1
|
Singh N, Golime R, Kumar A, Roy T. Attenuation of Nerve Agent Induced Neurodegenerative and Neuroinflammatory Changes in Rats with New Combination Treatment of Galantamine, Atropine and Midazolam. Mol Neurobiol 2025; 62:461-474. [PMID: 38867111 DOI: 10.1007/s12035-024-04294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Acute nerve agent exposure can kill a person within minutes or produce multiple neurotoxic effects and subsequent brain damage with potential long-term adverse outcomes. Recent abuse of nerve-agents on Syrian civilians, during Japan terrorist attacks, and personal assassinations in the UK, and Malaysia indicate their potential threat to world population. Existing nerve agent antidotes offer only incomplete protection especially, if the treatment is delayed. To develop the effective drugs, it is advantageous to elucidate the underlying mechanisms of nerve agent-induced multiple neurological impairments. This study aimed to investigate the molecular basis of neuroinflammation during nerve agent toxicity with focus on inflammasome-associated proteins and neurodegeneration. In rats, NOD-like receptor family pyrin domain containing 3 (NLRP3), and glial fibrillary acidic protein (GFAP) immunoreactivity levels were considerably increased in the hippocampus, piriform cortex, and amygdala areas after single subcutaneous soman exposure (90 µg/kg-1). Western analysis indicated a notable increase in the neuroinflammatory indicator proteins, high mobility group box 1 (HMGB1) and inducible nitric oxide synthase (iNOS) levels. The presence of fluorojade-C-stained degenerating neurons in distinct rat brain areas is indicating the neurodegeneration during nerve agent toxicity. Pre-treatment with galantamine (3 mg/kg, - 30 min) followed by post-treatment of atropine (10 mg/kg, i.m.) and midazolam (5 mg/kg, i.m.), has completely protected animals from death induced by supra-lethal dose of soman (2XLD50) and reduced the neuroinflammatory and neurodegenerative changes. Results highlight that this new prophylactic and therapeutic drug combination might be an effective treatment option for soldiers deployed in conflict areas and first responders dealing with accidental/deliberate release of nerve agents.
Collapse
Affiliation(s)
- Naveen Singh
- Biomedical Verification Division, Defence Research and Development Establishment (DRDE), Jhansi Road, Gwalior, M.P, India
| | - RamaRao Golime
- Biomedical Verification Division, Defence Research and Development Establishment (DRDE), Jhansi Road, Gwalior, M.P, India.
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, India.
| | - Abdhesh Kumar
- Animal Facility Division, DRDE, Jhansi Road, Gwalior, M.P, India
| | - Tuhin Roy
- Process Technology Development Division, DRDE, Jhansi Road, Gwalior, M.P, India
| |
Collapse
|
2
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
3
|
Colavitta MF, Barrantes FJ. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023; 15:2052. [PMID: 37631266 PMCID: PMC10459958 DOI: 10.3390/pharmaceutics15082052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.
Collapse
Affiliation(s)
- María F. Colavitta
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP-UCA), Facultad de Psicología, Av. Alicia Moreau de Justo, Buenos Aires C1107AAZ, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
4
|
Chrestia JF, Oliveira AS, Mulholland AJ, Gallagher T, Bermúdez I, Bouzat C. A Functional Interaction Between Y674-R685 Region of the SARS-CoV-2 Spike Protein and the Human α7 Nicotinic Receptor. Mol Neurobiol 2022; 59:6076-6090. [PMID: 35859025 PMCID: PMC9299415 DOI: 10.1007/s12035-022-02947-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is present in neuronal and non-neuronal cells and has anti-inflammatory actions. Molecular dynamics simulations suggested that α7 nAChR interacts with a region of the SARS-CoV-2 spike protein (S), and a potential contribution of nAChRs to COVID-19 pathophysiology has been proposed. We applied whole-cell and single-channel recordings to determine whether a peptide corresponding to the Y674-R685 region of the S protein can directly affect α7 nAChR function. The S fragment exerts a dual effect on α7. It activates α7 nAChRs in the presence of positive allosteric modulators, in line with our previous molecular dynamics simulations showing favourable binding of this accessible region of the S protein to the nAChR agonist binding site. The S fragment also exerts a negative modulation of α7, which is evidenced by a profound concentration-dependent decrease in the durations of openings and activation episodes of potentiated channels and in the amplitude of macroscopic responses elicited by ACh. Our study identifies a potential functional interaction between α7 nAChR and a region of the S protein, thus providing molecular foundations for further exploring the involvement of nAChRs in COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Camino La Carrindanga Km 7-8000, Bahía Blanca, Argentina
| | - Ana Sofia Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Isabel Bermúdez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Camino La Carrindanga Km 7-8000, Bahía Blanca, Argentina.
| |
Collapse
|
5
|
Chustecka M, Blügental N, Majewski PM, Adamska I. 24 hour patterning in gene expression of pineal neurosteroid biosynthesis in young chickens ( Gallus gallus domesticus L.). Chronobiol Int 2020; 38:46-60. [PMID: 32990093 DOI: 10.1080/07420528.2020.1823404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The pineal gland, one of the three equivalent avian biological clock structures, is also the site of intensive neurosteroid synthesis (7α-hydroxypregnenolone and allopregnanolone). Pineal neurosteroid biosynthesis involves six enzymes: cytochrome P450 side-chain cleavage - Cyp11a1 encoded, cytochrome P4507α - Cyp7b1, 3β-hydroxysteroid dehydrogenase - Hsd3b2, 5α-reductase - Srd5a1, 3α-hydroxysteroid dehydrogenase - Akr1d1, and 5β-reductase - Srd5a3. Regulation of neurosteroid biosynthesis is not fully understood; although it is known that the E4BP4 transcription factor induces activation of biosynthetic cholesterol genes, which are the targets for SREBP (element-binding protein transcription factor). SREBP principal activity in the pineal gland is suppression and inhibition of the Period2 canonical clock gene, suggesting our hypothesis that genes encoding enzymes involved in neurosteroidogenesis are under circadian clock control and are the Clock Control Genes (CCGs). Therefore, through investigation of daily changes in Cyp11a1, Cyp7b1, Hsd3b2, Akr1d1, Srd5a1, and Srd5a3, pineal genes were tested in vivo and in vitro, in cultured pinealocytes. Experiments were carried out on pineal glands taken from 16-day-old chickens in vivo or using in vitro cultures of pinealocytes collected from 16-day-old animals. Both the birds in the in vivo experiments and the pinealocytes were kept under controlled light conditions (LD 12:12) or in constant darkness (DD). Subsequently, materials were prepared for RT-qPCR analysis. Results revealed that three of the six tested genes: Cyp11a1, Cyp7b1, and Srd5a3 demonstrated significant 24-hour variation in in vivo and in vitro. Findings of this study confirm that these genes could be under clock control and satisfy many of the requirements to be identified as CCGs.
Collapse
Affiliation(s)
- Magdalena Chustecka
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Natalia Blügental
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Pawel Marek Majewski
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Iwona Adamska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| |
Collapse
|
6
|
Nielsen BE, Stabile S, Vitale C, Bouzat C. Design, Synthesis, and Functional Evaluation of a Novel Series of Phosphonate-Functionalized 1,2,3-Triazoles as Positive Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2020; 11:2688-2704. [PMID: 32786318 DOI: 10.1021/acschemneuro.0c00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel widely distributed in the central nervous system, mainly in the hippocampus and cortex. The enhancement of its activity by positive allosteric modulators (PAMs) is a promising therapeutic strategy for cognitive deficits and neurodegenerative disorders. With the aim of developing novel scaffolds with PAM activity, we designed and synthesized a series of phosphonate-functionalized 1,4-disubstituted 1,2,3-triazoles using supported copper nanoparticles as the cycloaddition reaction catalyst and evaluated their activity on α7 receptors by single-channel and whole-cell recordings. We identified several triazole derivatives that displayed PAM activity, with the compound functionalized with the methyl phosphonate group being the most efficacious one. At the macroscopic level, α7 potentiation was evidenced as an increase of the maximal currents elicited by acetylcholine with minimal effects on desensitization, recapitulating the actions of type I PAMs. At the single-channel level, the active compounds did not affect channel amplitude but significantly increased the duration of channel openings and activation episodes. By using chimeric and mutant α7 receptors, we demonstrated that the new α7 PAMs share transmembrane structural determinants of potentiation with other chemically nonrelated PAMs. To gain further insight into the chemical basis of potentiation, we applied structure-activity relationship strategies involving modification of the chain length, inversion of substituent positions in the triazole ring, and changes in the aromatic nucleus. Our findings revealed that the phosphonate-functionalized 1,4-disubstituted 1,2,3-triazole is a novel pharmacophore for the development of therapeutic agents for neurological and neurodegenerative disorders associated with cholinergic dysfunction.
