1
|
Cory AB, Wilson RM, Holmes ME, Riley WJ, Li YF, Tfaily MM, Bagby SC, Crill PM, Ernakovich JG, Rich VI, Chanton JP. A climatically significant abiotic mechanism driving carbon loss and nitrogen limitation in peat bogs. Sci Rep 2025; 15:2560. [PMID: 39833269 PMCID: PMC11747108 DOI: 10.1038/s41598-025-85928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Sphagnum-dominated bogs are climatically impactful systems that exhibit two puzzling characteristics: CO2:CH4 ratios are greater than those predicted by electron balance models and C decomposition rates are enigmatically slow. We hypothesized that Maillard reactions partially explain both phenomena by increasing apparent CO2 production via eliminative decarboxylation and sequestering bioavailable nitrogen (N). We tested this hypothesis using incubations of sterilized Maillard reactants, and live and sterilized bog peat. Consistent with our hypotheses, CO2 production in the sterilized peat was equivalent to 8-13% of CO2 production in unsterilized peat, and the increased formation of aromatic N compounds decreased N-availability. Numerous sterility assessments rule out biological contamination or extracellular enzyme activity as significant sources of this CO2. These findings suggest a need for a reevaluation of the fixed CO2:CH4 production ratios commonly used in wetland biogeochemical models, which could be improved by incorporating abiotic sources of CO2 production and N sequestration.
Collapse
Affiliation(s)
| | | | | | - William J Riley
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-8099, USA
| | - Yueh-Fen Li
- The Ohio State University, Columbus, OH, 43210-1132, USA
| | | | - Sarah C Bagby
- Case Western Reserve University, Cleveland, OH, 44107-2623, USA
| | - Patrick M Crill
- Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, 106 91, Stockholm, Sweden
| | | | | | | |
Collapse
|
2
|
Bouranis JA, Tfaily MM. Inside the microbial black box: a redox-centric framework for deciphering microbial metabolism. Trends Microbiol 2024; 32:1170-1178. [PMID: 38825550 DOI: 10.1016/j.tim.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
Microbial metabolism influences the global climate and human health and is governed by the balance between NADH and NAD+ through redox reactions. Historically, oxidative (i.e., catabolism) and reductive (i.e., fermentation) pathways have been studied in isolation, obscuring the complete metabolic picture. However, new omics technologies and biotechnological tools now allow an integrated system-level understanding of the drivers of microbial metabolism through observation and manipulation of redox reactions. Here we present perspectives on the importance of viewing microbial metabolism as the dynamic interplay between oxidative and reductive processes and apply this framework to diverse microbial systems. Additionally, we highlight novel biotechnologies to monitor and manipulate microbial redox status to control metabolism in unprecedented ways. This redox-focused systems biology framework enables a more mechanistic understanding of microbial metabolism.
Collapse
Affiliation(s)
- John A Bouranis
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85719, USA
| | - Malak M Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85719, USA.
| |
Collapse
|
3
|
Freire-Zapata V, Holland-Moritz H, Cronin DR, Aroney S, Smith DA, Wilson RM, Ernakovich JG, Woodcroft BJ, Bagby SC, Rich VI, Sullivan MB, Stegen JC, Tfaily MM. Microbiome-metabolite linkages drive greenhouse gas dynamics over a permafrost thaw gradient. Nat Microbiol 2024; 9:2892-2908. [PMID: 39354152 PMCID: PMC11522005 DOI: 10.1038/s41564-024-01800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/30/2024] [Indexed: 10/03/2024]
Abstract
Interactions between microbiomes and metabolites play crucial roles in the environment, yet how these interactions drive greenhouse gas emissions during ecosystem changes remains unclear. Here we analysed microbial and metabolite composition across a permafrost thaw gradient in Stordalen Mire, Sweden, using paired genome-resolved metagenomics and high-resolution Fourier transform ion cyclotron resonance mass spectrometry guided by principles from community assembly theory to test whether microorganisms and metabolites show concordant responses to changing drivers. Our analysis revealed divergence between the inferred microbial versus metabolite assembly processes, suggesting distinct responses to the same selective pressures. This contradicts common assumptions in trait-based microbial models and highlights the limitations of measuring microbial community-level data alone. Furthermore, feature-scale analysis revealed connections between microbial taxa, metabolites and observed CO2 and CH4 porewater variations. Our study showcases insights gained by using feature-level data and microorganism-metabolite interactions to better understand metabolic processes that drive greenhouse gas emissions during ecosystem changes.
Collapse
Affiliation(s)
| | - Hannah Holland-Moritz
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Center for Soil Biogeochemistry and Microbial Ecology, University of New Hampshire, Durham, NH, USA
| | - Dylan R Cronin
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Sam Aroney
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Derek A Smith
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Rachel M Wilson
- Department of Earth Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, USA
| | - Jessica G Ernakovich
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Sarah C Bagby
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - James C Stegen
- Terrestrial and Aquatic Integration Team, Pacific Northwest National Laboratory, Richland, WA, USA
- School of the Environment, Washington State University, Pullman, WA, USA
| | - Malak M Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA.
- Bio5 Institute, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Iskuzhina L, Batasheva S, Kryuchkova M, Rozhin A, Zolotykh M, Mingaleeva R, Akhatova F, Stavitskaya A, Cherednichenko K, Rozhina E. Advances in the Toxicity Assessment of Silver Nanoparticles Derived from a Sphagnum fallax Extract for Monolayers and Spheroids. Biomolecules 2024; 14:611. [PMID: 38927015 PMCID: PMC11202274 DOI: 10.3390/biom14060611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024] Open
Abstract
The production of nanomaterials through environmentally friendly methods is a top priority in the sustainable development of nanotechnology. This paper presents data on the synthesis of silver nanoparticles using an aqueous extract of Sphagnum fallax moss at room temperature. The morphology, stability, and size of the nanoparticles were analyzed using various techniques, including transmission electron microscopy, Doppler laser velocimetry, and UV-vis spectroscopy. In addition, Fourier transform infrared spectroscopy was used to analyze the presence of moss metabolites on the surface of nanomaterials. The effects of different concentrations of citrate-stabilized and moss extract-stabilized silver nanoparticles on cell viability, necrosis induction, and cell impedance were compared. The internalization of silver nanoparticles into both monolayers and three-dimensional cells spheroids was evaluated using dark-field microscopy and hyperspectral imaging. An eco-friendly method for the synthesis of silver nanoparticles at room temperature is proposed, which makes it possible to obtain spherical nanoparticles of 20-30 nm in size with high bioavailability and that have potential applications in various areas of human life.
Collapse
Affiliation(s)
- Liliya Iskuzhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
- Institute for Regenerative Medicine, Sechenov University, Trubetskaya Str. 8/2, 119992 Moscow, Russia
| | - Marina Kryuchkova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Artem Rozhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Mariya Zolotykh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Rimma Mingaleeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia; (A.S.); (K.C.)
| | - Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia; (A.S.); (K.C.)
| | - Elvira Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| |
Collapse
|
5
|
Korn R, Berg C, Bersier LF, Gray SM, Thallinger GG. Habitat conditions and not moss composition mediate microbial community structure in Swiss peatlands. Environ Microbiol 2024; 26:e16631. [PMID: 38757479 DOI: 10.1111/1462-2920.16631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Peatlands, one of the oldest ecosystems, globally store significant amounts of carbon and freshwater. However, they are under severe threat from human activities, leading to changes in water, nutrient and temperature regimes in these delicate systems. Such shifts can trigger a substantial carbon flux into the atmosphere and diminish the water-holding capacity of peatlands. Microbes associated with moss in peatlands play a crucial role in providing these ecosystem services, which are at risk due to global change. Therefore, understanding the factors influencing microbial composition and function is vital. Our study focused on five peatlands along an altitudinal gradient in Switzerland, where we sampled moss on hummocks containing Sarracenia purpurea. Structural equation modelling revealed that habitat condition was the primary predictor of community structure and directly influenced other environmental variables. Interestingly, the microbial composition was not linked to the local moss species identity. Instead, microbial communities varied significantly between sites due to differences in acidity levels and nitrogen availability. This finding was also mirrored in a co-occurrence network analysis, which displayed a distinct distribution of indicator species for acidity and nitrogen availability. Therefore, peatland conservation should take into account the critical habitat characteristics of moss-associated microbial communities.
