1
|
Wan H, Tian H, Wu C, Zhao Y, Zhang D, Zheng Y, Li Y, Duan X. Development of a Disease Model for Predicting Postoperative Delirium Using Combined Blood Biomarkers. Ann Clin Transl Neurol 2025. [PMID: 40095318 DOI: 10.1002/acn3.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVE Postoperative delirium, a common neurocognitive complication after surgery and anesthesia, requires early detection for potential intervention. Herein, we constructed a multidimensional postoperative delirium risk-prediction model incorporating multiple demographic parameters and blood biomarkers to enhance prediction accuracy. METHODS We included 555 patients undergoing radical surgery for colorectal cancer. Demographic characteristics and lipid profiles were collected preoperatively, and perioperative anesthesia and surgical conditions were recorded; blood biomarkers were measured before and after surgery. The 3D-CAM scale was used to assess postoperative delirium occurrence within 3 days after surgery. Patients were divided into the postoperative delirium (N = 100) and non-postoperative delirium (N = 455) groups. Based on machine learning, linear and nine non-linear models were developed and compared to select the optimal model. Shapley value-interpretation methods and mediation analysis were used to assess feature importance and interaction. RESULTS The median age of the participants was 65 years (interquartile range: 56-71 years; 57.8% male). Among the 10 machine-learning models, the random forest model performed the best (validation cohort, area under the receiver operating characteristic curve of 0.795 [0.704-0.885]). Lipid profile (total cholesterol, triglycerides, and trimethylamine-N-oxide) levels were identified as key postoperative delirium predictors. Mediation analysis further confirmed mediating effects among total cholesterol, trimethylamine-N-oxide, and postoperative delirium; a nomogram model was developed as a web-based tool for external validation and use by other clinicians. INTERPRETATION Blood biomarkers are crucial in predicting postoperative delirium and aid anesthesiologists in identifying its risks in a timely manner. This model facilitates personalized perioperative management and reduces the occurrence of postoperative delirium. TRIAL REGISTRATION ChiCTR2300075723.
Collapse
Affiliation(s)
- Hengjun Wan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Huaju Tian
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Operating Room, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Cheng Wu
- Department of Anesthesiology, Hejiang People's Hospital, Luzhou, Sichuan, China
| | - Yue Zhao
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Operating Room, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Daiying Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Operating Room, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yujie Zheng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Department of Anesthesiology, Hejiang People's Hospital, Luzhou, Sichuan, China
| | - Xiaoxia Duan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Alzughayyar DKN, Weber RM, Husain S, Schoch N, Englert H. Impact of the Healthy Lifestyle Community Program (HLCP-3) on Trimethylamine N-Oxide (TMAO) and Risk Profile Parameters Related to Lifestyle Diseases During the Six Months Following an Intervention Study. Nutrients 2025; 17:298. [PMID: 39861431 PMCID: PMC11767924 DOI: 10.3390/nu17020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
RATIONALE The dietary components choline, betaine, and L-carnitine are converted by intestinal microbiota into the molecule trimethylamine (TMA). In the human liver, hepatic flavin-containing monooxygenase 3 oxidizes TMA to trimethylamine-N-oxide (TMAO). TMAO is considered a candidate marker for the risk of cardiovascular disease. METHODOLOGY The Healthy Lifestyle Community Program cohort 3 (HLCP-3) intervention was conducted with participants recruited from the general population in Germany (intervention: n = 99; control: n = 48). The intervention included intensive educational workshops, seminars, and coaching activities. The assessment was conducted using a complete case analysis (CCA) of the participants. The intervention was carried out for a ten-week intensive phase and an alumni phase. The interventional program emphasizes adopting a healthy plant-based diet and reducing meat consumption, as adherence to such a diet may lead to lowering TMAO levels. Additionally, it provides general recommendations about physical activity, stress management, and community support. The control group did not receive any intervention. TMAO was evaluated using stable isotope dilution liquid chromatography, and tandem mass spectrometry was used to measure fasting plasma levels of TMAO. OBJECTIVES The present study aimed to determine the impact of the Healthy Lifestyle Community Program (HLCP-3) on risk profiles for lifestyle-related diseases and TMAO plasma levels. RESULTS Significant decreases in most risk profile parameters were detected, and a non-significant decrease in plasma TMAO levels was observed in the intervention group (0.37 (-1.33; 0.59) µmol/L). Furthermore, for the intervention group, after a six-month follow-up period, there was a significant negative correlation between higher healthy plant diet index (hPDI) scores and a decrease in plasma TMAO (ß = -0.200, p = 0.027). Additionally, a significant negative correlation was observed between the TMAO level and the scores for adherence to the plant diet index (PDI) (r = -0.195; p = 0.023). CONCLUSIONS HLCP-3 is effective at improving adherence to a plant-based diet and improving risk profile parameters. However, long-term interventions involving stricter dietary programs in the sense of a plant-based diet are recommended if significant decreases in TMAO levels are to be obtained.
Collapse
Affiliation(s)
- Dima-Karam Nasereddin Alzughayyar
- Faculty for Biology, University of Munster, Schlossplatz 4, D-48149 Munster, Germany
- Department of Nutrition, University of Applied Sciences, Corrensstraße 25, D-48149 Munster, Germany; (R.-M.W.); (S.H.); (N.S.); (H.E.)
| | - Ragna-Marie Weber
- Department of Nutrition, University of Applied Sciences, Corrensstraße 25, D-48149 Munster, Germany; (R.-M.W.); (S.H.); (N.S.); (H.E.)
| | - Sarah Husain
- Department of Nutrition, University of Applied Sciences, Corrensstraße 25, D-48149 Munster, Germany; (R.-M.W.); (S.H.); (N.S.); (H.E.)
| | - Nora Schoch
- Department of Nutrition, University of Applied Sciences, Corrensstraße 25, D-48149 Munster, Germany; (R.-M.W.); (S.H.); (N.S.); (H.E.)
| | - Heike Englert
- Department of Nutrition, University of Applied Sciences, Corrensstraße 25, D-48149 Munster, Germany; (R.-M.W.); (S.H.); (N.S.); (H.E.)
| |
Collapse
|
3
|
Jaworska K, Kopacz W, Koper M, Ufnal M. Microbiome-Derived Trimethylamine N-Oxide (TMAO) as a Multifaceted Biomarker in Cardiovascular Disease: Challenges and Opportunities. Int J Mol Sci 2024; 25:12511. [PMID: 39684223 DOI: 10.3390/ijms252312511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Biomarkers play a crucial role in various stages of disease management, including screening, diagnosis, prediction, prognosis, treatment, and safety monitoring. Although they are powerful tools in disease diagnosis, management, and drug development, identifying and validating reliable biomarkers remains a significant challenge. Among potential microbiome-derived biomarkers, trimethylamine N-oxide (TMAO) has gained notable attention for its link to atherosclerosis and cardiovascular risk. However, despite the growing body of research on TMAO, its practical application in clinical settings for disease management and patient outcome enhancement is still not a reality. This paper presents recent data on the utility of TMAO as a cardiovascular biomarker, categorized by its various roles: diagnostic, prognostic, susceptibility/risk, monitoring, pharmacodynamic/response, predictive, and safety. It also briefly discusses research on TMAO's potential role in cardiovascular disease development. While TMAO shows promise, particularly in prognostic applications, its reliability as a biomarker has been inconsistent across studies. These variances may result from several confounding factors that affect TMAO plasma levels, including diet, kidney function, and demographic variables. The review aims to elucidate the specific contexts in which TMAO can be valuable, potentially leading to more personalized and effective management of cardiovascular disease.
Collapse
Affiliation(s)
- Kinga Jaworska
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Wojciech Kopacz
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Mateusz Koper
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Marcin Ufnal
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| |
Collapse
|
4
|
Li Z, He X, Fang Q, Yin X. Gut Microbe-Generated Metabolite Trimethylamine-N-Oxide and Ischemic Stroke. Biomolecules 2024; 14:1463. [PMID: 39595639 PMCID: PMC11591650 DOI: 10.3390/biom14111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite, the production of which in vivo is mainly regulated by dietary choices, gut microbiota, and the hepatic enzyme flavin monooxygenase (FMO), while its elimination occurs via the kidneys. The TMAO level is positively correlated with the risk of developing cardiovascular diseases. Recent studies have found that TMAO plays an important role in the development of ischemic stroke. In this review, we describe the relationship between TMAO and ischemic stroke risk factors (hypertension, diabetes, atrial fibrillation, atherosclerosis, thrombosis, etc.), disease risk, severity, prognostic outcomes, and recurrence and discuss the possible mechanisms by which they interact. Importantly, TMAO induces atherosclerosis and thrombosis through lipid metabolism, foam cell formation, endothelial dysfunction (via inflammation, oxidative stress, and pyroptosis), enhanced platelet hyper-reactivity, and the upregulation and activation of vascular endothelial tissue factors. Although the pathogenic mechanisms underlying TMAO's aggravation of disease severity and its effects on post-stroke neurological recovery and recurrence risk remain unclear, they may involve inflammation, astrocyte function, and pro-inflammatory monocytes. In addition, this paper provides a summary and evaluation of relevant preclinical and clinical studies on interventions regarding the gut-microbiota-dependent TMAO level to provide evidence for the prevention and treatment of ischemic stroke through the gut microbe-TMAO pathway.
Collapse
Affiliation(s)
| | | | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| | - Xulong Yin
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| |
Collapse
|
5
|
Spasova N, Somleva D, Krastev B, Tropcheva R, Svinarov D, Kundurzhiev T, Kinova E, Goudev A. Effect of Lactobacillus plantarum supplementation on trimethylamine-N-oxide levels in 30 patients with atherosclerotic cardiovascular disease: A double-blind randomized controlled trial. Folia Med (Plovdiv) 2024; 66:682-691. [PMID: 39512044 DOI: 10.3897/folmed.66.e132325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Trimethylamine-N-oxide (TMAO) is a metabolite produced by intestinal microbiota. It is well recognized as an independent risk marker for cardiovascular and renal diseases and mortality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena Kinova
- Tsaritsa Yoanna University Hospital, Sofia, Bulgaria
| | - Assen Goudev
- Tsaritsa Yoanna University Hospital, Sofia, Bulgaria
| |
Collapse
|
6
|
Jarmukhanov Z, Mukhanbetzhanov N, Kozhakhmetov S, Nurgaziyev M, Sailybayeva A, Bekbossynova M, Kushugulova A. The association between the gut microbiota metabolite trimethylamine N-oxide and heart failure. Front Microbiol 2024; 15:1440241. [PMID: 39391607 PMCID: PMC11464299 DOI: 10.3389/fmicb.2024.1440241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
This systematic review explores the relationship between the gut microbiota metabolite trimethylamine N-oxide (TMAO) and heart failure (HF), given the significant impact of TMAO on cardiovascular health. A systematic search and meta-analysis of peer-reviewed studies published from 2013 to 2024 were conducted, focusing on adult patients with heart failure and healthy controls. The review found that elevated levels of TMAO are associated with atherosclerosis, endothelial dysfunction, and increased cardiovascular disease risk, all of which can exacerbate heart failure. The analysis also highlights that high TMAO levels are linked to reduced left ventricular ejection fraction (LVEF) and glomerular filtration rate (GFR), further supporting TMAO's role as a biomarker in heart failure assessment. The findings suggest that interventions targeting gut microbiota to reduce TMAO could potentially benefit patients with heart failure, although further research is needed to evaluate the effectiveness of such approaches.