Collapse
Affiliation(s)
- Beatriz Elizabeth Nielsen
- Departamento de Biologı́a, Bioquı́mica y Farmacia, Instituto de Investigaciones Bioquı́micas de Bahı́a Blanca (INIBIBB), Departamento de Biologı́a, Bioquı́mica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Santiago Stabile
- Instituto de Quı́mica del Sur (INQUISUR), Departamento de Quı́mica, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Cristian Vitale
- Instituto de Quı́mica del Sur (INQUISUR), Departamento de Quı́mica, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Cecilia Bouzat
- Departamento de Biologı́a, Bioquı́mica y Farmacia, Instituto de Investigaciones Bioquı́micas de Bahı́a Blanca (INIBIBB), Departamento de Biologı́a, Bioquı́mica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
7
|
Boros F, Vécsei L. Progress in the development of kynurenine and quinoline-3-carboxamide-derived drugs. Expert Opin Investig Drugs 2020; 29:1223-1247. [DOI: 10.1080/13543784.2020.1813716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fanni Boros
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences and the University of Szeged, Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Huang Y, Alsabbagh MW. Comparative risk of cardiac arrhythmias associated with acetylcholinesterase inhibitors used in treatment of dementias - A narrative review. Pharmacol Res Perspect 2020; 8:e00622. [PMID: 32691984 PMCID: PMC7372915 DOI: 10.1002/prp2.622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Donepezil, galantamine, and rivastigmine are the three acetylcholinesterase inhibitors (AChEIs), out of a total of only four medications prescribed in the treatment of Alzheimer's Disease (AD) and related dementias. These medications are known to be associated with bradycardia given their mechanism of action of increasing acetylcholine (ACh). However, in March 2015, donepezil was added to the CredibleMeds "known-risk" category, a list where medications have a documented risk for acquired long-QT syndrome (ALQTS) and torsades de pointes (TdP) - a malignant ventricular arrhythmia that is a different adverse event than bradycardia (and is not necessarily associated with ACh action). The purpose of this article is to review the three AChEIs, especially with regards to mechanistic differences that may explain why only donepezil poses this risk; several pharmacological mechanisms may explain why. However, from an empirical point-of-view, aside from some case-reports, only a limited number of studies have generated relevant information regarding AChEIs' and electrocardiogram findings; none have specifically compared donepezil against galantamine or rivastigmine for malignant arrhythmias such as TdP. Currently, the choice of one of the three AChEIs for treatment of AD symptoms is primarily dependent upon clinician and patient preference. However, clinicians should be aware of the potential increased risk associated with donepezil. There is a need to examine the comparative risk of malignant arrhythmias among AChEIs users in real-world practice; this may have important implications with regards to changes in AChEI prescribing patterns.
Collapse
Affiliation(s)
- Yichang Huang
- School of PharmacyFaculty of ScienceUniversity of WaterlooKitchenerCanada
| | | |
Collapse
|
9
|
Gendy MNS, Ibrahim C, Sloan ME, Le Foll B. Randomized Clinical Trials Investigating Innovative Interventions for Smoking Cessation in the Last Decade. Handb Exp Pharmacol 2020; 258:395-420. [PMID: 31267165 DOI: 10.1007/164_2019_253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Every year, billions of dollars are spent treating smoking and related conditions, yet smoking-related morbidity and mortality continue to rise. There are currently only three FDA-approved medications for smoking cessation: nicotine replacement therapy, bupropion, and varenicline. Although these medications increase abstinence rates, most individuals relapse following treatment. This chapter reviews clinical trials published within the past 10 years investigating novel smoking cessation pharmacotherapies. Among these pharmacotherapies, some showed promising results, such as cytisine and endocannabinoid modulators, whereas others failed to produce significant effects. More research is needed to develop drugs that produce higher rates of long-term abstinence and to determine which subgroups of patients benefit from a given treatment.
Collapse
Affiliation(s)
- Marie N S Gendy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Christine Ibrahim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Matthew E Sloan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
- Addictions Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Alcohol Research and Treatment Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Han Q, Yang C, Lu J, Zhang Y, Li J. Metabolism of Oxalate in Humans: A Potential Role Kynurenine Aminotransferase/Glutamine Transaminase/Cysteine Conjugate Beta-lyase Plays in Hyperoxaluria. Curr Med Chem 2019; 26:4944-4963. [PMID: 30907303 DOI: 10.2174/0929867326666190325095223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 11/22/2022]
Abstract
Hyperoxaluria, excessive urinary oxalate excretion, is a significant health problem worldwide. Disrupted oxalate metabolism has been implicated in hyperoxaluria and accordingly, an enzymatic disturbance in oxalate biosynthesis can result in the primary hyperoxaluria. Alanine glyoxylate aminotransferase-1 and glyoxylate reductase, the enzymes involving glyoxylate (precursor for oxalate) metabolism, have been related to primary hyperoxalurias. Some studies suggest that other enzymes such as glycolate oxidase and alanine glyoxylate aminotransferase-2 might be associated with primary hyperoxaluria as well, but evidence of a definitive link is not strong between the clinical cases and gene mutations. There are still some idiopathic hyperoxalurias, which require a further study for the etiologies. Some aminotransferases, particularly kynurenine aminotransferases, can convert glyoxylate to glycine. Based on biochemical and structural characteristics, expression level, subcellular localization of some aminotransferases, a number of them appear able to catalyze the transamination of glyoxylate to glycine more efficiently than alanine glyoxylate aminotransferase-1. The aim of this minireview is to explore other undermining causes of primary hyperoxaluria and stimulate research toward achieving a comprehensive understanding of underlying mechanisms leading to the disease. Herein, we reviewed all aminotransferases in the liver for their functions in glyoxylate metabolism. Particularly, kynurenine aminotransferase-I and III were carefully discussed regarding their biochemical and structural characteristics, cellular localization, and enzyme inhibition. Kynurenine aminotransferase-III is, so far, the most efficient putative mitochondrial enzyme to transaminate glyoxylate to glycine in mammalian livers, might be an interesting enzyme to look over in hyperoxaluria etiology of primary hyperoxaluria and should be carefully investigated for its involvement in oxalate metabolism.
Collapse
Affiliation(s)
- Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228. China
| | - Cihan Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228. China
| | - Jun Lu
- Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208. China
| | - Yinai Zhang
- Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208. China
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061. United States
| |
Collapse
|
11
|
Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate CA, Gould TD. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev 2018; 70:621-660. [PMID: 29945898 PMCID: PMC6020109 DOI: 10.1124/pr.117.015198] [Citation(s) in RCA: 728] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ketamine, a racemic mixture consisting of (S)- and (R)-ketamine, has been in clinical use since 1970. Although best characterized for its dissociative anesthetic properties, ketamine also exerts analgesic, anti-inflammatory, and antidepressant actions. We provide a comprehensive review of these therapeutic uses, emphasizing drug dose, route of administration, and the time course of these effects. Dissociative, psychotomimetic, cognitive, and peripheral side effects associated with short-term or prolonged exposure, as well as recreational ketamine use, are also discussed. We further describe ketamine's pharmacokinetics, including its rapid and extensive metabolism to norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorketamine (HNK) metabolites. Whereas the anesthetic and analgesic properties of ketamine are generally attributed to direct ketamine-induced inhibition of N-methyl-D-aspartate receptors, other putative lower-affinity pharmacological targets of ketamine include, but are not limited to, γ-amynobutyric acid (GABA), dopamine, serotonin, sigma, opioid, and cholinergic receptors, as well as voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated channels. We examine the evidence supporting the relevance of these targets of ketamine and its metabolites to the clinical effects of the drug. Ketamine metabolites may have broader clinical relevance than was previously considered, given that HNK metabolites have antidepressant efficacy in preclinical studies. Overall, pharmacological target deconvolution of ketamine and its metabolites will provide insight critical to the development of new pharmacotherapies that possess the desirable clinical effects of ketamine, but limit undesirable side effects.
