTavish S, Peeters JM, Weiss K, Makowski MR, Braren RF, Karampinos DC, Van AT. Retrospective Motion Artifact Reduction by Spatial Scaling of Liver Diffusion-Weighted Images. Tomography 2023; 9:1839-1856. [PMID: 37888738 PMCID: PMC10610678 DOI: 10.3390/tomography9050146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac motion causes unpredictable signal loss in respiratory-triggered diffusion-weighted magnetic resonance imaging (DWI) of the liver, especially inside the left lobe. The left liver lobe may thus be frequently neglected in the clinical evaluation of liver DWI. In this work, a data-driven algorithm that relies on the statistics of the signal in the left liver lobe to mitigate the motion-induced signal loss is presented. The proposed data-driven algorithm utilizes the exclusion of severely corrupted images with subsequent spatially dependent image scaling based on a signal-loss model to correctly combine the multi-average diffusion-weighted images. The signal in the left liver lobe is restored and the liver signal is more homogeneous after applying the proposed algorithm. Furthermore, overestimation of the apparent diffusion coefficient (ADC) in the left liver lobe is reduced. The proposed algorithm can therefore contribute to reduce the motion-induced bias in DWI of the liver and help to increase the diagnostic value of DWI in the left liver lobe.
Collapse
Affiliation(s)
- Johannes Raspe
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
- School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Felix N. Harder
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Selina Rupp
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Sean McTavish
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | | | - Kilian Weiss
- Philips GmbH Market DACH, 22335 Hamburg, Germany
| | - Marcus R. Makowski
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Rickmer F. Braren
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Dimitrios C. Karampinos
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Anh T. Van
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| |
Collapse
|
33
|
Seyedmirzaei H, Nabizadeh F, Aarabi MH, Pini L. Neurite Orientation Dispersion and Density Imaging in Multiple Sclerosis: A Systematic Review. J Magn Reson Imaging 2023; 58:1011-1029. [PMID: 37042392 DOI: 10.1002/jmri.28727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Diffusion-weighted imaging has been applied to investigate alterations in multiple sclerosis (MS). In the last years, advanced diffusion models were used to identify subtle changes and early lesions in MS. Among these models, neurite orientation dispersion and density imaging (NODDI) is an emerging approach, quantifying specific neurite morphology in both grey (GM) and white matter (WM) tissue and increasing the specificity of diffusion imaging. In this systematic review, we summarized the NODDI findings in MS. A search was conducted on PubMed, Scopus, and Embase, which yielded a total number of 24 eligible studies. Compared to healthy tissue, these studies identified consistent alterations in NODDI metrics involving WM (neurite density index), and GM lesions (neurite density index), or normal-appearing WM tissue (isotropic volume fraction and neurite density index). Despite some limitations, we pointed out the potential of NODDI in MS to unravel microstructural alterations. These results might pave the way to a deeper understanding of the pathophysiological mechanism of MS. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Pini
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
34
|
DiPiero M, Cordash H, Prigge MB, King CK, Morgan J, Guerrero-Gonzalez J, Adluru N, King JB, Lange N, Bigler ED, Zielinski BA, Alexander AL, Lainhart JE, Dean DC. Tract- and gray matter- based spatial statistics show white matter and gray matter microstructural differences in autistic males. Front Neurosci 2023; 17:1231719. [PMID: 37829720 PMCID: PMC10565827 DOI: 10.3389/fnins.2023.1231719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental condition commonly studied in the context of early childhood. As ASD is a life-long condition, understanding the characteristics of brain microstructure from adolescence into adulthood and associations to clinical features is critical for improving outcomes across the lifespan. In the current work, we utilized Tract Based Spatial Statistics (TBSS) and Gray Matter Based Spatial Statistics (GBSS) to examine the white matter (WM) and gray matter (GM) microstructure in neurotypical (NT) and autistic males. Methods Multi-shell diffusion MRI was acquired from 78 autistic and 81 NT males (12-to-46-years) and fit to the DTI and NODDI diffusion models. TBSS and GBSS were performed to analyze WM and GM microstructure, respectively. General linear models were used to investigate group and age-related group differences. Within the ASD group, relationships between WM and GM microstructure and measures of autistic symptoms were investigated. Results All dMRI measures were significantly associated with age across WM and GM. Significant group differences were observed across WM and GM. No significant age-by-group interactions were detected. Within the ASD group, positive relationships with WM microstructure were observed with ADOS-2 Calibrated Severity Scores. Conclusion Using TBSS and GBSS our findings provide new insights into group differences of WM and GM microstructure in autistic males from adolescence into adulthood. Detection of microstructural differences across the lifespan as well as their relationship to the level of autistic symptoms will deepen to our understanding of brain-behavior relationships of ASD and may aid in the improvement of intervention options for autistic adults.
