1
|
Qiao X, Bao L, Liu G, Cui X. Nanomaterial journey in the gut: from intestinal mucosal interaction to systemic transport. NANOSCALE 2024; 16:19207-19220. [PMID: 39347780 DOI: 10.1039/d4nr02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engineered nanomaterials (NMs) are commonly utilized in food additives, cosmetics, and therapeutic applications due to their advantageous properties. Consequently, humans are frequently exposed to exogenous nanomaterials through oral ingestion, thus making the intestinal mucosal system a primary site for these particles. Understanding the interactions between nanomaterials and the intestinal mucosal system is crucial for harnessing their therapeutic potential and mitigating potential health risks from unintended exposure. This review aims to elucidate recent advancements in the dual effects of nanomaterials on the intestinal mucosal system. Upon entering the gut lumen, nanomaterials will interact with diverse intestinal components, including trillions of gut microbiota, mucus layer, intestinal epithelial cells (IECs), and the intestinal immune system. Additionally, the systemic fate and transportation of nanomaterials to distal organs, such as central nervous system, are also highlighted. These interactions result in a distinct biological effect of nanomaterials on the multilayer structure of intestine, thus displaying complex journeys and outcomes of nanomaterials in the living body. This in-depth exploration of the in vivo destiny and immunological implications of nanomaterials encountering the intestine has the potential to propel advancements in oral drug delivery techniques and motivate future investigations in novel toxicology research.
Collapse
Affiliation(s)
- Xin Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Guanyu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
2
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Gilley SP, Ruebel ML, Chintapalli SV, Wright CJ, Rozance PJ, Shankar K. Calorie restriction during gestation impacts maternal and offspring fecal microbiome in mice. Front Endocrinol (Lausanne) 2024; 15:1423464. [PMID: 39429739 PMCID: PMC11487197 DOI: 10.3389/fendo.2024.1423464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024] Open
Abstract
Background Maternal undernutrition is the most common cause of fetal growth restriction (FGR) worldwide. FGR increases morbidity and mortality during infancy, as well as contributes to adult-onset diseases including obesity and type 2 diabetes. The role of the maternal or offspring microbiome in growth outcomes following FGR is not well understood. Methods FGR was induced by 30% maternal calorie restriction (CR) during the second half of gestation in C57BL/6 mice. Pup weights were obtained on day of life 0, 1, and 7 and ages 3, 4 and 16 weeks. Fecal pellets were collected from pregnant dams at gestational day 18.5 and from offspring at ages 3 and 4 weeks of age. Bacterial genomic DNA was used for amplification of the V4 variable region of the 16S rRNA gene. Multivariable associations between maternal CR and taxonomic abundance were assessed using the MaAsLin2 package. Associations between microbial taxa and offspring outcomes were performed using distance-based redundancy analysis and Pearson correlations. Results FGR pups weighed about 20% less than controls. Beta but not alpha diversity differed between control and CR dam microbiomes. CR dams had lower relative abundance of Turicibacter, Flexispira, and Rikenella, and increased relative abundance of Parabacteroides and Prevotella. Control and FGR offspring microbiota differed by beta diversity at ages 3 and 4 weeks. At 3 weeks, FGR offspring had decreased relative abundance of Akkermansia and Sutterella and increased relative abundance of Anaerostipes and Paraprevotella. At 4 weeks, FGR animals had decreased relative abundance of Allobaculum, Sutterella, Bifidobacterium, and Lactobacillus, among others, and increased relative abundance of Turcibacter, Dorea, and Roseburia. Maternal Helicobacter abundance was positively associated with offspring weight. Akkermansia abundance at age 3 and 4 weeks was negatively associated with adult weight. Conclusions We demonstrate gut microbial dysbiosis in pregnant dams and offspring at two timepoints following maternal calorie restriction. Additional research is needed to test for functional roles of the microbiome in offspring growth outcomes.
Collapse
Affiliation(s)
- Stephanie P. Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, United States
| | - Meghan L. Ruebel
- Microbiome and Metabolism Research Unit (MMRU), United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Southeast Area, Little Rock, AR, United States
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sree V. Chintapalli
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Clyde J. Wright
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul J. Rozance
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
4
|
Aghaei SM, Hosseini SM. Inflammation-related miRNAs in obesity, CVD, and NAFLD. Cytokine 2024; 182:156724. [PMID: 39106574 DOI: 10.1016/j.cyto.2024.156724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Obesity, cardiovascular diseases (CVD), and nonalcoholic fatty liver disease (NAFLD) pose significant worldwide health challenges, characterized by complex interplay among inflammatory pathways that underlie their development. In this review, we examine the contribution of inflammation and associated signaling molecules to the pathogenesis of these conditions, while also emphasizing the significant participation of non-coding RNAs (ncRNAs) in modulating inflammatory pathways. In the context of obesity, aberrant expression patterns of inflammatory-associated miRNAs play a contributory role in adipose tissue inflammation and insulin resistance, thereby exacerbating disturbances in metabolic homeostasis. Similarly, in CVD, dysregulated miRNA expression alters inflammatory reactions, disrupts endothelial function, and induces cardiac remodeling, thereby impacting the advancement of the disease. Moreover, in the context of NAFLD, inflammatory-associated miRNAs are implicated in mediating hepatic inflammation, lipid deposition, and fibrosis, underscoring their candidacy as promising therapeutic targets. Additionally, the competing endogenous RNA (ceRNA) network has emerged as a novel regulatory mechanism in the etiology of CVD, obesity, and NAFLD, wherein ncRNAs assume pivotal roles in facilitating communication across diverse molecular pathways. Moreover, in the concluding section, we underscored the potential efficacy of directing interventions towards inflammatory-related miRNAs utilizing herbal remedies and therapies based on exosome delivery systems as a promising strategy for ameliorating pathologies associated with inflammation in obesity, CVD, and NAFLD.
Collapse
Affiliation(s)
- Sayed Mohsen Aghaei
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen Q, Cheng W, Zhang J, Chi C, Lin M, He C, Liao Z, Gong F. Fibroblast growth factor 21 improves insulin sensitivity by modulating the bile acid-gut microbiota axis in type Ⅱ diabetic mice. Free Radic Biol Med 2024; 224:600-617. [PMID: 39288846 DOI: 10.1016/j.freeradbiomed.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is an important regulator of glycolipid metabolism. However, whether the gut microbiota is related to the anti-diabetic and obesity effects of FGF21 remains unclear. METHODS Our research used KO/KO db/db male mice and streptozotocin (STZ)-induced to simulate the construction of two type II diabetic mellitus (T2DM) models, and detected impaired glucose tolerance in the model by using the ipGTT and ITT assays, and collected feces from the model mice for sequencing of the intestinal flora and the content of short-chain fatty acids. H&E staining was used to detect changes in intestinal tissue, the serum levels of LPS and GLP-1 were detected by ELISA. RESULTS In this study, we found that FGF21 significantly improved insulin sensitivity, attenuated intestinal lesions, and decreased serum lipopolysaccharide (LPS) concentrations in T2DM mice. Moreover, FGF21 reshaped the gut microbiota and altered their metabolic pathways in T2DM mice, promoting the production of short-chain fatty acids (SCFAs) and the secretion of glucagon-like peptide 1 (GLP-1). Fecal transplantation experiments further confirmed that feces from FGF21-treated diabetic mice demonstrated similar effects as FGF21 in terms of anti-diabetic activity and regulation of gut microbiota dysbiosis. Additionally, the antibiotic depletion of gut microbiota abolished the beneficial effects of FGF21, including increased GLP-1 secretion and fecal SCFA concentration. Additionally, the FGF21 effects of ameliorating intestinal damage and suppressing plasma LPS secretion were suppressed. All these findings suggest that FGF21 prevents intestinal lesions by modifying the gut microbiota composition. Furthermore, FGF21 affected bile acid synthesis by inhibiting CYP7A1, the key enzyme of bile acid synthesis. CONCLUSSION Therefore, FGF21 enriched beneficial bacteria by preventing bile acid synthesis and stimulating the secretion of the intestinal hormone GLP-1 via the increased production of gut microbiota metabolites, thereby exerting its anti-diabetic effects.
Collapse
Affiliation(s)
- Qiongzhen Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Wenwen Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Jiangnan Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325015, China
| | - Changxing Chi
- Department of Endocrinology, Yanbian University Hospital, Yanji, 136200, China
| | - Mengyi Lin
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325015, China
| | - Chenbei He
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325015, China
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China.
| | - Fanghua Gong
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325015, China.
| |
Collapse
|
6
|
Bao S, Wang W, Deng Z, Zhou R, Zeng S, Hou D, He J, Huang Z. Changes of bacterial communities and bile acid metabolism reveal the potential "intestine-hepatopancreas axis" in shrimp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173384. [PMID: 38815838 DOI: 10.1016/j.scitotenv.2024.173384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
The interaction between the gut and the liver plays a significant role in individual health and diseases. Mounting evidence supports that bile acids are important metabolites in the bidirectional communication between the gut and the liver. Most of the current studies on the "gut-liver axis" have focused on higher vertebrates, however, few was reported on lower invertebrates such as shrimp with an open circulatory system. Here, microbiomic and metabolomic analyses were conducted to investigate the bacterial composition and bile acid metabolism in intestine, hemolymph and hepatopancreas of Penaeus vannamei fed diets supplemented with octanoic acid and oleic acid. After six days of feeding, the bacterial composition in intestine, hemolymph and hepatopancreas changed at different stages, with significant increases in the relative abundance of several genera such as Pseudomonas and Rheinheimera in intestine and hepatopancreas. Notably, there was a more similar bacterial composition in intestine and hepatopancreas at the genus level, which indicated the close communication between shrimp intestine and hepatopancreas. Meanwhile, higher content of some bile acids such as lithocholic acid (LCA) and α-muricholic acid (α-MCA) in intestine and lower content of some bile acids such as taurohyocholic acids (THCA) and isolithocholic acid (IsoLCA) in hepatopancreas were detected. Furthermore, Spearman correlation analysis revealed a significant correlation between bacterial composition and bile acid metabolism in intestine and hepatopancreas. The microbial source tracking analysis showed that there was a high proportion of intestine and hepatopancreas bacterial community as the source of each other. Collectively, these results showed a strong crosstalk between shrimp intestine and hepatopancreas, which suggests a unique potential "intestine-hepatopancreas axis" in lower invertebrate shrimp with an open circulatory system. Our finding contributed to the understanding of the interplay between shrimp intestine and hepatopancreas in the view of microecology and provided new ideas for shrimp farming and disease control.
Collapse
Affiliation(s)
- Shicheng Bao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Wenjun Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhixuan Deng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Renjun Zhou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shenzheng Zeng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Dongwei Hou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China; State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijian Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China; State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
8
|
Yu Y, Zeng F, Han P, Zhang L, Yang L, Zhou F, Liu Q, Ruan Z. Dietary chlorogenic acid alleviates high-fat diet-induced steatotic liver disease by regulating metabolites and gut microbiota. Int J Food Sci Nutr 2024; 75:369-384. [PMID: 38389248 DOI: 10.1080/09637486.2024.2318590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The high-fat diet would lead to excessive fat storage in the liver to form metabolic dysfunction-associated steatotic liver disease (MASLD), and the trend is burgeoning. The aim of the study is to investigate the effects of chlorogenic acid (CGA) on metabolites and gut microorganisms in MASLD mice induced by a high-fat diet. In comparison to the HF group, the TC (total cholesterol), TG (total triglycerides), LDL-C (low-density lipoprotein cholesterol), AST (aspartate aminotransferase) and ALT (alanine transaminase) levels were reduced after CGA supplement. CGA led to an increase in l-phenylalanine, l-tryptophan levels, and promoted fatty acid degradation. CGA increased the abundance of the Muribaculaceae, Bacteroides and Parabacteroides. Changes in these microbes were significantly associated with the liver metabolites level and lipid profile level. These data suggest important roles for CGA regulating the gut microbiota, liver and caecum content metabolites, and TG-, TC- and LDL-C lowering function.