Collapse
Affiliation(s)
- Panos Zanos
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Ruin Moaddel
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Patrick J Morris
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Lace M Riggs
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Jaclyn N Highland
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Polymnia Georgiou
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edna F R Pereira
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edson X Albuquerque
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Craig J Thomas
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Carlos A Zarate
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Todd D Gould
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| |
Collapse
|
12
|
Happ DF, Tasker RA. Effects of α7 Nicotinic Receptor Activation on Cell Survival in Rat Organotypic Hippocampal Slice Cultures. Neurotox Res 2017; 33:887-895. [DOI: 10.1007/s12640-017-9854-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022]
|
13
|
Forray A, Gilstad-Hayden K, Suppies C, Bogen D, Sofuoglu M, Yonkers KA. Progesterone for smoking relapse prevention following delivery: A pilot, randomized, double-blind study. Psychoneuroendocrinology 2017; 86:96-103. [PMID: 28926762 PMCID: PMC5659923 DOI: 10.1016/j.psyneuen.2017.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Close to half of women who were smokers prior to conception quit smoking in pregnancy, when endogenous progesterone levels are high. However, at least half resume pre-pregnancy smoking levels within weeks after delivery and when progesterone levels drop. The current pilot study tested the feasibility and preliminary efficacy of postpartum progesterone replacement in preventing relapse to smoking in postpartum women with a history of pre-pregnancy smoking. METHODS This was an 8-week, double-blind, parallel, randomized, placebo-controlled pilot trial of 41 women with a history of pre-pregnancy smoking who achieved abstinence by 32 weeks of gestation. Immediately following delivery women were randomized to oral micronized progesterone (200mg twice daily) or placebo via computerized urn randomization program. The main outcome measures were descriptions of study feasibility: recruitment and retention. Secondary outcomes were 7-day point prevalence of abstinence at week 8, time to relapse and smoking cravings. RESULTS The trial was feasible with adequate randomization, 64% (41/64) of eligible women, and trial retention, 78% (32/41) completed the trial. Women taking progesterone were 1.8 times more likely to be abstinent during week 8 and took longer to relapse (10 vs. 4 weeks) compared to the placebo group, although these differences did not reach statistical significance. After adjusting for age and pre-quit smoking level, the number needed to treat was 7. There was a 10% greater decline per week in craving ratings in the progesterone group compared to placebo (β=-0.10, 95% CI: -0.15, -0.04, p<0.01). No serious adverse events occurred during the trial. CONCLUSIONS These preliminary findings support the promise of progesterone treatment in postpartum smokers and could constitute a therapeutic breakthrough.If these preliminary findings can be evaluated and replicated in a larger study with sufficient power, this may constitute an acceptable and safe smoking relapse prevention strategy for use during lactation.
Collapse
Affiliation(s)
- Ariadna Forray
- Department of Psychiatry, Yale School of Medicine,40 Temple Street, Suite 6B, New Haven, CT, 06510, United States.
| | - Kathryn Gilstad-Hayden
- Department of Psychiatry, Yale School of Medicine,40 Temple Street, Suite 6B, New Haven, CT, 06510, United States
| | - Cristine Suppies
- Department of Psychiatry, Yale School of Medicine,40 Temple Street, Suite 6B, New Haven, CT, 06510, United States
| | - Debra Bogen
- Department of Pediatrics, University of Pittsburgh School of Medicine, 3420 Fifth Avenue, Pittsburgh, PA, 15213, United States
| | - Mehmet Sofuoglu
- Department of Psychiatry, Yale School of Medicine,40 Temple Street, Suite 6B, New Haven, CT, 06510, United States; VA Connecticut Healthcare System, Building 35, 950 Campbell Avenue, West Haven, CT, 06516, United States
| | - Kimberly A Yonkers
- Department of Psychiatry, Yale School of Medicine,40 Temple Street, Suite 6B, New Haven, CT, 06510, United States; Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale School of Medicine,20 York Street, New Haven, CT, 06510, United States
| |
Collapse
|
14
|
Golime R, Palit M, Acharya J, Dubey DK. Neuroprotective Effects of Galantamine on Nerve Agent-Induced Neuroglial and Biochemical Changes. Neurotox Res 2017; 33:738-748. [DOI: 10.1007/s12640-017-9815-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
|
15
|
Kryukova EV, Lebedev DS, Ivanov IA, Ivanov DA, Starkov VG, Tsetlin VI, Utkin YN. N-methyl serotonin analogues from the Bufo bufo toad venom interact efficiently with the α7 nicotinic acetylcholine receptors. DOKL BIOCHEM BIOPHYS 2017; 472:52-55. [PMID: 28421441 DOI: 10.1134/s1607672917010136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/23/2022]
Abstract
Two low-molecular-weight compounds were isolated from the parotid gland secret of the toad Bufo bufo, which by absorption spectra and HPLC-MS/MS chromatography data correspond to di- and trimethyl derivatives of serotonin (5-hydorxytryptamine): bufotenine (confirmed by counter synthesis) and bufotenidine (5-HTQ). In experiments on competitive radioligand binding, these compounds showed a higher affinity and selectivity for neuronal α7 nicotinic acetylcholine receptors compared with the muscular cholinergic receptors. The most efficient compound in terms of binding value was bufotenine, the efficiency of 5-HTQ was an order of magnitude lower, and the minimal activity was exhibited by serotonin.
Collapse
Affiliation(s)
- E V Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - D S Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - I A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - D A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - V G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - V I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yu N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
16
|
Albiñana E, Luengo JG, Baraibar AM, Muñoz MD, Gandía L, Solís JM, Hernández-Guijo JM. Choline induces opposite changes in pyramidal neuron excitability and synaptic transmission through a nicotinic receptor-independent process in hippocampal slices. Pflugers Arch 2017; 469:779-795. [PMID: 28176016 DOI: 10.1007/s00424-017-1939-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/13/2023]
Abstract
Choline is present at cholinergic synapses as a product of acetylcholine degradation. In addition, it is considered a selective agonist for α5 and α7 nicotinic acetylcholine receptors (nAChRs). In this study, we determined how choline affects action potentials and excitatory synaptic transmission using extracellular and intracellular recording techniques in CA1 area of hippocampal slices obtained from both mice and rats. Choline caused a reversible depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner that was not affected by α7 nAChR antagonists. Moreover, this choline-induced effect was not mimicked by either selective agonists or allosteric modulators of α7 nAChRs. Additionally, this choline-mediated effect was not prevented by either selective antagonists of GABA receptors or hemicholinium, a choline uptake inhibitor. The paired pulse facilitation paradigm, which detects whether a substance affects presynaptic release of glutamate, was not modified by choline. On the other hand, choline induced a robust increase of population spike evoked by orthodromic stimulation but did not modify that evoked by antidromic stimulation. We also found that choline impaired recurrent inhibition recorded in the pyramidal cell layer through a mechanism independent of α7 nAChR activation. These choline-mediated effects on fEPSP and population spike observed in rat slices were completely reproduced in slices obtained from α7 nAChR knockout mice, which reinforces our conclusion that choline modulates synaptic transmission and neuronal excitability by a mechanism independent of nicotinic receptor activation.
Collapse
Affiliation(s)
- E Albiñana
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - J G Luengo
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - A M Baraibar
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - M D Muñoz
- Servicio de Neurología Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - L Gandía
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - J M Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - J M Hernández-Guijo
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain. .,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain.
| |
Collapse
|
17
|
Yang C, Zhang L, Han Q, Liao C, Lan J, Ding H, Zhou H, Diao X, Li J. Kynurenine aminotransferase 3/glutamine transaminase L/cysteine conjugate beta-lyase 2 is a major glutamine transaminase in the mouse kidney. Biochem Biophys Rep 2016; 8:234-241. [PMID: 28955961 PMCID: PMC5613967 DOI: 10.1016/j.bbrep.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022] Open
Abstract
Background Kynurenine aminotransferase 3 (KAT3) catalyzes the transamination of Kynurenine to kynurenic acid, and is identical to cysteine conjugate beta-lyase 2 (CCBL2) and glutamine transaminase L (GTL). GTL was previously purified from the rat liver and considered as a liver type glutamine transaminase. However, because of the substrate overlap and high sequence similarity of KAT3 and KAT1, it was difficult to assay the specific activity of each KAT and to study the enzyme localization in animals. Methods KAT3 transcript and protein levels as well as enzyme activity in the liver and kidney were analyzed by regular reverse transcription-polymerase chain reaction (RT-PCR), real time RT-PCR, biochemical activity assays combined with a specific inhibition assay, and western blotting using a purified and a highly specific antibody, respectively. Results This study concerns the comparative biochemical characterization and localization of KAT 3 in the mouse. The results showed that KAT3 was present in both liver and kidney of the mouse, but was much more abundant in the kidney than in the liver. The mouse KAT3 is more efficient in transamination of glutamine with indo-3-pyruvate or oxaloacetate as amino group acceptor than the mouse KAT1. Conclusions Mouse KAT3 is a major glutamine transaminase in the kidney although it was named a liver type transaminase. General significance Our data highlights KAT3 as a key enzyme for studying the nephrotoxic mechanism of some xenobiotics and the formation of chemopreventive compounds in the mouse kidney. This suggests tissue localizations of KAT3/GTL/CCBL2 in other animals may be carefully checked. Mouse kynurenine aminotransferase 3 (KAT3) was specifically inhibited by methionine. Mouse KAT3 is more abundant in the kidney than in the liver. Mouse KAT3 is a major glutamine transaminase in the kidney although it was named a liver transaminase.