Collapse
Affiliation(s)
- Rachel Korn
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Sarah M Gray
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gerhard G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
- OMICS Center Graz, BioTechMed, Graz, Austria
| |
Collapse
|
6
|
Wang Y, Xue D, Chen X, Qiu Q, Chen H. Structure and Functions of Endophytic Bacterial Communities Associated with Sphagnum Mosses and Their Drivers in Two Different Nutrient Types of Peatlands. MICROBIAL ECOLOGY 2024; 87:47. [PMID: 38407642 PMCID: PMC10896819 DOI: 10.1007/s00248-024-02355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Sphagnum mosses are keystone plant species in the peatland ecosystems that play a crucial role in the formation of peat, which shelters a broad diversity of endophytic bacteria with important ecological functions. In particular, methanotrophic and nitrogen-fixing endophytic bacteria benefit Sphagnum moss hosts by providing both carbon and nitrogen. However, the composition and abundance of endophytic bacteria from different species of Sphagnum moss in peatlands of different nutrient statuses and their drivers remain unclear. This study used 16S rRNA gene amplicon sequencing to examine endophytic bacterial communities in Sphagnum mosses and measured the activity of methanotrophic microbial by the 13C-CH4 oxidation rate. According to the results, the endophytic bacterial community structure varied among Sphagnum moss species and Sphagnum capillifolium had the highest endophytic bacterial alpha diversity. Moreover, chlorophyll, phenol oxidase, carbon contents, and water retention capacity strongly shaped the communities of endophytic bacteria. Finally, Sphagnum palustre in Hani (SP) had a higher methane oxidation rate than S. palustre in Taishanmiao. This result is associated with the higher average relative abundance of Methyloferula an obligate methanotroph in SP. In summary, this work highlights the effects of Sphagnum moss characteristics on the endophytic bacteriome. The endophytic bacteriome is important for Sphagnum moss productivity, as well as for carbon and nitrogen cycles in Sphagnum moss peatlands.
Collapse
Affiliation(s)
- Yue Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Xue
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| | - Xuhui Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Qiu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| |
Collapse
|
7
|
Roth SW, Griffiths NA, Kolka RK, Oleheiser KC, Carrell AA, Klingeman DM, Seibert A, Chanton JP, Hanson PJ, Schadt CW. Elevated temperature alters microbial communities, but not decomposition rates, during 3 years of in situ peat decomposition. mSystems 2023; 8:e0033723. [PMID: 37819069 PMCID: PMC10654087 DOI: 10.1128/msystems.00337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Microbial community changes in response to climate change drivers have the potential to alter the trajectory of important ecosystem functions. In this paper, we show that while microbial communities in peatland systems responded to manipulations of temperature and CO2 concentrations, these changes were not associated with similar responses in peat decomposition rates over 3 years. It is unclear however from our current studies whether this functional resiliency over 3 years will continue over the longer time scales relevant to peatland ecosystem functions.
Collapse
Affiliation(s)
- Spencer W. Roth
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Natalie A. Griffiths
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Randall K. Kolka
- Northern Research Station, USDA Forest Service, Grand Rapids, Minnesota, USA
| | - Keith C. Oleheiser
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Angela Seibert
- Department of Geosciences, Boise State University, Boise, Idaho, USA
| | - Jeffrey P. Chanton
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Paul J. Hanson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Christopher W. Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
8
|
Zych M, Urbisz K, Kimsa-Dudek M, Kamionka M, Dudek S, Raczak BK, Wacławek S, Chmura D, Kaczmarczyk-Żebrowska I, Stebel A. Effects of Water-Ethanol Extracts from Four Sphagnum Species on Gene Expression of Selected Enzymes in Normal Human Dermal Fibroblasts and Their Antioxidant Properties. Pharmaceuticals (Basel) 2023; 16:1076. [PMID: 37630991 PMCID: PMC10458669 DOI: 10.3390/ph16081076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Mosses (Bryophyta), particularly species of the genus Sphagnum, which have been used for centuries for the treatment of skin diseases and damage, are still not explored enough in terms of their use in cosmetics. The purpose of this study was to determine the antioxidant properties of water-ethanol extracts from four selected species of the genus Sphagnum (S. girgenshonii Russow, S. magellanicum Brid., S. palustre L., and S. squarrosum Crome) and their impact on the expression of genes encoding key enzymes for the functioning of the skin. In this study, the effects of Sphagnum extracts on the expression of genes encoding tyrosinase, collagenase, elastase, hyaluronidase and hyaluronic acid synthase in human dermal fibroblasts were determined for the first time in vitro. The extracts inhibited tyrosinase gene expression and showed antioxidant activity. The experiment showed an increase in the expression of some genes encoding collagenase (MMP1) or hyaluronidase (HYAL2, HYAL3 and HYAL4) and a decrease in the hyaluronan synthase (HAS1, HAS2 and HAS3) genes expression by the tested extracts. The obtained results suggest that using extracts from the tested Sphagnum species in anti-aging cosmetics does not seem beneficial. Further studies are needed to clarify their impact on the skin.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Katarzyna Urbisz
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland;
| | - Maria Kamionka
- Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (M.K.); (A.S.)
| | - Sławomir Dudek
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Barbara Klaudia Raczak
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 46117 Liberec, Czech Republic; (B.K.R.)
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec (TUL), 46117 Liberec, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 46117 Liberec, Czech Republic; (B.K.R.)
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec (TUL), 46117 Liberec, Czech Republic
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland;
| | - Ilona Kaczmarczyk-Żebrowska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Adam Stebel
- Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (M.K.); (A.S.)
| |
Collapse
|
9
|
Song T, Liu Y, Kolton M, Wilson RM, Keller JK, Rolando JL, Chanton JP, Kostka JE. Porewater constituents inhibit microbially mediated greenhouse gas production (GHG) and regulate the response of soil organic matter decomposition to warming in anoxic peat from a Sphagnum-dominated bog. FEMS Microbiol Ecol 2023; 99:fiad060. [PMID: 37280172 DOI: 10.1093/femsec/fiad060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023] Open
Abstract
Northern peatlands store approximately one-third of terrestrial soil carbon. Climate warming is expected to stimulate the microbially mediated degradation of peat soil organic matter (SOM), leading to increasing greenhouse gas (GHG; carbon dioxide, CO2; methane, CH4) production and emission. Porewater dissolved organic matter (DOM) plays a key role in SOM decomposition; however, the mechanisms controlling SOM decomposition and its response to warming remain unclear. The temperature dependence of GHG production and microbial community dynamics were investigated in anoxic peat from a Sphagnum-dominated peatland. In this study, peat decomposition, which was quantified by GHG production and carbon substrate utilization is limited by terminal electron acceptors (TEA) and DOM, and these controls of microbially mediated SOM degradation are temperature-dependent. Elevated temperature led to a slight decrease in microbial diversity, and stimulated the growth of specific methanotrophic and syntrophic taxa. These results confirm that DOM is a major driver of decomposition in peatland soils contains inhibitory compounds, but the inhibitory effect is alleviated by warming.