Collapse
Affiliation(s)
- Marissa DiPiero
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Hassan Cordash
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Molly B. Prigge
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Carolyn K. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Jubel Morgan
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jace B. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Nicholas Lange
- Department of Psychiatry, Harvard School of Medicine, Boston, MA, United States
| | - Erin D. Bigler
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Brandon A. Zielinski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
- Departments of Pediatrics and Neurology, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Janet E. Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Wagstyl K, Raznahan A. Subcortical Anatomy in Neurogenetic Disorders: New Findings and Future Questions. Am J Psychiatry 2023; 180:634-635. [PMID: 37654115 DOI: 10.1176/appi.ajp.20230555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London (Wagstyl); Section on Developmental Neurogenomics, Human Genetics Branch, NIMH, Bethesda, Md. (Raznahan)
| | - Armin Raznahan
- Wellcome Centre for Human Neuroimaging, University College London, London (Wagstyl); Section on Developmental Neurogenomics, Human Genetics Branch, NIMH, Bethesda, Md. (Raznahan)
| |
Collapse
|
36
|
Schiavi S, Palombo M, Zacà D, Tazza F, Lapucci C, Castellan L, Costagli M, Inglese M. Mapping tissue microstructure across the human brain on a clinical scanner with soma and neurite density image metrics. Hum Brain Mapp 2023; 44:4792-4811. [PMID: 37461286 PMCID: PMC10400787 DOI: 10.1002/hbm.26416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/02/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023] Open
Abstract
Soma and neurite density image (SANDI) is an advanced diffusion magnetic resonance imaging biophysical signal model devised to probe in vivo microstructural information in the gray matter (GM). This model requires acquisitions that include b values that are at least six times higher than those used in clinical practice. Such high b values are required to disentangle the signal contribution of water diffusing in soma from that diffusing in neurites and extracellular space, while keeping the diffusion time as short as possible to minimize potential bias due to water exchange. These requirements have limited the use of SANDI only to preclinical or cutting-edge human scanners. Here, we investigate the potential impact of neglecting water exchange in the SANDI model and present a 10-min acquisition protocol that enables to characterize both GM and white matter (WM) on 3 T scanners. We implemented analytical simulations to (i) evaluate the stability of the fitting of SANDI parameters when diminishing the number of shells; (ii) estimate the bias due to potential exchange between neurites and extracellular space in such reduced acquisition scheme, comparing it with the bias due to experimental noise. Then, we demonstrated the feasibility and assessed the repeatability and reproducibility of our approach by computing microstructural metrics of SANDI with AMICO toolbox and other state-of-the-art models on five healthy subjects. Finally, we applied our protocol to five multiple sclerosis patients. Results suggest that SANDI is a practical method to characterize WM and GM tissues in vivo on performant clinical scanners.