Collapse
Affiliation(s)
- Cihan Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Lei Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, Hainan 570228, China
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Corresponding author at: Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, Hainan 570228, China.
| | - Chenghong Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Jianqiang Lan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Haizhen Ding
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hailong Zhou
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Xiaoping Diao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Veres G, Fejes-Szabó A, Zádori D, Nagy-Grócz G, László AM, Bajtai A, Mándity I, Szentirmai M, Bohár Z, Laborc K, Szatmári I, Fülöp F, Vécsei L, Párdutz Á. A comparative assessment of two kynurenic acid analogs in the formalin model of trigeminal activation: a behavioral, immunohistochemical and pharmacokinetic study. J Neural Transm (Vienna) 2016; 124:99-112. [PMID: 27629500 DOI: 10.1007/s00702-016-1615-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
Kynurenic acid (KYNA) has well-established protective properties against glutamatergic neurotransmission, which plays an essential role in the activation and sensitization process during some primary headache disorders. The goal of this study was to compare the effects of two KYNA analogs, N-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KA-1) and N-(2-N-pyrrolidinylethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KA-2), in the orofacial formalin test of trigeminal pain. Following pretreatment with KA-1 or KA-2, rats were injected with subcutaneous formalin solution in the right whisker pad. Thereafter, the rubbing activity and c-Fos immunoreactivity changes in the spinal trigeminal nucleus pars caudalis (TNC) were investigated. To obtain pharmacokinetic data, KA-1, KA-2 and KYNA concentrations were measured following KA-1 or KA-2 injection. Behavioral tests demonstrated that KA-2 induced larger amelioration of formalin-evoked alterations as compared with KA-1 and the assessment of c-Fos immunoreactivity in the TNC yielded similar results. Although KA-1 treatment resulted in approximately four times larger area under the curve values in the serum relative to KA-2, the latter resulted in a higher KYNA elevation than in the case of KA-1. With regard to TNC, the concentration of KA-1 was under the limit of detection, while that of KA-2 was quite small and there was no major difference in the approximately tenfold KYNA elevations. These findings indicate that the differences between the beneficial effects of KA-1 and KA-2 may be explained by the markedly higher peripheral KYNA levels following KA-2 pretreatment. Targeting the peripheral component of trigeminal pain processing would provide an option for drug design which might prove beneficial in headache conditions.
Collapse
Affiliation(s)
- Gábor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Annamária Fejes-Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Anna M László
- Department of Biometrics and Agricultural Informatics, Faculty of Horticultural Science, Szent Istvan University, Budapest, Hungary
| | - Attila Bajtai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - István Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Márton Szentirmai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Klaudia Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| |
Collapse
|
19
|
Reyes-Parada M, Iturriaga-Vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opin Drug Discov 2016; 11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Richter K, Mathes V, Fronius M, Althaus M, Hecker A, Krasteva-Christ G, Padberg W, Hone AJ, McIntosh JM, Zakrzewicz A, Grau V. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors. Sci Rep 2016; 6:28660. [PMID: 27349288 PMCID: PMC4923896 DOI: 10.1038/srep28660] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.
Collapse
Affiliation(s)
- K. Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - V. Mathes
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - M. Fronius
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - M. Althaus
- Institute for Animal Physiology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - A. Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - G. Krasteva-Christ
- Intitute for Anatomy and Cell Biology, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany
| | - W. Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - A. J. Hone
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - J. M. McIntosh
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - A. Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - V. Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
21
|
Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy. Pharmacol Res 2015; 101:9-17. [PMID: 26318763 DOI: 10.1016/j.phrs.2015.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.
Collapse
|
22
|
Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol 2015; 97:408-417. [PMID: 26231943 DOI: 10.1016/j.bcp.2015.07.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are receptors for the neurotransmitter acetylcholine and are members of the 'Cys-loop' family of pentameric ligand-gated ion channels (LGICs). Acetylcholine binds in the receptor extracellular domain at the interface between two subunits and research has identified a large number of nAChR-selective ligands, including agonists and competitive antagonists, that bind at the same site as acetylcholine (commonly referred to as the orthosteric binding site). In addition, more recent research has identified ligands that are able to modulate nAChR function by binding to sites that are distinct from the binding site for acetylcholine, including sites located in the transmembrane domain. These include positive allosteric modulators (PAMs), negative allosteric modulators (NAMs), silent allosteric modulators (SAMs) and compounds that are able to activate nAChRs via an allosteric binding site (allosteric agonists). Our aim in this article is to review important aspects of the pharmacological diversity of nAChR allosteric modulators and to describe recent evidence aimed at identifying binding sites for allosteric modulators on nAChRs.
Collapse
|
23
|
Neurocognitive effects of acute choline supplementation in low, medium and high performer healthy volunteers. Pharmacol Biochem Behav 2015; 131:119-29. [PMID: 25681529 DOI: 10.1016/j.pbb.2015.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/20/2015] [Accepted: 02/04/2015] [Indexed: 12/28/2022]
Abstract
Novel pharmacological treatments targeting alpha 7 nicotinic acetylcholine receptor (α7 nAChR) hypofunction in schizophrenia have shown mixed success in ameliorating cognitive impairments associated with this disorder. Choline, a selective agonist at α7 receptors is increased with oral administration of cytidine 5'-diphosphocholine (CDP-choline), the cognitive effects of which were assessed in healthy volunteers. Using the CogState test battery, behavioral performance in schizophrenia-relevant cognitive domains was assessed in 24 male participants following a single low (500mg) and moderate (1000mg) dose of CDP-choline. Relative to placebo, CDP-choline improved processing speed, working memory, verbal learning, verbal memory, and executive function in low baseline performers, while exerting no effects in medium baseline performers, and diminishing cognition in high baseline performers. Dose effects varied with cognitive domain but were evident with both the 500mg and 1000mg doses. These preliminary findings of cognitive enhancement in relatively impaired performers are consistent with the α7 receptor mechanism and support further trials with CDP-choline as a potential pro-cognitive strategy for cognitive impairment in schizophrenia.
Collapse
|
24
|
DeAngeli NE, Todd TP, Chang SE, Yeh HH, Yeh PW, Bucci DJ. Exposure to Kynurenic Acid during Adolescence Increases Sign-Tracking and Impairs Long-Term Potentiation in Adulthood. Front Behav Neurosci 2015; 8:451. [PMID: 25610382 PMCID: PMC4285091 DOI: 10.3389/fnbeh.2014.00451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/16/2014] [Indexed: 11/21/2022] Open
Abstract
Changes in brain reward systems are thought to contribute significantly to the cognitive and behavioral impairments of schizophrenia, as well as the propensity to develop co-occurring substance abuse disorders. Presently, there are few treatments for persons with a dual diagnosis and little is known about the neural substrates that underlie co-occurring schizophrenia and substance abuse. One goal of the present study was to determine if a change in the concentration of kynurenic acid (KYNA), a tryptophan metabolite that is increased in the brains of people with schizophrenia, affects reward-related behavior. KYNA is an endogenous antagonist of NMDA glutamate receptors and α7 nicotinic acetylcholine receptors, both of which are critically involved in neurodevelopment, plasticity, and behavior. In Experiment 1, rats were treated throughout adolescence with L-kynurenine (L-KYN), the precursor of KYNA. As adults, the rats were tested drug-free in an autoshaping procedure in which a lever was paired with food. Rats treated with L-KYN during adolescence exhibited increased sign-tracking behavior (lever pressing) when they were tested as adults. Sign-tracking is thought to reflect the lever acquiring incentive salience (motivational value) as a result of its pairing with reward. Thus, KYNA exposure may increase the incentive salience of cues associated with reward, perhaps contributing to an increase in sensitivity to drug-related cues in persons with schizophrenia. In Experiment 2, we tested the effects of exposure to KYNA during adolescence on hippocampal long-term potentiation (LTP). Rats treated with L-KYN exhibited no LTP after a burst of high-frequency stimulation that was sufficient to produce robust LTP in vehicle-treated rats. This finding represents the first demonstrated consequence of elevated KYNA concentration during development and provides insight into the basis for cognitive and behavioral deficits that result from exposure to KYNA during adolescence.