Collapse
Affiliation(s)
- Tianze Song
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Yutong Liu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
- Department of Civil & Environmental Engineering, Pennsylvania State University, University Park, University Park, PA 16802, United States
| | - Max Kolton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion, University of the Negev, Beer Sheva, 8499000, Israel
| | - Rachel M Wilson
- Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, FL 32304, United States
| | - Jason K Keller
- Schmid College of Science and Technology, Chapman University, 1 University Dr, Orange, CA 92866, United States
| | - Jose L Rolando
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jeffrey P Chanton
- Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, FL 32304, United States
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30318, United States
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
10
|
Akhatova F, Konnova S, Kryuchkova M, Batasheva S, Mazurova K, Vikulina A, Volodkin D, Rozhina E. Comparative Characterization of Iron and Silver Nanoparticles: Extract-Stabilized and Classical Synthesis Methods. Int J Mol Sci 2023; 24:ijms24119274. [PMID: 37298231 DOI: 10.3390/ijms24119274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Synthesis of silver nanoparticles using extracts from plants is an advantageous technological alternative to the traditional colloidal synthesis due to its simplicity, low cost, and the inclusion of environmentally friendly processes to obtain a new generation of antimicrobial compounds. The work describes the production of silver and iron nanoparticles using sphagnum extract as well as traditional synthesis. Dynamic light scattering (DLS) and laser doppler velocimetry methods, UV-visible spectroscopy, transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), dark-field hyperspectral microscopy, and Fourier-transform infrared spectroscopy (FT-IR) were used to study the structure and properties of synthesized nanoparticles. Our studies demonstrated a high antibacterial activity of the obtained nanoparticles, including the formation of biofilms. Nanoparticles synthesized using sphagnum moss extracts likely have high potential for further research.
Collapse
Affiliation(s)
- Farida Akhatova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Svetlana Konnova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Marina Kryuchkova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Svetlana Batasheva
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Kristina Mazurova
- Department of Physical and Colloid Chemistry, Russian State University of Oil and Gas (National Research University), Leninsky Prospect 65, 119991 Moscow, Russia
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Elvira Rozhina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
- Department of Biological Education, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia
| |
Collapse
|
11
|
AminiTabrizi R, Graf-Grachet N, Chu RK, Toyoda JG, Hoyt DW, Hamdan R, Wilson RM, Tfaily MM. Microbial sensitivity to temperature and sulfate deposition modulates greenhouse gas emissions from peat soils. GLOBAL CHANGE BIOLOGY 2023; 29:1951-1970. [PMID: 36740729 DOI: 10.1111/gcb.16614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 05/28/2023]
Abstract
Peatlands are among the largest natural sources of atmospheric methane (CH4 ) worldwide. Microbial processes play a key role in regulating CH4 emissions from peatland ecosystems, yet the complex interplay between soil substrates and microbial communities in controlling CH4 emissions as a function of global change remains unclear. Herein, we performed an integrated analysis of multi-omics data sets to provide a comprehensive understanding of the molecular processes driving changes in greenhouse gas (GHG) emissions in peatland ecosystems with increasing temperature and sulfate deposition in a laboratory incubation study. We sought to first investigate how increasing temperatures (4, 21, and 35°C) impact soil microbiome-metabolome interactions; then explore the competition between methanogens and sulfate-reducing bacteria (SRBs) with increasing sulfate concentrations at the optimum temperature for methanogenesis. Our results revealed that peat soil organic matter degradation, mediated by biotic and potentially abiotic processes, is the main driver of the increase in CO2 production with temperature. In contrast, the decrease in CH4 production at 35°C was linked to the absence of syntrophic communities and the potential inhibitory effect of phenols on methanogens. Elevated temperatures further induced the microbial communities to develop high growth yield and stress tolerator trait-based strategies leading to a shift in their composition and function. On the other hand, SRBs were able to outcompete methanogens in the presence of non-limiting sulfate concentrations at 21°C, thereby reducing CH4 emissions. At higher sulfate concentrations, however, the prevalence of communities capable of producing sufficient low-molecular-weight carbon substrates for the coexistence of SRBs and methanogens was translated into elevated CH4 emissions. The use of omics in this study enhanced our understanding of the structure and interactions among microbes with the abiotic components of the system that can be useful for mitigating GHG emissions from peatland ecosystems in the face of global change.
Collapse
Affiliation(s)
- Roya AminiTabrizi
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, USA
| | - Nathalia Graf-Grachet
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason G Toyoda
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rasha Hamdan
- Department of Chemistry and Biochemistry, Lebanese University, Beirut, Lebanon
| | - Rachel M Wilson
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Malak M Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
12
|
Ayala-Ortiz C, Graf-Grachet N, Freire-Zapata V, Fudyma J, Hildebrand G, AminiTabrizi R, Howard-Varona C, Corilo YE, Hess N, Duhaime MB, Sullivan MB, Tfaily MM. MetaboDirect: an analytical pipeline for the processing of FT-ICR MS-based metabolomic data. MICROBIOME 2023; 11:28. [PMID: 36803638 PMCID: PMC9936664 DOI: 10.1186/s40168-023-01476-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Microbiomes are now recognized as the main drivers of ecosystem function ranging from the oceans and soils to humans and bioreactors. However, a grand challenge in microbiome science is to characterize and quantify the chemical currencies of organic matter (i.e., metabolites) that microbes respond to and alter. Critical to this has been the development of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which has drastically increased molecular characterization of complex organic matter samples, but challenges users with hundreds of millions of data points where readily available, user-friendly, and customizable software tools are lacking. RESULTS Here, we build on years of analytical experience with diverse sample types to develop MetaboDirect, an open-source, command-line-based pipeline for the analysis (e.g., chemodiversity analysis, multivariate statistics), visualization (e.g., Van Krevelen diagrams, elemental and molecular class composition plots), and presentation of direct injection high-resolution FT-ICR MS data sets after molecular formula assignment has been performed. When compared to other available FT-ICR MS software, MetaboDirect is superior in that it requires a single line of code to launch a fully automated framework for the generation and visualization of a wide range of plots, with minimal coding experience required. Among the tools evaluated, MetaboDirect is also uniquely able to automatically generate biochemical transformation networks (ab initio) based on mass differences (mass difference network-based approach) that provide an experimental assessment of metabolite connections within a given sample or a complex metabolic system, thereby providing important information about the nature of the samples and the set of microbial reactions or pathways that gave rise to them. Finally, for more experienced users, MetaboDirect allows users to customize plots, outputs, and analyses. CONCLUSION Application of MetaboDirect to FT-ICR MS-based metabolomic data sets from a marine phage-bacterial infection experiment and a Sphagnum leachate microbiome incubation experiment showcase the exploration capabilities of the pipeline that will enable the research community to evaluate and interpret their data in greater depth and in less time. It will further advance our knowledge of how microbial communities influence and are influenced by the chemical makeup of the surrounding system. The source code and User's guide of MetaboDirect are freely available through ( https://github.com/Coayala/MetaboDirect ) and ( https://metabodirect.readthedocs.io/en/latest/ ), respectively. Video Abstract.