Collapse
Affiliation(s)
- Zharkyn Jarmukhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Nurislam Mukhanbetzhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Madiyar Nurgaziyev
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Almagul Kushugulova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
7
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
8
|
Jang JW, Capaldi E, Smith T, Verma P, Varga J, Ho KJ. Trimethylamine N-oxide: a meta-organismal axis linking the gut and fibrosis. Mol Med 2024; 30:128. [PMID: 39180015 PMCID: PMC11344357 DOI: 10.1186/s10020-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.
Collapse
Affiliation(s)
- Jae Woong Jang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Emma Capaldi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Tracy Smith
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Li X, Wang C, Yanagita T, Xue C, Zhang T, Wang Y. Trimethylamine N-Oxide in Aquatic Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14498-14520. [PMID: 38885200 DOI: 10.1021/acs.jafc.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Trimethylamine N-oxide (TMAO), a characteristic nonprotein nitrogen compound, is widely present in seafood, which exhibits osmoregulatory effects for marine organisms in vivo and plays an important role in aquaculture and aquatic product preservation. However, much attention has been focused on the negative effect of TMAO since it has recently emerged as a putative promoter of chronic diseases. To get full knowledge and maximize our ability to balance the positive and negative aspects of TMAO, in this review, we comprehensively discuss the TMAO in aquatic products from the aspects of physiological functions for marine organisms, flavor, quality, the conversion of precursors, the influences on human health, and the seafood ingredients interaction consideration. Though the circulating TMAO level is inevitably enhanced after seafood consumption, dietary seafood still exhibits beneficial health effects and may provide nutraceuticals to balance the possible adverse effects of TMAO.
Collapse
Affiliation(s)
- Xiaoyue Li
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chengcheng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Changhu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tiantian Zhang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuming Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572024, China
| |
Collapse
|
10
|
Saadh MJ, Bazghandi B, Jamialahmdi H, Rahimzadeh-Bajgiran F, Forouzanfar F, Esmaeili SA, Saburi E. Therapeutic potential of lipid-lowering probiotics on the atherosclerosis development. Eur J Pharmacol 2024; 971:176527. [PMID: 38554932 DOI: 10.1016/j.ejphar.2024.176527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Hypercholesterolemia is a critical risk factor for atherosclerosis, mostly attributed to lifestyle behavior such as diet. Recent advances have emphasized the critical effects of gastrointestinal bacteria in the pathology of hypercholesterolemia and atherosclerosis, suggesting that the gastrointestinal microbiome can therefore provide efficient therapeutic targets for preventing and treating atherosclerosis. Thus, interventions, such as probiotic therapy, aimed at altering the bacterial composition introduce a promising therapeutic procedure. In the current review, we will provide an overview of anti-atherogenic probiotics contributing to lipid-lowering, inhibiting atherosclerotic inflammation, and suppressing bacterial atherogenic metabolites.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| | - Hamid Jamialahmdi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran.
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Mirzababaei A, Mahmoodi M, Abaj F, Barkhidarian B, Dehghani A, Khalili P, Roumi Z, Mirzaei K. The association of dietary nitrates/nitrites intake and the gut microbial metabolite trimethylamine N-oxide and kynurenine in adults: a population-based study. Front Nutr 2024; 11:1346074. [PMID: 38450240 PMCID: PMC10915207 DOI: 10.3389/fnut.2024.1346074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Background Dietary nitrate and nitrite may affect the gut microbiota and its metabolites, such as trimethylamine N-oxide (TMAO) and kynurenine (KYN). However, this association and the exact mechanism are still unclear. Therefore, this study aimed to assess the association between dietary consumption of nitrite and nitrate on TMAO and KYN levels in adults. Methods This cross-sectional study was employed on a subsample baseline phase of the Tehran University of Medical Sciences (TUMS) Employee's Cohort Study (TEC). A total of 250 adults aged 18 years or older were included in the current analysis. Data on the dietary intakes were collected using a validated dish-based food frequency questionnaire (FFQ), and dietary intakes of nitrite and nitrate were estimated using the FFQ with 144 items. Serum profiles and TMAO and KYN were measured using a standard protocol. Results The findings of this study demonstrate a significant association between the intake of animal sources of nitrate and nitrite and the likelihood of having elevated levels of TMAO and KYN. Specifically, after adjustment, individuals with the highest intake adherence to nitrates from animal sources exhibited increased odds of having the highest level of TMAO (≥51.02 pg/ml) (OR = 1.51, 95% CI = 0.59-3.88, P = 0.03) and KYN (≥417.41 pg/ml) (OR = 1.75, 95% CI = 0.73-4.17, P = 0.02). Additionally, subjects with the highest animal intake from nitrite sources have 1.73 and 1.45 times higher odds of having the highest levels of TMAO and KYN. These results emphasize the potential implications of animal-derived nitrate and nitrite consumption on the levels of TMAO and KYN. Conclusion The present evidence indicates that a high level of nitrate and nitrite intake from animal sources can increase the odds of high levels of TMAO and KYN. Further studies suggest that we should better evaluate and understand this association.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Bahareh Barkhidarian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Dehghani
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pardis Khalili
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Salamat S, Jahan-Mihan A, Tabandeh MR, Mansoori A. Randomized clinical trial evaluating the efficacy of synbiotic supplementation on serum endotoxin and trimethylamine N-oxide levels in patients with dyslipidaemia. Arch Med Sci Atheroscler Dis 2024; 9:e18-e25. [PMID: 38434939 PMCID: PMC10905263 DOI: 10.5114/amsad/178106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Elevated serum endotoxin and trimethylamine N-oxide (TMAO) are associated with metabolic disorders including dyslipidaemia and insulin resistance. This study aimed to evaluate the impact of a 12-week treatment with a synbiotic supplement on serum endotoxin and TMAO levels in patients diagnosed with dyslipidaemia. Material and methods A total of 56 patients who met the study inclusion criteria were recruited in this randomized, double-blind clinical trial. Participants were randomly assigned into intervention and control groups and received either synbiotic or placebo sachets twice a day for 12 weeks. The sociodemographic data, food intake, physical activity, and anthropometric indices of participants were assessed before and after intervention. Serum endotoxin, TMAO, and fasting blood glucose (FBG) levels were measured at the baseline and end of the study. Results No significant difference in the baseline characteristics of participants in the 2 groups was observed. After the 12 weeks of intervention, the mean of serum endotoxin (p < 0.0001), TMAO (p < 0.0001), and FBG (p < 0.0001) was decreased in patients who received synbiotic supplements while no significant change was observed in the control group. Moreover, a significant positive correlation between changes in endotoxin (r = 0.41, p = 0.041) and TMAO (r = 0.40, p = 0.047) with FBG changes was observed. Conclusions A significant reduction in serum endotoxin and TMAO levels, as well as improvements in FBG, following 12 weeks of supplementation with synbiotics, may offer a potential approach for improving metabolic status in patients with dyslipidaemia.
Collapse
Affiliation(s)
- Shekoufeh Salamat
- Nutrition and Metabolic Diseases Research Centre, Clinical Sciences Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Iran
| | - Anahita Mansoori
- Nutrition and Metabolic Diseases Research Centre, Clinical Sciences Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Qu H, Zhang Y, Shi JH, Zhao YH, Gao J, Gao ZY, Shi DZ. Berberine Decreases Thrombosis Potential Induced by a High-choline Diet by Inhibiting CutC Enzyme. Curr Med Chem 2024; 31:3844-3856. [PMID: 37226795 DOI: 10.2174/0929867330666230524142632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Gut microbes influence thrombosis potential by generating trimethylamine N-oxide (TMAO). However, whether the antithrombotic effect of berberine is associated with TMAO generation remains unclear. OBJECTIVE The present study was designed to explore whether berberine decreases the TMAO-induced thrombosis potential and the possible mechanism underneath it. METHODS C57BL/6J female mice under a high-choline diet or standard diet were treated with/without berberine for 6 weeks. The TMAO level, carotid artery occlusion time following FeCl3 injury and platelet responsiveness were measured. The binding of berberine to the CutC enzyme was analysed with molecular docking, and molecular dynamics simulations were verified with enzyme activity assays. RESULTS The results showed that berberine increased the carotid artery occlusion time following FeCl3 injury and decreased the platelet hyperresponsiveness induced by a high-- choline diet, both offset by intraperitoneal injection of TMAO. The effect of berberine on thrombosis potential was associated with decreasing the generation of TMAO by inhibiting the CutC enzyme. CONCLUSION Targeting TMAO generation with berberine might be a promising therapy for ischaemic cardiac-cerebral vascular diseases.
Collapse
Affiliation(s)
- Hua Qu
- Xiyuan Hospital, China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jun-He Shi
- Xiyuan Hospital, China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi-Han Zhao
- Xiyuan Hospital, China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Gao
- Xiyuan Hospital, China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zhu-Ye Gao
- Xiyuan Hospital, China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
14
|
Liu L, Kaur GI, Kumar A, Kanwal A, Singh SP. The Role of Gut Microbiota and Associated Compounds in Cardiovascular Health and its Therapeutic Implications. Cardiovasc Hematol Agents Med Chem 2024; 22:375-389. [PMID: 38275032 DOI: 10.2174/0118715257273506231208045308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024]
Abstract
It is possible that gut bacteria may have a beneficial effect on cardiovascular health in humans. It may play a major role in the progression of a variety of cardiovascular diseases, including Heart Failure (HF), Atherosclerosis, Coronary Arterial Disease (CAD), Ischemic Heart Disease (IHD), and Others. Dysbiosis of the gut microbiota, along with its direct and indirect impact on gut health, may induce cardiovascular disorders. Although advanced studies have demonstrated the relationship of various metabolites to cardiovascular diseases (CVD) in animals, translating their functional capacity to humans remains a significant area of research. This paper simplifies the demonstration of some compounds, pathways, and components like Trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and butyrate production. It demonstrates how a change in eating habits causes TMAO and how the impact of different drugs on gut microbiota species and high consumption of Westernized food causes several heartrelated problems, such as atherosclerosis and inflammation that can even become the cause of heart failure. Modulation of the gut microbiome, on the other hand, is a novel therapeutic measure because it can be easily altered through diet and other lifestyle changes. It could then be used to lower the risk of several CVDs.