Collapse
Affiliation(s)
- Yujuan Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Fumao Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Peiheng Han
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Li Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ling Yang
- Hebei Yiran Biological Technology Co., Ltd., Shijiazhuang, China
| | - Feng Zhou
- Suzhou Globalpeak High-tech Co., Ltd., Suzhou, China
| | - Qing Liu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Shanghai, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Li W, Lin X, Liang H, Wu Z, Wang M, Sun J, Li X, He W, Gao X, Hu T, Xiao L, Zou Y. Genomic and functional diversity of the human-derived isolates of Faecalibacterium. Front Microbiol 2024; 15:1379500. [PMID: 38873165 PMCID: PMC11169845 DOI: 10.3389/fmicb.2024.1379500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Faecalibacterium is one of the most abundant bacteria in the gut microbiota of healthy adults, highly regarded as a next-generation probiotic. However, the functions of Faecalibacterium genomes from cultured strains and the distribution of different species in populations may differ among different sources. Methods We here performed an extensive analysis of pan-genomes, functions, and safety evaluation of 136 Faecalibacterium genomes collected from 10 countries. Results The genomes are clustered into 11 clusters, with only five of them were characterized and validly nomenclated. Over 80% of the accessory genes and unique genes of Faecalibacterium are found with unknown function, which reflects the importance of expanding the collection of Faecalibacterium strains. All the genomes have the potential to produce acetic acid and butyric acid. Nine clusters of Faecalibacterium are found significantly enriched in the healthy individuals compared with patients with type II diabetes.. Discussion This study provides a comprehensive view of genomic characteristic and functions and of culturable Faecalibacterium bacterium from human gut, and enables clinical advances in the future.
Collapse
Affiliation(s)
- Wenxi Li
- BGI-Shenzhen, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoqian Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hewei Liang
- BGI-Shenzhen, Shenzhen, China
- BGI Research, Wuhan, China
| | - Zhinan Wu
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Wang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingxi Sun
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofang Li
- BGI-Shenzhen, Shenzhen, China
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | | | | | - Tongyuan Hu
- BGI-Shenzhen, Shenzhen, China
- BGI Research, Wuhan, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| |
Collapse
|
10
|
Visuthranukul C, Leelahavanichkul A, Tepaamorndech S, Chamni S, Mekangkul E, Chomtho S. Inulin supplementation exhibits increased muscle mass via gut-muscle axis in children with obesity: double evidence from clinical and in vitro studies. Sci Rep 2024; 14:11181. [PMID: 38755201 PMCID: PMC11099025 DOI: 10.1038/s41598-024-61781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Gut microbiota manipulation may reverse metabolic abnormalities in obesity. Our previous studies demonstrated that inulin supplementation significantly promoted Bifidobacterium and fat-free mass in obese children. We aimed to study gut-muscle axis from inulin supplementation in these children. In clinical phase, the plasma samples from 46 participants aged 7-15 years, were analyzed for muscle biomarkers before and after 6-month inulin supplementation. In parallel, the plausible mechanism of muscle production via gut-muscle axis was examined using macrophage cell line. Bifidobacterium was cultured in semi-refined medium with inulin used in the clinical phase. Cell-free supernatant was collected and used in lipopolysaccharide (LPS)-induced macrophage cell line to determine inflammatory and anti-inflammatory gene expression. In clinical phase, IL-15 and creatinine/cystatin C ratio significantly increased from baseline to the 6th month. In vitro study showed that metabolites derived from Bifidobacterium capable of utilizing inulin contained the abundance of SCFAs. In the presence of LPS, treatment from Bifidobacterium + inulin downregulated TNF-α, IL-6, IL-1β, and iNOS, but upregulated FIZZ-1 and TGF-β expression. Inulin supplementation promoted the muscle biomarkers in agreement with fat-free mass gain, elucidating by Bifidobacterium metabolites derived from inulin digestion showed in vitro anti-inflammatory activity and decreased systemic pro-inflammation, thus promoting muscle production via gut-muscle axis response.Clinical Trial Registry number: NCT03968003.
Collapse
Affiliation(s)
- Chonnikant Visuthranukul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Inflammation and Immunology Research Unit (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surapun Tepaamorndech
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supakarn Chamni
- Natural Products and Nanoparticles Research Unit (NP2), Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eakkarin Mekangkul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sirinuch Chomtho
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
11
|
Zhong R, Shen L, Fan Y, Luo Q, Hong R, Sun X, Zhou X, Wan J. Anti-aging mechanism and effect of treatment with raw and wine-steamed Polygonatum sibiricum on D-galactose-induced aging in mice by inhibiting oxidative stress and modulating gut microbiota. Front Pharmacol 2024; 15:1335786. [PMID: 38774211 PMCID: PMC11106437 DOI: 10.3389/fphar.2024.1335786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024] Open
Abstract
Background Polygonatum sibiricum (PS) is a traditional Chinese medicine (TCM) first recorded in Mingyi Bielu. The book documents that PS can nourish five internal organs, be taken for a long time, relax the body and prolong lifespan. Presently, PS is widely used in TCM to prevent premature graying of hair. Based on TCM theory and clinical trials, the wine steaming processed product from PS provides a better effect. However, no published study has elucidated the anti-aging mechanism. Purpose The study aim was to investigate the anti-aging mechanism of PS and its wine steaming processed product in mice, specifically focusing on the effect of D-galactose (D-gal) surrounding the intestinal flora and the Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2-antioxidant response elements (Keap1/Nrf2/ARE) pathway. Methods The chemical components in Raw PS (RPS) and Wine-steamed PS (WPS) were identified by ultra-performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). An aging model using Kunming mice was established through intraperitoneally injected D-gal. Concentrations of RPS and WPS at 5, 10, or 15 g/kg/day levels were administered intragastrically, respectively. The body weight, liver and spleen indexes, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) activities in serum and brain tissue were recorded. Hematoxylin and eosin (HE) stained brain tissue was histopathologically examined. The expressions of Keap1, Nrf2 and heme oxygenase 1 (HO-1) in the brain tissue at the mRNA and protein levels were respectively detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot (WB). Moreover, an Illumina Hiseq platform was used for 16S ribosomal RNA (16S rRNA) high-throughput sequencing to evaluate the proportions of intestinal flora in aging mice. Results The proportions of saccharides, flavonoids, and triterpene acids were different between RPS and WPS. In the aging model mice, WPS outperformed RPS in improving body weight and mental state by increasing the spleen index, SOD and GSH-PX activities, decreasing the liver index and MDA activities, and restoring the histopathological morphology in D-gal-induced aging mice. At the mRNA levels, RPS and WPS significantly reduced the expression of Keap1 and increased the expressions of Nrf2 and HO-1. The trend in protein expressions was similar to that of the mRNA results, and WPS had a stronger effect than RPS. Fecal microbiota analysis showed that RPS and WPS restored intestinal microbiota proportions to normal levels. Conclusion The results demonstrated that PS and its WPS had a positive effect in relieving oxidative stress in aging mice. WPS outperformed RPS, which might be related to the activation of the Keap1/Nrf2/ARE pathway and regulation of intestinal flora.
Collapse
Affiliation(s)
- Ruixue Zhong
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Ling Shen
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yilin Fan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qiaomei Luo
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ran Hong
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiaoli Sun
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xia Zhou
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jun Wan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
12
|
Fielding RA, Lustgarten MS. Impact of a Whole-Food, High-Soluble Fiber Diet on the Gut-Muscle Axis in Aged Mice. Nutrients 2024; 16:1323. [PMID: 38732569 PMCID: PMC11085703 DOI: 10.3390/nu16091323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Previous studies have identified a role for the gut microbiome and its metabolic products, short-chain fatty acids (SCFAs), in the maintenance of muscle mass and physical function (i.e., the gut-muscle axis), but interventions aimed at positively impacting the gut-muscle axis during aging are sparse. Gut bacteria ferment soluble fiber into SCFAs, and accordingly, to evaluate the impact of a high-soluble-fiber diet (HSFD) on the gut-muscle axis, we fed a whole-food, 3×-higher-soluble fiber-containing diet (relative to standard chow) to aged (98 weeks) C57BL/6J mice for 10 weeks. The HSFD significantly altered gut bacterial community structure and composition, but plasma SCFAs were not different, and a positive impact on muscle-related measures (when normalized to body weight) was not identified. However, when evaluating sex differences between dietary groups, female (but not male) HSFD-fed mice had significant increases for SCFAs, the quadriceps/body weight (BW) ratio, and treadmill work performance (distance run × BW), which suggests that an HSFD can positively impact the gut-muscle axis. In contrast, consistent effects in both male and female HSFD-fed mice included weight and fat loss, which suggests a positive role for an HSFD on the gut-adipose axis in aged mice.
Collapse
Affiliation(s)
| | - Michael S. Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA), Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
13
|
Zheng Y, Qin C, Wen M, Zhang L, Wang W. The Effects of Food Nutrients and Bioactive Compounds on the Gut Microbiota: A Comprehensive Review. Foods 2024; 13:1345. [PMID: 38731716 PMCID: PMC11083588 DOI: 10.3390/foods13091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
It is now widely recognized that gut microbiota plays a critical role not only in the development and progression of diseases, but also in its susceptibility to dietary patterns, food composition, and nutritional intake. In this comprehensive review, we have compiled the latest findings on the effects of food nutrients and bioactive compounds on the gut microbiota. The research indicates that certain components, such as unsaturated fatty acids, dietary fiber, and protein have a significant impact on the composition of bile salts and short-chain fatty acids through catabolic processes, thereby influencing the gut microbiota. Additionally, these compounds also have an effect on the ratio of Firmicutes to Bacteroides, as well as the abundance of specific species like Akkermansia muciniphila. The gut microbiota has been found to play a role in altering the absorption and metabolism of nutrients, bioactive compounds, and drugs, adding another layer of complexity to the interaction between food and gut microbiota, which often requires long-term adaptation to yield substantial outcomes. In conclusion, understanding the relationship between food compounds and gut microbiota can offer valuable insights into the potential therapeutic applications of food and dietary interventions in various diseases and health conditions.