Collapse
Affiliation(s)
| | - Nathalia Graf-Grachet
- Department of Environmental, Science, University of Arizona, Tucson, AZ 85721 USA
- Present address: Roche, Pleasanton, CA 94588 USA
| | | | - Jane Fudyma
- Department of Environmental, Science, University of Arizona, Tucson, AZ 85721 USA
- Present address: University of California, Davis|Department of Plant Pathology, Davis, CA 95616-8751 USA
| | - Gina Hildebrand
- Department of Environmental, Science, University of Arizona, Tucson, AZ 85721 USA
| | - Roya AminiTabrizi
- Department of Environmental, Science, University of Arizona, Tucson, AZ 85721 USA
- Present address: University of Chicago Biological Sciences Division, Metabolomics Platform, Chicago, IL 60637 USA
| | - Cristina Howard-Varona
- Department of Microbiology, Ohio State University, Columbus, OH 43210 USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210 USA
| | - Yuri E. Corilo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Nancy Hess
- Present address: University of California, Davis|Department of Plant Pathology, Davis, CA 95616-8751 USA
| | - Melissa B. Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210 USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210 USA
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210 USA
| | - Malak M. Tfaily
- Department of Environmental, Science, University of Arizona, Tucson, AZ 85721 USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| |
Collapse
|
13
|
Ni B, Feussner K. Ex vivo metabolomics-A hypothesis-free approach to identify native substrate(s) and product(s) of orphan enzymes. Methods Enzymol 2023; 680:303-323. [PMID: 36710016 DOI: 10.1016/bs.mie.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Over the past decade, the number of fully sequenced genomes has increased at an awe-inspiring pace. Similarly, the quality and scope of tools for the prediction of both protein structure and function has seen vast improvements. However, to pinpoint the exact function of a protein, for instance the exact reaction catalyzed by an enzyme, experimental evidence is crucial. At the same time, this step is the main bottleneck when generating a conclusive model for the function of an enzyme and to interpret its function in a physiological context. Hence, a comprehensive experimental strategy for functional annotation of enzymes that is as efficient as possible is required. Ex vivo metabolomics is a powerful non-targeted approach that overcomes several of the challenges inherent to in vitro characterization of enzymes with unknown functions. By incubating the recombinant enzyme of interest in a quasi-native metabolite extract from its tissue of origin under specific environmental and developmental conditions, the complete native substrate range can be tested in a single assay. This unlocks compounds that are commercially unavailable or otherwise difficult to procure. Coupled with non-targeted metabolomics analysis, ex vivo has the capability to test for and identify even unexpected substrates and assign the respective products of the enzymatic reaction.
Collapse
Affiliation(s)
- Benedikt Ni
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Kirstin Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany.
| |
Collapse
|
14
|
Callahan G, Fillier T, Pham TH, Zhu X, Thomas R. The effects of clearcut harvesting on moss chloroplast lipidome and adaptation to light stress during boreal forest regeneration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115126. [PMID: 35526393 DOI: 10.1016/j.jenvman.2022.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Moss plays an important role in boreal forest ecosystems as an understory bryophyte species. Clearcut harvesting is a common boreal forest regeneration method that can expose understory vegetation to abiotic stressors impeding their recovery following post-harvest conditions. Very little is known concerning how moss remodel their chloroplast lipidome to enhance photosynthetic performance for successful acclimation to light and water stress during boreal forest regeneration following clearcut harvesting. The chloroplast lipidome and photosynthetic performance of Sphagnum sp. and three feathermoss species (Pleurozium schreberi, Hylocomium splendens, and Ptilium crista-castrensis) from a boreal black spruce (Picea mariana) forest were assessed using liquid chromatography-mass spectrometry (LC-MS), photospectrometry, and light response curves. We observed an overall increase in monogalactosyldiacylglycerol (MGDG) and sulfoquinovosyldiacylglycerol (SQDG) and decrease in digalactosyldiacylglycerol (DGDG) and phosphatidylglycerol (PG). In addition, unsaturation of the chloroplast lipidome occurred concomitant with photoprotection by carotenoid pigments to enhance the efficiency and photosynthetic capacity in moss exposed to light and water stress following clearcut harvesting. This appears to be a successful acclimation strategy used by moss to circumvent light stress during boreal forest regeneration following clearcut harvesting. These findings could be of significance in the development of boreal forest management strategies following resource harvesting.
Collapse
Affiliation(s)
- Grace Callahan
- Environmental Science, Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Grenfell Campus, 20 University Drive, Corner Brook, NL, A2H 5G4, Canada.
| | - Tiffany Fillier
- Environmental Science, Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Grenfell Campus, 20 University Drive, Corner Brook, NL, A2H 5G4, Canada
| | - Thu Huong Pham
- Environmental Science, Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Grenfell Campus, 20 University Drive, Corner Brook, NL, A2H 5G4, Canada
| | - Xinbiao Zhu
- Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, 26 University Drive, Corner Brook, NL, A2H 6J3, Canada
| | - Raymond Thomas
- Environmental Science, Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Grenfell Campus, 20 University Drive, Corner Brook, NL, A2H 5G4, Canada.
| |
Collapse
|
15
|
Jassey VEJ, Hamard S, Lepère C, Céréghino R, Corbara B, Küttim M, Leflaive J, Leroy C, Carrias JF. Photosynthetic microorganisms effectively contribute to bryophyte CO 2 fixation in boreal and tropical regions. ISME COMMUNICATIONS 2022; 2:64. [PMID: 37938283 PMCID: PMC9723567 DOI: 10.1038/s43705-022-00149-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 04/26/2023]
Abstract
Photosynthetic microbes are omnipresent in land and water. While they critically influence primary productivity in aquatic systems, their importance in terrestrial ecosystems remains largely overlooked. In terrestrial systems, photoautotrophs occur in a variety of habitats, such as sub-surface soils, exposed rocks, and bryophytes. Here, we study photosynthetic microbial communities associated with bryophytes from a boreal peatland and a tropical rainforest. We interrogate their contribution to bryophyte C uptake and identify the main drivers of that contribution. We found that photosynthetic microbes take up twice more C in the boreal peatland (~4.4 mg CO2.h-1.m-2) than in the tropical rainforest (~2.4 mg CO2.h-1.m-2), which corresponded to an average contribution of 4% and 2% of the bryophyte C uptake, respectively. Our findings revealed that such patterns were driven by the proportion of photosynthetic protists in the moss microbiomes. Low moss water content and light conditions were not favourable to the development of photosynthetic protists in the tropical rainforest, which indirectly reduced the overall photosynthetic microbial C uptake. Our investigations clearly show that photosynthetic microbes associated with bryophyte effectively contribute to moss C uptake despite species turnover. Terrestrial photosynthetic microbes clearly have the capacity to take up atmospheric C in bryophytes living under various environmental conditions, and therefore potentially support rates of ecosystem-level net C exchanges with the atmosphere.
Collapse
Affiliation(s)
- Vincent E J Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France.
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Cécile Lepère
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Bruno Corbara
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Uus-Sadama 5, 10120, Tallinn, Estonia
| | - Joséphine Leflaive
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Céline Leroy
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- ECOFOG, AgroParisTech, CIRAD, CNRS, INRAE, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, France
| | - Jean-François Carrias
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| |
Collapse
|
16
|
Traquete F, Luz J, Cordeiro C, Sousa Silva M, Ferreira AEN. Graph Properties of Mass-Difference Networks for Profiling and Discrimination in Untargeted Metabolomics. Front Mol Biosci 2022; 9:917911. [PMID: 35936789 PMCID: PMC9353772 DOI: 10.3389/fmolb.2022.917911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Untargeted metabolomics seeks to identify and quantify most metabolites in a biological system. In general, metabolomics results are represented by numerical matrices containing data that represent the intensities of the detected variables. These matrices are subsequently analyzed by methods that seek to extract significant biological information from the data. In mass spectrometry-based metabolomics, if mass is detected with sufficient accuracy, below 1 ppm, it is possible to derive mass-difference networks, which have spectral features as nodes and chemical changes as edges. These networks have previously been used as means to assist formula annotation and to rank the importance of chemical transformations. In this work, we propose a novel role for such networks in untargeted metabolomics data analysis: we demonstrate that their properties as graphs can also be used as signatures for metabolic profiling and class discrimination. For several benchmark examples, we computed six graph properties and we found that the degree profile was consistently the property that allowed for the best performance of several clustering and classification methods, reaching levels that are competitive with the performance using intensity data matrices and traditional pretreatment procedures. Furthermore, we propose two new metrics for the ranking of chemical transformations derived from network properties, which can be applied to sample comparison or clustering. These metrics illustrate how the graph properties of mass-difference networks can highlight the aspects of the information contained in data that are complementary to the information extracted from intensity-based data analysis.