Collapse
Affiliation(s)
- Lu Liu
- Endoscopic Diagnosis and Treatment Center, Baoding First Central Hospital, Baoding, China
| | - Guneet Inderjeet Kaur
- Department of Sports Psychology, Central University of Rajasthan, Ajmer, 305817, India
| | - Avinash Kumar
- Department of Sports Biosciences, Central University of Rajasthan, Ajmer, 305817, India
| | | | | |
Collapse
|
15
|
Dean YE, Rouzan SS, Loayza Pintado JJ, Talat NE, Mohamed ARH, Verma S, Anwar Kamdi Z, Gir D, Helmy A, Helmy Z, Afzal A, Mady T, Hazimeh Y, Aiash H. Serum trimethylamine N-oxide levels among coronary artery disease and acute coronary syndrome patients: a systematic review and meta-analysis. Ann Med Surg (Lond) 2023; 85:6123-6133. [PMID: 38098555 PMCID: PMC10718322 DOI: 10.1097/ms9.0000000000001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 12/17/2023] Open
Abstract
Background and Aim Recent studies have linked trimethylamine N-oxide (TMAO) to cardiovascular diseases; our study aimed to analyze the association between coronary artery disease (CAD), acute coronary syndrome (ACS), and TMAO. Methods PubMed, Scopus, Embase, and Web of Science were searched using terms such as 'CAD' and 'TMAO'. Only observational controlled studies were included. RevMan software version 5.4 was used for the analysis. Results A significant association was found between the CAD group and increased serum TMAO levels compared with the control group (MD=1.16, 95% CI=0.54-1.78, P=0.0003). This association remained significant among acute coronary syndrome patients (MD=0.98, 95% CI=0.73-1.23, P<0.00001) and was also detected among young and old CAD patients (MD=0.35, 95% CI=0.06-0.64, P=0.02 and MD=1.36, 95% CI=0.71-2.01, P<0.0001, respectively). On further analysis of intestinal metabolites, the authors detected an insignificant association between choline, betaine, carnitine, and CAD. According to our sensitivity analysis, TMAO is an acceptable diagnostic marker for CAD (0.721, SE was 0.0816, 95% CI: 0.561-0.881). Conclusion TMAO is an acceptable diagnostic marker for CAD, with significantly higher levels among these patients regardless of their age. Other metabolites did not show such an association. The role of serum level TMAO in the early diagnosis of CAD should be further explored.
Collapse
Affiliation(s)
- Yomna E. Dean
- Alexandria University, Faculty of Medicine, Alexandria
- Alexandria Medical Center (AMC)
| | | | | | | | | | - Suman Verma
- Maharishi Markandeshwar Medical College and Hospital, Solan, India
| | | | - Deepak Gir
- St. Joseph’s Medical Center, Stockton, CA, USA
| | - Ahmed Helmy
- Kharkiv National Medical University, Kharkiv, Ukraine
| | - Zakaria Helmy
- 6th October University, Faculty of Medicine, Giza, Egypt
| | - Ahson Afzal
- Dow University of Health Sciences, Karachi, Pakistan
| | - Tamer Mady
- International American University, College of Medicine, Saint Lucia, Caribbean
| | - Yusef Hazimeh
- Lebanese University
- Zahraa Hospital, University Medical Center, Beirut, Lebanon
| | - Hani Aiash
- 6th October University, Faculty of Medicine, Giza, Egypt
- SUNY Upstate Medical University, Syracuse
| |
Collapse
|
16
|
He S, Lin F, Hu X, Pan P. Gut Microbiome-Based Therapeutics in Critically Ill Adult Patients-A Narrative Review. Nutrients 2023; 15:4734. [PMID: 38004128 PMCID: PMC10675331 DOI: 10.3390/nu15224734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiota plays a crucial role in the human microenvironment. Dysbiosis of the gut microbiota is a common pathophysiological phenomenon in critically ill patients. Therefore, utilizing intestinal microbiota to prevent complications and improve the prognosis of critically ill patients is a possible therapeutic direction. The gut microbiome-based therapeutics approach focuses on improving intestinal microbiota homeostasis by modulating its diversity, or treating critical illness by altering the metabolites of intestinal microbiota. There is growing evidence that fecal microbiota transplantation (FMT), selective digestive decontamination (SDD), and microbiota-derived therapies are all effective treatments for critical illness. However, different treatments are appropriate for different conditions, and more evidence is needed to support the selection of optimal gut microbiota-related treatments for different diseases. This narrative review summarizes the curative effects and limitations of microbiome-based therapeutics in different critically ill adult patients, aiming to provide possible directions for gut microbiome-based therapeutics for critically ill patients such as ventilator-associated pneumonia, sepsis, acute respiratory distress syndrome, and COVID-19, etc.
Collapse
Affiliation(s)
- Shiyue He
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Fengyu Lin
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Xinyue Hu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| | - Pinhua Pan
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| |
Collapse
|
17
|
Karmazyn M, Gan XT. Probiotics as potential treatments to reduce myocardial remodelling and heart failure via the gut-heart axis: State-of-the-art review. Mol Cell Biochem 2023; 478:2539-2551. [PMID: 36892791 DOI: 10.1007/s11010-023-04683-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Probiotics are considered to represent important modulators of gastrointestinal health through increased colonization of beneficial bacteria thus altering the gut microflora. Although these beneficial effects of probiotics are now widely recognized, emerging evidence suggests that alterations in the gut microflora also affect numerous other organ systems including the heart through a process generally referred to as the gut-heart axis. Moreover, cardiac dysfunction such as that seen in heart failure can produce an imbalance in the gut flora, known as dysbiosis, thereby further contributing to cardiac remodelling and dysfunction. The latter occurs by the production of gut-derived pro-inflammatory and pro-remodelling factors which exacerbate cardiac pathology. One of the key contributors to gut-dependent cardiac pathology is trimethylamine N-oxide (TMAO), a choline and carnitine metabolic by-product first synthesized as trimethylamine which is then converted into TMAO by a hepatic flavin-containing monooxygenase. The production of TMAO is particularly evident with regular western diets containing high amounts of both choline and carnitine. Dietary probiotics have been shown to reduce myocardial remodelling and heart failure in animal models although the precise mechanisms for these effects are not completely understood. A large number of probiotics have been shown to possess a reduced capacity to synthesize gut-derived trimethylamine and therefore TMAO thereby suggesting that inhibition of TMAO is a factor mediating the beneficial cardiac effects of probiotics. However, other potential mechanisms may also be important contributing factors. Here, we discuss the potential benefit of probiotics as effective therapeutic tools for attenuating myocardial remodelling and heart failure.
Collapse
Affiliation(s)
- Morris Karmazyn
- Department of Pharmacology and Physiology, University of Western Ontario, London, ON, N6G 2X6, Canada.
| | - Xiaohong Tracey Gan
- Department of Pharmacology and Physiology, University of Western Ontario, London, ON, N6G 2X6, Canada
| |
Collapse
|
18
|
Aygun H, Akin AT, Kızılaslan N, Sumbul O, Karabulut D. Electrophysiological, histopathological, and biochemical evaluation of the protective effect of probiotic supplementation against pentylenetetrazole-induced seizures in rats. Eur J Neurol 2023; 30:3540-3550. [PMID: 35429204 DOI: 10.1111/ene.15359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Research on the relationship between the gut microbiome and epilepsy is accumulating. The present study was conducted to evaluate the effect of probiotic supplementation on pentylenetetrazole (PTZ)-induced seizures in rats. METHODS Twenty-one adult male Wistar albino rats were included. The animals were divided into three groups of seven rats. Group 1 was a control group, whereas Group 2 rats received PTZ treatment and Group 3 rats had PTZ+PB (probiotic) treatment. For 6 weeks, Groups 1 and 2 were given saline (1 ml), whereas Group 3 had probiotic supplement. In the 5th week, tripolar electrodes were attached to the rats. Electrophysiological, behavioral, biochemical, and immunohistochemical evaluations were performed in the 6 weeks after the treatment. RESULTS PB treatment significantly reduced seizures. In the PTZ group, expression levels of brain-derived neurotrophic factor, nerve growth factor (NGF), and Sox2 (SRY sex-determining region Y-box 2) in rat brains decreased significantly compared to the control group, whereas the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), total oxidant status (TOS), and nitric oxide (NO) levels increased. In the PTZ+PB group, NGF expression increased significantly compared to the PTZ group, whereas TNF-α, IL-6, TOS, and NO levels decreased. In histopathological examination, an abundance of necrotic neurons was notable in the PTZ group, which was less in the PTZ+PB group. In addition, body weight of the group supplemented with probiotics decreased after the treatment. CONCLUSIONS Our results suggest that probiotic supplementation may alleviate seizure severity and exert neuroprotective effects by reducing neuroinflammation and oxidative stress and altering the expression of neurotrophins in epileptogenic brains.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Ali Tuğrul Akin
- Department of Biology, Faculty of Science and Literature, University of Erciyes, Kayseri, Turkey
| | - Nildem Kızılaslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Orhan Sumbul
- Department of Neurology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
19
|
Taslim NA, Yusuf M, Ambari AM, Del Rosario Puling IM, Ibrahim FZ, Hardinsyah H, Kurniawan R, Gunawan WB, Mayulu N, Joseph VFF, Sabrina N, Rizal M, Tallei TE, Kim B, Tsopmo A, Nurkolis F. Anti-Inflammatory, Antioxidant, Metabolic and Gut Microbiota Modulation Activities of Probiotic in Cardiac Remodeling Condition: Evidence from Systematic Study and Meta-Analysis of Randomized Controlled Trials. Probiotics Antimicrob Proteins 2023; 15:1049-1061. [PMID: 37349622 PMCID: PMC10393865 DOI: 10.1007/s12602-023-10105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Heart failure (HF) is a global pandemic with increasing prevalence and mortality rates annually. Its main cause is myocardial infarction (MI), followed by rapid cardiac remodeling. Several clinical studies have shown that probiotics can improve the quality of life and reduce cardiovascular risk factors. This systematic review and meta-analysis aimed to investigate the effectiveness of probiotics in preventing HF caused by a MI according to a prospectively registered protocol (PROSPERO: CRD42023388870). Four independent evaluators independently extracted the data using predefined extraction forms and evaluated the eligibility and accuracy of the studies. A total of six studies consisting of 366 participants were included in the systematic review. Probiotics are not significant in intervening left ventricular ejection fraction (LVEF) and high-sensitivity C-reactive protein (hs-CRP) when compared between the intervention group and the control group due to inadequate studies supporting its efficacy. Among sarcopenia indexes, hand grip strength (HGS) showed robust correlations with the Wnt biomarkers (p < 0.05), improved short physical performance battery (SPPB) scores were also strongly correlated with Dickkopf-related protein (Dkk)-3, followed by Dkk-1, and sterol regulatory element-binding protein 1 (SREBP-1) (p < 0.05). The probiotic group showed improvement in total cholesterol (p = 0.01) and uric acid (p = 0.014) compared to the baseline. Finally, probiotic supplements may be an anti-inflammatory, antioxidant, metabolic, and intestinal microbiota modulator in cardiac remodeling conditions. Probiotics have great potential to attenuate cardiac remodeling in HF or post-MI patients while also enhancing the Wnt signaling pathway which can improve sarcopenia under such conditions.