Collapse
Affiliation(s)
- Nicole E DeAngeli
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, NH , USA
| | - Travis P Todd
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, NH , USA
| | - Stephen E Chang
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, NH , USA
| | - Hermes H Yeh
- Department of Physiology and Neurobiology, Geisel School of Medicine, Dartmouth College , Hanover, NH , USA
| | - Pamela W Yeh
- Department of Physiology and Neurobiology, Geisel School of Medicine, Dartmouth College , Hanover, NH , USA
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, NH , USA
| |
Collapse
|
25
|
Adams S, Teo C, McDonald KL, Zinger A, Bustamante S, Lim CK, Sundaram G, Braidy N, Brew BJ, Guillemin GJ. Involvement of the kynurenine pathway in human glioma pathophysiology. PLoS One 2014; 9:e112945. [PMID: 25415278 PMCID: PMC4240539 DOI: 10.1371/journal.pone.0112945] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/17/2014] [Indexed: 12/23/2022] Open
Abstract
The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+)). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+), which is necessary for energy production and DNA repair.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Astrocytes/drug effects
- Astrocytes/metabolism
- Biosynthetic Pathways
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/physiopathology
- CD11b Antigen/metabolism
- Carboxy-Lyases/genetics
- Carboxy-Lyases/metabolism
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Disaccharides
- Gene Expression/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Glioma/genetics
- Glioma/metabolism
- Glioma/physiopathology
- Glucuronates
- Humans
- Immunohistochemistry
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon-gamma/pharmacology
- Kynurenic Acid/blood
- Kynurenic Acid/metabolism
- Kynurenine/biosynthesis
- Kynurenine/blood
- Picolinic Acids/blood
- Picolinic Acids/metabolism
- Quinolinic Acid/blood
- Quinolinic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tryptophan/blood
- Tryptophan/metabolism
- Tryptophan Oxygenase/genetics
- Tryptophan Oxygenase/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Seray Adams
- MND and Neurodegenerative Diseases Research Centre, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Kerrie L. McDonald
- Cure For Life Neuro-Oncology Group, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Anna Zinger
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Chai K. Lim
- MND and Neurodegenerative Diseases Research Centre, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Gayathri Sundaram
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Bruce J. Brew
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- MND and Neurodegenerative Diseases Research Centre, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
26
|
Sepsova V, Krusek J, Zdarova Karasova J, Zemek F, Musilek K, Kuca K, Soukup O. The interaction of quaternary reversible acetylcholinesterase inhibitors with the nicotinic receptor. Physiol Res 2014; 63:771-7. [PMID: 25157661 DOI: 10.33549/physiolres.932768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acetylcholinesterase inhibitors (AChEIs) are used in the treatment of myasthenia gravis (MG). We investigated the effects of AChEIs on peripheral nicotinic receptors (nAChR), which play a crucial role in the treatment of MG symptoms. The positive modulation of those receptors by AChE inhibitors could have an added value to the anti-AChE activity and might be useful in the therapy of MG. Furthermore, to estimate the potential drawbacks of the compounds, cytotoxicity has been assessed on various cell lines. The whole-cell mode of the patch-clamp method was employed. The experiments were performed on medulloblastoma/rhabdomyosarcoma cell line TE671 expressing human embryonic muscle-like receptor with subunits alpha2betagammadelta. The effect of the compounds on cell viability was measured by standard MTT assay (Sigma Aldrich) on ACHN (renal cell adenocarcinoma), HeLa (immortal cell line derived from a cervical carcinoma), HEPG2 (hepatocellular carcinoma) and BJ (skin fibroblasts) cell lines. No positive modulation by the tested AChE inhibitors was observed. Moreover, the compounds exhibited antagonistic activity on the peripheral nAChR. Standard drugs used in MG treatment were shown to be less potent inhibitors of muscle-type nAChR than the newly synthesized compounds. The new compounds showed very little effect on cell viability, and toxicities were comparable to standards. Newly synthesized AChEIs inhibited peripheral nAChR. Furthermore, the inhibition was higher than that of standards used for the treatment of MG. They could be used for the study of nAChR function, thanks to their high antagonizing potency and fast recovery of receptor activity after their removal. However, since no positive modulation was observed, the new compounds do not seem to be promising candidates for MG treatment, even though their cytotoxic effect was relatively low.
Collapse
Affiliation(s)
- V Sepsova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic, Biomedical Research Center, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kaniakova M, Skrenkova K, Adamek S, Vyskocil F, Krusek J. Different effects of lobeline on neuronal and muscle nicotinic receptors. Eur J Pharmacol 2014; 738:352-9. [PMID: 24929055 DOI: 10.1016/j.ejphar.2014.05.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 05/16/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Lobeline is a plant alkaloid known to interact with cholinergic system. The effect of lobeline on neuronal α3β4 receptors expressed in COS cells and muscle embryonic αβγδ receptors naturally expressed in TE671 cells was studied using a patch-clamp technique. Our results show that lobeline inhibited responses to acetylcholine in human embryonic muscle nicotinic receptor in a pseudo-noncompetitive manner. The responses of rat neuronal α3β4 receptors to a low concentration of acetylcholine were potentiated by a mixed occupation mechanism that corresponds to "competitive potentiation". This potentiation turned into voltage-dependent inhibition for α3β4 receptors was activated by a high concentration of acetylcholine.
Collapse
Affiliation(s)
- Martina Kaniakova
- Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Kristyna Skrenkova
- Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Viničná 7, 120 00 Prague, Czech Republic
| | - Svatopluk Adamek
- Third Surgical Department, First Faculty of Medicine, Charles University, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Frantisek Vyskocil
- Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Viničná 7, 120 00 Prague, Czech Republic
| | - Jan Krusek
- Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
28
|
Fejes-Szabó A, Bohár Z, Vámos E, Nagy-Grócz G, Tar L, Veres G, Zádori D, Szentirmai M, Tajti J, Szatmári I, Fülöp F, Toldi J, Párdutz Á, Vécsei L. Pre-treatment with new kynurenic acid amide dose-dependently prevents the nitroglycerine-induced neuronal activation and sensitization in cervical part of trigemino-cervical complex. J Neural Transm (Vienna) 2014; 121:725-38. [DOI: 10.1007/s00702-013-1146-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
|
29
|
Iaccarino HF, Suckow RF, Xie S, Bucci DJ. The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: Implications for schizophrenia. Schizophr Res 2013; 150:392-7. [PMID: 24091034 PMCID: PMC3844520 DOI: 10.1016/j.schres.2013.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
Kynurenic acid is a tryptophan metabolite that is synthesized and released in the brain by astrocytes and acts as an antagonist of nicotinic acetylcholine receptors and N-methyl-d-aspartate glutamate receptors, both of which are critically involved in cognition as well as neural plasticity and brain development. The concentration of kynurenic acid is increased in the brains of persons with schizophrenia and this increase has been implicated in the cognitive and social impairments associated with the disease. In addition, growing evidence suggests that the increase in kynurenic acid may begin early in life. For example, exposure to influenza A virus during development results in a transient increase in kynurenic acid concentration that could disrupt normal brain development and lead to cognitive deficits later in life. Changes in kynurenic acid may thus provide a link between developmental exposure to viruses and the increased risk of subsequently developing schizophrenia. To test this, we mimicked the effects of influenza A exposure by treating rats with kynurenine, the precursor of kynurenic acid, on postnatal days 7-10. We observed a transient increase in both kynurenic acid and quinolinic acid during treatment. When rats were subsequently behaviorally tested as adults, those previously treated with kynurenine exhibited decreased social behavior and locomotor activity. In contrast, attentional function and fear conditioning were not affected. Together with other recent findings, these data have several implications for understanding how viral-induced changes in tryptophan metabolism during development may contribute to schizophrenia-related symptoms later in life.