Collapse
Affiliation(s)
- Yijun Zheng
- Clinical Pharmacy (Sino-Foreign Cooperation) Class, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Weinan Wang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Blvd, Dongguan 523808, China
| |
Collapse
|
14
|
Liversidge BD, Gomez DE, Dodd SAS, MacNicol JL, Adolphe JL, Blois SL, Verbrugghe A. Comparison of the fecal microbiota of adult healthy dogs fed a plant-based (vegan) or an animal-based diet. Front Microbiol 2024; 15:1367493. [PMID: 38694809 PMCID: PMC11061427 DOI: 10.3389/fmicb.2024.1367493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Purpose Pet guardians are increasingly seeking vegan dog foods. However, research on the impact of these diets on gastrointestinal (GI) physiology and health is limited. In humans, vegan diets modify the GI microbiota, increasing beneficial digestive microorganisms. This study aimed to examine the canine fecal microbiota in response to a vegan diet compared to an animal-based diet. Methods Sixty-one client-owned healthy adult dogs completed a randomized, double-blinded longitudinal study. Dogs were randomly assigned into two groups that were fed either a commercial extruded animal-based diet (MEAT, n = 30) or an experimental extruded vegan diet (PLANT, n = 31) for 12 weeks. Fecal collections occurred at the start of the experimental period and after 3 months of exclusively feeding either diet. Bacterial DNA was extracted from the feces, and the V4 region of the 16S rRNA gene was amplified using PCR and sequenced on Illumina MiSeq. Beta-diversity was measured using Jaccard and Bray-Curtis distances, and the PERMANOVA was used to assess for differences in fecal microbiota within and between groups. Alpha-diversity indices for richness, evenness, and diversity, as well as relative abundance, were calculated and compared between groups. Results Beta-diversity differences occurred between diet groups at exit time-point with differences on Bray-Curtis distances at the family and genus levels (p = 0.007 and p = 0.001, respectively), and for the Jaccard distance at the family and genus level (p = 0.006 and p = 0.011, respectively). Significant differences in alpha-diversity occurred when comparing the PLANT to the MEAT group at the exit time-point with the PLANT group having a lower evenness (p = 0.012), but no significant differences in richness (p = 0.188), or diversity (p = 0.06). At exit-timepoint, compared to the MEAT group, the relative abundance of Fusobacterium, Bacteroides, and Campylobacter was lower in the PLANT group. The relative abundance of Fusobacterium decreased over time in the PLANT group, while no change was observed in the MEAT group. Conclusion These results indicate that vegan diets may change the canine gut microbiota. Future studies are warranted to confirm our results and determine long-term effects of vegan diets on the canine gut microbiome.
Collapse
Affiliation(s)
- Brooklynn D. Liversidge
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah A. S. Dodd
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jennifer L. MacNicol
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Jennifer L. Adolphe
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Petcurean Pet Nutrition, Chilliwack, BC, Canada
| | - Shauna L. Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
15
|
Marrella V, Nicchiotti F, Cassani B. Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair. Int J Mol Sci 2024; 25:4051. [PMID: 38612860 PMCID: PMC11012346 DOI: 10.3390/ijms25074051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Bacterial and viral respiratory tract infections are the most common infectious diseases, leading to worldwide morbidity and mortality. In the past 10 years, the importance of lung microbiota emerged in the context of pulmonary diseases, although the mechanisms by which it impacts the intestinal environment have not yet been fully identified. On the contrary, gut microbial dysbiosis is associated with disease etiology or/and development in the lung. In this review, we present an overview of the lung microbiome modifications occurring during respiratory infections, namely, reduced community diversity and increased microbial burden, and of the downstream consequences on host-pathogen interaction, inflammatory signals, and cytokines production, in turn affecting the disease progression and outcome. Particularly, we focus on the role of the gut-lung bidirectional communication in shaping inflammation and immunity in this context, resuming both animal and human studies. Moreover, we discuss the challenges and possibilities related to novel microbial-based (probiotics and dietary supplementation) and microbial-targeted therapies (antibacterial monoclonal antibodies and bacteriophages), aimed to remodel the composition of resident microbial communities and restore health. Finally, we propose an outlook of some relevant questions in the field to be answered with future research, which may have translational relevance for the prevention and control of respiratory infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Federico Nicchiotti
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| |
Collapse
|
16
|
Kebbe M, Shankar K, Redman LM, Andres A. Human Milk Components and the Infant Gut Microbiome at 6 Months: Understanding the Interconnected Relationship. J Nutr 2024; 154:1200-1208. [PMID: 38442855 DOI: 10.1016/j.tjnut.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides have been shown to relate to the infant gut microbiome. However, the impact of other human milk components on infant gut bacterial colonization remains unexplored. OBJECTIVES Our cross-sectional analysis aimed to investigate associations between human milk components (energy, macronutrients, free amino acids, inflammatory markers, and hormones) and infant gut microbiome diversity and composition (phylum, family, and genus) at 6 mo of age. METHODS Human milk and infant stool samples were collected at 6 mo postpartum. The infant gut microbiome was profiled using 16S rRNA sequencing. Linear regression models were performed to examine associations, adjusting for pregravid BMI (kg/m2), delivery mode, duration of human milk feeding, and infant sex, with q < 0.2 considered significant. RESULTS This analysis included a total of 54 mothers (100% exclusively feeding human milk) and infants (n = 28 male; 51.9%). Total energy in human milk showed a negative association with α-diversity measures (Chao1 and Shannon). Interleukin (IL)-8 in human milk was positively associated with Chao1 and observed operational taxonomic units. At the family level, human milk glutamine and serine levels showed a negative association with the abundance of Veillonellaceae, whereas isoleucine showed a positive association with Bacteroidaceae. Human milk IL-8 and IL-6 concentrations were positively associated with Bacteroidaceae abundance. IL-8 also had a positive relationship with Bifidobacteriaceae, whereas it had a negative relationship with Streptococcacea and Clostridiaceae. Human milk IL-8 was positively associated with the phylum Bacteroidetes, and negatively associated with Proteobacteria. At the genus level, human milk IL-8 exhibited a positive relationship with Bacteroides, whereas human milk isoleucine had a negative relationship with Bacteroides and Ruminococcus. Pregravid BMI and sex effects were observed. CONCLUSIONS IL-8 in human milk could potentially prepare the infant's immune system to respond effectively to various microorganisms, potentially promoting the growth of beneficial gut bacteria and protecting against pathogens.
Collapse
Affiliation(s)
- Maryam Kebbe
- Faculty of Kinesiology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Kartik Shankar
- Department of Pediatrics, University of Colorado, Denver, CO, United States
| | - Leanne M Redman
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Aline Andres
- Arkansas Children's Nutrition Center, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
17
|
Kranyak A, Haran K, Smith P, Johnson C, Liao W, Bhutani T. The Mediterranean Diet as a Potential Solution to the Gut Microbiome Dysbiosis in Psoriasis Patients. JOURNAL OF PSORIASIS AND PSORIATIC ARTHRITIS 2024; 9:69-81. [PMID: 39156223 PMCID: PMC11329232 DOI: 10.1177/24755303241226626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Background Adherence to a Mediterranean Diet (MeD) has been associated with lower disease severity in patients with psoriasis. However, the mechanism behind how this diet may lead to disease modification remain understudied. Recent studies have revealed dysbiosis of the gut microbiome in patients with psoriasis suggestive of inflammation and altered immune regulation. Diet affects the gut microbiome and this review aims to evaluate whether correcting this dysbiosis may be one theoretical mechanism by which the MeD may be associated with lower psoriasis severity. Methods A literature search of the PubMed database was conducted for the terms 1) 'psoriasis' and 'microbiome' or 'microbiota,' and 2) 'Mediterranean diet' and 'microbiome' or 'microbiota' with manual screening for relevant articles. In total, we identified 9 relevant primary research studies investigating the gut microbiome in patients with psoriasis and 16 relevant primary research studies investigating changes in the microbiota for those consuming a MeD. Results Though varying in exact levels of certain bacteria, studies analyzing the microbiome in psoriasis revealed dysbiosis. Those analyzing the effect of the Mediterranean diet on the microbiome revealed beneficial changes, including alleviating some of the same alterations seen in the microbiome of those with psoriasis. Conclusion Microbiota change is a possible mechanism why the MeD has previously been associated with lower psoriasis severity.
Collapse
Affiliation(s)
- Allison Kranyak
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Kathryn Haran
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Payton Smith
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Chandler Johnson
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Tina Bhutani
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Chen H, Jiang X, Zhu F, Yang R, Yu X, Zhou X, Tang N. Characteristics of the oral and gastric microbiome in patients with early-stage intramucosal esophageal squamous cell carcinoma. BMC Microbiol 2024; 24:88. [PMID: 38491387 PMCID: PMC10941485 DOI: 10.1186/s12866-024-03233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Oral microbiome dysbacteriosis has been reported to be associated with the pathogenesis of advanced esophageal cancer. However, few studies investigated the potential role of oral and gastric microbiota in early-stage intramucosal esophageal squamous carcinoma (EIESC). METHOD A total of 104 samples were collected from 31 patients with EIESC and 21 healthy controls. The compositions of oral and gastric microbiota were analyzed using 16 S rRNA V3-V4 amplicon sequencing. Linear discriminant analysis effect size (LEfSe) analysis was performed to assess taxonomic differences between groups. The correlation between oral microbiota and clinicopathological factors was evaluated using Spearman correlation analysis. Additionally, co-occurrence networks were established and random forest models were utilized to identify significant microbial biomarkers for distinguishing between the EIESC and control groups. RESULTS A total of 292 oral genera and 223 species were identified in both EIESC and healthy controls. Six oral genera were remarkably enriched in EIESC groups, including the genera Porphyromonas, Shigella, Subdoligranulum, Leptotrichia, Paludibacter, and Odoribacter. LEfSe analysis identified genera Porphyromonas and Leptotrichia with LDA scores > 3. In the random forest model, Porphyromonas endodontalis ranked the top microbial biomarker to differentiate EIESC from controls. The elimination rate of Porphyromonas endodontalis from the oral cavity to the stomach was also dramatically decreased in the EIESC group than controls. In the microbial co-occurrence network, Porphyromonas endodontalis was positively correlated with Prevotella tannerae and Prevotella intermedia and was negatively correlated with Veillonella dispar. CONCLUSION Our study potentially indicates that the dysbacteriosis of both the oral and gastric microbiome was associated with EIESC. Larger scale studies and experimental animal models are urgently needed to confirm the possible role of microbial dysbacteriosis in the pathogenesis of EIESC. (Chinese Clinical Trial Registry Center, ChiCTR2200063464, Registered 07 September 2022, https://www.chictr.org.cn/showproj.html?proj=178563).
Collapse
Affiliation(s)
- Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xingzhou Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Fengyi Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Ruoyun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xin Yu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China.
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China.
| | - Nana Tang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, China.
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. An Update on the Role and Potential Molecules in Relation to Ruminococcus gnavus in Inflammatory Bowel Disease, Obesity and Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:1235-1248. [PMID: 38496006 PMCID: PMC10942254 DOI: 10.2147/dmso.s456173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Ruminococcus gnavus (R. gnavus) is a gram-positive anaerobe commonly resides in the human gut microbiota. The advent of metagenomics has linked R. gnavus with various diseases, including inflammatory bowel disease (IBD), obesity, and diabetes mellitus (DM), which has become a growing area of investigation. The initial focus of research primarily centered on assessing the abundance of R. gnavus and its potential association with disease presentation, taking into account variations in sample size, sequencing and analysis methods. However, recent investigations have shifted towards elucidating the underlying mechanistic pathways through which R. gnavus may contribute to disease manifestation. In this comprehensive review, we aim to provide an updated synthesis of the current literature on R. gnavus in the context of IBD, obesity, and DM. We critically analyze relevant studies and summarize the potential molecular mediators implicated in the association between R. gnavus and these diseases. Across numerous studies, various molecules such as methylation-controlled J (MCJ), glucopolysaccharides, ursodeoxycholic acid (UDCA), interleukin(IL)-10, IL-17, and capric acid have been proposed as potential contributors to the link between R. gnavus and IBD. Similarly, in the realm of obesity, molecules such as hydrogen peroxide, butyrate, and UDCA have been suggested as potential mediators, while glycine ursodeoxycholic acid (GUDCA) has been implicated in the connection between R. gnavus and DM. Furthermore, it is imperative to emphasize the necessity for additional studies to evaluate the potential efficacy of targeting pathways associated with R. gnavus as a viable strategy for managing these diseases. These findings have significantly expanded our understanding of the functional role of R. gnavus in the context of IBD, obesity, and DM. This review aims to offer updated insights into the role and potential mechanisms of R. gnavus, as well as potential strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
20
|
Acciarino A, Diwakarla S, Handreck J, Bergola C, Sahakian L, McQuade RM. The role of the gastrointestinal barrier in obesity-associated systemic inflammation. Obes Rev 2024; 25:e13673. [PMID: 38111141 DOI: 10.1111/obr.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 12/20/2023]
Abstract
Systemic inflammation is a key contributor to the onset and progression of several obesity-associated diseases and is thought to predominantly arise from the hyperplasia and hypertrophy of white adipose tissue. However, a growing body of works suggests that early changes in the gastrointestinal (GI) barrier may contribute to both local, within the GI lining, and systemic inflammation in obesity. Intestinal barrier dysfunction is well-characterized in inflammatory GI disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) and is known to contribute to systemic inflammation. Thus, drawing parallels between GI disorders, where intestinal permeability and systemic inflammation are prominent features, and obesity-induced GI manifestations may provide insights into the potential role of the intestinal barrier in systemic inflammation in obesity. This review summarizes the current literature surrounding intestinal barrier dysfunction in obesity and explores the potential role of intestinal hyperpermeability and intestinal barrier dysfunction in the development of systemic inflammation and GI dysfunction in obesity.