Collapse
Affiliation(s)
- Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
| | - Marco Palombo
- CUBRIC, School of PsychologyCardiff UniversityCardiffUK
- School of Computer Science and InformaticsCardiff UniversityCardiffUK
| | | | - Francesco Tazza
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- HNSR, IRRCS Ospedale Policlinico San MartinoGenoaItaly
| | - Lucio Castellan
- Department of NeuroradiologyIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- Laboratory of Medical Physics and Magnetic ResonanceIRCCS Stella MarisPisaItaly
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| |
Collapse
|
37
|
Barakovic M, Pizzolato M, Tax CMW, Rudrapatna U, Magon S, Dyrby TB, Granziera C, Thiran JP, Jones DK, Canales-Rodríguez EJ. Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology. Front Neurosci 2023; 17:1209521. [PMID: 37638307 PMCID: PMC10457121 DOI: 10.3389/fnins.2023.1209521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefano Magon
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
38
|
Bresser T, Leerssen J, Hölsken S, Groote I, Foster-Dingley JC, van den Heuvel MP, Van Someren EJW. The role of brain white matter in depression resilience and response to sleep interventions. Brain Commun 2023; 5:fcad210. [PMID: 37554956 PMCID: PMC10406158 DOI: 10.1093/braincomms/fcad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Insomnia poses a high risk for depression. Brain mechanisms of sleep and mood improvement following cognitive behavioural therapy for insomnia remain elusive. This longitudinal study evaluated whether (i) individual differences in baseline brain white matter microstructure predict improvements and (ii) intervention affects brain white matter microstructure. People meeting the Diagnostic and Statistical Manual of Mental Disorders-5 criteria for Insomnia Disorder (n = 117) participated in a randomized controlled trial comparing 6 weeks of no treatment with therapist-guided digital cognitive behavioural therapy for insomnia, circadian rhythm support or their combination (cognitive behavioural therapy for insomnia + circadian rhythm support). Insomnia Severity Index and Inventory of Depressive Symptomatology-Self Report were assessed at baseline and followed up at Weeks 7, 26, 39 and 52. Diffusion-weighted magnetic resonance images were acquired at baseline and Week 7. Skeletonized white matter tracts, fractional anisotropy and mean diffusivity were quantified both tract-wise and voxel-wise using tract-based spatial statistics. Analyses used linear and mixed effect models while correcting for multiple testing using false discovery rate and Bonferroni for correlated endpoint measures. Our results show the following: (i) tract-wise lower fractional anisotropy in the left retrolenticular part of the internal capsule at baseline predicted both worse progression of depressive symptoms in untreated participants and more improvement in treated participants (fractional anisotropy × any intervention, PFDR = 0.053, Pcorr = 0.045). (ii) Only the cognitive behavioural therapy for insomnia + circadian rhythm support intervention induced a trend-level mean diffusivity decrease in the right superior corona radiata (PFDR = 0.128, Pcorr = 0.108), and individuals with a stronger mean diffusivity decrease showed a stronger alleviation of insomnia (R = 0.20, P = 0.035). In summary, individual differences in risk and treatment-supported resilience of depression involve white matter microstructure. Future studies could target the role of the left retrolenticular part of the internal capsule and right superior corona radiata and the brain areas they connect.
Collapse
Affiliation(s)
- Tom Bresser
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universtiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universtiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Stefanie Hölsken
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg Essen, 45122, Essen, Germany
| | - Inge Groote
- Computational Radiology and Artificial Intelligence (CRAI), Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0372, Oslo, Norway
- Department of Radiology, Vestfold Hospital Trust, 3116, Tønsberg, Norway
| | - Jessica C Foster-Dingley
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universtiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Psychiatry, Vrije Universtiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Nishat E, Stojanovski S, Scratch SE, Ameis SH, Wheeler AL. Premature white matter microstructure in female children with a history of concussion. Dev Cogn Neurosci 2023; 62:101275. [PMID: 37441978 PMCID: PMC10439504 DOI: 10.1016/j.dcn.2023.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Childhood concussion may interfere with neurodevelopment and influence cognition. Females are more likely to experience persistent symptoms after concussion, yet the sex-specific impact of concussion on brain microstructure in children is understudied. This study examined white matter and cortical microstructure, based on neurite density (ND) from diffusion-weighted MRI, in 9-to-10-year-old children in the Adolescent Brain Cognitive Development Study with (n = 336) and without (n = 7368) a history of concussion, and its relationship with cognitive performance. Multivariate regression was used to investigate relationships between ND and group, sex, and age in deep and superficial white matter, subcortical structures, and cortex. Partial least square correlation was performed to identify associations between ND and performance on NIH Toolbox tasks in children with concussion. All tissue types demonstrated higher ND with age, reflecting brain maturation. Group comparisons revealed higher ND in deep and superficial white matter in females with concussion. In female but not male children with concussion, there were significant associations between ND and performance on cognitive tests. These results demonstrate a greater long-term impact of childhood concussion on white matter microstructure in females compared to males that is associated with cognitive function. The increase in ND in females may reflect premature white matter maturation.