Collapse
|
17
|
Kulshrestha S, Jibran R, van Klink JW, Zhou Y, Brummell DA, Albert NW, Schwinn KE, Chagné D, Landi M, Bowman JL, Davies KM. Stress, senescence, and specialized metabolites in bryophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4396-4411. [PMID: 35259256 PMCID: PMC9291361 DOI: 10.1093/jxb/erac085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
Life on land exposes plants to varied abiotic and biotic environmental stresses. These environmental drivers contributed to a large expansion of metabolic capabilities during land plant evolution and species diversification. In this review we summarize knowledge on how the specialized metabolite pathways of bryophytes may contribute to stress tolerance capabilities. Bryophytes are the non-tracheophyte land plant group (comprising the hornworts, liverworts, and mosses) and rapidly diversified following the colonization of land. Mosses and liverworts have as wide a distribution as flowering plants with regard to available environments, able to grow in polar regions through to hot desert landscapes. Yet in contrast to flowering plants, for which the biosynthetic pathways, transcriptional regulation, and compound function of stress tolerance-related metabolite pathways have been extensively characterized, it is only recently that similar data have become available for bryophytes. The bryophyte data are compared with those available for angiosperms, including examining how the differing plant forms of bryophytes and angiosperms may influence specialized metabolite diversity and function. The involvement of stress-induced specialized metabolites in senescence and nutrient response pathways is also discussed.
Collapse
Affiliation(s)
- Samarth Kulshrestha
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - John W van Klink
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, Otago University, Dunedin, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|
18
|
Alvarenga DO, Rousk K. Unraveling host-microbe interactions and ecosystem functions in moss-bacteria symbioses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4473-4486. [PMID: 35728619 DOI: 10.1093/jxb/erac091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Mosses are non-vascular plants usually found in moist and shaded areas, with great ecological importance in several ecosystems. This is especially true in northern latitudes, where mosses are responsible for up to 100% of primary production in some ecosystems. Mosses establish symbiotic associations with unique bacteria that play key roles in the carbon and nitrogen cycles. For instance, in boreal environments, more than 35% of the nitrogen fixed by diazotrophic symbionts in peatlands is transferred to mosses, directly affecting carbon fixation by the hosts, while moss-associated methanotrophic bacteria contribute 10-30% of moss carbon. Further, half of ecosystem N input may derive from moss-cyanobacteria associations in pristine ecosystems. Moss-bacteria interactions have consequences on a global scale since northern environments sequester 20% of all the carbon generated by forests in the world and stock at least 32% of global terrestrial carbon. Different moss hosts influence bacteria in distinct ways, which suggests that threats to mosses also threaten unique microbial communities with important ecological and biogeochemical consequences. Since their origin ~500 Ma, mosses have interacted with bacteria, making these associations ideal models for understanding the evolution of plant-microbe associations and their contribution to biogeochemical cycles.
Collapse
Affiliation(s)
- Danillo O Alvarenga
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Kathrin Rousk
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| |
Collapse
|
19
|
Chung WY, Zhu Y, Mahamad Maifiah MH, Hawala Shivashekaregowda NK, Wong EH, Abdul Rahim N. Exogenous metabolite feeding on altering antibiotic susceptibility in Gram-negative bacteria through metabolic modulation: a review. Metabolomics 2022; 18:47. [PMID: 35781167 DOI: 10.1007/s11306-022-01903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The rise of antimicrobial resistance at an alarming rate is outpacing the development of new antibiotics. The worrisome trends of multidrug-resistant Gram-negative bacteria have enormously diminished existing antibiotic activity. Antibiotic treatments may inhibit bacterial growth or lead to induce bacterial cell death through disruption of bacterial metabolism directly or indirectly. In light of this, it is imperative to have a thorough understanding of the relationship of bacterial metabolism with antimicrobial activity and leverage the underlying principle towards development of novel and effective antimicrobial therapies. OBJECTIVE Herein, we explore studies on metabolic analyses of Gram-negative pathogens upon antibiotic treatment. Metabolomic studies revealed that antibiotic therapy caused changes of metabolites abundance and perturbed the bacterial metabolism. Following this line of thought, addition of exogenous metabolite has been employed in in vitro, in vivo and in silico studies to activate the bacterial metabolism and thus potentiate the antibiotic activity. KEY SCIENTIFIC CONCEPTS OF REVIEW Exogenous metabolites were discovered to cause metabolic modulation through activation of central carbon metabolism and cellular respiration, stimulation of proton motive force, increase of membrane potential, improvement of host immune protection, alteration of gut microbiome, and eventually facilitating antibiotic killing. The use of metabolites as antimicrobial adjuvants may be a promising approach in the fight against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Wan Yean Chung
- School of Pharmacy, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection and Immunity Program, Department of Microbiology, Monash University, 3800, Victoria, Australia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), 53100, Jalan Gombak, Selangor, Malaysia
| | - Naveen Kumar Hawala Shivashekaregowda
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| | | |
Collapse
|
20
|
Wilson RM, Hough MA, Verbeke BA, Hodgkins SB, Chanton JP, Saleska SD, Rich VI, Tfaily MM. Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:152757. [PMID: 35031367 DOI: 10.1016/j.scitotenv.2021.152757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Peatlands are climate critical carbon (C) reservoirs that could become a C source under continued warming. A strong relationship between plant tissue chemistry and the soil organic matter (SOM) that fuels C gas emissions is inferred, but rarely examined at the molecular level. Here we compared Fourier transform infrared (FT-IR) spectroscopy measurements of solid phase functionalities in plants and SOM to ultra-high-resolution mass spectrometric analyses of plant and SOM water extracts across a palsa-bog-fen thaw and moisture gradient in an Arctic peatland. From these analyses we calculated the C oxidation state (NOSC), a measure which can be used to assess organic matter quality. Palsa plant extracts had the highest NOSC, indicating high quality, whereas extracts of Sphagnum, which dominated the bog, had the lowest NOSC. The percentage of plant compounds that are less bioavailable and accumulate in the peat, increases from palsa (25%) to fen (41%) to bog (47%), reflecting the pattern of percent Sphagnum cover. The pattern of NOSC in the plant extracts was consistent with the high number of consumed compounds in the palsa and low number of consumed compounds in the bog. However, in the FT-IR analysis of the solid phase bog peat, carbohydrate content was high implying high quality SOM. We explain this discrepancy as the result of low solubilization of bog SOM facilitated by the low pH in the bog which makes the solid phase carbohydrates less available to microbial decomposition. Plant-associated condensed aromatics, tannins, and lignin-like compounds declined in the unsaturated palsa peat indicating decomposition, but lignin-like compounds accumulated in the bog and fen peat where decomposition was presumably inhibited by the anaerobic conditions. A molecular-level comparison of the aboveground C sources and peat SOM demonstrates that climate-associated vegetation shifts in peatlands are important controls on the mechanisms underlying changing C gas emissions.