Collapse
Affiliation(s)
- Adriana Acciarino
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shanti Diwakarla
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Handreck
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Cedrick Bergola
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren Sahakian
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel M McQuade
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Melbourne University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Charitos IA, Aliani M, Tondo P, Venneri M, Castellana G, Scioscia G, Castellaneta F, Lacedonia D, Carone M. Biomolecular Actions by Intestinal Endotoxemia in Metabolic Syndrome. Int J Mol Sci 2024; 25:2841. [PMID: 38474087 DOI: 10.3390/ijms25052841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic syndrome (MetS) is a combination of metabolic disorders that concurrently act as factors promoting systemic pathologies such as atherosclerosis or diabetes mellitus. It is now believed to encompass six main interacting conditions: visceral fat, imbalance of lipids (dyslipidemia), hypertension, insulin resistance (with or without impairing both glucose tolerance and fasting blood sugar), and inflammation. In the last 10 years, there has been a progressive interest through scientific research investigations conducted in the field of metabolomics, confirming a trend to evaluate the role of the metabolome, particularly the intestinal one. The intestinal microbiota (IM) is crucial due to the diversity of microorganisms and their abundance. Consequently, IM dysbiosis and its derivate toxic metabolites have been correlated with MetS. By intervening in these two factors (dysbiosis and consequently the metabolome), we can potentially prevent or slow down the clinical effects of the MetS process. This, in turn, may mitigate dysregulations of intestinal microbiota axes, such as the lung axis, thereby potentially alleviating the negative impact on respiratory pathology, such as the chronic obstructive pulmonary disease. However, the biomolecular mechanisms through which the IM influences the host's metabolism via a dysbiosis metabolome in both normal and pathological conditions are still unclear. In this study, we seek to provide a description of the knowledge to date of the IM and its metabolome and the factors that influence it. Furthermore, we analyze the interactions between the functions of the IM and the pathophysiology of major metabolic diseases via local and systemic metabolome's relate endotoxemia.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Maria Aliani
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Maria Venneri
- Istituti Clinici Scientifici Maugeri IRCCS, Genomics and Proteomics Laboratory, "Istitute" of Bari, 70124 Bari, Italy
| | - Giorgio Castellana
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari (Aldo Moro), 70124 Bari, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Mauro Carone
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| |
Collapse
|
22
|
Gildner TE, Urlacher SS, Nemeth KL, Beauregard JA, Pfaff Nash M, Zhang A, Waimon S, Cepon-Robins TJ. Dual burden of infectious and chronic disease in low-resource U.S. communities: examining relationships between infection, adiposity, and inflammation. Ann Hum Biol 2024; 51:2368851. [PMID: 38934696 DOI: 10.1080/03014460.2024.2368851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Rising global obesity rates are linked with inflammation and associated morbidities. These negative outcomes are generally more common in low-resource communities within high-income countries; however, it is unclear how frequent infectious disease exposures in these settings may influence the relationship between adiposity and inflammation. AIM We test associations between adiposity measures and distinct forms of inflammation among adults (n = 80) living in low-resource U.S. communities experiencing high levels of obesity and pathogen exposure. SUBJECTS AND METHODS Adiposity measures included BMI and percent body fat. Inflammation measures included systemic inflammation (C-reactive protein [CRP]) and localised intestinal inflammation (faecal calprotectin [FC]). The relationship between a condition characterised by elevated inflammation (Helicobacter pylori infection) and adiposity was also considered. RESULTS Adiposity was not significantly related to FC concentration. However, both adiposity measures were positively related with odds of CRP elevation and H. pylori infection was associated with significantly lower adiposity measures (all p < 0.05). CONCLUSION For this disadvantaged U.S. sample, the association between adiposity and inflammation varies by the systemic/localised nature of inflammation and the likely underlying cause of inflammation. Defining these associations will improve understanding of how rising obesity rates shape long-term health inequities, with implications for more effective intervention design.
Collapse
Affiliation(s)
- Theresa E Gildner
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Samuel S Urlacher
- Department of Anthropology, Baylor University, Waco, TX, USA
- Child and Brain Development Program, CIFAR, Toronto, Canada
| | - Katherine L Nemeth
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jade A Beauregard
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Angela Zhang
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sophie Waimon
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tara J Cepon-Robins
- Department of Anthropology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| |
Collapse
|
23
|
Li X, Cai Z, Yang F, Wang Y, Pang X, Sun J, Li X, Lu Y. Broccoli Improves Lipid Metabolism and Intestinal Flora in Mice with Type 2 Diabetes Induced by HFD and STZ Diet. Foods 2024; 13:273. [PMID: 38254574 PMCID: PMC10814524 DOI: 10.3390/foods13020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, type 2 diabetes (T2DM) is on the rise. Maintaining a healthy diet is crucial for both treating and preventing T2DM.As a common vegetable in daily diet, broccoli has antioxidant, anti-inflammatory and anticarcoma physiological activities. We developed a mouse model of type 2 diabetes and carried out a systematic investigation to clarify the function of broccoli in reducing T2DM symptoms and controlling intestinal flora. The findings demonstrated that broccoli could successfully lower fasting blood glucose (FBG), lessen insulin resistance, regulate lipid metabolism, lower the levels of TC, TG, LDL-C, and MDA, stop the expression of IL-1β and IL-6, and decrease the harm that diabetes causes to the pancreas, liver, fat, and other organs and tissues. Furthermore, broccoli altered the intestinal flora's makeup in mice with T2DM. At the genus level, the relative abundance of Allobaculum decreased, and that of Odoribacter and Oscillospira increased; At the family level, the relative abundances of Odoribacteraceae, Rikenellaceae and S24-7 decreased, while the relative abundances of Erysipelotrichaceae and Rikenellaceae increased.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
- Priority Academic Program, Development of Jiangsu Higher Education Institutions (PAPD), Nanjing 210023, China
| | - Zifan Cai
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Feiyu Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yunfan Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| |
Collapse
|
24
|
Zhang X, Chen J, Zhou S, Jiang Y, Wang Y, Li Y. The effect of flaxseed oil after deep frying on lipid metabolism and gut barrier homeostasis. Food Res Int 2024; 175:113728. [PMID: 38129043 DOI: 10.1016/j.foodres.2023.113728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Flaxseed oil (FO) has been demonstrated its multiple beneficial effects in vivo due to high concentration of α-linolenic acid. The deterioration of FO can be triggered by high temperature heating during the deep frying process resulting in alteration of healthy properties. In this study, the effect of FO before and after deep frying on lipid metabolism and gut homeostasis of rats was investigated compared to deep-fried palm oil (DPO) treated group. Deep-fried flaxseed oil (DFO) treatment significantly enhanced the triglyceride accumulation in serum and liver tissues of rats. A greater increase of peroxides and proinflammatory cytokine levels was found in the serum of DFO treated rats compared to other groups. The histopathologic data indicated that DFO and DPO reduced the villus height of intestinal and colonic tissues and increased the inflammatory cell infiltration. The inflammatory cytokines (TNFα and IL-6) were enhanced and the key markers of epithelia colonic tissues (occludin and MUC-2) were suppressed in rats with DFO interventions, which is in consistency with histopathologic results. In addition, FO could increase the number of beneficial bacteria while the relative abundance of obesity and inflammatory-related bacteria was promoted by DFO treatment, including Ruminococcaceae, Prevotellaceae, and Selenomonadales. In conclusion, DFO intake had a significant impact on the disruption of gut barrier homeostasis, potentially worsening the dysbiosis than DPO. The beneficial effects of FO in vivo could be significantly reduced by extreme deep frying, which suggests the need for moderate cooking edible oils such as FO.
Collapse
Affiliation(s)
- Xu Zhang
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jing Chen
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China
| | - Shengmin Zhou
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, 200137, Shanghai, China
| | - Yuanrong Jiang
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., 118 Gaodong Road, Pudong New District, 200137, Shanghai, China
| | - Yong Wang
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Ying Li
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Al-Kuraishy HM, Al-Gareeb AI, Zaidalkiani AT, Alexiou A, Papadakis M, Bahaa MM, Al-Faraga A, Batiha GES. Calprotectin in Parkinsonian disease: Anticipation and dedication. Ageing Res Rev 2024; 93:102143. [PMID: 38008403 DOI: 10.1016/j.arr.2023.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease due to degeneration of dopaminergic neurons (DNs) in the substantia nigra pars compacta (SNpc). PD is characterized by motor and non-motor symptoms. Non-motor symptoms such as constipation and dysfunction of gastrointestinal tract (GIT) motility together with medications used in the management of PD affect gut microbiota. Alterations of gut microbiota with development of gut dyspiosis can induce momentous changes in gut barrier with subsequent systemic inflammation and induction of neuroinflammation. It has been shown that calprotectin which reflect intestinal inflammation and gut barrier injury are augmented in PD. Therefore, this review aims to elucidate the possible role of gut barrier injury and associated dysbiois in PD neuropathology, and how calprotectin reflects gut barrier injury in PD. Benefit of this review was to elucidate that high fecal calprotectin level in PD patients indicated gut dysbiosis and intestinal inflammation. Early increment of fecal calprotectin indicates the development of gut dysbiosis and/or gut-barrier injury which may precede motor symptoms by decades. Thus, fecal calprotectin could be a diagnostic and prognostic biomarker in PD. preclinical and clinical studies are warranted in this regard to emphasize the potential role of fecal calprotectin in PD neuropathology.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ayah Talal Zaidalkiani
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, 11196 Amman, Jordan
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; AFNP Med, 1030 Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Ammar Al-Faraga
- Department of Biochemistry, College of Science University of Jeddah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
26
|
Chanda D, De D. Meta-analysis reveals obesity associated gut microbial alteration patterns and reproducible contributors of functional shift. Gut Microbes 2024; 16:2304900. [PMID: 38265338 PMCID: PMC10810176 DOI: 10.1080/19490976.2024.2304900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
The majority of cohort-specific studies associating gut microbiota with obesity are often contradictory; thus, the replicability of the signature remains questionable. Moreover, the species that drive obesity-associated functional shifts and their replicability remain unexplored. Thus, we aimed to address these questions by analyzing gut microbial metagenome sequencing data to develop an in-depth understanding of obese host-gut microbiota interactions using 3329 samples (Obese, n = 1494; Control, n = 1835) from 17 different countries, including both 16S rRNA gene and metagenomic sequence data. Fecal metagenomic data from diverse geographical locations were curated, profiled, and pooled using a machine learning-based approach to identify robust global signatures of obesity. Furthermore, gut microbial species and pathways were systematically integrated through the genomic content of the species to identify contributors to obesity-associated functional shifts. The community structure of the obese gut microbiome was evaluated, and a reproducible depletion of diversity was observed in the obese compared to the lean gut. From this, we infer that the loss of diversity in the obese gut is responsible for perturbations in the healthy microbial functional repertoire. We identified 25 highly predictive species and 37 pathway associations as signatures of obesity, which were validated with remarkably high accuracy (AUC, Species: 0.85, and pathway: 0.80) with an independent validation dataset. We observed a reduction in short-chain fatty acid (SCFA) producers (several Alistipes species, Odoribacter splanchnicus, etc.) and depletion of promoters of gut barrier integrity (Akkermansia muciniphila and Bifidobacterium longum) in obese guts. Our analysis underlines SCFAs and purine/pyrimidine biosynthesis, carbohydrate metabolism pathways in control individuals, and amino acid, enzyme cofactor, and peptidoglycan biosynthesis pathway enrichment in obese individuals. We also mapped the contributors to important obesity-associated functional shifts and observed that these are both dataset-specific and shared across the datasets. In summary, a comprehensive analysis of diverse datasets unveils species specifically contributing to functional shifts and consistent gut microbial patterns associated to obesity.