Collapse
Affiliation(s)
- Nurpudji Astuti Taslim
- Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia.
| | - Muhammad Yusuf
- Medical School Department, Faculty of Medicine, Brawijaya University, Malang, 65145, Indonesia
| | - Ade Meidian Ambari
- Department of Cardiovascular Prevention and Rehabilitation, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | | | - Filzatuz Zahro Ibrahim
- Medical School Department, Faculty of Medicine, Brawijaya University, Malang, 65145, Indonesia
| | - Hardinsyah Hardinsyah
- Division of Applied Nutrition, Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, West Java, 16680, Indonesia
| | - Rudy Kurniawan
- Alumnus of Internal Medicine, Faculty of Medicine, University of Indonesia-Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - William Ben Gunawan
- Alumnus of Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, 50275, Indonesia
| | - Nelly Mayulu
- Department of Nutrition, Universitas Muhammadiyah Manado, Manado, 95249, Indonesia
| | - Victor F F Joseph
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Nindy Sabrina
- Nutrition Program, Faculty of Food Technology and Health, Sahid University of Jakarta, South Jakarta, Indonesia
| | - Mochammad Rizal
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado, 95115, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Kyungheedae-Ro 26, Dongdaemun-Gu, Seoul, 05254, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Apollinaire Tsopmo
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, K1S5B6, Canada
| | - Fahrul Nurkolis
- Biological Sciences, State Islamic University of Sunan Kalijaga, UIN Sunan Kalijaga Yogyakarta, 55281, Yogyakarta, Indonesia.
| |
Collapse
|
20
|
Shanmugham M, Bellanger S, Leo CH. Gut-Derived Metabolite, Trimethylamine-N-oxide (TMAO) in Cardio-Metabolic Diseases: Detection, Mechanism, and Potential Therapeutics. Pharmaceuticals (Basel) 2023; 16:ph16040504. [PMID: 37111261 PMCID: PMC10142468 DOI: 10.3390/ph16040504] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a biologically active gut microbiome-derived dietary metabolite. Recent studies have shown that high circulating plasma TMAO levels are closely associated with diseases such as atherosclerosis and hypertension, and metabolic disorders such as diabetes and hyperlipidemia, contributing to endothelial dysfunction. There is a growing interest to understand the mechanisms underlying TMAO-induced endothelial dysfunction in cardio-metabolic diseases. Endothelial dysfunction mediated by TMAO is mainly driven by inflammation and oxidative stress, which includes: (1) activation of foam cells; (2) upregulation of cytokines and adhesion molecules; (3) increased production of reactive oxygen species (ROS); (4) platelet hyperreactivity; and (5) reduced vascular tone. In this review, we summarize the potential roles of TMAO in inducing endothelial dysfunction and the mechanisms leading to the pathogenesis and progression of associated disease conditions. We also discuss the potential therapeutic strategies for the treatment of TMAO-induced endothelial dysfunction in cardio-metabolic diseases.
Collapse
Affiliation(s)
- Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Sophie Bellanger
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Chen Huei Leo
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore
- Correspondence: ; Tel.: +65-6434-8213
| |
Collapse
|
21
|
Xu H, Yang F, Bao Z. Gut microbiota and myocardial fibrosis. Eur J Pharmacol 2023; 940:175355. [PMID: 36309048 DOI: 10.1016/j.ejphar.2022.175355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/18/2023]
Abstract
Myocardial fibrosis (MF) is a pathophysiological condition that accompanies various myocardial diseases and comprises a damaged myocardial matrix repair process. Although fibrosis plays a vital role in repair, it ultimately alters cardiac systolic and diastolic functions. The gut microbiota is a complex and dynamic ecosystem with billions of microorganisms that produce bioactive compounds that influence host health and disease progression. Intestinal microbiota has been shown to correlate with cardiovascular disease, and dysbiosis of the intestinal microbiota is involved in the development of MF. In this review, we discuss the role of intestinal microbiota in the process of MF, including alterations in microbiota composition and the effects of metabolites. We also discuss how diet and medicines can affect cardiac fibrosis by influencing the gut microbiota, and potential future therapies targeting the gut-heart axis. A healthy gut microbiota can prevent disease, but dysbiosis can lead to various symptoms, including the induction of heart disease. In this review, we discuss the relevance of the gut-heart axis and the multiple pathways by which gut microbiota may affect cardiac fibrosis, including inflammatory factors, immune cells, and gut microbiota metabolites, such as trimethylamine-N-oxide (TMAO) and short-chain fatty acids (SCFAs). Finally, we discuss the involvement of gut microbiota in the treatment of cardiac fibrosis, including drugs, fecal microbiota transplantation, and oral probiotics or prebiotics. With future studies on the relationship between the heart and gut microbiota, we hope to find better ways to improve MF through the gut-heart axis.
Collapse
Affiliation(s)
- Han Xu
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Fan Yang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
The Role of the Gut Microbiome and Trimethylamine Oxide in Atherosclerosis and Age-Related Disease. Int J Mol Sci 2023; 24:ijms24032399. [PMID: 36768722 PMCID: PMC9917289 DOI: 10.3390/ijms24032399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The gut microbiome plays a major role in human health, and gut microbial imbalance or dysbiosis is associated with disease development. Modulation in the gut microbiome can be used to treat or prevent different diseases. Gut dysbiosis increases with aging, and it has been associated with the impairment of gut barrier function leading to the leakage of harmful metabolites such as trimethylamine (TMA). TMA is a gut metabolite resulting from dietary amines that originate from animal-based foods. TMA enters the portal circulation and is oxidized by the hepatic enzyme into trimethylamine oxide (TMAO). Increased TMAO levels have been reported in elderly people. High TMAO levels are linked to peripheral artery disease (PAD), endothelial senescence, and vascular aging. Emerging evidence showed the beneficial role of probiotics and prebiotics in the management of several atherogenic risk factors through the remodeling of the gut microbiota, thus leading to a reduction in TMAO levels and atherosclerotic lesions. Despite the promising outcomes in different studies, the definite mechanisms of gut dysbiosis and microbiota-derived TMAO involved in atherosclerosis remain not fully understood. More studies are still required to focus on the molecular mechanisms and precise treatments targeting gut microbiota and leading to atheroprotective effects.
Collapse
|
23
|
Brunt VE, Greenberg NT, Sapinsley ZJ, Casso AG, Richey JJ, VanDongen NS, Gioscia-Ryan RA, Ziemba BP, Neilson AP, Davy KP, Seals DR. Suppression of trimethylamine N-oxide with DMB mitigates vascular dysfunction, exercise intolerance, and frailty associated with a Western-style diet in mice. J Appl Physiol (1985) 2022; 133:798-813. [PMID: 35952350 PMCID: PMC9512113 DOI: 10.1152/japplphysiol.00350.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Consumption of a Western-style diet (WD; high fat, high sugar, low fiber) is associated with impaired vascular function and increased risk of cardiovascular diseases (CVD), which could be mediated partly by increased circulating concentrations of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO). We investigated if suppression of TMAO with 3,3-dimethyl-1-butanol (DMB; inhibitor of microbial TMA lyase) in mice could prevent: 1) WD-induced vascular endothelial dysfunction and aortic stiffening and 2) WD-induced reductions in endurance exercise tolerance and increases in frailty, as both are linked to WD, vascular dysfunction, and increased CVD risk. C57BL/6N mice were fed standard chow or WD (41% fat, ∼25% sugar, 4% fiber) for 5 mo beginning at ∼2 mo of age. Within each diet, mice randomly received (n = 11-13/group) normal drinking water (control) or 1% DMB in drinking water for the last 8 wk (from 5 to 7 mo of age). Plasma TMAO was increased in WD-fed mice but suppressed by DMB. WD induced endothelial dysfunction, assessed as carotid artery endothelium-dependent dilation to acetylcholine, and progressive increases in aortic stiffness (measured serially in vivo as pulse wave velocity), both of which were fully prevented by supplementation with DMB. Endurance exercise tolerance, assessed as time to fatigue on a rotarod test, was impaired in WD-fed mice but partially recovered by DMB. Lastly, WD-induced increases in frailty (31-point index) were prevented by DMB. Our findings indicate DMB or other TMAO-lowering therapies may be promising for mitigating the adverse effects of WD on physiological function, and thereby reducing risk of chronic diseases.NEW & NOTEWORTHY We provide novel evidence that increased circulating concentrations of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) contribute to vascular dysfunction associated with consumption of a Western-style diet and that this dysfunction can be prevented by suppressing TMAO with DMB, thereby supporting translation of this compound to humans. Furthermore, to our knowledge, we present the first evidence of the role of TMAO in mediating impairments in endurance exercise tolerance and increased frailty in any context.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Zachary J Sapinsley
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Abigail G Casso
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - James J Richey
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | | | | | - Brian P Ziemba
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia
| | - Kevin P Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
24
|
Zixin Y, Lulu C, Xiangchang Z, Qing F, Binjie Z, Chunyang L, Tai R, Dongsheng O. TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Front Pharmacol 2022; 13:929262. [PMID: 36034781 PMCID: PMC9411716 DOI: 10.3389/fphar.2022.929262] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota and its metabolites have become a hotspot of recent research. Trimethylamine N-oxide (TMAO) metabolized by the gut microbiota is closely related to many diseases such as cardiovascular disease, chronic kidney disease, type 2 diabetes, etc. Chronic kidney disease (CKD) is an important contributor to morbidity and mortality from non-communicable diseases. Recently, increasing focus has been put on the role of TMAO in the development and progress of chronic kidney disease. The level of TMAO in patients with chronic kidney disease is significantly increased, and a high level of TMAO deteriorates chronic kidney disease. This article describes the relationship between TMAO and chronic kidney disease and the research progress of drugs targeted TMAO, providing a reference for the development of anti-chronic kidney disease drugs targeted TMAO.