Collapse
Affiliation(s)
- Rachel M Wilson
- Florida State University, Earth Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA.
| | - Moira A Hough
- University of Arizona, Department of Environmental Science, Tucson, AZ 85721, USA
| | - Brittany A Verbeke
- Florida State University, Earth Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA
| | - Suzanne B Hodgkins
- The Ohio State University, Department of Microbiology, Columbus, OH 43210, USA
| | - Jeff P Chanton
- Florida State University, Earth Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA
| | - Scott D Saleska
- University of Arizona, Department of Environmental Science, Tucson, AZ 85721, USA
| | - Virginia I Rich
- The Ohio State University, Department of Microbiology, Columbus, OH 43210, USA
| | - Malak M Tfaily
- University of Arizona, Department of Environmental Science, Tucson, AZ 85721, USA
| |
Collapse
|
21
|
Cooper WT, Chanton JC, D'Andrilli J, Hodgkins SB, Podgorski DC, Stenson AC, Tfaily MM, Wilson RM. A History of Molecular Level Analysis of Natural Organic Matter by FTICR Mass Spectrometry and The Paradigm Shift in Organic Geochemistry. MASS SPECTROMETRY REVIEWS 2022; 41:215-239. [PMID: 33368436 DOI: 10.1002/mas.21663] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Natural organic matter (NOM) is a complex mixture of biogenic molecules resulting from the deposition and transformation of plant and animal matter. It has long been recognized that NOM plays an important role in many geological, geochemical, and environmental processes. Of particular concern is the fate of NOM in response to a warming climate in environments that have historically sequestered carbon (e.g., peatlands and swamps) but may transition to net carbon emitters. In this review, we will highlight developments in the application of high-field Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) in identifying the individual components of complex NOM mixtures, focusing primarily on the fraction that is dissolved in natural waters (dissolved organic matter or DOM). We will first provide some historical perspective on developments in FTICR technology that made molecular-level characterizations of DOM possible. A variety of applications of the technique will then be described, followed by our view of the future of high-field FTICR MS in carbon cycling research, including a particularly exciting metabolomic approach.
Collapse
Affiliation(s)
- William T Cooper
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL
| | - Jeffrey C Chanton
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL
| | | | | | | | | | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, Tucson, AZ
| | - Rachel M Wilson
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL
| |
Collapse
|
22
|
Sytiuk A, Céréghino R, Hamard S, Delarue F, Dorrepaal E, Küttim M, Lamentowicz M, Pourrut B, Robroek BJM, Tuittila E, Jassey VEJ. Biochemical traits enhance the trait concept in
Sphagnum
ecology. OIKOS 2022. [DOI: 10.1111/oik.09119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Sytiuk
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | - Regis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | | | - Ellen Dorrepaal
- Climate Impacts Research Centre, Dept of Ecology and Environmental Science, Umeå Univ. Abisko Sweden
| | - Martin Küttim
- Inst. of Ecology, School of Natural Sciences and Health, Tallinn Univ. Tallinn Estonia
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz Univ. in Poznań Poznań Poland
| | - Bertrand Pourrut
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| | - Bjorn J. M. Robroek
- Aquatic Ecology&Environmental Biology, Radboud Inst. for Biological and Environmental Sciences, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Eeva‐Stiina Tuittila
- Biological Sciences, Faculty of Natural and Environmental Sciences, Inst. for Life Sciences, Univ. of Southampton Southampton UK
| | - Vincent E. J. Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement, Univ. Paul Sabatier Toulouse 3, UPS, CNRS Toulouse France
| |
Collapse
|
23
|
Hough M, McCabe S, Vining SR, Pickering Pedersen E, Wilson RM, Lawrence R, Chang K, Bohrer G, Riley WJ, Crill PM, Varner RK, Blazewicz SJ, Dorrepaal E, Tfaily MM, Saleska SR, Rich VI. Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland. GLOBAL CHANGE BIOLOGY 2022; 28:950-968. [PMID: 34727401 PMCID: PMC9298822 DOI: 10.1111/gcb.15970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2 ) and methane (CH4 ). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2 , and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post-thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post-thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2 and CH4 fluxes from decomposition. Thus, the increased C-storage expected from higher productivity was limited and the high global warming potential of CH4 contributed a net positive warming effect. Although post-thaw peatlands are currently C sinks due to high NPP offsetting high CO2 release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.
Collapse
Affiliation(s)
- Moira Hough
- Ecology & Evolutionary Biology DepartmentUniversity of ArizonaTucsonArizonaUSA
- Department of Environmental ScienceUniversity of ArizonaTucsonArizonaUSA
| | - Samantha McCabe
- Environmental Sciences Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - S. Rose Vining
- Department of Environmental ScienceUniversity of ArizonaTucsonArizonaUSA
| | - Emily Pickering Pedersen
- Department of BiologyTerrestrial EcologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Rachel M. Wilson
- Florida State UniversityEarth Ocean and Atmospheric SciencesTallahasseeFloridaUSA
| | - Ryan Lawrence
- Department of Earth Sciences and Institute for the Study of Earth, Oceans and SpaceUniversity of New HampshireDurhamNew HampshireUSA
| | - Kuang‐Yu Chang
- Lawrence Berkeley LaboratoryClimate and Ecosystem Sciences DivisionBerkeleyCaliforniaUSA
| | - Gil Bohrer
- Civil Environmental and Geodetic EngineeringThe Ohio State UniversityColumbusOhioUSA
| | | | - William J. Riley
- Lawrence Berkeley LaboratoryClimate and Ecosystem Sciences DivisionBerkeleyCaliforniaUSA
| | - Patrick M. Crill
- Department of Geological Sciences and Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| | - Ruth K. Varner
- Department of Earth Sciences and Institute for the Study of Earth, Oceans and SpaceUniversity of New HampshireDurhamNew HampshireUSA
| | | | - Ellen Dorrepaal
- Climate Impacts Research Centre—Department of Ecology and Environmental SciencesUmeå UniversityAbiskoSweden
| | - Malak M. Tfaily
- Department of Environmental ScienceUniversity of ArizonaTucsonArizonaUSA
| | - Scott R. Saleska
- Ecology & Evolutionary Biology DepartmentUniversity of ArizonaTucsonArizonaUSA
| | - Virginia I. Rich
- Department of Environmental ScienceUniversity of ArizonaTucsonArizonaUSA
- Microbiology DepartmentThe Ohio State UniversityColumbusOhioUSA
- Center of Microbiome ScienceThe Ohio State UniversityColumbusOhioUSA
- The Byrd Polar and Climate Research CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
24
|
AminiTabrizi R, Dontsova K, Graf Grachet N, Tfaily MM. Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150045. [PMID: 34798718 DOI: 10.1016/j.scitotenv.2021.150045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Understanding the effects of elevated temperatures on soil organic matter (SOM) decomposition pathways in northern peatlands is central to predicting their fate under future warming. Peatlands role as carbon (C) sink is dependent on both anoxic conditions and low temperatures that limit SOM decomposition. Previous studies have shown that elevated temperatures due to climate change can disrupt peatland's C balance by enhancing SOM decomposition and increasing CO2 emissions. However, little is known about how SOM decomposition pathways change at higher temperatures. Here, we used an integrated research approach to investigate the mechanisms behind enhanced CO2 emissions and SOM decomposition under elevated temperatures of surface peat soil collected from a raised and Sphagnum dominated mid-continental bog (S1 bog) peatland at the Marcel Experimental Forest in Minnesota, USA, incubated under oxic conditions at three different temperatures (4, 21, and 35 °C). Our results indicated that elevated temperatures could destabilize peatland's C pool via a combination of abiotic and biotic processes. In particular, temperature-driven changes in redox conditions can lead to abiotic destabilization of Fe-organic matter (phenol) complexes, previously an underestimated decomposition pathway in peatlands, leading to increased CO2 production and accumulation of polyphenol-like compounds that could further inhibit extracellular enzyme activities and/or fuel the microbial communities with labile compounds. Further, increased temperatures can alter strategies of microbial communities for nutrient acquisition via changes in the activities of extracellular enzymes by priming SOM decomposition, leading to enhanced CO2 emission from peatlands. Therefore, coupled biotic and abiotic processes need to be incorporated into process-based climate models to predict the fate of SOM under elevated temperatures and to project the likely impacts of environmental change on northern peatlands and CO2 emissions.