Collapse
Affiliation(s)
- Deep Chanda
- Laboratory of Cellular Differentiation & Metabolic Disorder, Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Debojyoti De
- Laboratory of Cellular Differentiation & Metabolic Disorder, Department of Biotechnology, National Institute of Technology, Durgapur, India
| |
Collapse
|
27
|
Chalifour BN, Trifonova DI, Holzhausen EA, Bailey MJ, Schmidt KA, Babaei M, Mokhtari P, Goran MI, Alderete TL. Characterizing alterations in the gut microbiota following postpartum weight change. mSystems 2023; 8:e0080823. [PMID: 37905810 PMCID: PMC10734492 DOI: 10.1128/msystems.00808-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Previous research has reported differences in the gut microbiome associated with varying body compositions. More specifically, within populations of mothers, the focus has been on the impact of gestational weight gain. This is the first study to examine postpartum weight change and its association with changes in the gut microbiome, similarly, it is the first to use a Latina cohort to do so. The results support the idea that weight gain may be an important factor in reducing gut microbiome network connectivity, diversity, and changing abundances of specific microbial taxa, all measures thought to impact host health. These results suggest that weight gain dynamically alters mothers' gut microbial communities in the first 6 months postpartum, with comparatively little change in mothers who lost weight; further research is needed to examine the health consequences of such changes.
Collapse
Affiliation(s)
- Bridget N. Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Diana I. Trifonova
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Elizabeth A. Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Maximilian J. Bailey
- Stanford University School of Medicine, Leland Stanford Junior University, Stanford, California, USA
| | - Kelsey A. Schmidt
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Mahsa Babaei
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Pari Mokhtari
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Michael I. Goran
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
28
|
Ryu SW, Moon JC, Oh BS, Yu SY, Bak JE, Heo ES, Jeong JH, Lee JH. Anti-obesity activity of human gut microbiota Bacteroides stercoris KGMB02265. Arch Microbiol 2023; 206:19. [PMID: 38086977 DOI: 10.1007/s00203-023-03750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
Obesity is a global health threat that causes various complications such as type 2 diabetes and nonalcoholic fatty liver disease. Gut microbiota is closely related to obesity. In particular, a higher Firmicutes to Bacteroidetes ratio has been reported as a biomarker of obesity, suggesting that the phylum Bacteroidetes may play a role in inhibiting obesity. Indeed, the genus Bacteroides was enriched in the healthy subjects based on metagenome analysis. In this study, we determined the effects of Bacteroides stercoris KGMB02265, a species belonging to the phylum Bacteroidetes, on obesity both in vitro and in vivo. The cell-free supernatant of B. stercoris KGMB02265 inhibited lipid accumulation in 3T3-L1 preadipocytes, in which the expression of adipogenic marker genes was repressed. In vivo study showed that the oral administration of B. stercoris KGMB02265 substantially reduced body weight and fat weight in high-fat diet induced obesity in mice. Furthermore, obese mice orally administered with B. stercoris KGMB02265 restored glucose sensitivity and reduced leptin and triglyceride levels. Taken together, our study reveals that B. stercoris KGMB02265 has anti-obesity activity and suggests that it may be a promising candidate for treating obesity.
Collapse
Affiliation(s)
- Seoung Woo Ryu
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- BioMedical Sciences Graduate Program, Chonnam National University, Hwasun, 58128, Republic of Korea
| | - Jeong Chan Moon
- National Institute of Ecology, Yeongyang, 36531, Republic of Korea
| | - Byeong Seob Oh
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Seung Yeob Yu
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- BioMedical Sciences Graduate Program, Chonnam National University, Hwasun, 58128, Republic of Korea
| | - Jeong Eun Bak
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- BioMedical Sciences Graduate Program, Chonnam National University, Hwasun, 58128, Republic of Korea
| | - Eun Seo Heo
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jae-Ho Jeong
- BioMedical Sciences Graduate Program, Chonnam National University, Hwasun, 58128, Republic of Korea.
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
29
|
Li X, Lin Y, Chen Y, Sui H, Chen J, Li J, Zhang G, Yan Y. The effects of race and probiotic supplementation on the intestinal microbiota of 10-km open-water swimmers. Heliyon 2023; 9:e22735. [PMID: 38144321 PMCID: PMC10746432 DOI: 10.1016/j.heliyon.2023.e22735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
This study collected the stools of 10-km open-water swimmers after race and probiotic supplementation, and 16S rRNA sequencing and metabolomic analysis were performed to clarify their intestinal microbiota characteristics. The findings revealed a relatively high proportion of Firmicutes in all the athletes. Firmicutes in female athletes were significantly higher after probiotic supplementation. The intestinal microbiota of athletes was closely associated with the pathways of exercise against cancer, exercise against aging, exercise for improving cognition, sphingolipid metabolism and endocrine resistance. Future research should focus on the relationship between Firmicutes and Proteobacteria with super class metabolites in athletes. This report initially explored the changes in intestinal microbiota involved in metabolic pathways in athletes after race and after probiotic supplementation and provided a theoretical basis for the further improvement of the monitoring of their physical function after race and selection of nutritional strategies during exercise training.
Collapse
Affiliation(s)
- Xuehan Li
- Sport Science School, Beijing Sport University, Beijing, China
| | - Yihsuan Lin
- Sport Science School, Beijing Sport University, Beijing, China
| | - Yue Chen
- Sport Science School, Beijing Sport University, Beijing, China
| | - Hongtao Sui
- Sport Science School, Beijing Sport University, Beijing, China
| | - Jianhao Chen
- Sport Science School, Beijing Sport University, Beijing, China
| | - Jiaqi Li
- Sport Science School, Beijing Sport University, Beijing, China
| | - Guoqing Zhang
- Shandong Swimming Sports Management Center, Shandong, China
| | - Yi Yan
- Sport Science School, Beijing Sport University, Beijing, China
- Key Laboratory of Exercise and Physical Fitness (Beijing Sport University), Ministry of Education, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing, China
| |
Collapse
|
30
|
Avtanski D, Reddy V, Stojchevski R, Hadzi-Petrushev N, Mladenov M. The Microbiome in the Obesity-Breast Cancer Axis: Diagnostic and Therapeutic Potential. Pathogens 2023; 12:1402. [PMID: 38133287 PMCID: PMC10747404 DOI: 10.3390/pathogens12121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
A growing body of evidence has demonstrated a relationship between the microbiome, adiposity, and cancer development. The microbiome is emerging as an important factor in metabolic disease and cancer pathogenesis. This review aimed to highlight the role of the microbiome in obesity and its association with cancer, with a particular focus on breast cancer. This review discusses how microbiota dysbiosis may contribute to obesity and obesity-related diseases, which are linked to breast cancer. It also explores the potential of the gut microbiome to influence systemic immunity, leading to carcinogenesis via the modulation of immune function. This review underscores the potential use of the microbiome profile as a diagnostic tool and treatment target, with strategies including probiotics, fecal microbiota transplantation, and dietary interventions. However, this emphasizes the need for more research to fully understand the complex relationship between the microbiome, metabolic disorders, and breast cancer. Future studies should focus on elucidating the mechanisms underlying the impact of the microbiome on breast cancer and exploring the potential of the microbiota profile as a biomarker and treatment target.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Varun Reddy
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11545, USA;
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| |
Collapse
|
31
|
Choi W, Mangal U, Park JY, Kim JY, Jun T, Jung JW, Choi M, Jung S, Lee M, Na JY, Ryu DY, Kim JM, Kwon JS, Koh WG, Lee S, Hwang PTJ, Lee KJ, Jung UW, Cha JK, Choi SH, Hong J. Occlusive membranes for guided regeneration of inflamed tissue defects. Nat Commun 2023; 14:7687. [PMID: 38001080 PMCID: PMC10673922 DOI: 10.1038/s41467-023-43428-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Guided bone regeneration aided by the application of occlusive membranes is a promising therapy for diverse inflammatory periodontal diseases. Symbiosis, homeostasis between the host microbiome and cells, occurs in the oral environment under normal, but not pathologic, conditions. Here, we develop a symbiotically integrating occlusive membrane by mimicking the tooth enamel growth or multiple nucleation biomineralization processes. We perform human saliva and in vivo canine experiments to confirm that the symbiotically integrating occlusive membrane induces a symbiotic healing environment. Moreover, we show that the membrane exhibits tractability and enzymatic stability, maintaining the healing space during the entire guided bone regeneration therapy period. We apply the symbiotically integrating occlusive membrane to treat inflammatory-challenged cases in vivo, namely, the open and closed healing of canine premolars with severe periodontitis. We find that the membrane promotes symbiosis, prevents negative inflammatory responses, and improves cellular integration. Finally, we show that guided bone regeneration therapy with the symbiotically integrating occlusive membrane achieves fast healing of gingival soft tissue and alveolar bone.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Taesuk Jun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ju Won Jung
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Milae Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ji-Yeong Na
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, 84, Heukserok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Patrick T J Hwang
- Cardiovascular Institute, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, 08028, USA
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
32
|
Custers E, Franco A, Kiliaan AJ. Bariatric Surgery and Gut-Brain-Axis Driven Alterations in Cognition and Inflammation. J Inflamm Res 2023; 16:5495-5514. [PMID: 38026245 PMCID: PMC10676679 DOI: 10.2147/jir.s437156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is associated with systemic inflammation, comorbidities like diabetes, cardiovascular disease and several cancers, cognitive decline and structural and functional brain changes. To treat, or potentially prevent these related comorbidities, individuals with obesity must achieve long-term sustainable weight loss. Often life style interventions, such as dieting and increased physical activity are not successful in achieving long-term weight loss. Meanwhile bariatric surgery has emerged as a safe and effective procedure to treat obesity. Bariatric surgery causes changes in physiological processes, but it is still not fully understood which exact mechanisms are involved. The successful weight loss after bariatric surgery might depend on changes in various energy regulating hormones, such as ghrelin, glucagon-like peptide-1 and peptide YY. Moreover, changes in microbiota composition and white adipose tissue functionality might play a role. Here, we review the effect of obesity on neuroendocrine effects, microbiota composition and adipose tissue and how these may affect inflammation, brain structure and cognition. Finally, we will discuss how these obesity-related changes may improve after bariatric surgery.