Collapse
Affiliation(s)
- Ye Zixin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chen Lulu
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Zeng Xiangchang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Fang Qing
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Zheng Binjie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Luo Chunyang
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Rao Tai
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ouyang Dongsheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
25
|
Thomas MS, Blesso CN, Calle MC, Chun OK, Puglisi M, Fernandez ML. Dietary Influences on Gut Microbiota with a Focus on Metabolic Syndrome. Metab Syndr Relat Disord 2022; 20:429-439. [PMID: 35704900 DOI: 10.1089/met.2021.0131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a clear correlation between gut microbiota, diet, and metabolic outcomes. A diet high in fiber has been shown to decrease inflammation, increase insulin sensitivity, and reduce dyslipidemias whereas a diet high in fat and sugar leads to dyslipidemia, insulin resistance, and low-grade inflammation. There is recent evidence suggesting that the human gut microbiota has a significant role in the development or the resolution of metabolic syndrome (MetS) and associated conditions. Leading a stressful, sedentary lifestyle with limited or no physical activity and consuming an unhealthy diet high in saturated fat, simple carbohydrates, and sodium and low in dietary fiber and in high-quality protein are some of the contributing factors. Unhealthy diets have been shown to induce alterations in the gut microbiota and contribute to the pathogenesis of MetS by altering microbiota composition and disrupting the intestinal barrier, which leads to low-grade systemic inflammation. In contrast, healthy diets can lead to changes in microbiota that increase gut barrier function and increase the production of anti-inflammatory biomarkers. This review aims at providing a more in-depth discussion of diet-induced dysbiosis of the gut microbiota and its effect on MetS. Here, we discuss the possible mechanisms involved in the development of the metabolic biomarkers that define MetS, with an emphasis on the role of sugar and dietary fiber in microbiome-mediated changes in low-grade systemic inflammation and metabolic dysfunction.
Collapse
Affiliation(s)
- Minu S Thomas
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Mariana C Calle
- Health Sciences Department ST 110-M, Worcester University, Worcester, Massachusetts, USA
| | - Ock K Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Michael Puglisi
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
26
|
Jing L, Zhang H, Xiang Q, Shen L, Guo X, Zhai C, Hu H. Targeting Trimethylamine N-Oxide: A New Therapeutic Strategy for Alleviating Atherosclerosis. Front Cardiovasc Med 2022; 9:864600. [PMID: 35770223 PMCID: PMC9235870 DOI: 10.3389/fcvm.2022.864600] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is one of the most common cardiovascular diseases (CVDs), and there is currently no effective drug to reverse its pathogenesis. Trimethylamine N-oxide (TMAO) is a metabolite of the gut flora with the potential to act as a new risk factor for CVD. Many studies have shown that TMAO is involved in the occurrence and development of atherosclerotic diseases through various mechanisms; however, the targeted therapy for TMAO remains controversial. This article summarizes the vital progress made in relation to evaluations on TMAO and AS in recent years and highlights novel probable approaches for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Lele Jing
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Honghong Zhang
- School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiannan Xiang
- School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Shen
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoxia Guo
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Changlin Zhai
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huilin Hu
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Huilin Hu
| |
Collapse
|
27
|
Impact of probiotic supplementation on trimethylamine N-oxide (TMAO) in humans: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2022; 50:56-62. [DOI: 10.1016/j.clnesp.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
|
28
|
Salzano A, Cassambai S, Yazaki Y, Israr MZ, Bernieh D, Wong M, Suzuki T. The Gut Axis Involvement in Heart Failure: Focus on Trimethylamine N-oxide. Cardiol Clin 2022; 40:161-169. [PMID: 35465890 DOI: 10.1016/j.ccl.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel pathophysiological model of interest is the association between heart failure (HF) and the gastrointestinal system, the 'gut hypothesis'. The choline and carnitine metabolic by-product, Trimethylamine N-oxide (TMAO) is one of the more prominent molecules associated with the link between HF and the gut. Indeed, TMAO levels are increased in HF populations and higher TMAO levels are associated with poor prognosis, whereas low TMAO levels either at baseline/follow up confer better prognosis. Considering that TMAO levels seem not to be affected by guideline-HF treatment, this model could represent a novel and independent therapeutic target for HF.
Collapse
Affiliation(s)
- Andrea Salzano
- IRCCS SDN, Diagnostic and Nuclear Research Institute, Via E Gianturco, 80143, Naples, Italy
| | - Shabana Cassambai
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Yoshiyuki Yazaki
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Muhammad Zubair Israr
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Dennis Bernieh
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Max Wong
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Toru Suzuki
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK.
| |
Collapse
|
29
|
Kızılaslan N, Sumbul O, Aygun H. The Beneficial Effect of Probiotics Supplementation on Penicillin-Induced Focal Seizure in Rats. Neurochem Res 2022; 47:1395-1404. [PMID: 35084660 DOI: 10.1007/s11064-022-03539-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
The focal epilepsy is a chronic neurological brain disorder which affects millions of people in the world. There is emerging evidence that changes in the gut microbiota may have effects on epileptic seizures. In the present study, we examined the effect of probiotics on penicillin-induced focal seizure model in rats. Male Wistar Albino rats (n: 21) were randomly divided into three groups: control (no medication), penicillin and penicillin + probiotic. Probiotic VSL#3 (12.86 bn living bacteria/kg/day) was given by gavage for 30 days. The seizures were induced by intracortical injection of penicillin G (500 IU) into the cortex. An ECoG recordings were made for 180 min after penicillin G application. The spike frequency and the amplitude were used to assess the severity of seizures. Tumor necrosis factor (TNF-α), nitric oxide (NO) and interleukin (IL-6) levels in the brain were studied biochemically. Our results indicated that probiotic supplementation improved focal seizures through increasing the latency (p < 0.001) and decreasing the spike frequency (p < 0.01) compared to the penicillin group. Penicillin-induced seizure in rats significantly enhanced TNF-α (p < 0.01), NO (p < 0.01) and IL-6 (p < 0.05) compared to the control. Probiotic supplementation significantly decreased IL-6 (p < 0.05), TNF-α (p < 0.01) and NO (p < 0.001) compared to the penicillin group. When the body weights were compared before and after the experiment, there was no difference between the control and penicillin groups, but it was observed that the body weight decreased after probiotic supplementation in the penicillin + probiotic group. Probiotic supplementation may have anti-seizure effect by reducing proinflammatory cytokine and NO levels in epileptic rat brain.
Collapse
Affiliation(s)
- Nildem Kızılaslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Orhan Sumbul
- Department of Neurology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, 60030, Turkey.
| |
Collapse
|
30
|
Cantero M, Guedes M, Fernandes R, Lollo PCB. Trimethylamine N-oxide reduction is related to probiotic strain specificity: a systematic review. Nutr Res 2022; 104:29-35. [DOI: 10.1016/j.nutres.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
|
31
|
Wang Q, Guo M, Liu Y, Xu M, Shi L, Li X, Zhao J, Zhang H, Wang G, Chen W. Bifidobacterium breve and Bifidobacterium longum Attenuate Choline-Induced Plasma Trimethylamine N-Oxide Production by Modulating Gut Microbiota in Mice. Nutrients 2022; 14:nu14061222. [PMID: 35334879 PMCID: PMC8950610 DOI: 10.3390/nu14061222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is the main cause of myocardial infarction and stroke, and the morbidity and mortality rates of cardiovascular disease are among the highest of any disease worldwide. Excessive plasma trimethylamine-N-oxide (TMAO), an intestinal metabolite, promotes the development of atherosclerosis. Therefore, effective measures for reducing plasma TMAO production can contribute to preventing atherosclerosis. Probiotics are living microorganisms that are beneficial to the human body, and some of them can attenuate plasma TMAO production. To explore the effects of probiotic supplementation on plasma TMAO in choline-fed mice, we intragastrically administered eight strains of Bifidobacterium breve and eight strains of Bifidobacterium longum to mice for 6 weeks. B. breve Bb4 and B. longum BL1 and BL7 significantly reduced plasma TMAO and plasma and cecal trimethylamine concentrations. However, hepatic flavin monooxygenase (FMO) activity, flavin-containing monooxygenase 3 (FMO3), farnesoid X receptor (FXR) protein expression and TMAO fractional excretion were not significantly affected by Bifidobacterium supplementation. The treatment of Bifidobacterium strains modulated the abundances of several genera such as Ruminococcaceae UCG-009, Ruminococcaceae UCG-010, which belong to the Firmicutes that has been reported with cut gene clusters, which may be related to the reduction in intestinal TMA and plasma TMAO. Additionally, a reduction in Ruminococcaceae indicates a reduction in circulating glucose and lipids, which may be another pathway by which Bifidobacterium strains reduce the risk of atherosclerosis. The effect of Bifidobacterium strains on Bacteroides also suggests a relationship between the abundance of this genus and TMA concentrations in the gut. Therefore, the mechanism underlying these changes might be gut microbiota regulation. These Bifidobacterium strains may have therapeutic potential for alleviating TMAO-related diseases.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Liu
- KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai 200062, China
| | - Mengshu Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuting Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Videja M, Sevostjanovs E, Upmale-Engela S, Liepinsh E, Konrade I, Dambrova M. Fasting-Mimicking Diet Reduces Trimethylamine N-Oxide Levels and Improves Serum Biochemical Parameters in Healthy Volunteers. Nutrients 2022; 14:nu14051093. [PMID: 35268068 PMCID: PMC8912301 DOI: 10.3390/nu14051093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
Elevated plasma levels of trimethylamine N-oxide (TMAO) have been proposed as a diet-derived biomarker of cardiometabolic disease risk. Caloric restriction is the most common dietary intervention used to improve cardiometabolic health; however, novel trends suggest a fasting-mimicking diet (FMD) as a more feasible alternative. FMD is a variation of intermittent fasting, based on caloric restriction and limitation of protein sources of animal origin, applied in daily cycles during a 5-day period. As TMAO is intensively produced by gut microbiota after the consumption of animal-derived products, we aim to investigate whether a 5-day FMD affects plasma TMAO levels and markers of metabolic health. To investigate whether an increase in vegetable intake possesses similar effects on TMAO levels and metabolic parameters, healthy volunteers (n = 24) were subjected to a 5-day FMD and 19 volunteers served as a reference group (VEG). This group of volunteers consumed an additional four servings of vegetables per day, but otherwise stayed on their usual diet. FMD resulted in a twofold decrease in plasma TMAO levels, which was not evident in the volunteers from the VEG group. Moreover, FMD led to a weight loss of 2.8 ± 0.2 kg and a subsequent reduction in BMI compared to baseline. The FMD group exhibited a significant elevation in plasma ketone bodies (14-fold compared to baseline) and a decrease in IGF-1 levels by 37 ± 8 ng/mL. Since fasting glucose and C-peptide levels decreased, all volunteers in the FMD group showed improved insulin sensitivity and a decreased HOMA-IR index. In contrast, in the VEG group, only a slight reduction in plasma levels of fasting glucose and triglycerides was noted. In conclusion, we show that FMD is a viable strategy to reduce plasma levels of TMAO by limiting caloric intake and animal-derived protein consumption. The reduction in the level of TMAO could be an additional benefit of FMD, leading to a reduced risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Melita Videja
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.S.); (S.U.-E.); (E.L.); (M.D.)
- Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia
- Correspondence:
| | - Eduards Sevostjanovs
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.S.); (S.U.-E.); (E.L.); (M.D.)
| | - Sabine Upmale-Engela
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.S.); (S.U.-E.); (E.L.); (M.D.)
- Department of Endocrinology, Riga East University Hospital, LV-1038 Riga, Latvia;
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.S.); (S.U.-E.); (E.L.); (M.D.)
| | - Ilze Konrade
- Department of Endocrinology, Riga East University Hospital, LV-1038 Riga, Latvia;
- Department of Internal Diseases, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.S.); (S.U.-E.); (E.L.); (M.D.)
- Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
33
|
Maioli TU, Borras-Nogues E, Torres L, Barbosa SC, Martins VD, Langella P, Azevedo VA, Chatel JM. Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders. Front Pharmacol 2021; 12:740636. [PMID: 34925006 PMCID: PMC8677946 DOI: 10.3389/fphar.2021.740636] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic disorders are an increasing concern in the industrialized world. Current research has shown a direct link between the composition of the gut microbiota and the pathogenesis of obesity and diabetes. In only a few weeks, an obesity-inducing diet can lead to increased gut permeability and microbial dysbiosis, which contributes to chronic inflammation in the gut and adipose tissues, and to the development of insulin resistance. In this review, we examine the interplay between gut inflammation, insulin resistance, and the gut microbiota, and discuss how some probiotic species can be used to modulate gut homeostasis. We focus primarily on Faecalibacterium prausnitzii, a highly abundant butyrate-producing bacterium that has been proposed both as a biomarker for the development of different gut pathologies and as a potential treatment due to its production of anti-inflammatory metabolites.
Collapse
Affiliation(s)
- Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| | | | - Licia Torres
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sara Candida Barbosa
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinicius Dantas Martins
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| | - Vasco Ariston Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Marc Chatel
- Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| |
Collapse
|
34
|
Changes in gut-microbiota-related metabolites and long-term improvements in lipoprotein subspecies in overweight and obese adults: the POUNDS lost trial. Int J Obes (Lond) 2021; 45:2600-2607. [PMID: 34426648 PMCID: PMC8608703 DOI: 10.1038/s41366-021-00939-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/23/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Alterations in gut microbiota have been linked to obesity and impaired lipid metabolism. Lipoproteins are heterogeneous, and lipoprotein subspecies containing apolipoprotein C-III (apoCIII) have adverse associations with obesity and related cardiometabolic abnormalities. We investigated associations of weight-loss diet-induced decreases in atherogenic gut-microbial metabolites, trimethylamine N-oxide (TMAO) and L-carnitine, with improvements in atherogenic lipoproteins containing apoCIII among patients with obesity. SUBJECTS/METHODS This study included overweight and obese adults who participated in a 2-year weight-loss dietary intervention, the POUNDS Lost trial. Blood levels of TMAO and L-carnitine were measured at baseline and 6 months after the intervention; 6-month changes in the metabolites were calculated. We evaluated 2-year changes in lipid profiles (n = 395) and cholesterol [Chol] in lipoprotein (very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL)) subfractions defined by the presence or absence of apoCIII (n = 277). RESULTS The initial (6-month) decrease in L-carnitine was significantly associated with long-term (2-year) reductions in non-HDL-Chol and LDL-Chol (p < 0.05). Also, the decrease in L-carnitine was significantly related to decreases in Chol in LDL with apoCIII (p = 0.034) and Chol in [LDL + VLDL] with apoCIII (p = 0.018). We found significant interactions between dietary fat and TMAO on changes in LDL-Chol (Pinteraction = 0.013) and Chol in [LDL + VLDL] with apoCIII (Pinteraction = 0.0048); a greater increase in TMAO was related to lesser improvements in the lipoprotein outcomes if participants consumed a high-fat compared to a low-fat diet. CONCLUSIONS Changes in TMAO and L-carnitine induced by weight-loss diets were associated with long-term improvements in atherogenic lipoproteins containing apoCIII, implicating that these metabolic changes might be predictive of an individual's response to the dietary treatment to modify the unfavorable lipid profiles in obese patients. Dietary fat intake might modify associations of TMAO changes with long-term improvements of atherogenic cholesterol metabolism in overweight and obese adults. CLINICALTRIALS. GOV IDENTIFIER NCT00072995.
Collapse
|
35
|
Ramireddy L, Tsen HY, Chiang YC, Hung CY, Wu SR, Young SL, Lin JS, Huang CH, Chiu SH, Chen CC, Chen CC. Molecular Identification and Selection of Probiotic Strains Able to Reduce the Serum TMAO Level in Mice Challenged with Choline. Foods 2021; 10:foods10122931. [PMID: 34945482 PMCID: PMC8700464 DOI: 10.3390/foods10122931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Trimethylamine oxide (TMAO) originates from trimethylamine (TMA), which is oxidized in the liver by hepatic flavin-containing monooxygenases (FMO3). TMA is produced by its dietary precursors such as choline, carnitine, and phosphatidylcholine by gut microbiota. TMAO attracts attention, identified as a novel and independent risk factor for promoting obesity, atherosclerosis and cardiovascular disease (CVD), chronic kidney disease (CKD), insulin tolerance, and colon cancer. Probiotics have been considered as live microorganisms, providing benefits to their host when they are given in sufficient quantities and administered continuously. The objective of this study is to suggest a method to select potential probiotic strains to reduce the serum concentration of TMAO in mice fed with choline. In this work, we chose three lactobacilli with strong adherence capability, and fed multistrain formula (MF) to the mice challenged with choline. On days 7, 14, and day 28, it was found that the MF-containing L. amylovorus LAM1345, Lpb. plantarum LP1145, and Lim. fermentum LF33 showed a significant reduction in serum TMAO and TMA levels. For the single strains, LP1145 reduced TMAO on days 14 and 28, and strain LAM1345 reduced TMAO significantly on days 7 and day 14. For strain LF1143 from strain LF33, it showed no significant effect on TMAO and TMA. Thus, MF showed the best effect, which may be due to the additive and synergetic effect and the contribution of strain LP1145 and LAM1345. Finally, for the LAM1345 and LP1145 strains, we used molecular identification and typing methods to assure that these two strains are unique strains. The methods used for LAM 1345 were leader peptidase A (lepA) gene analysis and phylogenetic analysis, while for strain LP 1145and other strains of Lpb. plantarum subsp. plantarum sequences were compared using the whole-genome multilocus sequence typing (wgMLST) method.
Collapse
Affiliation(s)
- Latha Ramireddy
- Department of Food Science and Technology, Hung Kuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan;
- Correspondence: (L.R.); (H.-Y.T.); Tel.: +886-4-26318652 (ext. 5085) (H.-Y.T.); Fax: 886-4-26527731 (H.-Y.T.)
| | - Hau-Yang Tsen
- Department of Food Science and Technology, Hung Kuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan;
- Correspondence: (L.R.); (H.-Y.T.); Tel.: +886-4-26318652 (ext. 5085) (H.-Y.T.); Fax: 886-4-26527731 (H.-Y.T.)
| | - Yu-Chen Chiang
- Department of Food Nutrition and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Chen-Ying Hung
- Department of Internal Medicine, Taipei Veterans General Hospital, Hsinchu Branch, Hsinchu 310, Taiwan;
| | - Shih-Rong Wu
- Department of Food Science and Technology, Hung Kuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan;
| | - San-Land Young
- Culture Collection and Research Institute, Synbio Tech Inc., Kaohsiung 82151, Taiwan; (S.-L.Y.); (J.-S.L.)
| | - Jin-Seng Lin
- Culture Collection and Research Institute, Synbio Tech Inc., Kaohsiung 82151, Taiwan; (S.-L.Y.); (J.-S.L.)
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (C.-C.C.)
| | - Shih-Hau Chiu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (C.-C.C.)
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (C.-C.C.)
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| |
Collapse
|
36
|
Buawangpong N, Pinyopornpanish K, Siri-Angkul N, Chattipakorn N, Chattipakorn SC. The role of trimethylamine-N-Oxide in the development of Alzheimer's disease. J Cell Physiol 2021; 237:1661-1685. [PMID: 34812510 DOI: 10.1002/jcp.30646] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is associated with multiple risk factors and is the most common type of dementia. Trimethylamine-N-oxide (TMAO), a gut microbiota metabolite derived from dietary choline and carnitine, has recently been identified as a potential risk factor of Alzheimer's disease. It has been demonstrated that TMAO is associated with Alzheimer's disease through various pathophysiological pathways. As a result of molecular crowding effects, TMAO causes the aggregation of the two proteins, amyloid-beta peptide and tau protein. The aggregation of these proteins is the main pathology associated with Alzheimer's disease. In addition, it has been found that TMAO can activate astrocytes, and inflammatory response. Besides molecular investigation, animal and human studies have also supported the existence of a functional relationship between TMAO and cognitive decline. This article comprehensively summarizes the relationship between TMAO and Alzheimer's disease including emerging evidence from in vitro, in vivo, and clinical studies. We hope that this knowledge will improve the prevention and treatment of Alzheimer's disease in the near future.
Collapse
Affiliation(s)
- Nida Buawangpong
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Natthapat Siri-Angkul
- Department of Physiology, Cardiac Electrophysiology Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University Chiang Mai, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Cardiac Electrophysiology Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University Chiang Mai, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University Chiang Mai, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
37
|
Li Y, Cao H, Wang X, Guo L, Ding X, Zhao W, Zhang F. Diet-mediated metaorganismal relay biotransformation: health effects and pathways. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34802351 DOI: 10.1080/10408398.2021.2004993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In recent years, the concept of metaorganism expands our insight into how diet-microbe-host interactions contribute to human health and diseases. We realized that many biological metabolic processes in the host can be summarized into metaorganismal relay pathways, in which metabolites such as trimethylamine-N‑oxide, short-chain fatty acids and bile acids act as double-edged swords (beneficial or harmful effects) in the initiation and progression of diseases. Pleiotropic effects of metabolites are derived from several influencing factors including dose level, targeted organ of effect, action duration and species of these metabolites. Based on the pleiotropic effects of metabolites, personalized therapeutic approaches including microecological agents, enzymatic regulators and changes in dietary habits to govern related metabolite production may provide a new insight in promoting human health. In this review, we summarize our current knowledge of metaorganismal relay pathways and elaborate on the pleiotropic effects of metabolites in these pathways, with special emphasis on related therapeutic nutritional interventions.