Collapse
Affiliation(s)
- Hannah F. Iaccarino
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | | | - Shan Xie
- Nathan Kline Institute, Orangeburg, New York 10962
| | - David J. Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
30
|
Two receptors are involved in the central functions of kynurenic acid under an acute stress in neonatal chicks. Neuroscience 2013; 248:194-200. [DOI: 10.1016/j.neuroscience.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 11/22/2022]
|
31
|
Xu Y, Zheng Q, Yu L, Zhang H, Sun C. A molecular dynamics and computational study of human KAT3 involved in KYN pathway. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4802-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Nordman JC, Kabbani N. An interaction between α7 nicotinic receptors and a G-protein pathway complex regulates neurite growth in neural cells. J Cell Sci 2012; 125:5502-13. [PMID: 22956546 DOI: 10.1242/jcs.110379] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The α7 acetylcholine nicotinic receptor (α7) is an important mediator of cholinergic transmission during brain development. Here we present an intracellular signaling mechanism for the α7 receptor. Proteomic analysis of immunoprecipitated α7 subunits reveals an interaction with a G protein pathway complex (GPC) comprising Gα(i/o), GAP-43 and G protein regulated inducer of neurite outgrowth 1 (Gprin1) in differentiating cells. Morphological studies indicate that α7 receptors regulate neurite length and complexity via a Gprin1-dependent mechanism that directs the expression of α7 to the cell surface. α7-GPC interactions were confirmed in embryonic cortical neurons and were found to modulate the growth of axons. Taken together, these findings reveal a novel intracellular pathway of signaling for α7 within neurons, and suggest a role for its interactions with the GPC in brain development.
Collapse
Affiliation(s)
- Jacob C Nordman
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | | |
Collapse
|
33
|
XU YU, ZHENG QINGCHUAN, ZHANG HONGXING, SUN CHIACHUNG. HOMOLOGY MODELING AND SUBSTRATE BINDING STUDY OF HUMAN KYNURENINE AMINOTRANSFERASE III. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633612500587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Kynurenine aminotransferase III (KAT III) is a novel member of the kynurenine aminotransferase enzyme family. Its active site topology and structure characteristics have not been established. In this study, with extensive computational simulations, including homology modeling and molecular dynamics simulations, a 3D structure model of human KAT III dimer was created and refined. Furthermore, CDOCKER approach was employed to dock two ligands (L-methionine and L-tryptophan) into the active sites of human KAT III dimer and uncover the ligand-binding modes. The complexes were subjected to 5 ns MD simulation, and the results indicate that TYR119 and TRP13 might be the key residues as they have the large contributions to the binding affinity, which is in good agreement with the experimental results. Moreover, another two residues (ASP120 and TYR57) are also found that their strong interactions stabilize the whole system. The structural and biochemical insights obtained from the present study will be helpful for designing the specific inhibitors of human KAT III.
Collapse
Affiliation(s)
- YU XU
- State key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - QING-CHUAN ZHENG
- State key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - HONG-XING ZHANG
- State key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - CHIA-CHUNG SUN
- State key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
34
|
Welch KD, Green BT, Gardner DR, Cook D, Pfister JA, Panter KE. The effect of 7, 8-methylenedioxylycoctonine-type diterpenoid alkaloids on the toxicity of tall larkspur (Delphinium spp.) in cattle1. J Anim Sci 2012; 90:2394-401. [DOI: 10.2527/jas.2011-4560] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- K. D. Welch
- USDA-ARS Poisonous Plant Research Laboratory, Logan, UT 84341
| | - B. T. Green
- USDA-ARS Poisonous Plant Research Laboratory, Logan, UT 84341
| | - D. R. Gardner
- USDA-ARS Poisonous Plant Research Laboratory, Logan, UT 84341
| | - D. Cook
- USDA-ARS Poisonous Plant Research Laboratory, Logan, UT 84341
| | - J. A. Pfister
- USDA-ARS Poisonous Plant Research Laboratory, Logan, UT 84341
| | - K. E. Panter
- USDA-ARS Poisonous Plant Research Laboratory, Logan, UT 84341
| |
Collapse
|
35
|
Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV. Biosci Rep 2012; 31:323-32. [PMID: 20977429 DOI: 10.1042/bsr20100117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mammalian mAspAT (mitochondrial aspartate aminotransferase) is recently reported to have KAT (kynurenine aminotransferase) activity and plays a role in the biosynthesis of KYNA (kynurenic acid) in rat, mouse and human brains. This study concerns the biochemical and structural characterization of mouse mAspAT. In this study, mouse mAspAT cDNA was amplified from mouse brain first stand cDNA and its recombinant protein was expressed in an Escherichia coli expression system. Sixteen oxo acids were tested for the co-substrate specificity of mouse mAspAT and 14 of them were shown to be capable of serving as co-substrates for the enzyme. Structural analysis of mAspAT by macromolecular crystallography revealed that the cofactor-binding residues of mAspAT are similar to those of other KATs. The substrate-binding residues of mAspAT are slightly different from those of other KATs. Our results provide a biochemical and structural basis towards understanding the overall physiological role of mAspAT in vivo and insight into controlling the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.
Collapse
|
36
|
Horvath G, Joo G, Kekesi G, Farkas I, Tuboly G, Petrovszki Z, Benedek G. Inhibition of itch-related responses at spinal level in rats. ACTA ACUST UNITED AC 2011; 98:480-90. [DOI: 10.1556/aphysiol.98.2011.4.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Egea J, Martín-de-Saavedra MD, Parada E, Romero A, Del Barrio L, Rosa AO, García AG, López MG. Galantamine elicits neuroprotection by inhibiting iNOS, NADPH oxidase and ROS in hippocampal slices stressed with anoxia/reoxygenation. Neuropharmacology 2011; 62:1082-90. [PMID: 22085833 DOI: 10.1016/j.neuropharm.2011.10.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/25/2011] [Accepted: 10/31/2011] [Indexed: 01/24/2023]
Abstract
Galantamine is a drug currently used to treat Alzheimer's disease (AD); in this group of patients it has been observed that concomitant ischemic brain injury can accelerate their cognitive deficit. We have previously shown that galantamine can afford neuroprotection on in vitro and in vivo models related to brain ischemia. In this context, this study was planned to investigate the intracellular signaling pathways implicated in the protective effect of galantamine on an in vitro brain ischemia-reperfusion model, namely rat hippocampal slices subjected to oxygen and glucose deprivation (OGD) followed by reoxygenation. Galantamine protected hippocampal slices subjected to OGD in a concentration-dependent manner; at 15 μM, cell death was reduced to almost control levels. The neuroprotective effects of galantamine were reverted by mecamylamine and AG490, but not by atropine, indicating that nicotinic receptors and Jak2 participated in this action. Galantamine also prevented p65 translocation into the nucleus induced by OGD; this effect was also linked to nicotinic receptors and Jak2. Furthermore, galantamine reduced iNOS induction and production of NO caused by OGD via Jak2. ROS production by NADPH oxidase (NOX) activation was also inhibited by galantamine. In conclusion, galantamine afforded neuroprotection under OGD-reoxygenation conditions by activating a signaling pathway that involves nicotinic receptors, Jak2 and the consequent inhibition of NOX and NFκB/iNOS. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- J Egea
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pocivavsek A, Wu HQ, Potter MC, Elmer GI, Pellicciari R, Schwarcz R. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology 2011; 36:2357-67. [PMID: 21796108 PMCID: PMC3176574 DOI: 10.1038/npp.2011.127] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kynurenic acid (KYNA), an astrocyte-derived metabolite, antagonizes the α7 nicotinic acetylcholine receptor (α7nAChR) and, possibly, the glycine co-agonist site of the NMDA receptor at endogenous brain concentrations. As both receptors are involved in cognitive processes, KYNA elevations may aggravate, whereas reductions may improve, cognitive functions. We tested this hypothesis in rats by examining the effects of acute up- or downregulation of endogenous KYNA on extracellular glutamate in the hippocampus and on performance in the Morris water maze (MWM). Applied directly by reverse dialysis, KYNA (30-300 nM) reduced, whereas the specific kynurenine aminotransferase-II inhibitor (S)-4-(ethylsulfonyl)benzoylalanine (ESBA; 0.3-3 mM) raised, extracellular glutamate levels in the hippocampus. Co-application of KYNA (100 nM) with ESBA (1 mM) prevented the ESBA-induced glutamate increase. Comparable effects on hippocampal glutamate levels were seen after intra-cerebroventricular (i.c.v.) application of the KYNA precursor kynurenine (1 mM, 10 μl) or ESBA (10 mM, 10 μl), respectively. In separate animals, i.c.v. treatment with kynurenine impaired, whereas i.c.v. ESBA improved, performance in the MWM. I.c.v. co-application of KYNA (10 μM) eliminated the pro-cognitive effects of ESBA. Collectively, these studies show that KYNA serves as an endogenous modulator of extracellular glutamate in the hippocampus and regulates hippocampus-related cognitive function. Our results suggest that pharmacological interventions leading to acute reductions in hippocampal KYNA constitute an effective strategy for cognitive improvement. This approach might be especially useful in the treatment of cognitive deficits in neurological and psychiatric diseases that are associated with increased brain KYNA levels.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hui-Qiu Wu
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle C Potter
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Greg I Elmer
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Universitá di Perugia, Perugia, Italy
| | - Robert Schwarcz
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA, Tel: +1 4 10 402 7635, Fax: +1 4 10 747 2434, E-mail:
| |
Collapse
|
39
|
Non-enzymatic pretreatment of nerve agent (soman) poisoning: A brief state-of-the-art review. Toxicol Lett 2011; 206:35-40. [DOI: 10.1016/j.toxlet.2011.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022]
|
40
|
Borisova T, Krisanova N, Sivko R, Kasatkina L, Borysov A, Griffin S, Wireman M. Presynaptic malfunction: the neurotoxic effects of cadmium and lead on the proton gradient of synaptic vesicles and glutamate transport. Neurochem Int 2011; 59:272-9. [PMID: 21672571 DOI: 10.1016/j.neuint.2011.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 11/17/2022]
Abstract
Exposure to Cd(2+) and Pb(2+) has neurotoxic consequences for human health and may cause neurodegeneration. The study focused on the analysis of the presynaptic mechanisms underlying the neurotoxic effects of non-essential heavy metals Cd(2+) and Pb(2+). It was shown that the preincubation of rat brain nerve terminals with Cd(2+) (200 μM) or Pb(2+) (200 μM) resulted in the attenuation of synaptic vesicles acidification, which was assessed by the steady state level of the fluorescence of pH-sensitive dye acridine orange. A decrease in L-[(14)C]glutamate accumulation in digitonin-permeabilized synaptosomes after the addition of the metals, which reflected lowered L-[(14)C]glutamate accumulation by synaptic vesicles inside of synaptosomes, may be considered in the support of the above data. Using isolated rat brain synaptic vesicles, it was found that 50 μM Cd(2+) or Pb(2+) caused dissipation of their proton gradient, whereas the application of essential heavy metal Mn(2+) did not do it within the range of the concentration of 50-500 μM. Thus, synaptic malfunction associated with the influence of Cd(2+) and Pb(2+) may result from partial dissipation of the synaptic vesicle proton gradient that leads to: (1) a decrease in stimulated exocytosis, which is associated not only with the blockage of voltage-gated Ca(2+) channels, but also with incomplete filling of synaptic vesicles; (2) an attenuation of Na(+)-dependent glutamate uptake.