Collapse
Affiliation(s)
- Emma Custers
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - Ayla Franco
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - Amanda Johanne Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
33
|
Kang Y, Oba PM, Gaulke CA, Sánchez-Sánchez L, Swanson KS. Dietary Inclusion of Yellow Mealworms (T. molitor) and Lesser Mealworms (A. diaperinus) Modifies Intestinal Microbiota Populations of Diet-Induced Obesity Mice. J Nutr 2023; 153:3220-3236. [PMID: 37714334 DOI: 10.1016/j.tjnut.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Insect-based proteins are high-quality alternatives to support the shift toward more sustainable and healthy diets. Additionally, insects contain chitin and have unique fatty acid profiles. Studies have shown that mealworms may beneficially affect metabolism, but limited information is known regarding their effects on gut microbiota. OBJECTIVES We determined the effects of defatted yellow mealworm (Tenebrio molitor) and whole lesser mealworm (Alphitobius diaperinus) meals on the intestinal microbiota of diet-induced obesity mice. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD; 46% kcal) to induce obesity. Obese mice were then randomly assigned to treatments (n = 10/group) and fed for 8 wk: HFD, HFD with casein protein; B50, HFD with 50% protein from whole lesser mealworm; B100, HFD with 100% protein from whole lesser mealworm; Y50, HFD with 50% protein from defatted yellow mealworm; Y100, HFD with 100% protein from defatted yellow mealworm. Lean mice (n = 10) fed a low-fat-diet (10% kcal) were included. Fresh feces were collected at baseline and every 2 wk, with cecal digesta collected at kill. Fecal and cecal DNA was analyzed for microbiota using 16S rRNA MiSeq Illumina sequencing. RESULTS In feces and cecal digesta, mice fed mealworms had greater (P < 0.05) bacterial alpha diversity, with changes occurring in a time-dependent manner (P < 0.05). Beta diversity analyses of cecal samples showed a clear separation of treatments, with a time-based separation shown in fecal samples. Widespread microbial differences were observed, with over 45 genera altered (P < 0.05) by diet in cecal digesta. In feces, over 50 genera and 40 genera were altered (P < 0.05) by diet and time, respectively. CONCLUSION Mealworm consumption changes the intestinal microbiota of obese mice, increasing alpha diversity measures and shifting bacterial taxa. More investigation is required to determine what mealworm components are responsible and how they may be linked with the metabolic benefits observed in mealworm-fed mice.
Collapse
Affiliation(s)
- Yifei Kang
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christopher A Gaulke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
34
|
Khongtan S, Sivamaruthi BS, Thangaleela S, Kesika P, Bharathi M, Sirilun S, Choeisoongnern T, Peerajan S, Sittiprapaporn P, Chaiyasut C. The Influence of Probiotic Supplementation on the Obesity Indexes, Neuroinflammatory and Oxidative Stress Markers, Gut Microbial Diversity, and Working Memory in Obese Thai Children. Foods 2023; 12:3890. [PMID: 37959009 PMCID: PMC10648263 DOI: 10.3390/foods12213890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is a worldwide health problem with a complex interaction between gut microbiota and cognition. Several studies have demonstrated that probiotic treatments improve characteristics linked to obesity. The present study aimed to evaluate the effects of probiotic supplementation on the obesity indexes, inflammatory and oxidative stress markers, gut microbiota, and working memory in obese children. Ten obese children were assigned to receive the probiotics (8 × 109 CFU of Lactobacillus paracasei HII01 and Bifidobacterium animalis subsp. lactis) for 12 weeks. Demographic data were recorded. Urine and fecal samples were collected to evaluate biomarkers related to obesity and cognition. Behavioral working memory was assessed using the visual n-back test. Electroencephalography was employed to measure electrical activity during the visual n-back test. All parameters were evaluated at the baseline and after 12 weeks. The results revealed that probiotic supplementation significantly altered some gut microbial metabolites, gut microbiota, total antioxidant capacity, and neuroinflammatory markers. However, no significant changes were observed in the visual n-back test or electroencephalographic recordings after 12 weeks. In conclusion, the use of probiotics might be an alternative treatment that could improve the gut microbial ecosystem and microbial metabolites, as well as host antioxidant and neuroinflammation levels. The preliminary results indicated that further detailed prolonged studies are needed in order to determine the beneficial effects of the studied probiotics.
Collapse
Affiliation(s)
- Suchanat Khongtan
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | | | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
| |
Collapse
|
35
|
Zhang C, Zhang L, Tian Y, Guan B, Li S. Association between metabolic syndrome and early-stage colorectal cancer. BMC Cancer 2023; 23:1020. [PMID: 37872512 PMCID: PMC10591414 DOI: 10.1186/s12885-023-11537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Accumulating studies have suggested metabolic syndrome (MetS) contributed to colorectal cancer (CRC) development. However, advanced CRC might decrease the detection proportion of MetS due to chronic malnutrition, we included patients with early-stage CRC to examine the associations among MetS, onset age, and different tumorigenesis pathways of CRC. METHODS We conducted a retrospective study that included 638 patients with early-stage CRC from January 2014 to December 2018. Patient information was collected from the medical record system and further refined during the follow-up. Stratified analyses of the associations between MetS and different stratification factors were determined by the Cochran‒Mantel‒Haenszel test. RESULTS There were 16 (13.3%) and 111 (21.4%) cases suffering from MetS in the early-onset and late-onset CRC groups, respectively. MetS coexisted in early-stage CRC patients ≥ 50 years of age more frequently than patients < 50 years of age (OR 1.77; 95% CI 1.01 to 3.12), but not for women patients (OR 0.84; 95% CI 0.79 to 0.90). MetS patients were associated with a higher risk of advanced serrated lesions than that of conventional adenomas (OR 1.585; 95% CI 1.02 to 2.45), especially in patients ≥ 50 years (OR 1.78; 95% CI 1.11 to 2.85). CONCLUSIONS Metabolic dysregulation might partly contribute to the incidence of colorectal serrated lesions. Prevention of MetS should be highly appreciated in the early diagnosis and early treatment of the colorectal cancer system, especially in patients ≥ 50 years.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Gastroenterology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Beiyuan Street & 247, Jinan, Shandong, 0531, China
| | - Liting Zhang
- Department of Gastrointestinal Endoscopy Center, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Tian
- Department of Gastroenterology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Beiyuan Street & 247, Jinan, Shandong, 0531, China
| | - Bingxin Guan
- Department of Pathology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuai Li
- Department of Gastroenterology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Beiyuan Street & 247, Jinan, Shandong, 0531, China.
| |
Collapse
|
36
|
Ma J, Kong L, Zhou S, Lin H, Lin Y, Qin H, Long Z, Liu L, Huang Z, Li Z. Effect of Supplementation of Chlorogenic Acid to High-Fat Diet on Growth, Lipid Metabolism, Intestinal and Hepatic Histology, and Gut Microbiota of Spotted Sea Bass ( Lateolabrax maculatus). Metabolites 2023; 13:1067. [PMID: 37887392 PMCID: PMC10608845 DOI: 10.3390/metabo13101067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
The study investigated the impact of chlorogenic acid (CGA) supplementation in a high-fat diet (HFD) on growth, lipid metabolism, intestinal and hepatic histology, as well as gut microbiota in spotted sea bass. A total of 540 fish were fed six experimental diets, including a normal fat diet (NFD), a high-fat diet (HFD), and HFD supplemented with 100, 200, 300, and 400 mg/kg CGA (named HFD1, HFD2, HFD3, and HFD4, respectively) for 7 weeks. The results showed that HFD feeding increased growth and hepatic lipid deposition compared to that in the NFD group. Inclusion of 300 mg/kg CGA in HFD decreased the HFD-induced hyperlipemia (p < 0.05). Additionally, compared to the HFD group, the HFD4 group showed significant reductions in serum aspartate transaminase (AST) and alanine transaminase (ALT) levels as well as hepatic malondialdehyde (MDA) content, while also improving liver total antioxidant capacity (T-AOC) (p < 0.05). In the CGA-containing groups, hepatocytes were arranged more neatly than those in the HFD group, and there was a reduction in lipid deposition and hemolysis in the liver. Supplementation of CGA had effects on intestinal structure including an increase in mucosal thickness, as well as villus number and width. The diversity of intestinal flora in the CGA-containing groups was higher than those in the HFD group, and supplementation of 200 mg/kg CGA significantly increased the abundance of intestinal bacteria (p < 0.05). HFD4 feeding increased the intestinal Bacteroidetes to Firmicutes ratio and decreased the abundance of Vibrio. The highest value abundance of Actinobacteriota was found in the HFD2 group. Overall, HFD caused negative effects, and supplementation of 200-400 mg/kg CGA to HFD improved fat deposition, lipid metabolic disorders and liver and gut histology, and increased gut bacterial diversity in spotted sea bass.
Collapse
Affiliation(s)
- Jianrong Ma
- Fisheries College, Jimei University, Xiamen 361021, China; (J.M.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen 361021, China; (J.M.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| | - Sishun Zhou
- Fisheries College, Jimei University, Xiamen 361021, China; (J.M.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen 361021, China; (J.M.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| | - Yi Lin
- Fisheries College, Jimei University, Xiamen 361021, China; (J.M.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen 361021, China; (J.M.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen 361021, China; (J.M.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| | - Longhui Liu
- Fisheries College, Jimei University, Xiamen 361021, China; (J.M.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen 361021, China; (J.M.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen 361021, China; (J.M.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| |
Collapse
|
37
|
Yang Y, Miao L, Lu Y, Wang S. The genetics of urinary microbiome, an exploration of the trigger in calcium oxalate stone. Front Genet 2023; 14:1260278. [PMID: 37854058 PMCID: PMC10579592 DOI: 10.3389/fgene.2023.1260278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Background: Kidney stone disease is a global disease; however, it has not been totally understood. Calcium oxalate (CaOx) stone is the dominant type of kidney stone, and the potential factors involved in its formation are yet to be explored. Clinically, we found that the CaOx stones in patients were mainly unilateral; therefore, systemic factors cannot explain them, although some local factors must be involved. Urinary microbiota is involved in stone formation. Therefore, this study aimed to explore the association between the urinary microbiota and CaOx stones and provide insight into the medical treatment and prevention of CaOx stones. Methods: Sixteen pelvic urine samples were collected from the stone and non-stone sides of patients with unilateral CaOx stones following strict criteria. The 16S rRNA gene sequencing was performed on each pair of pelvic urine samples at the species level. Many bioinformatic analyses were conducted to explore the potential factors affecting CaOx stone formation. Results: Although no statistically significant difference was found between the overall microbiota of the pelvis urine from the two sides. Many biologically distinct taxa were observed, including many bacteria found in previous studies, like Proteobacteria, Actinobacteria, Firmicute and Enterobacter cloacae and so on. What's more, despite these common bacteria, our current study added to these bacterial communities with additional identification of Deinococcus-Thermus, Coriobacteriia, Porphyromonas and Ralstonia. To predict the functions of these microbiota, Kyoto Encyclopedia for Genes and Genomes and MetaCyc analysis were conducted and immunometabolism might be an important pathway. Moreover, a random forest predictor was constructed to distinguish the stone side from the non-stone side, with an accuracy of 62.5%. Conclusion: Our research profiled the microbiome in the pelvis urine from both the stone and non-stone sides of patients with unilateral CaOx stones, provided insight into the dominant role of urinary dysbiosis in CaOx stones formation. Furthermore, this study also predicted the potential crosstalk among urinary microbiota, immunometabolism, and CaOx stones.