Collapse
Affiliation(s)
- Yanmin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hong Cao
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoqian Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lichun Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feng Zhang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Tang J, Qin M, Tang L, Shan D, Zhang C, Zhang Y, Wei H, Qiu L, Yu J. Enterobacter aerogenes ZDY01 inhibits choline-induced atherosclerosis through CDCA-FXR-FGF15 axis. Food Funct 2021; 12:9932-9946. [PMID: 34492674 DOI: 10.1039/d1fo02021h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Atherosclerosis is the leading cause of cardiovascular diseases worldwide. Trimethylamine N-oxide (TMAO), a metabolite of intestinal flora from dietary quaternary amines, has been shown to be closely related to the development of atherosclerosis. Previous studies have shown that Enterobacter aerogenes ZDY01 significantly reduces the serum levels of TMAO and cecal trimethylamine (TMA) in Balb/c mice; however, its role in the inhibition of choline-induced atherosclerosis in ApoE-/- mice remains unclear. Here, we demonstrated that E. aerogenes ZDY01 inhibited choline-induced atherosclerosis in ApoE-/- mice fed with 1.3% choline by reducing cecal TMA and modulating CDCA-FXR/FGF15 axis. We observed that E. aerogenes ZDY01 decreased the cecal TMA and serum TMAO levels by utilizing cecal TMA as a nutrient, not by changing the expression of hepatic FMO3 and the composition of gut microbiota. Furthermore, E. aerogenes ZDY01 enhanced the expression of bile acid transporters and reduced the cecal CDCA levels, thereby attenuating the FXR/FGF15 pathway, upregulating the expression of Cyp7a1, promoting reverse cholesterol transport. Taken together, E. aerogenes ZDY01 attenuated choline-induced atherosclerosis in ApoE-/- mice by decreasing cecal TMA and promoting reverse cholesterol transport, implying that E. aerogenes ZDY01 treatment might have therapeutic potential in atherosclerosis.
Collapse
Affiliation(s)
- Jinghui Tang
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China. .,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodelling Diseases, China
| | - Manman Qin
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China. .,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodelling Diseases, China
| | - Le Tang
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China. .,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodelling Diseases, China
| | - Dan Shan
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China. .,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodelling Diseases, China
| | - Cheng Zhang
- Department of Physiology and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Yifeng Zhang
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China. .,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodelling Diseases, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China
| | - Liang Qiu
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China. .,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodelling Diseases, China
| | - Jun Yu
- Department of Physiology and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
39
|
Cardiovascular Diseases and Pharmacomicrobiomics: A Perspective on Possible Treatment Relevance. Biomedicines 2021; 9:biomedicines9101338. [PMID: 34680455 PMCID: PMC8533057 DOI: 10.3390/biomedicines9101338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs), the most common cause of mortality in rich countries, include a wide variety of pathologies of the heart muscle and vascular system that compromise the proper functioning of the heart. Most of the risk factors for cardiovascular diseases are well-known: lipid disorders, high serum LDL cholesterol, hypertension, smoking, obesity, diabetes, male sex and physical inactivity. Currently, much evidence shows that: (i) the human microbiota plays a crucial role in maintaining the organism’s healthy status; and (ii) a link exists between microbiota and cardiovascular function that, if dysregulated, could potentially correlate with CVDs. This scenario led the scientific community to carefully analyze the role of the microbiota in response to drugs, considering this the right path to improve the effectiveness of disease treatment. In this review, we examine heart diseases and highlight how the microbiota actually plays a preponderant role in their development. Finally, we investigate pharmacomicrobiomics—a new interesting field—and the microbiota’s role in modulating the response to drugs, to improve their effectiveness by making their action targeted, focusing particular attention on cardiovascular diseases and on innovative potential treatments.
Collapse
|
40
|
Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer. Appl Microbiol Biotechnol 2021; 105:7651-7660. [PMID: 34568962 DOI: 10.1007/s00253-021-11582-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/12/2023]
Abstract
Among gut microbiota-derived metabolites, trimethylamine-N-oxide (TMAO) is receiving increased attention due to its possible role in the carcinogenesis of colorectal cancer (CRC). In spite of numerous reports implicating TMAO with CRC, there is a lack of empirical mechanistic evidences to concretize the involvement of TMAO in the carcinogenesis of CRC. Possible mechanisms such as inflammation, oxidative stress, DNA damage, and protein misfolding by TMAO have been discussed in this review in the light of the latest advancements in the field. This review is an attempt to discuss the probable correlation between TMAO and CRC but this linkage can be concretized only once we get sufficient empirical evidences from the mechanistic studies. We believe, this review will augment the understanding of linking TMAO with CRC and will motivate researchers to move towards mechanistic study for reinforcing the idea of implicating TMAO with CRC causation. KEY POINTS: • TMAO is a gut bacterial metabolite which has been implicated in CRC in recent years. • The valid mechanistic approach of CRC causation by TMAO is unknown. • The article summarizes the possible mechanisms which need to be explored for validation.
Collapse
|
41
|
Miao L, Du J, Chen Z, Shi D, Qu H. Effects of Microbiota-Driven Therapy on Circulating Trimethylamine-N-Oxide Metabolism: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2021; 8:710567. [PMID: 34552967 PMCID: PMC8450403 DOI: 10.3389/fcvm.2021.710567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023] Open
Abstract
Aim: This study was designed to systematically evaluate the effects of microbiota-driven therapy on decreasing TMAO and its related metabolites. Methods and Results: PubMed, EMBASE and Cochrane Library databases were searched (up to July 2021). Randomized controlled trials (RCTs), compared microbiota-driven therapy (prebiotics, probiotics, or synbiotics) with placebo on decreasing TMAO and its related metabolites, were eligible. Two researchers extracted the data independently and the disagreement was resolved by a third researcher. The risk of bias of included study was evaluated using Cochrane tool (RoB 2.0). Meta-analysis, meta-regression analysis and publication bias analysis were performed by RevMan 5.3 or Stata 12.0 software. Ten studies (12 arms) involving 342 patients (168 patients in the intervention group and 174 patients in the control group) were included. Compared with the control group, microbiota-driven therapy did not reduce circulating TMAO [SMD = −0.05, 95% CI (−0.36, 0.26), P = 0.749], choline [SMD = −0.34, 95% CI (−1.09, 0.41), P = 0.373], betaine aldehyde [SMD = −0.704, 95% CI (−1.789, 0.382), P = 0.204], and L-carnatine [SMD = −0.06, 95% CI (−0.38, 0.25), P = 0.692]. Conclusion: Current evidence does not support that microbiota-driven treatment reduce circulating levels of TMAO, choline, betaine aldehyde, and L-carnitine. However, given the small sample size, this conclusion needs to be proved in the future. Systematic Review Registration: PROSPERO:CRD42019119107.
Collapse
Affiliation(s)
- Lina Miao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianpeng Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuhong Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.,NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
42
|
Annunziata G, Ciampaglia R, Capò X, Guerra F, Sureda A, Tenore GC, Novellino E. Polycystic ovary syndrome and cardiovascular risk. Could trimethylamine N-oxide (TMAO) be a major player? A potential upgrade forward in the DOGMA theory. Biomed Pharmacother 2021; 143:112171. [PMID: 34536755 DOI: 10.1016/j.biopha.2021.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/26/2022] Open
Abstract
Several studies reported an increase in cardiovascular risk (CVR) in women with polycystic ovary syndrome (PCOS), considered primarily as the result of the combination of all the clinical features that characterize the syndrome, including hyperandrogenism, insulin resistance, diabetes, obesity chronic low-grade inflammation. Interestingly, in 2012 it has been proposed the so-called DOGMA theory, suggesting the pivotal role played by microbiota alteration in the development of PCOS. Subsequently, several authors evidenced the existence in PCOS women of a marked dysbiosis, which is related to the development of metabolic diseases and cardiovascular complications, mainly due to the production of bacteria-derived metabolites that interfere with various pathways. Among these, trimethylamine-N-oxide (TMAO) is emerging as one of the most important and studied microbiota-derived metabolites related to the increase in CVR, due to its pro-atherosclerotic effect. The purpose of the present review is to summarize the evidence in order to support the hypothesis that, in women with PCOS, dysbiosis might be further involved in enhancement of the CVR via contributing to the increase of circulating TMAO. Although no observational studies on a large number of patients directly investigated the serum levels of TMAO in PCOS women, this manuscript aimed to drive future studies in this field, concurring in providing a novel approach for both comprehension and treatment of the CVR in PCOS.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Roberto Ciampaglia
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Xavier Capò
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain.
| | - Fabrizia Guerra
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Ettore Novellino
- NGN Healthcare - New Generation Nutraceuticals s.r.l., Torrette Via Nazionale 207, 83013 Mercogliano, Avellino, Italy.
| |
Collapse
|
43
|
Steele CN, Baugh ME, Griffin LE, Neilson AP, Davy BM, Hulver MW, Davy KP. Fasting and postprandial trimethylamine N-oxide in sedentary and endurance-trained males following a short-term high-fat diet. Physiol Rep 2021; 9:e14970. [PMID: 34405585 PMCID: PMC8371342 DOI: 10.14814/phy2.14970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
Gut bacteria release trimethylamine (TMA) from dietary substrates. TMA is absorbed and is subsequently oxidized in the liver to produce trimethylamine N-oxide (TMAO). Plasma TMAO levels are positively correlated with risk for type 2 diabetes (T2D) and cardiovascular disease (CVD). High-fat diet (HFD) consumption has been reported to increase fasting and postprandial TMAO in sedentary individuals. However, whether the increase in TMAO with consumption of an HFD is observed in endurance-trained males is unknown. Healthy, sedentary (n = 17), and endurance-trained (n = 7) males consumed a 10-day eucaloric diet comprised of 55% carbohydrate, 30% total fat, and <10% saturated fat prior to baseline testing. Blood samples were obtained in a fasted state and for a 4-hour high-fat challenge (HFC) meal at baseline and then again following 5-day HFD (30% carbohydrate, 55% total fat, and 25% saturated fat). Plasma TMAO and TMA-moiety (choline, betaine, L-carnitine) concentrations were measured using isocratic ultraperformance liquid chromatography-tandem mass spectrometry. Age (23 ±3 vs. 22 ± 2 years) and body mass index (23.0 ± 3.0 vs. 23.5 ± 2.1 kg/m2 ) were similar (both p > 0.05) in the sedentary and endurance-trained group, respectively. VO2max was significantly higher in the endurance-trained compared with sedentary males (56.7 ± 8.2 vs. 39.9 ± 6.0 ml/kg/min). Neither the HFC nor the HFD evoked a detectable change in plasma TMAO (p > 0.05) in either group. Future studies are needed to identify the effects of endurance training on TMAO production.