Collapse
Affiliation(s)
- Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01601, Ukraine
| | | | | | | | | | | | | |
Collapse
|
41
|
Fejes A, Párdutz Á, Toldi J, Vécsei L. Kynurenine metabolites and migraine: experimental studies and therapeutic perspectives. Curr Neuropharmacol 2011; 9:376-87. [PMID: 22131946 PMCID: PMC3131728 DOI: 10.2174/157015911795596621] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/14/2010] [Accepted: 04/30/2010] [Indexed: 12/16/2022] Open
Abstract
Migraine is one of the commonest neurological disorders. Despite intensive research, its exact pathomechanism is still not fully understood and effective therapy is not always available. One of the key molecules involved in migraine is glutamate, whose receptors are found on the first-, second- and third-order trigeminal neurones and are also present in the migraine generators, including the dorsal raphe nucleus, nucleus raphe magnus, locus coeruleus and periaqueductal grey matter. Glutamate receptors are important in cortical spreading depression, which may be the electrophysiological correlate of migraine aura. The kynurenine metabolites, endogenous tryptophan metabolites, include kynurenic acid (KYNA), which exerts a blocking effect on ionotropic glutamate and α7-nicotinic acetylcholine receptors. Thus, KYNA and its derivatives may act as modulators at various levels of the pathomechanism of migraine. They can give rise to antinociceptive effects at the periphery, in the trigeminal nucleus caudalis, and may also act on migraine generators and cortical spreading depression. The experimental data suggest that KYNA or its derivatives might offer a novel approach to migraine therapy.
Collapse
Affiliation(s)
- Annamária Fejes
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
42
|
Williams DK, Wang J, Papke RL. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol 2011; 82:915-30. [PMID: 21575610 DOI: 10.1016/j.bcp.2011.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 11/16/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.
Collapse
Affiliation(s)
- Dustin K Williams
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL Neurocypres, United States
| | | | | |
Collapse
|
43
|
Passera E, Campanini B, Rossi F, Casazza V, Rizzi M, Pellicciari R, Mozzarelli A. Human kynurenine aminotransferase II - reactivity with substrates and inhibitors. FEBS J 2011; 278:1882-900. [DOI: 10.1111/j.1742-4658.2011.08106.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Rammouz G, Lecanu L, Papadopoulos V. Oxidative Stress-Mediated Brain Dehydroepiandrosterone (DHEA) Formation in Alzheimer's Disease Diagnosis. Front Endocrinol (Lausanne) 2011; 2:69. [PMID: 22654823 PMCID: PMC3356139 DOI: 10.3389/fendo.2011.00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/19/2011] [Indexed: 02/06/2023] Open
Abstract
Neurosteroids are steroids made by brain cells independently of peripheral steroidogenic sources. The biosynthesis of most neurosteroids is mediated by proteins and enzymes similar to those identified in the steroidogenic pathway of adrenal and gonadal cells. Dehydroepiandrosterone (DHEA) is a major neurosteroid identified in the brain. Over the years we have reported that, unlike other neurosteroids, DHEA biosynthesis in rat, bovine, and human brain is mediated by an oxidative stress-mediated mechanism, independent of the cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) enzyme activity found in the periphery. This alternative pathway is induced by pro-oxidant agents, such as Fe(2+) and β-amyloid peptide. Neurosteroids are involved in many aspects of brain function, and as such, are involved in various neuropathologies, including Alzheimer's disease (AD). AD is a progressive, yet irreversible neurodegenerative disease for which there are limited means for ante-mortem diagnosis. Using brain tissue specimens from control and AD patients, we provided evidence that DHEA is formed in the AD brain by the oxidative stress-mediated metabolism of an unidentified precursor, thus depleting levels of the precursor in the blood stream. We tested for the presence of this DHEA precursor in human serum using a Fe(2+)-based reaction and determined the amounts of DHEA formed. Fe(2+) treatment of the serum resulted in a dramatic increase in DHEA levels in control patients, whereas only a moderate or no increase was observed in AD patients. The DHEA variation after oxidation correlated with the patients' cognitive and mental status. In this review, we present the cumulative evidence for oxidative stress as a natural regulator of DHEA formation and the use of this concept to develop a blood-based diagnostic tool for neurodegenerative diseases linked to oxidative stress, such as AD.
Collapse
Affiliation(s)
- Georges Rammouz
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill UniversityMontreal, QC, Canada
| | - Laurent Lecanu
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill UniversityMontreal, QC, Canada
| | - Vassilios Papadopoulos
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill UniversityMontreal, QC, Canada
- Department of Biochemistry, McGill UniversityMontreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill UniversityMontreal, QC, Canada
- *Correspondence: Vassilios Papadopoulos, The Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, C10-148, Montreal, QC, Canada H3G 1A4. e-mail:
| |
Collapse
|
45
|
Alexandrova EA, Aracava Y, Pereira EFR, Albuquerque EX. Pretreatment of Guinea pigs with galantamine prevents immediate and delayed effects of soman on inhibitory synaptic transmission in the hippocampus. J Pharmacol Exp Ther 2010; 334:1051-8. [PMID: 20554906 PMCID: PMC2939667 DOI: 10.1124/jpet.110.167700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/15/2010] [Indexed: 11/22/2022] Open
Abstract
Galantamine has emerged as a potential antidote to prevent the acute toxicity of organophosphorus (OP) compounds. Changes in inhibitory GABAergic activity in different brain regions can contribute to both induction and maintenance of seizures in subjects exposed to the OP nerve agent soman. Here, we tested the hypothesis that galantamine can prevent immediate and delayed effects of soman on hippocampal inhibitory synaptic transmission. Spontaneous inhibitory postsynaptic currents (IPSCs) were recorded from CA1 pyramidal neurons in hippocampal slices obtained at 1 h, 24 h, or 6 to 9 days after the injection of guinea pigs with saline (0.5 ml/kg i.m.), 1xLD(50) soman (26.3 microg/kg s.c.), galantamine (8 mg/kg i.m.), or galantamine at 30 min before soman. Soman-challenged animals that were not pretreated showed mild, moderate, or severe signs of acute intoxication. At 1 h after the soman injection, the mean IPSC amplitude recorded from slices of mildly intoxicated animals and the mean IPSC frequency recorded from slices of severely intoxicated animals were larger and lower, respectively, than those recorded from slices of control animals. Regardless of the severity of the acute toxicity, at 24 h after the soman challenge the mean IPSC frequency was lower than that recorded from slices of control animals. At 6 to 9 days after the challenge, the IPSC frequency had returned to control levels, whereas the mean IPSC amplitude became larger than control. Pretreatment with galantamine prevented soman-induced changes in IPSCs. Counteracting the effects of soman on inhibitory transmission can be an important determinant of the antidotal effectiveness of galantamine.