Collapse
Affiliation(s)
| | | | - Yuchao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
38
|
Kuang J, Wang J, Li Y, Li M, Zhao M, Ge K, Zheng D, Cheung KCP, Liao B, Wang S, Chen T, Zhang Y, Wang C, Ji G, Chen P, Zhou H, Xie C, Zhao A, Jia W, Zheng X, Jia W. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab 2023; 35:1752-1766.e8. [PMID: 37591244 DOI: 10.1016/j.cmet.2023.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is regarded as a pandemic that affects about a quarter of the global population. Recently, host-gut microbiota metabolic interactions have emerged as distinct mechanistic pathways implicated in the development of NAFLD. Here, we report that a group of gut microbiota-modified bile acids (BAs), hyodeoxycholic acid (HDCA) species, are negatively correlated with the presence and severity of NAFLD. HDCA treatment has been shown to alleviate NAFLD in multiple mouse models by inhibiting intestinal farnesoid X receptor (FXR) and upregulating hepatic CYP7B1. Additionally, HDCA significantly increased abundances of probiotic species such as Parabacteroides distasonis, which enhances lipid catabolism through fatty acid-hepatic peroxisome proliferator-activated receptor alpha (PPARα) signaling, which in turn upregulates hepatic FXR. These findings suggest that HDCA has therapeutic potential for treating NAFLD, with a unique mechanism of simultaneously activating hepatic CYP7B1 and PPARα.
Collapse
Affiliation(s)
- Junliang Kuang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jieyi Wang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yitao Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Mengci Li
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mingliang Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kun Ge
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dan Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kenneth C P Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Boya Liao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Shouli Wang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tianlu Chen
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yinan Zhang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510655, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Weiping Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
39
|
Zong X, Zhang H, Zhu L, Deehan EC, Fu J, Wang Y, Jin M. Auricularia auricula polysaccharides attenuate obesity in mice through gut commensal Papillibacter cinnamivorans. J Adv Res 2023; 52:203-218. [PMID: 37549868 PMCID: PMC10555930 DOI: 10.1016/j.jare.2023.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
INTRODUCTION Auricularia auricula is a well-known traditional edible and medical fungus with high nutritional and pharmacological values, as well as metabolic and immunoregulatory properties. Nondigestible fermentable polysaccharides are identified as primary bioactive constituents of Auricularia auricula extracts. However, the exact mechanisms underlying the effects of Auricularia auricula polysaccharides (AAP) on obesity and related metabolic endpoints, including the role of the gut microbiota, remain insufficiently understood. METHODS The effects of AAP on obesity were assessed within high-fat diet (HFD)-based mice through obesity trait analysis and metabolomic profiling. To determine the mechanistic role of the gut microbiota in observed anti-obesogenic effects AAP, faecal microbiota transplantation (FMT) and pseudo-germ-free mice model treated with antibiotics were also applied, together with 16S rRNA genomic-derived taxonomic profiling. RESULTS High-fat diet (HFD) murine exposure to AAP thwarted weight gains, reduced fat depositing and enhanced glucose tolerance, together with upregulating thermogenesis proteomic biomarkers within adipose tissue. Serum metabolome indicated these effects were associated with changes in fatty acid metabolism. Intestine-dwelling microbial population assessments discovered that AAP selectively enhanced Papillibacter cinnamivorans, a commensal bacterium with reduced presence in HFD mice. Notably, HFD mice treated with oral formulations of P. cinnamivorans attenuated obesity, which was linked to decreased intestinal lipid transportation and hepatic thermogenesis. Mechanistically, it was demonstrated that P. cinnamivorans regulated intestinal lipids metabolism and liver thermogenesis by reducing the proinflammatory response and gut permeability in a JAK-STAT signaling-related manner. CONCLUSION Datasets from the present study show that AAP thwarted dietary-driven obesity and metabolism-based disorders by regulating intestinal lipid transportation, a mechanism that is dependent on the gut commensal P. cinnamivorans. These results indicated AAP and P. cinnamivorans as newly identified pre- and probiotics that could serve as novel therapeutics against obesity.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, PR China
| | - Hao Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Luoyi Zhu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, PR China
| | - Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, PR China; School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
40
|
Lane JM, Wright RO, Eggers S. The interconnection between obesity and executive function in adolescence: The role of the gut microbiome. Neurosci Biobehav Rev 2023; 153:105337. [PMID: 37524139 PMCID: PMC10592180 DOI: 10.1016/j.neubiorev.2023.105337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
In the United States, adolescent obesity is a growing epidemic associated with maladaptive executive functioning. Likewise, data link the microbiome to obesity. Emerging microbiome research has demonstrated an interconnection between the gut microbiome and the brain, indicating a bidirectional communication system within the gut-microbiome-brain axis in the pathophysiology of obesity. This narrative review identifies and summarizes relevant research connecting adolescent obesity as it relates to three core domains of executive functioning and the contribution of the gut microbiome in the relationship between obesity and executive functions in adolescence. The review suggests that (1) the interconnection between obesity, executive function, and the gut microbiome is a bidirectional connection, and (2) the gut microbiome may mediate the neurobiological pathways between obesity and executive function deficits. The findings of this review provide valuable insights into obesity-associated executive function deficits and elucidate the possible mediation role of the gut microbiome.
Collapse
Affiliation(s)
- Jamil M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, USA
| | - Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA.
| |
Collapse
|
41
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
42
|
Patra D, Banerjee D, Ramprasad P, Roy S, Pal D, Dasgupta S. Recent insights of obesity-induced gut and adipose tissue dysbiosis in type 2 diabetes. Front Mol Biosci 2023; 10:1224982. [PMID: 37842639 PMCID: PMC10575740 DOI: 10.3389/fmolb.2023.1224982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
An imbalance in microbial homeostasis, referred to as dysbiosis, is critically associated with the progression of obesity-induced metabolic disorders including type 2 diabetes (T2D). Alteration in gut microbial diversity and the abundance of pathogenic bacteria disrupt metabolic homeostasis and potentiate chronic inflammation, due to intestinal leakage or release of a diverse range of microbial metabolites. The obesity-associated shifts in gut microbial diversity worsen the triglyceride and cholesterol level that regulates adipogenesis, lipolysis, and fatty acid oxidation. Moreover, an intricate interaction of the gut-brain axis coupled with the altered microbiome profile and microbiome-derived metabolites disrupt bidirectional communication for instigating insulin resistance. Furthermore, a distinct microbial community within visceral adipose tissue is associated with its dysfunction in obese T2D individuals. The specific bacterial signature was found in the mesenteric adipose tissue of T2D patients. Recently, it has been shown that in Crohn's disease, the gut-derived bacterium Clostridium innocuum translocated to the mesenteric adipose tissue and modulates its function by inducing M2 macrophage polarization, increasing adipogenesis, and promoting microbial surveillance. Considering these facts, modulation of microbiota in the gut and adipose tissue could serve as one of the contemporary approaches to manage T2D by using prebiotics, probiotics, or faecal microbial transplantation. Altogether, this review consolidates the current knowledge on gut and adipose tissue dysbiosis and its role in the development and progression of obesity-induced T2D. It emphasizes the significance of the gut microbiota and its metabolites as well as the alteration of adipose tissue microbiome profile for promoting adipose tissue dysfunction, and identifying novel therapeutic strategies, providing valuable insights and directions for future research and potential clinical interventions.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Dipanjan Banerjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Palla Ramprasad
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Soumyajit Roy
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| |
Collapse
|
43
|
Tedjo DI, Wilbrink JA, Boekhorst J, Timmerman HM, Nienhuijs SW, Stronkhorst A, Savelkoul PHM, Masclee AAM, Penders J, Jonkers DMAE. Impact of Sleeve Gastrectomy on Fecal Microbiota in Individuals with Morbid Obesity. Microorganisms 2023; 11:2353. [PMID: 37764197 PMCID: PMC10537490 DOI: 10.3390/microorganisms11092353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The intestinal microbiota plays an important role in the etiology of obesity. Sleeve gastrectomy (SG) is a frequently performed and effective therapy for morbid obesity. OBJECTIVE To investigate the effect of sleeve gastrectomy on the fecal microbiota of individuals with morbid obesity and to examine whether shifts in microbiota composition are associated with markers of inflammation and intestinal barrier function. METHODS Fecal and blood samples of healthy individuals (n = 27) and morbidly obese individuals pre-SG (n = 24), and at 2 months (n = 13) and 6 months post-SG (n = 9) were collected. The 16SrRNA gene was sequenced to assess microbiota composition. Fecal calprotectin, plasma inflammatory markers and intestinal permeability markers (multi-sugar test) were determined. RESULTS Fecal microbiota composition between morbidly obese and lean individuals was significantly different. The fecal microbiota composition changed significantly 2 and 6 months post-SG (p = 0.008) compared to pre-SG but not towards a more lean profile. The post-SG microbiota profile was characterized by an increase in facultative anaerobic bacteria, characteristic for the upper gastrointestinal tract. No correlations were found between inflammatory markers, intestinal permeability and microbial profile changes. CONCLUSIONS Fecal microbiota composition in morbidly obese individuals changed significantly following SG. This change might be explained by functional changes induced by the SG procedure.
Collapse
Affiliation(s)
- Danyta I. Tedjo
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (P.H.M.S.); (J.P.)
| | - Jennifer A. Wilbrink
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
- Department of Gastroenterology, Zuyderland Ziekenhuis, 6162 Sittard-Geleen, The Netherlands
| | - Jos Boekhorst
- NIZO Food Research B.V., 6718 Ede, The Netherlands; (J.B.); (H.M.T.)
| | | | - Simon W. Nienhuijs
- Department of Surgery and Gastroenterology, Catharina Hospital, 5623 Eindhoven, The Netherlands; (S.W.N.); (A.S.)
| | - Arnold Stronkhorst
- Department of Surgery and Gastroenterology, Catharina Hospital, 5623 Eindhoven, The Netherlands; (S.W.N.); (A.S.)
| | - Paul H. M. Savelkoul
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (P.H.M.S.); (J.P.)
- Department of Medical Microbiology & Infection Control, VU University Medical Center, 1081 Amsterdam, The Netherlands
| | - Ad A. M. Masclee
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (P.H.M.S.); (J.P.)
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
| |
Collapse
|
44
|
Wilson SMG, Peach JT, Fausset H, Miller ZT, Walk ST, Yeoman CJ, Bothner B, Miles MP. Metabolic impact of polyphenol-rich aronia fruit juice mediated by inflammation status of gut microbiome donors in humanized mouse model. Front Nutr 2023; 10:1244692. [PMID: 37727634 PMCID: PMC10505616 DOI: 10.3389/fnut.2023.1244692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Background The Aronia melanocarpa fruit is emerging as a health food owing to its high polyphenolic content and associated antioxidant activity. Antioxidant-rich foods, such as Aronia fruit, may counter inflammatory stimuli and positively modulate the gut microbiome. However, a comprehensive study characterizing the impact of Aronia fruit supplementation has not been completed. Therefore, we completed analyses measuring the metabolic, microbial, and inflammatory effects of a diet supplemented with Aronia fruit juice. Method Humanized mice were generated by colonizing gnotobiotic mice with microbiomes from human donors presenting disparate inflammation levels. Blood and fecal samples were collected throughout the course of an 8-week dietary intervention with either Aronia juice or a carbohydrate-matched beverage alone (2 weeks) or in combination with a high-fat diet to induce inflammation (6 weeks). Samples were analyzed using 16S rRNA gene sequencing (stool) and liquid chromatography-mass spectrometry (serum). Results We demonstrated transfer of microbiome composition and diversity and metabolic characteristics from humans with low and high inflammation levels to second-generation humanized mice. Aronia supplementation provided robust protection against high-fat diet induced metabolic and microbiome changes that were dependent in part on microbiome donor. Aronia induced increases in bacteria of the Eggerthellaceae genus (7-fold) which aligns with its known ability to metabolize (poly)phenols and in phosphatidylcholine metabolites which are consistent with improved gut barrier function. The gut microbiome from a low inflammation phenotype donor provided protection against high-fat diet induced loss of microbiome β-diversity and global metabolomic shifts compared to that from the high inflammation donor. Conclusion These metabolic changes elucidate pathway-specific drivers of reduced inflammation stemming from both Aronia and the gut microbiota.