Collapse
Affiliation(s)
- Cortney N. Steele
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz MedicalAuroraCOUSA
| | - Mary Elizabeth Baugh
- Center for Transformative Research on Health BehaviorsFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVAUSA
| | - Laura E. Griffin
- Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityKannapolisNCUSA
- Plants for Human Health InstituteKannapolisNCUSA
| | - Andrew P. Neilson
- Department of Food, Bioprocessing and Nutrition SciencesNorth Carolina State UniversityKannapolisNCUSA
- Plants for Human Health InstituteKannapolisNCUSA
| | - Brenda M. Davy
- Department of Human Nutrition, Foods, and ExerciseVirginia TechBlacksburgVAUSA
- Translational Obesity Research Interdisciplinary Graduate Education ProgramVirginia TechBlacksburgVAUSA
| | - Matthew W. Hulver
- Department of Human Nutrition, Foods, and ExerciseVirginia TechBlacksburgVAUSA
- Translational Obesity Research Interdisciplinary Graduate Education ProgramVirginia TechBlacksburgVAUSA
| | - Kevin P. Davy
- Department of Human Nutrition, Foods, and ExerciseVirginia TechBlacksburgVAUSA
- Translational Obesity Research Interdisciplinary Graduate Education ProgramVirginia TechBlacksburgVAUSA
| |
Collapse
|
44
|
Murphy K, O'Donovan AN, Caplice NM, Ross RP, Stanton C. Exploring the Gut Microbiota and Cardiovascular Disease. Metabolites 2021; 11:metabo11080493. [PMID: 34436434 PMCID: PMC8401482 DOI: 10.3390/metabo11080493] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) has been classified as one of the leading causes of morbidity and mortality worldwide. CVD risk factors include smoking, hypertension, dyslipidaemia, obesity, inflammation and diabetes. The gut microbiota can influence human health through multiple interactions and community changes are associated with the development and progression of numerous disease states, including CVD. The gut microbiota are involved in the production of several metabolites, such as short-chain fatty acids (SCFAs), bile acids and trimethylamine-N-oxide (TMAO). These products of microbial metabolism are important modulatory factors and have been associated with an increased risk of CVD. Due to its association with CVD development, the gut microbiota has emerged as a target for therapeutic approaches. In this review, we summarise the current knowledge on the role of the gut microbiome in CVD development, and associated microbial communities, functions, and metabolic profiles. We also discuss CVD therapeutic interventions that target the gut microbiota such as probiotics and faecal microbiota transplantation.
Collapse
Affiliation(s)
- Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Aoife N O'Donovan
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Co. Cork P61 C996, Ireland
| | - Noel M Caplice
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Co. Cork P61 C996, Ireland
| |
Collapse
|
45
|
Zhou J, Wang D, Li B, Li X, Lai X, Lei S, Li N, Zhang X. Relationship between Plasma Trimethylamine N-Oxide Levels and Renal Dysfunction in Patients with Hypertension. Kidney Blood Press Res 2021; 46:421-432. [PMID: 34233325 DOI: 10.1159/000513033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Trimethylamine N-oxide (TMAO) is a metabolite produced by gut bacteria. Although increased TMAO levels have been linked to hypertension (HTN) and chronic kidney disease (CKD) with poor prognosis, no clinical studies have directly addressed the relationship between them. In this study, we investigated the relationship between TMAO and renal dysfunction in hypertensive patients. METHODS We included healthy controls (n = 50), hypertensive patients (n = 46), and hypertensive patients with renal dysfunction (n = 143). Their blood pressure values were taken as the highest measured blood pressure. Renal function was evaluated using the estimated glomerular filtration rate. Plasma TMAO levels were measured using high-performance liquid chromatography tandem mass spectrometry. RESULTS We found significant differences in plasma TMAO levels among the 3 groups (p < 0.01). The plasma TMAO of patients with HTN was significantly higher than that of healthy people, and the plasma TMAO of patients with HTN complicated by renal dysfunction was significantly higher than either of the other groups. Patients in the highest TMAO quartile were at a higher risk of developing CKD stage 5 than those in the lowest quartile. In the receiver operating characteristic curve, the area under the curve of TMAO combined with β 2-macroglobulin for predicting renal dysfunction in patients with HTN was 0.85 (95% confidence interval 0.80-0.90). CONCLUSION An elevated TMAO level reflects higher levels of HTN and more severe renal dysfunction. TMAO, combined with β 2-macroglobulin levels, may assist in diagnosing CKD in hypertensive patients. Plasma TMAO has predictive value for early kidney disease in hypertensive patients.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dingkun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bingong Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Cardiovascular Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Xuelian Li
- Department of Cardiovascular Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Xingjun Lai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shufang Lei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Na Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuting Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
46
|
Ravid JD, Kamel MH, Chitalia VC. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. Nat Rev Nephrol 2021; 17:402-416. [PMID: 33758363 DOI: 10.1038/s41581-021-00408-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the retention of a myriad of solutes termed uraemic (or uremic) toxins, which inflict damage to several organs, including the cardiovascular system. Uraemic toxins can induce hallmarks of cardiovascular disease (CVD), such as atherothrombosis, heart failure, dysrhythmias, vessel calcification and dysregulated angiogenesis. CVD is an important driver of mortality in patients with CKD; however, reliance on conventional approaches to managing CVD risk is insufficient in these patients, underscoring a need to target risk factors that are specific to CKD. Mounting evidence suggests that targeting uraemic toxins and/or pathways induced by uraemic toxins, including tryptophan metabolites and trimethylamine N-oxide (TMAO), can lower the risk of CVD in patients with CKD. Although tangible therapies resulting from our growing knowledge of uraemic toxicity are yet to materialize, a number of pharmacological and non-pharmacological approaches have the potential to abrogate the effects of uraemic toxins, for example, by decreasing the production of uraemic toxins, by modifying metabolic pathways induced by uraemic toxins such as those controlled by aryl hydrocarbon receptor signalling and by augmenting the clearance of uraemic toxins.
Collapse
Affiliation(s)
- Jonathan D Ravid
- School of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Mohamed Hassan Kamel
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA. .,Boston Veterans Affairs Healthcare System, Boston, MA, USA. .,Global Co-creation Lab, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
47
|
Brunt VE, Casso AG, Gioscia-Ryan RA, Sapinsley ZJ, Ziemba BP, Clayton ZS, Bazzoni AE, VanDongen NS, Richey JJ, Hutton DA, Zigler MC, Neilson AP, Davy KP, Seals DR. Gut Microbiome-Derived Metabolite Trimethylamine N-Oxide Induces Aortic Stiffening and Increases Systolic Blood Pressure With Aging in Mice and Humans. Hypertension 2021; 78:499-511. [PMID: 33966451 DOI: 10.1161/hypertensionaha.120.16895] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vienna E Brunt
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - Abigail G Casso
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - Rachel A Gioscia-Ryan
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - Zachary J Sapinsley
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - Brian P Ziemba
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - Zachary S Clayton
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - Amy E Bazzoni
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - Nicholas S VanDongen
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - James J Richey
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - David A Hutton
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - Melanie C Zigler
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| | - Andrew P Neilson
- Department of Food Science and Technology (A.P.N.).,Now with Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis (A.P.N.)
| | - Kevin P Davy
- Department of Human Nutrition, Foods, and Exercise (K.P.D.), Virginia Tech, Blacksburg
| | - Douglas R Seals
- From the Department of Integrative Physiology, University of Colorado Boulder (V.E.B., A.G.C., R.A.G.-R., Z.J.S., B.P.Z., Z.S.C., A.E.B., N.S.V., J.J.R., D.A.H., M.C.Z., D.R.S.)
| |
Collapse
|
48
|
Thomas MS, Fernandez ML. Trimethylamine N-Oxide (TMAO), Diet and Cardiovascular Disease. Curr Atheroscler Rep 2021; 23:12. [PMID: 33594574 DOI: 10.1007/s11883-021-00910-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The association between plasma Trimethylamine N-Oxide (TMAO), diet and risk for cardiovascular disease (CVD) is still not fully understood. While epidemiologic research shows a causal relationship between plasma TMAO concentrations and CVD risk, the role of dietary precursors in determining plasma concentrations of TMAO and biomarkers for CVD is inconclusive. RECENT FINDINGS Studies in diverse populations show that plasma TMAO concentrations are positively associated with inflammation, endothelial dysfunction, type-2 diabetes, central adiposity and hypertension. Most recent studies utilizing challenges of dietary choline have not shown increases in plasma chronic TMAO concentrations while studies with carnitine have shown increases in plasma TMAO but in some cases, no alterations in plasma lipids or biomarkers of oxidative stress were observed. TMAO is an important plasma metabolite that through several mechanisms can increase the risk of CVD. The correlations between dietary choline and carnitine on chronic plasma TMAO levels and risk for CVD requires further investigation.
Collapse
Affiliation(s)
- Minu S Thomas
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
49
|
Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins (Basel) 2021; 13:toxins13020142. [PMID: 33668632 PMCID: PMC7917723 DOI: 10.3390/toxins13020142] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is a progressive loss of renal function. The gradual decline in kidney function leads to an accumulation of toxins normally cleared by the kidneys, resulting in uremia. Uremic toxins are classified into three categories: free water-soluble low-molecular-weight solutes, protein-bound solutes, and middle molecules. CKD patients have increased risk of developing cardiovascular disease (CVD), due to an assortment of CKD-specific risk factors. The accumulation of uremic toxins in the circulation and in tissues is associated with the progression of CKD and its co-morbidities, including CVD. Although numerous uremic toxins have been identified to date and many of them are believed to play a role in the progression of CKD and CVD, very few toxins have been extensively studied. The pathophysiological mechanisms of uremic toxins must be investigated further for a better understanding of their roles in disease progression and to develop therapeutic interventions against uremic toxicity. This review discusses the renal and cardiovascular toxicity of uremic toxins indoxyl sulfate, p-cresyl sulfate, hippuric acid, TMAO, ADMA, TNF-α, and IL-6. A focus is also placed on potential therapeutic targets against uremic toxicity.
Collapse
|
50
|
Gut Microbiome and Precision Nutrition in Heart Failure: Hype or Hope? Curr Heart Fail Rep 2021; 18:23-32. [DOI: 10.1007/s11897-021-00503-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
|