Collapse
Affiliation(s)
- Roya AminiTabrizi
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Katerina Dontsova
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Nathalia Graf Grachet
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Malak M Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
25
|
Meredith LK, Tfaily MM. Capturing the microbial volatilome: an oft overlooked 'ome'. Trends Microbiol 2022; 30:622-631. [PMID: 35039213 DOI: 10.1016/j.tim.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022]
Abstract
Among the diverse metabolites produced by microbial communities, some are volatile. Volatile organic compounds (VOCs) are vigorously cycled by microbes as metabolic substrates and products and as signaling molecules. Yet, current microbial metabolomic studies predominantly focus on nonvolatile metabolites and overlook VOCs, which therefore represent a missing component of the metabolome. Advances in VOC detection now allow simultaneous observation of the numerous VOCs constituting the 'volatilome' of microbial systems. We present a roadmap for integrating and advancing VOC and other 'omics approaches and highlight the potential for realtime VOC measurements to help overcome limitations in discrete 'omics sampling. Including volatile metabolites in metabolomics, both conceptually and in practice, will build a more comprehensive understanding of microbial processes across ecological communities.
Collapse
Affiliation(s)
- Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Malak M Tfaily
- BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
26
|
Trifiró G, York R, Bell NGA. High-Resolution Molecular-Level Characterization of a Blanket Bog Peat Profile. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:660-671. [PMID: 34932324 DOI: 10.1021/acs.est.1c05837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To understand peatland carbon-cycling processes ultimately requires the ability to track changes occurring on the molecular-level. In this study, we profile a peat core taken from the world's largest blanket bog, Flow Country, Scotland, using physicochemical properties, ATR-FTIR, solid/liquid-state NMR, and solid/liquid-state FT-ICR-MS. Air-dried peat and labile and recalcitrant peat extracts, including pore water dissolved organic matter (PW-DOM), are analyzed and the merits of each technique are discussed. Solid-state NMR demonstrated changing distribution of compound classes with core depth and water table, the latter not picked up by IR. Liquid-state NMR and MS both demonstrated variations in molecular composition along the core depth in all phases and extracts. Contrary to previous reports, the composition of PW-DOM varied with depth. Major compounds, some previously unreported, identified by 1D/2D NMR occurred throughout the core, suggesting the existence of hot spots of microbial activity/compound accumulation. Offering complementary views, the techniques provided evidence of gradual molecular level changes with age, zonation due to the water table, and hot spots due to microbial activity. This study provides new insights into the molecular signatures of peat layers and establishes the foundation for examining peat function and health at the molecular-level.
Collapse
Affiliation(s)
- Gianluca Trifiró
- University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Richard York
- University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Nicholle G A Bell
- University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
27
|
Lu Y, Eiriksson FF, Thorsteinsdóttir M, Simonsen HT. Effects of extraction parameters on lipid profiling of mosses using UPLC-ESI-QTOF-MS and multivariate data analysis. Metabolomics 2021; 17:96. [PMID: 34669052 DOI: 10.1007/s11306-021-01847-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Non-target lipid profiling by using ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) has been used extensively in the past decades in plant studies. However, the lipidomes of bryophytes have only been scarcely studied, although they are the second largest group in plant kingdom. OBJECTIVES We evaluated the effects of different cell disruption methods (no disruption, shake, ultrasound, and bead beating), and storage conditions (air-dried, freeze-dried, and fresh frozen) of five moss species (including Racomitrium lanuginosum B and D, Philonotis fontana, Sphagnum teres, and Hylocomium splendens). METHODS The lipid profiling results of each extraction parameter were analyzed by using multivariate data analysis including unsupervised principal component analysis and supervised orthogonal projections to latent structures discriminant analysis. RESULTS The results showed that extraction with bead beating resulted in the highest lipid content and the most detected features, but these were caused by the contamination from plastic tubes. Minor lipid metabolite changes were found in shaking and ultrasonication methods when compared with no disruption method. Significant amounts of phosphatidylcholine, diacylglyceryltrimethylhomoserine and their lyso lipids were observed in air-dried moss tissues, whereas diacylglycerol, triacylglycerol and ceramide were mostly exclusively detected when fresh frozen tissues were used for extraction. CONCLUSION We concluded that lipid extraction using fresh frozen samples with ultrasound assistance provide the most original lipid composition and gave a relatively high lipid content.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800, Kongens Lyngby, Denmark
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
| | - Finnur Freyr Eiriksson
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, 107, Reykjavik, Iceland
| | - Margrét Thorsteinsdóttir
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, 107, Reykjavik, Iceland
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
28
|
Heffernan L, Jassey VEJ, Frederickson M, MacKenzie MD, Olefeldt D. Constraints on potential enzyme activities in thermokarst bogs: Implications for the carbon balance of peatlands following thaw. GLOBAL CHANGE BIOLOGY 2021; 27:4711-4726. [PMID: 34164885 DOI: 10.1111/gcb.15758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Northern peatlands store a globally significant amount of soil organic carbon, much of it found in rapidly thawing permafrost. Permafrost thaw in peatlands often leads to the development and expansion of thermokarst bogs, where microbial activity will determine the stability of the carbon storage and the release of greenhouse gases. In this study, we compared potential enzyme activities between young (thawed ~30 years ago) and mature (~200 years) thermokarst bogs, for both shallow and deep peat layers. We found very low potential enzyme activities in deep peat layers, with no differences between the young and mature bogs. Peat quality at depth was found to be highly humified (FTIR analysis) in both the young and mature bogs. This suggests that deep, old peat was largely stable following permafrost thaw, without a rapid pulse of decomposition during the young bog stage. For near-surface peat, we found significantly higher potential enzyme activities in the young bog than in the mature-associated with differences in peat quality derived from different Sphagnum species. A laboratory incubation of near-surface peat showed that differences in potential enzyme activity were primarily influenced by peat type rather than oxygen availability. This suggested that the young bog can have higher rates of near-surface decomposition despite being substantially wetter than the mature bog. Overall, our study shows that peat properties are the dominant constraint on potential enzyme activity and that peatland site development (successional pathways and permafrost history) through its influence on peat type and chemistry is likely to determine peat decomposition following permafrost thaw.
Collapse
Affiliation(s)
- Liam Heffernan
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Vincent E J Jassey
- Laboratorie d'Ecologie Fonctionelle et Envrionnement, Université de Toulouse, CNRS, Toulouse, France
| | - Maya Frederickson
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - M Derek MacKenzie
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - David Olefeldt
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil. Sci Rep 2021; 11:19320. [PMID: 34588474 PMCID: PMC8481224 DOI: 10.1038/s41598-021-97942-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022] Open
Abstract
Microbial decomposition drives the transformation of plant-derived substrates into microbial products that form stable soil organic matter (SOM). Recent theories have posited that decomposition depends on an interaction between SOM chemistry with microbial diversity and resulting function (e.g., enzymatic capabilities, growth rates). Here, we explicitly test these theories by coupling quantitative stable isotope probing and metabolomics to track the fate of 13C enriched substrates that vary in chemical composition as they are assimilated by microbes and transformed into new metabolic products in soil. We found that differences in forest nutrient economies (e.g., nutrient cycling, microbial competition) led to arbuscular mycorrhizal (AM) soils harboring greater diversity of fungi and bacteria than ectomycorrhizal (ECM) soils. When incubated with 13C enriched substrates, substrate type drove shifts in which species were active decomposers and the abundance of metabolic products that were reduced or saturated in the highly diverse AM soils. The decomposition pathways were more static in the less diverse, ECM soil. Importantly, the majority of these shifts were driven by taxa only present in the AM soil suggesting a strong link between microbial identity and their ability to decompose and assimilate substrates. Collectively, these results highlight an important interaction between ecosystem-level processes and microbial diversity; whereby the identity and function of active decomposers impacts the composition of decomposition products that can form stable SOM.