Collapse
Affiliation(s)
- Eman Nishat
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Sonja Stojanovski
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Shannon E Scratch
- Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1V7, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
| | - Stephanie H Ameis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Anne L Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
40
|
Hu C, Grech‐Sollars M, Statton B, Li Z, Gao F, Williams GR, Parker GJM, Zhou F. Direct jet coaxial electrospinning of axon-mimicking fibers for diffusion tensor imaging. POLYM ADVAN TECHNOL 2023; 34:2573-2584. [PMID: 38505514 PMCID: PMC10946859 DOI: 10.1002/pat.6073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/01/2023] [Accepted: 04/16/2023] [Indexed: 03/21/2024]
Abstract
Hollow polymer microfibers with variable microstructural and hydrophilic properties were proposed as building elements to create axon-mimicking phantoms for validation of diffusion tensor imaging (DTI). The axon-mimicking microfibers were fabricated in a mm-thick 3D anisotropic fiber strip, by direct jet coaxial electrospinning of PCL/polysiloxane-based surfactant (PSi) mixture as shell and polyethylene oxide (PEO) as core. Hydrophilic PCL-PSi fiber strips were first obtained by carefully selecting appropriate solvents for the core and appropriate fiber collector rotating and transverse speeds. The porous cross-section and anisotropic orientation of axon-mimicking fibers were then quantitatively evaluated using two ImageJ plugins-nearest distance (ND) and directionality based on their scanning electron microscopy (SEM) images. Third, axon-mimicking phantom was constructed from PCL-PSi fiber strips with variable porous-section and fiber orientation and tested on a 3T clinical MR scanner. The relationship between DTI measurements (mean diffusivity [MD] and fractional anisotropy [FA]) of phantom samples and their pore size and fiber orientation was investigated. Two key microstructural parameters of axon-mimicking phantoms including normalized pore distance and dispersion of fiber orientation could well interpret the variations in DTI measurements. Two PCL-PSi phantom samples made from different regions of the same fiber strips were found to have similar MD and FA values, indicating that the direct jet coaxial electrospun fiber strips had consistent microstructure. More importantly, the MD and FA values of the developed axon-mimicking phantoms were mostly in the biologically relevant range.
Collapse
Affiliation(s)
- Chunyan Hu
- College of Textiles and ClothingQingdao UniversityQingdaoChina
| | - Matthew Grech‐Sollars
- Department of Computer ScienceUniversity College LondonLondonUK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Ben Statton
- Medical Research Council, London Institute of Medical SciencesImperial College LondonLondonUK
| | - Zhanxiong Li
- College of Textile and Clothing EngineeringSoochow UniversitySuzhouChina
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | | | - Geoff J. M. Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Bioxydyn LimitedManchesterUK
| | - Feng‐Lei Zhou
- College of Textiles and ClothingQingdao UniversityQingdaoChina
- School of PharmacyUniversity College LondonLondonUK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
41
|
Ulloa P, Methot V, Wottschel V, Koch MA. Extra-axonal contribution to double diffusion encoding-based pore size estimates in the corticospinal tract. MAGMA (NEW YORK, N.Y.) 2023; 36:589-612. [PMID: 36745290 PMCID: PMC10468962 DOI: 10.1007/s10334-022-01058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To study the origin of compartment size overestimation in double diffusion encoding MRI (DDE) in vivo experiments in the human corticospinal tract. Here, the extracellular space is hypothesized to be the origin of the DDE signal. By exploiting the DDE sensitivity to pore shape, it could be possible to identify the origin of the measured signal. The signal difference between parallel and perpendicular diffusion gradient orientation can indicate if a compartment is regular or eccentric in shape. As extracellular space can be considered an eccentric compartment, a positive difference would mean a high contribution to the compartment size estimates. MATERIALS AND METHODS Computer simulations using MISST and in vivo experiments in eight healthy volunteers were performed. DDE experiments using a double spin-echo preparation with eight perpendicular directions were measured in vivo. The difference between parallel and perpendicular gradient orientations was analyzed using a Wilcoxon signed-rank test and a Mann-Whitney U test. RESULTS Simulations and MR experiments showed a statistically significant difference between parallel and perpendicular diffusion gradient orientation signals ([Formula: see text]). CONCLUSION The results suggest that the DDE-based size estimate may be considerably influenced by the extra-axonal compartment. However, the experimental results are also consistent with purely intra-axonal contributions in combination with a large fiber orientation dispersion.