Collapse
Affiliation(s)
- Elena A Alexandrova
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
46
|
Walstab J, Rappold G, Niesler B. 5-HT(3) receptors: role in disease and target of drugs. Pharmacol Ther 2010; 128:146-69. [PMID: 20621123 DOI: 10.1016/j.pharmthera.2010.07.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 12/19/2022]
Abstract
Serotonin type 3 (5-HT(3)) receptors are pentameric ion channels belonging to the superfamily of Cys-loop receptors. Receptor activation either leads to fast excitatory responses or modulation of neurotransmitter release depending on their neuronal localisation. 5-HT(3) receptors are known to be expressed in the central nervous system in regions involved in the vomiting reflex, processing of pain, the reward system, cognition and anxiety control. In the periphery they are present on a variety of neurons and immune cells. 5-HT(3) receptors are known to be involved in emesis, pain disorders, drug addiction, psychiatric and GI disorders. Progress in molecular genetics gives direction to personalised medical strategies for treating complex diseases such as psychiatric and functional GI disorders and unravelling individual drug responses in pharmacogenetic approaches. Here we discuss the molecular basis of 5-HT(3) receptor diversity at the DNA and protein level, of which our knowledge has greatly extended in the last decade. We also evaluate their role in health and disease and describe specific case-control studies addressing the involvement of polymorphisms of 5-HT3 subunit genes in complex disorders and responses to drugs. Furthermore, we focus on the actual state of the pharmacological knowledge concerning not only classical 5-HT(3) antagonists--the setrons--but also compounds of various substance classes targeting 5-HT(3) receptors such as anaesthetics, opioids, cannabinoids, steroids, antidepressants and antipsychotics as well as natural compounds derived from plants. This shall point to alternative treatment options modulating the 5-HT(3) receptor system and open new possibilities for drug development in the future.
Collapse
Affiliation(s)
- Jutta Walstab
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
47
|
Han Q, Cai T, Tagle DA, Li J. Thermal stability, pH dependence and inhibition of four murine kynurenine aminotransferases. BMC BIOCHEMISTRY 2010; 11:19. [PMID: 20482848 PMCID: PMC2890522 DOI: 10.1186/1471-2091-11-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/19/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Kynurenine aminotransferase (KAT) catalyzes the transamination of kynunrenine to kynurenic acid (KYNA). KYNA is a neuroactive compound and functions as an antagonist of alpha7-nicotinic acetylcholine receptors and is the only known endogenous antagonist of N-methyl-D-aspartate receptors. Four KAT enzymes, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase, have been reported in mammalian brains. Because of the substrate overlap of the four KAT enzymes, it is difficult to assay the specific activity of each KAT in animal brains. RESULTS This study concerns the functional expression and comparative characterization of KAT I, II, III, and IV from mice. At the applied test conditions, equimolar tryptophan with kynurenine significantly inhibited only mouse KAT I and IV, equimolar methionine inhibited only mouse KAT III and equimolar aspartate inhibited only mouse KAT IV. The activity of mouse KAT II was not significantly inhibited by any proteinogenic amino acids at equimolar concentrations. pH optima, temperature preferences of four KATs were also tested in this study. Midpoint temperatures of the protein melting, half life values at 65 degrees C, and pKa values of mouse KAT I, II, III, and IV were 69.8, 65.9, 64.8 and 66.5 degrees C; 69.7, 27.4, 3.9 and 6.5 min; pH 7.6, 5.7, 8.7 and 6.9, respectively. CONCLUSION The characteristics reported here could be used to develop specific assay methods for each of the four murine KATs. These specific assays could be used to identify which KAT is affected in mouse models for research and to develop small molecule drugs for prevention and treatment of KAT-involved human diseases.
Collapse
Affiliation(s)
- Qian Han
- Department of Biochemistry, Virginia Tech, Blacksburg, 24061, USA
| | | | | | | |
Collapse
|
48
|
Henderson Z, Matto N, John D, Nalivaeva NN, Turner AJ. Co-localization of PRiMA with acetylcholinesterase in cholinergic neurons of rat brain: an immunocytochemical study. Brain Res 2010; 1344:34-42. [PMID: 20471375 DOI: 10.1016/j.brainres.2010.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 12/12/2022]
Abstract
In the central nervous system, acetylcholinesterase (AChE) is present in a tetrameric form that is anchored to membranes via a proline-rich membrane anchor (PRiMA). Previously it has been found that principal cholinergic neurons in the brain express high concentrations of AChE enzymic activity at their neuronal membranes. The aim of this study was to use immunocytochemical methods to determine the distribution of PRiMA in these neurons in the rat brain. Confocal laser and electron microscopic investigations showed that PRiMA immunoreactivity is associated with the membranes of the somata, dendrites and axons of cholinergic neurons in the basal forebrain, striatum and pedunculopontine nuclei, i.e. the neurons that innervate forebrain and brainstem structures. In these neurones, PRiMA also co-localizes with AChE immunoreactivity at the plasma membrane. PRiMA label was absent from neighboring GABAergic neurons, and from other neurons of the brain known to express high levels of AChE enzymic activity including cranial nerve motor neurons and dopaminergic neurons of the substantia nigra zona compacta. A strong association of AChE with PRiMA at the plasma membrane is therefore a feature specific to principal cholinergic neurons that innervate the central nervous system.
Collapse
Affiliation(s)
- Zaineb Henderson
- Faculty of Biological Sciences, Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
49
|
Han Q, Cai T, Tagle DA, Li J. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cell Mol Life Sci 2010; 67:353-68. [PMID: 19826765 PMCID: PMC2867614 DOI: 10.1007/s00018-009-0166-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/27/2009] [Accepted: 09/29/2009] [Indexed: 01/12/2023]
Abstract
Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.
Collapse
Affiliation(s)
- Qian Han
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Tao Cai
- OIIB, NIDCR, National Institutes of Health, Bethesda MD, 20892-4322 USA
| | - Danilo A. Tagle
- Neuroscience Center, NINDS, National Institutes of Health, Bethesda, MD 2089-29525 USA
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
50
|
Abstract
The treatment of patients poisoned with drugs and pharmaceuticals can be quite challenging. Diverse exposure circumstances, varied clinical presentations, unique patient-specific factors, and inconsistent diagnostic and therapeutic infrastructure support, coupled with relatively few definitive antidotes, may complicate evaluation and management. The historical approach to poisoned patients (patient arousal, toxin elimination, and toxin identification) has given way to rigorous attention to the fundamental aspects of basic life support--airway management, oxygenation and ventilation, circulatory competence, thermoregulation, and substrate availability. Selected patients may benefit from methods to alter toxin pharmacokinetics to minimize systemic, target organ, or tissue compartment exposure (either by decreasing absorption or increasing elimination). These may include syrup of ipecac, orogastric lavage, activated single- or multi-dose charcoal, whole bowel irrigation, endoscopy and surgery, urinary alkalinization, saline diuresis, or extracorporeal methods (hemodialysis, charcoal hemoperfusion, continuous venovenous hemofiltration, and exchange transfusion). Pharmaceutical adjuncts and antidotes may be useful in toxicant-induced hyperthermias. In the context of analgesic, anti-inflammatory, anticholinergic, anticonvulsant, antihyperglycemic, antimicrobial, antineoplastic, cardiovascular, opioid, or sedative-hypnotic agents overdose, N-acetylcysteine, physostigmine, L-carnitine, dextrose, octreotide, pyridoxine, dexrazoxane, leucovorin, glucarpidase, atropine, calcium, digoxin-specific antibody fragments, glucagon, high-dose insulin euglycemia therapy, lipid emulsion, magnesium, sodium bicarbonate, naloxone, and flumazenil are specifically reviewed. In summary, patients generally benefit from aggressive support of vital functions, careful history and physical examination, specific laboratory analyses, a thoughtful consideration of the risks and benefits of decontamination and enhanced elimination, and the use of specific antidotes where warranted. Data supporting antidotes effectiveness vary considerably. Clinicians are encouraged to utilize consultation with regional poison centers or those with toxicology training to assist with diagnosis, management, and administration of antidotes, particularly in unfamiliar cases.
Collapse
Affiliation(s)
- Silas W Smith
- New York City Poison Control Center, New York University School of Medicine, New York, USA.
| |
Collapse
|