Collapse
Affiliation(s)
- Stephanie M. G. Wilson
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| | - Jesse T. Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Zachary T. Miller
- Department of Research Centers, Montana State University, Bozeman, MT, United States
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Carl J. Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
45
|
Wu Z, Zhang M, Deng Y, Zhou G, Yang M, Wang H. Alterations of gut microbiome and metabolism induced by inulin associated with weight loss in obese female mice. Int J Food Sci Nutr 2023; 74:606-620. [PMID: 37469097 DOI: 10.1080/09637486.2023.2235901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Our previous work revealed the microbiota-dependent beneficial effects of inulin in obese male mice, but the effects in obese female mice were not determined. High-fat diet (HFD)-induced obese female mice were switched to normal diets and gavaged with normal saline or inulin for 10 weeks. Inulin supplementation significantly accelerated weight loss and reversed HFD-induced gut microbiota dysbiosis in obese female mice, and also reduced the ratio of Firmicutes/Bacteroidetes and enriched the abundance of norank_f_Muribaculaceae and Alistipes. In addition, 52 key serum metabolites were distinctly altered after inulin supplementation. Among them, andrographolide and monoacylglycerols (18:4) increased more than 9-fold and 14-fold, respectively, while phosphatidylcholine (PC) (18:1e/2:0), PC (20:1/20:2) and PC (19:1/19:1) decreased. In conclusion, gut microbiota and metabolites were closely associated with the beneficial effects of inulin in accelerating weight loss in obese female mice.
Collapse
Affiliation(s)
- Zeang Wu
- First Affiliated Hospital of Shihezi University, Shihezi, P.R. China
| | - Mei Zhang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Xinjiang, P.R. China
- School of Medicine, Shihezi University, Shihezi, P.R. China
| | - Yuhong Deng
- First Affiliated Hospital of Shihezi University, Shihezi, P.R. China
| | - Guangyuan Zhou
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Meng Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Haixia Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Xinjiang, P.R. China
- School of Medicine, Shihezi University, Shihezi, P.R. China
| |
Collapse
|
46
|
John HS, Doucet É, Power KA. Dietary pulses as a means to improve the gut microbiome, inflammation, and appetite control in obesity. Obes Rev 2023; 24:e13598. [PMID: 37395146 DOI: 10.1111/obr.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/16/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023]
Abstract
A dysbiotic intestinal microbiome has been linked to chronic diseases such as obesity, which may suggest that interventions that target the microbiome may be useful in treating obesity and its complications. Appetite dysregulation and chronic systemic low-grade inflammation, such as that observed in obesity, are possibly linked with the intestinal microbiome and are potential therapeutic targets for the treatment of obesity via the microbiome. Dietary pulses (e.g., common beans) are composed of nutrients and compounds that possess the potential to modulate the gut microbiota composition and function which can in turn improve appetite regulation and chronic inflammation in obesity. This narrative review summarizes the current state of knowledge regarding the connection between the gut microbiome and obesity, appetite regulation, and systemic and adipose tissue inflammation. More specifically, it highlights the efficacy of interventions employing dietary common beans as a means to improve gut microbiota composition and/or function, appetite regulation, and inflammation in both rodent obesity and in humans. Collectively, results presented and discussed herein provide insight on the gaps in knowledge necessary for a comprehensive understanding of the potential of beans as a treatment for obesity while highlighting what further research is required to gain this understanding.
Collapse
Affiliation(s)
- Hannah St John
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Doucet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Krista A Power
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- The Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
47
|
Song EJ, Lee ES, Kim YI, Shin DU, Eom JE, Shin HS, Lee SY, Nam YD. Gut microbial change after administration of Lacticaseibacillus paracasei AO356 is associated with anti-obesity in a mouse model. Front Endocrinol (Lausanne) 2023; 14:1224636. [PMID: 37705572 PMCID: PMC10496115 DOI: 10.3389/fendo.2023.1224636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction The status of an impaired gut microbial community, known as dysbiosis, is associated with metabolic diseases such as obesity and insulin resistance. The use of probiotics has been considered an effective approach for the treatment and prevention of obesity and related gut microbial dysbiosis. The anti-obesity effect of Lacticaseibacillus paracasei AO356 was recently reported. However, the effect of L. paracasei AO356 on the gut microbiota has not yet been identified. This study aimed to elucidate the effect of L. paracasei AO356 on gut microbiota and ensure its safety for use as a probiotic. Methods Oral administration of L. paracasei AO356 (107 colony-forming units [CFU]/mg per day, 5 days a week, for 10 weeks) to mice fed a high-fat diet significantly suppressed weight gain and fat mass. We investigated the composition of gut microbiota and explored its association with obesity-related markers. Results Oral administration of L. paracasei AO356 significantly changed the gut microbiota and modified the relative abundance of Lactobacillus, Bacteroides, and Oscillospira. Bacteroides and Oscillospira were significantly related to the lipid metabolism pathway and obesity-related markers. We also confirmed the safety of L. paracasei AO356 using antibiotics resistance, hemolysis activity, bile salt hydrolase activity, lactate production, and toxicity tests following the safety assessment guidelines of the Ministry of Food and Drug Safety (MFDS). Discussion This study demonstrated that L. paracasei AO356 is not only associated with an anti-obesity effect but also with changes in the gut microbiota and metabolic pathways related to obesity. Furthermore, the overall safety assessment seen in this study could increase the potential use of new probiotic materials with anti-obesity effects.
Collapse
Affiliation(s)
- Eun-Ji Song
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Bio-medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young In Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Dong-Uk Shin
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ji-Eun Eom
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Young-Do Nam
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| |
Collapse
|
48
|
Squillario M, Bonaretti C, La Valle A, Di Marco E, Piccolo G, Minuto N, Patti G, Napoli F, Bassi M, Maghnie M, d'Annunzio G, Biassoni R. Gut-microbiota in children and adolescents with obesity: inferred functional analysis and machine-learning algorithms to classify microorganisms. Sci Rep 2023; 13:11294. [PMID: 37438382 DOI: 10.1038/s41598-023-36533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/05/2023] [Indexed: 07/14/2023] Open
Abstract
The fecal microbiome of 55 obese children and adolescents (BMI-SDS 3.2 ± 0.7) and of 25 normal-weight subjects, matched both for age and sex (BMI-SDS - 0.3 ± 1.1) was analysed. Streptococcus, Acidaminococcus, Sutterella, Prevotella, Sutterella wadsworthensis, Streptococcus thermophilus, and Prevotella copri positively correlated with obesity. The inferred pathways strongly associated with obesity concern the biosynthesis pathways of tyrosine, phenylalanine, tryptophan and methionine pathways. Furthermore, polyamine biosynthesis virulence factors and pro-inflammatory lipopolysaccharide biosynthesis pathway showed higher abundances in obese samples, while the butanediol biosynthesis showed low abundance in obese subjects. Different taxa strongly linked with obesity have been related to an increased risk of multiple diseases involving metabolic pathways related to inflammation (polyamine and lipopolysaccharide biosynthesis). Cholesterol, LDL, and CRP positively correlated with specific clusters of microbial in obese patients. The Firmicutes/Bacteroidetes-ratio was lower in obese samples than in controls and differently from the literature we state that this ratio could not be a biomarker for obesity.
Collapse
Affiliation(s)
| | - Carola Bonaretti
- Molecular Diagnostics, Analysis Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alberto La Valle
- Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Eddi Di Marco
- Molecular Diagnostics, Analysis Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nicola Minuto
- Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuseppa Patti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Flavia Napoli
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Marta Bassi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Giuseppe d'Annunzio
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy.
| | - Roberto Biassoni
- Molecular Diagnostics, Analysis Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
49
|
Lin KY, Yang HY, Yang SC, Chen YL, Watanabe Y, Chen JR. Caulerpa lentillifera improves ethanol-induced liver injury and modulates the gut microbiota in rats. Curr Res Food Sci 2023; 7:100546. [PMID: 37483276 PMCID: PMC10362798 DOI: 10.1016/j.crfs.2023.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Caulerpa lentillifera (CL), also called sea grape, is a type of edible green alga which was reported to have antioxidative and immunomodulatory potential. This study aimed to investigate the hepatoprotective effects of CL in a rat model of chronic ethanol exposure. Wistar rats were assigned to four groups and supplied with an isocaloric control liquid diet (group C), an ethanol liquid diet (group E), a control liquid diet supplemented with 5% CL (group CC), or an ethanol liquid diet supplemented with 5% CL (group EC) for a 12-week experimental period. Ethanol feeding induced steatosis, inflammation, and changes in the gut microbiota by the end of the study, whereas CL supplementation significantly improved liver injuries and decreased circulatory endotoxin levels. Moreover, we also found that CL reversed ethanol-induced elevation of hepatic toll-like receptor 4 (TLR4), MyD88 protein expression, the phosphorylated-nuclear factor (NF)-κB-to-NF-κB ratio, and proinflammatory cytokine concentrations. Additionally, CL also increased the abundance of Akkermansia and tight junction proteins and diminished the Firmicutes-to-Bacteroidetes ratio. Dietary CL inhibited the progression of alcoholic liver disease, and some of the possible mechanisms may be strengthening the intestinal barrier function, alleviating dysbiosis, and modulating the TLR4 pathway.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Yang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Y. Watanabe
- General Health Medical Center, Yokohama University of Pharmacy, Yokohama, Japan
| | - Jiun-Rong Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
50
|
Qi X, Zhang Y, Zhang Y, Luo F, Song K, Wang G, Ling F. Vitamin B 12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. MICROBIOME 2023; 11:135. [PMID: 37322528 PMCID: PMC10268390 DOI: 10.1186/s40168-023-01574-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pathogen infections seriously affect host health, and the use of antibiotics increases the risk of the emergence of drug-resistant bacteria and also increases environmental and health safety risks. Probiotics have received much attention for their excellent ability to prevent pathogen infections. Particularly, explaining mechanism of action of probiotics against pathogen infections is important for more efficient and rational use of probiotics and the maintenance of host health. RESULTS Here, we describe the impacts of probiotic on host resistance to pathogen infections. Our findings revealed that (I) the protective effect of oral supplementation with B. velezensis against Aeromonas hydrophila infection was dependent on gut microbiota, specially the anaerobic indigenous gut microbe Cetobacterium; (II) Cetobacterium was a sensor of health, especially for fish infected with pathogenic bacteria; (III) the genome resolved the ability of Cetobacterium somerae CS2105-BJ to synthesize vitamin B12 de novo, while in vivo and in vitro metabolism assays also showed the ability of Cetobacterium somerae CS2105-BJ to produce vitamin B12; (IV) the addition of vitamin B12 significantly altered the gut redox status and the gut microbiome structure and function, and then improved the stability of the gut microbial ecological network, and enhanced the gut barrier tight junctions to prevent the pathogen infection. CONCLUSION Collectively, this study found that the effect of probiotics in enhancing host resistance to pathogen infections depended on function of B12 produced by an anaerobic indigenous gut microbe, Cetobacterium. Furthermore, as a gut microbial regulator, B12 exhibited the ability to strengthen the interactions within gut microbiota and gut barrier tight junctions, thereby improving host resistance against pathogen infection. Video Abstract.
Collapse
Affiliation(s)
- Xiaozhou Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaige Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|