Collapse
Affiliation(s)
- Patricia Ulloa
- Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Vincent Methot
- Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Viktor Wottschel
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, De Boelelaan 1117, 1081, Amsterdam, The Netherlands
| | - Martin A. Koch
- Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| |
Collapse
|
42
|
Delinte N, Dricot L, Macq B, Gosse C, Van Reybroeck M, Rensonnet G. Unraveling multi-fixel microstructure with tractography and angular weighting. Front Neurosci 2023; 17:1199568. [PMID: 37351427 PMCID: PMC10282555 DOI: 10.3389/fnins.2023.1199568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
Recent advances in MRI technology have enabled richer multi-shell sequences to be implemented in diffusion MRI, allowing the investigation of both the microscopic and macroscopic organization of the brain white matter and its complex network of neural fibers. The emergence of advanced diffusion models has enabled a more detailed analysis of brain microstructure by estimating the signal received from a voxel as the combination of responses from multiple fiber populations. However, disentangling the individual microstructural properties of different macroscopic white matter tracts where those pathways intersect remains a challenge. Several approaches have been developed to assign microstructural properties to macroscopic streamlines, but often present shortcomings. ROI-based heuristics rely on averages that are not tract-specific. Global methods solve a computationally-intensive global optimization but prevent the use of microstructural properties not included in the model and often require restrictive hypotheses. Other methods use atlases that might not be adequate in population studies where the shape of white matter tracts varies significantly between patients. We introduce UNRAVEL, a framework combining the microscopic and macroscopic scales to unravel multi-fixel microstructure by utilizing tractography. The framework includes commonly-used heuristics as well as a new algorithm, estimating the microstructure of a specific white matter tract with angular weighting. Our framework grants considerable freedom as the inputs required, a set of streamlines defining a tract and a multi-fixel diffusion model estimated in each voxel, can be defined by the user. We validate our approach on synthetic data and in vivo data, including a repeated scan of a subject and a population study of children with dyslexia. In each case, we compare the estimation of microstructural properties obtained with angular weighting to other commonly-used approaches. Our framework provides estimations of the microstructure at the streamline level, volumetric maps for visualization and mean microstructural values for the whole tract. The angular weighting algorithm shows increased accuracy, robustness to uncertainties in its inputs and maintains similar or better reproducibility compared to commonly-used analysis approaches. UNRAVEL will provide researchers with a flexible and open-source tool enabling them to study the microstructure of specific white matter pathways with their diffusion model of choice.
Collapse
Affiliation(s)
- Nicolas Delinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of NeuroScience, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of NeuroScience, Université Catholique de Louvain, Brussels, Belgium
| | - Benoit Macq
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claire Gosse
- Institute of NeuroScience, Université Catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie Van Reybroeck
- Institute of NeuroScience, Université Catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gaetan Rensonnet
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
43
|
Reekes TH, Ledbetter CR, Alexander JS, Stokes KY, Pardue S, Bhuiyan MAN, Patterson JC, Lofton KT, Kevil CG, Disbrow EA. Elevated plasma sulfides are associated with cognitive dysfunction and brain atrophy in human Alzheimer's disease and related dementias. Redox Biol 2023; 62:102633. [PMID: 36924684 PMCID: PMC10026043 DOI: 10.1016/j.redox.2023.102633] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Emerging evidence indicates that vascular stress is an important contributor to the pathophysiology of Alzheimer's disease and related dementias (ADRD). Hydrogen sulfide (H2S) and its metabolites (acid-labile (e.g., iron-sulfur clusters) and bound (e.g., per-, poly-) sulfides) have been shown to modulate both vascular and neuronal homeostasis. We recently reported that elevated plasma sulfides were associated with cognitive dysfunction and measures of microvascular disease in ADRD. Here we extend our previous work to show associations between elevated sulfides and magnetic resonance-based metrics of brain atrophy and white matter integrity. Elevated bound sulfides were associated with decreased grey matter volume, while increased acid labile sulfides were associated with decreased white matter integrity and greater ventricular volume. These findings are consistent with alterations in sulfide metabolism in ADRD which may represent maladaptive responses to oxidative stress.