Collapse
|
30
|
Bahureksa W, Tfaily MM, Boiteau RM, Young RB, Logan MN, McKenna AM, Borch T. Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9637-9656. [PMID: 34232025 DOI: 10.1021/acs.est.1c01135] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The biogeochemical cycling of soil organic matter (SOM) plays a central role in regulating soil health, water quality, carbon storage, and greenhouse gas emissions. Thus, many studies have been conducted to reveal how anthropogenic and climate variables affect carbon sequestration and nutrient cycling. Among the analytical techniques used to better understand the speciation and transformation of SOM, Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) is the only technique that has sufficient mass resolving power to separate and accurately assign elemental compositions to individual SOM molecules. The global increase in the application of FTICR MS to address SOM complexity has highlighted the many challenges and opportunities associated with SOM sample preparation, FTICR MS analysis, and mass spectral interpretation. Here, we provide a critical review of recent strategies for SOM characterization by FTICR MS with emphasis on SOM sample collection, preparation, analysis, and data interpretation. Data processing and visualization methods are presented with suggested workflows that detail the considerations needed for the application of molecular information derived from FTICR MS. Finally, we highlight current research gaps, biases, and future directions needed to improve our understanding of organic matter chemistry and cycling within terrestrial ecosystems.
Collapse
Affiliation(s)
- William Bahureksa
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Rene M Boiteau
- College of Earth, Ocean, Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Robert B Young
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States
| | - Merritt N Logan
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310-4005, United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States
| |
Collapse
|
31
|
Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proc Natl Acad Sci U S A 2021; 118:2004192118. [PMID: 34161254 DOI: 10.1073/pnas.2004192118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this study, a suite of complementary environmental geochemical analyses, including NMR and gas chromatography-mass spectrometry (GC-MS) analyses of central metabolites, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) of secondary metabolites, and lipidomics, was used to investigate the influence of organic matter (OM) quality on the heterotrophic microbial mechanisms controlling peatland CO2, CH4, and CO2:CH4 porewater production ratios in response to climate warming. Our investigations leverage the Spruce and Peatland Responses under Changing Environments (SPRUCE) experiment, where air and peat warming were combined in a whole-ecosystem warming treatment. We hypothesized that warming would enhance the production of plant-derived metabolites, resulting in increased labile OM inputs to the surface peat, thereby enhancing microbial activity and greenhouse gas production. Because shallow peat is most susceptible to enhanced warming, increases in labile OM inputs to the surface, in particular, are likely to result in significant changes to CO2 and CH4 dynamics and methanogenic pathways. In support of this hypothesis, significant correlations were observed between metabolites and temperature consistent with increased availability of labile substrates, which may stimulate more rapid turnover of microbial proteins. An increase in the abundance of methanogenic genes in response to the increase in the abundance of labile substrates was accompanied by a shift toward acetoclastic and methylotrophic methanogenesis. Our results suggest that as peatland vegetation trends toward increasing vascular plant cover with warming, we can expect a concomitant shift toward increasingly methanogenic conditions and amplified climate-peatland feedbacks.
Collapse
|
32
|
Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ. Rewiring of peatland plant–microbe networks outpaces species turnover. OIKOS 2021. [DOI: 10.1111/oik.07635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bjorn J. M. Robroek
- Aquatic Ecology and Environmental Biology, Inst. for Water and Wetland Research, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Magalí Martí
- Thematic Studies – Environmental Change, Linköping Univ. Linköping Sweden
| | - Bo H. Svensson
- Thematic Studies – Environmental Change, Linköping Univ. Linköping Sweden
| | - Marc G. Dumont
- School of Biological Sciences, Faculty of Environmental and Life Sciences, Univ. of Southampton Southampton UK
| | - Annelies J. Veraart
- Aquatic Ecology and Environmental Biology, Inst. for Water and Wetland Research, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Vincent E. J. Jassey
- Laboratoire d'Ecologie Fonctionnelle et Environnement, Univ. de Toulouse, CNRS Toulouse Cedex France
| |
Collapse
|
33
|
Ultraviolet absorbance of Sphagnum magellanicum, S. fallax and S. fuscum extracts with seasonal and species-specific variation. Photochem Photobiol Sci 2021; 20:379-389. [PMID: 33721276 DOI: 10.1007/s43630-021-00026-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Bryophytes, including Sphagnum, are common species in alpine and boreal regions especially on mires, where full sunlight exposes the plants to the damaging effects of UV radiation. Sphagnum species containing UV-protecting compounds might offer a biomass source for nature-based sunscreens to replace the synthetic ones. In this study, potential compounds and those linked in cell wall structures were obtained by using methanol and alkali extractions and the UV absorption of these extracts from three common Sphagnum moss species Sphagnum magellanicum, Sphagnum fuscum and Sphagnum fallax collected in spring and autumn from western Finland are described. Absorption spectrum screening (200-900 nm) and luminescent biosensor (Escherichia coli DPD2794) methodology were used to examine and compare the protection against UV radiation. Additionally, the antioxidant potential was evaluated using hydrogen peroxide scavenging (SCAV), oxygen radical absorbance capacity (ORAC) and ferric reducing absorbance capacity (FRAP). Total phenolic content was also determined using the Folin-Ciocalteu method. The results showed that methanol extractable compounds gave higher UV absorption with the used methods. Sphagnum fallax appeared to give the highest absorption in UV-B and UV-A wavelengths. In all assays except the SCAV test, the methanol extracts of Sphagnum samples collected in autumn indicated the highest antioxidant capacity and polyphenol content. Sphagnum fuscum implied the highest antioxidant capacity and phenolic content. There was low antioxidant and UV absorption provided by the alkali extracts of these three species.
Collapse
|
34
|
Pahalagedara ASNW, Flint S, Palmer J, Subbaraj A, Brightwell G, Gupta TB. Antimicrobial Activity of Soil Clostridium Enriched Conditioned Media Against Bacillus mycoides, Bacillus cereus, and Pseudomonas aeruginosa. Front Microbiol 2020; 11:608998. [PMID: 33343553 PMCID: PMC7746556 DOI: 10.3389/fmicb.2020.608998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
The rise of antimicrobial resistant bacteria has fast-tracked the exploration for novel antimicrobial compounds. Reports on antimicrobial producing soil anaerobes such as Clostridium spp. are very limited. In the present study, the antimicrobial activity of soil Clostridium enriched conditioned/spent media (CMs) against Bacillus mycoides, Bacillus cereus and Pseudomonas aeruginosa was assessed by turbidimetric growth inhibition assay. Our results highlighted the antimicrobial potential of soil Clostridium enriched conditioned media against pathogenic and spoilage bacteria. Farm 4 soil conditioned medium (F4SCM) demonstrated a greater growth inhibition activity against all three tested microorganisms in comparison to other soil conditioned media. Non-targeted metabolite profiling of all soil conditioned media revealed distinctive polar and intermediate-polar metabolites in F4SCM, consistent with its strong antimicrobial property. Moreover, 539 significantly abundant metabolites including some unique features were detected in F4SCM suggesting its substantial and specialized chemical diversity. This study putatively identified seven significantly high metabolites in F4SCM; 3-hydroxyphenylacetic acid, γ-aminobutyric acid, creatine, tryptamine, and 2-hydroxyisocaproic acid. Tryptamine and 2-hydroxyisocaproic acid were previously reported to have antimicrobial properties. The present study shows that soil Clostridium spp. are a promising group of bacteria producing metabolites with antimicrobial activity and provides future prospects for clostridial antimicrobial discovery within their metabolic diversity.
Collapse
Affiliation(s)
- Amila Srilal Nawarathna Weligala Pahalagedara
- Food Assurance team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.,School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Arvind Subbaraj
- Proteins and Metabolites team, AgResearch Ltd., Lincoln Research Centre, Lincoln, New Zealand
| | - Gale Brightwell
- Food Assurance team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree Barua Gupta
- Food Assurance team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|