Collapse
Affiliation(s)
- Tyler H Reekes
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, United States; Center for Brain Health, LSU Health Shreveport, United States
| | - Christina R Ledbetter
- Center for Brain Health, LSU Health Shreveport, United States; Department of Neurosurgery, LSU Health Shreveport, United States
| | - J Steven Alexander
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States; Department of Molecular and Cellular Physiology, LSU Health Shreveport, United States
| | - Karen Y Stokes
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Molecular and Cellular Physiology, LSU Health Shreveport, United States
| | - Sibile Pardue
- Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Pathology and Translational Pathobiology, LSU Health Shreveport, United States
| | | | - James C Patterson
- Center for Brain Health, LSU Health Shreveport, United States; Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, United States
| | - Katelyn T Lofton
- Center for Brain Health, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States; Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, United States
| | - Christopher G Kevil
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Pathology and Translational Pathobiology, LSU Health Shreveport, United States.
| | - Elizabeth A Disbrow
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, United States; Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States.
| |
Collapse
|
44
|
Kauppinen RA, Thothard J, Leskinen HPP, Pisharady PK, Manninen E, Kettunen M, Lenglet C, Gröhn OHJ, Garwood M, Nissi MJ. Axon fiber orientation as the source of T 1 relaxation anisotropy in white matter: A study on corpus callosum in vivo and ex vivo. Magn Reson Med 2023; 90:708-721. [PMID: 37145027 DOI: 10.1002/mrm.29667] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Recent studies indicate that T1 in white matter (WM) is influenced by fiber orientation in B0 . The purpose of the study was to investigate the interrelationships between axon fiber orientation in corpus callosum (CC) and T1 relaxation time in humans in vivo as well as in rat brain ex vivo. METHODS Volunteers were scanned for relaxometric and diffusion MRI at 3 T and 7 T. Angular T1 plots from WM were computed using fractional anisotropy and fiber-to-field-angle maps. T1 and fiber-to-field angle were measured in five sections of CC to estimate the effects of inherently varying fiber orientations on T1 within the same tracts in vivo. Ex vivo rat-brain preparation encompassing posterior CC was rotated in B0 and T1 , and diffusion MRI images acquired at 9.4 T. T1 angular plots were determined at several rotation angles in B0 . RESULTS Angular T1 plots from global WM provided reference for estimated fiber orientation-linked T1 changes within CC. In anterior midbody of CC in vivo, where small axons are dominantly present, a shift in axon orientation is accompanied by a change in T1 , matching that estimated from WM T1 data. In CC, where large and giant axons are numerous, the measured T1 change is about 2-fold greater than the estimated one. Ex vivo rotation of the same midsagittal CC region of interest produced angular T1 plots at 9.4 T, matching those observed at 7 T in vivo. CONCLUSION These data causally link axon fiber orientation in B0 to the T1 relaxation anisotropy in WM.
Collapse
Affiliation(s)
- Risto A Kauppinen
- Department of Electric and Electronic Engineering, University of Bristol, Bristol, UK
| | - Jeromy Thothard
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Henri P P Leskinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Pramod K Pisharady
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eppu Manninen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Olli H J Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mikko J Nissi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
45
|
Stellingwerff MD, Pouwels PJW, Roosendaal SD, Barkhof F, van der Knaap MS. Quantitative MRI in leukodystrophies. Neuroimage Clin 2023; 38:103427. [PMID: 37150021 PMCID: PMC10193020 DOI: 10.1016/j.nicl.2023.103427] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Leukodystrophies constitute a large and heterogeneous group of genetic diseases primarily affecting the white matter of the central nervous system. Different disorders target different white matter structural components. Leukodystrophies are most often progressive and fatal. In recent years, novel therapies are emerging and for an increasing number of leukodystrophies trials are being developed. Objective and quantitative metrics are needed to serve as outcome measures in trials. Quantitative MRI yields information on microstructural properties, such as myelin or axonal content and condition, and on the chemical composition of white matter, in a noninvasive fashion. By providing information on white matter microstructural involvement, quantitative MRI may contribute to the evaluation and monitoring of leukodystrophies. Many distinct MR techniques are available at different stages of development. While some are already clinically applicable, others are less far developed and have only or mainly been applied in healthy subjects. In this review, we explore the background, current status, potential and challenges of available quantitative MR techniques in the context of leukodystrophies.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefan D Roosendaal
- Amsterdam UMC Location University of Amsterdam, Department of Radiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; University College London, Institutes of Neurology and Healthcare Engineering, London, UK
| | - Marjo S van der Knaap
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, De Boelelaan 1105, Amsterdam, the Netherlands.
| |
Collapse
|
46
|
Pan Z, Ma X, Dai E, Auerbach EJ, Guo H, Uğurbil K, Wu X. Reconstruction for 7T high-resolution whole-brain diffusion MRI using two-stage N/2 ghost correction and L1-SPIRiT without single-band reference. Magn Reson Med 2023; 89:1915-1930. [PMID: 36594439 PMCID: PMC9992311 DOI: 10.1002/mrm.29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE To combine a new two-stage N/2 ghost correction and an adapted L1-SPIRiT method for reconstruction of 7T highly accelerated whole-brain diffusion MRI (dMRI) using only autocalibration scans (ACS) without the need of additional single-band reference (SBref) scans. METHODS The proposed ghost correction consisted of a 3-line reference approach in stage 1 and the reference-free entropy method in stage 2. The adapted L1-SPIRiT method was formulated within the 3D k-space framework. Its efficacy was examined by acquiring two dMRI data sets at 1.05-mm isotropic resolutions with a total acceleration of 6 or 9 (i.e., 2-fold or 3-fold slice and 3-fold in-plane acceleration). Diffusion analysis was performed to derive DTI metrics and estimate fiber orientation distribution functions (fODFs). The results were compared with those of 3D k-space GRAPPA using only ACS, all in reference to 3D k-space GRAPPA using both ACS and SBref (serving as a reference). RESULTS The proposed ghost correction eliminated artifacts more robustly than conventional approaches. Our adapted L1-SPIRiT method outperformed 3D k-space GRAPPA when using only ACS, improving image quality to what was achievable with 3D k-space GRAPPA using both ACS and SBref scans. The improvement in image quality further resulted in an improvement in estimation performances for DTI and fODFs. CONCLUSION The combination of our new ghost correction and adapted L1-SPIRiT method can reliably reconstruct 7T highly accelerated whole-brain dMRI without the need of SBref scans, increasing acquisition efficiency and reducing motion sensitivity.
Collapse
Affiliation(s)
- Ziyi Pan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaodong Ma
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
47
|
Tax CM, Genc S, MacIver CL, Nilsson M, Wardle M, Szczepankiewicz F, Jones DK, Peall KJ. Ultra-strong diffusion-weighted MRI reveals cerebellar grey matter abnormalities in movement disorders. Neuroimage Clin 2023; 38:103419. [PMID: 37192563 PMCID: PMC10199248 DOI: 10.1016/j.nicl.2023.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/28/2023] [Accepted: 04/23/2023] [Indexed: 05/18/2023]
Abstract
Structural brain MRI has proven invaluable in understanding movement disorder pathophysiology. However, most work has focused on grey/white matter volumetric (macrostructural) and white matter microstructural effects, limiting understanding of frequently implicated grey matter microstructural differences. Using ultra-strong spherical tensor encoding diffusion-weighted MRI, a persistent MRI signal was seen in healthy cerebellar grey matter even at high diffusion-weightings (b ≥ 10,000 s/mm2). Quantifying the proportion of this signal (denoted fs), previously ascertained to originate from inside small spherical spaces, provides a potential proxy for cell body density. In this work, this approach was applied for the first time to a clinical cohort, including patients with diagnosed movement disorders in which the cerebellum has been implicated in symptom pathophysiology. Five control participants (control group 1, median age 24.5 years (20-39 years), imaged at two timepoints, demonstrated consistency in measurement of all three measures - MD (Mean Diffusivity) fs, and Ds (dot diffusivity)- with intraclass correlation coefficients (ICC) of 0.98, 0.86 and 0.76, respectively. Comparison with an older control group (control group 2 (n = 5), median age 51 years (43-58 years)) found no significant differences, neither with morphometric nor microstructural (MD (p = 0.36), fs (p = 0.17) and Ds (p = 0.22)) measures. The movement disorder cohort (Parkinson's Disease, n = 5, dystonia, n = 5. Spinocerebellar Ataxia 6, n = 5) when compared to the age-matched control cohort (Control Group 2) identified significantly lower MD (p < 0.0001 and p < 0.0001) and higher fs values (p < 0.0001 and p < 0.0001) in SCA6 and dystonia cohorts respectively. Lobar division of the cerebellum found these same differences in the superior and inferior posterior lobes, while no differences were seen in either the anterior lobes or with Ds measurements. In contrast to more conventional measures from diffusion tensor imaging, this framework provides enhanced specificity to differences in restricted spherical spaces in grey matter (including small cells) by eliminating signals from cerebrospinal fluid and axons. In the context of human and animal histopathology studies, these findings potentially implicate the cerebellar Purkinje and granule cells as contributors to the observed signal differences, with both cell types having been implicated in several neurological disorders through both postmortem and animal model studies. This novel microstructural imaging approach shows promise for improving movement disorder diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Chantal M.W. Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, UK
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Claire L MacIver
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Markus Nilsson
- Diagnostic Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mark Wardle
- Cardiff and Vale University Health Board, University Hospital of Wales Cardiff, Heath Park, Cardiff, UK
| | - Filip Szczepankiewicz
- Diagnostic Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Kathryn J. Peall
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
48
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
49
|
Trofimova O, Latypova A, DiDomenicantonio G, Lutti A, de Lange AMG, Kliegel M, Stringhini S, Marques-Vidal P, Vaucher J, Vollenweider P, Strippoli MPF, Preisig M, Kherif F, Draganski B. Topography of associations between cardiovascular risk factors and myelin loss in the ageing human brain. Commun Biol 2023; 6:392. [PMID: 37037939 PMCID: PMC10086032 DOI: 10.1038/s42003-023-04741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Our knowledge of the mechanisms underlying the vulnerability of the brain's white matter microstructure to cardiovascular risk factors (CVRFs) is still limited. We used a quantitative magnetic resonance imaging (MRI) protocol in a single centre setting to investigate the cross-sectional association between CVRFs and brain tissue properties of white matter tracts in a large community-dwelling cohort (n = 1104, age range 46-87 years). Arterial hypertension was associated with lower myelin and axonal density MRI indices, paralleled by higher extracellular water content. Obesity showed similar associations, though with myelin difference only in male participants. Associations between CVRFs and white matter microstructure were observed predominantly in limbic and prefrontal tracts. Additional genetic, lifestyle and psychiatric factors did not modulate these results, but moderate-to-vigorous physical activity was linked to higher myelin content independently of CVRFs. Our findings complement previously described CVRF-related changes in brain water diffusion properties pointing towards myelin loss and neuroinflammation rather than neurodegeneration.
Collapse
Affiliation(s)
- Olga Trofimova
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adeliya Latypova
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giulia DiDomenicantonio
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ann-Marie G de Lange
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Matthias Kliegel
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Silvia Stringhini
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien Vaucher
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Pierre F Strippoli
- Center for Research in Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Preisig
- Center for Research in Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
50
|
Vandeloo KL, Burhunduli P, Bouix S, Owsia K, Cho KIK, Fang Z, Van Geel A, Pasternak O, Blier P, Phillips JL. Free-Water Diffusion Magnetic Resonance Imaging Differentiates Suicidal Ideation From Suicide Attempt in Treatment-Resistant Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:471-481. [PMID: 36906445 PMCID: PMC11421579 DOI: 10.1016/j.bpsc.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Suicide attempt is highly prevalent in treatment-resistant depression (TRD); however, the neurobiological profile of suicidal ideation versus suicide attempt is unclear. Neuroimaging methods including diffusion magnetic resonance imaging-based free-water imaging may identify neural correlates underlying suicidal ideation and attempts in individuals with TRD. METHODS Diffusion magnetic resonance imaging data were obtained from 64 male and female participants (mean age 44.5 ± 14.2 years), including 39 patients with TRD (n = 21 and lifetime history of suicidal ideation but no attempts [SI group]; n = 18 with lifetime history of suicide attempt [SA group]), and 25 age- and sex-matched healthy control participants. Depression and suicidal ideation severity were examined using clinician-rated and self-report measures. Whole-brain neuroimaging analysis was conducted using tract-based spatial statistics via FSL to identify differences in white matter microstructure in the SI versus SA groups and in patients versus control participants. RESULTS Free-water imaging revealed elevated axial diffusivity and extracellular free water in fronto-thalamo-limbic white matter tracts of the SA group compared with the SI group. In a separate comparison, patients with TRD had widespread reductions in fractional anisotropy and axial diffusivity, as well as elevated radial diffusivity compared with control participants (thresholded p < .05, familywise error corrected). CONCLUSIONS A unique neural signature consisting of elevated axial diffusivity and free water was identified in patients with TRD and suicide attempt history. Findings of reduced fractional anisotropy, axial diffusivity, and elevated radial diffusivity in patients versus control participants are consistent with previously published studies. Multimodal and prospective investigations are recommended to better understand biological correlates of suicide attempt in TRD.
Collapse
Affiliation(s)
- Katie L Vandeloo
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Patricia Burhunduli
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kimia Owsia
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhuo Fang
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Amanda Van Geel
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer L Phillips
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|