1
|
Liu HW, Urzica EI, Gallaher SD, Schmollinger S, Blaby-Haas CE, Iwai M, Merchant SS. Chlamydomonas cells transition through distinct Fe nutrition stages within 48 h of transfer to Fe-free medium. PHOTOSYNTHESIS RESEARCH 2024; 161:213-232. [PMID: 39017982 DOI: 10.1007/s11120-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 07/18/2024]
Abstract
Low iron (Fe) bioavailability can limit the biosynthesis of Fe-containing proteins, which are especially abundant in photosynthetic organisms, thus negatively affecting global primary productivity. Understanding cellular coping mechanisms under Fe limitation is therefore of great interest. We surveyed the temporal responses of Chlamydomonas (Chlamydomonas reinhardtii) cells transitioning from an Fe-rich to an Fe-free medium to document their short and long-term adjustments. While slower growth, chlorosis and lower photosynthetic parameters are evident only after one or more days in Fe-free medium, the abundance of some transcripts, such as those for genes encoding transporters and enzymes involved in Fe assimilation, change within minutes, before changes in intracellular Fe content are noticeable, suggestive of a sensitive mechanism for sensing Fe. Promoter reporter constructs indicate a transcriptional component to this immediate primary response. With acetate provided as a source of reduced carbon, transcripts encoding respiratory components are maintained relative to transcripts encoding components of photosynthesis and tetrapyrrole biosynthesis, indicating metabolic prioritization of respiration over photosynthesis. In contrast to the loss of chlorophyll, carotenoid content is maintained under Fe limitation despite a decrease in the transcripts for carotenoid biosynthesis genes, indicating carotenoid stability. These changes occur more slowly, only after the intracellular Fe quota responds, indicating a phased response in Chlamydomonas, involving both primary and secondary responses during acclimation to poor Fe nutrition.
Collapse
Affiliation(s)
- Helen W Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 99354, USA
| | - Eugen I Urzica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Competence Network IBD, Hopfenstrasse 60, 24103, Kiel, Germany
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 99354, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Jeffers TL, Purvine SO, Nicora CD, McCombs R, Upadhyaya S, Stroumza A, Whang K, Gallaher SD, Dohnalkova A, Merchant SS, Lipton M, Niyogi KK, Roth MS. Iron rescues glucose-mediated photosynthesis repression during lipid accumulation in the green alga Chromochloris zofingiensis. Nat Commun 2024; 15:6046. [PMID: 39025848 PMCID: PMC11258321 DOI: 10.1038/s41467-024-50170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Energy status and nutrients regulate photosynthetic protein expression. The unicellular green alga Chromochloris zofingiensis switches off photosynthesis in the presence of exogenous glucose (+Glc) in a process that depends on hexokinase (HXK1). Here, we show that this response requires that cells lack sufficient iron (-Fe). Cells grown in -Fe+Glc accumulate triacylglycerol (TAG) while losing photosynthesis and thylakoid membranes. However, cells with an iron supplement (+Fe+Glc) maintain photosynthesis and thylakoids while still accumulating TAG. Proteomic analysis shows that known photosynthetic proteins are most depleted in heterotrophy, alongside hundreds of uncharacterized, conserved proteins. Photosynthesis repression is associated with enzyme and transporter regulation that redirects iron resources to (a) respiratory instead of photosynthetic complexes and (b) a ferredoxin-dependent desaturase pathway supporting TAG accumulation rather than thylakoid lipid synthesis. Combining insights from diverse organisms from green algae to vascular plants, we show how iron and trophic constraints on metabolism aid gene discovery for photosynthesis and biofuel production.
Collapse
Affiliation(s)
- Tim L Jeffers
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ryan McCombs
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Shivani Upadhyaya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Adrien Stroumza
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Ken Whang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Sean D Gallaher
- UCLA DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
- Quantitative Biosciences Institute, University of California, Berkeley, CA, 94720, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Quantitative Biosciences Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mary Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Melissa S Roth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Madireddi SK, Yadav RM, Zamal MY, Bag P, Gunasekaran JX, Subramanyam R. Exploring LHCSR3 expression and its role in Chlamydomonas reinhardtii under osmotic stress: Implications for non-photochemical quenching mechanism. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112941. [PMID: 38763078 DOI: 10.1016/j.jphotobiol.2024.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.
Collapse
Affiliation(s)
- Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Mohammad Yusuf Zamal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pushan Bag
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Jerome Xavier Gunasekaran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
4
|
Mosebach L, Ozawa SI, Younas M, Xue H, Scholz M, Takahashi Y, Hippler M. Chemical Protein Crosslinking-Coupled Mass Spectrometry Reveals Interaction of LHCI with LHCII and LHCSR3 in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:1632. [PMID: 38931064 PMCID: PMC11207971 DOI: 10.3390/plants13121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
The photosystem I (PSI) of the green alga Chlamydomonas reinhardtii associates with 10 light-harvesting proteins (LHCIs) to form the PSI-LHCI complex. In the context of state transitions, two LHCII trimers bind to the PSAL, PSAH and PSAO side of PSI to produce the PSI-LHCI-LHCII complex. In this work, we took advantage of chemical crosslinking of proteins in conjunction with mass spectrometry to identify protein-protein interactions between the light-harvesting proteins of PSI and PSII. We detected crosslinks suggesting the binding of LHCBM proteins to the LHCA1-PSAG side of PSI as well as protein-protein interactions of LHCSR3 with LHCA5 and LHCA3. Our data indicate that the binding of LHCII to PSI is more versatile than anticipated and imply that LHCSR3 might be involved in the regulation of excitation energy transfer to the PSI core via LHCA5/LHCA3.
Collapse
Affiliation(s)
- Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| | - Muhammad Younas
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Huidan Xue
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan;
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| |
Collapse
|
5
|
Shomali A, Das S, Sarraf M, Johnson R, Janeeshma E, Kumar V, Aliniaeifard S, Puthur JT, Hasanuzzaman M. Modulation of plant photosynthetic processes during metal and metalloid stress, and strategies for manipulating photosynthesis-related traits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108211. [PMID: 38029618 DOI: 10.1016/j.plaphy.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Metals constitute vital elements for plant metabolism and survival, acting as essential co-factors in cellular processes which are indispensable for plant growth and survival. Excess or deficient provision of metal/metalloids puts plant's life and survival at risk, thus considered a potent stress for plants. Chloroplasts as an organelle with a high metal demand form a pivotal site within the metal homeostasis network. Therefore, the metal-mediated electron transport chain (ETC) in chloroplasts is a primary target site of metal/metalloid-induced stresses. Both excess and deficient availability of metal/metalloids threatens plant's photosynthesis in several ways. Energy demands from the photosynthetic carbon reactions should be in balance with energy output of ETC. Malfunctioning of ETC components as a result of metal/metalloid stress initiates photoinhiition. A feedback inhibition from carbon fixation process also impedes the ETC. Metal stress impairs antioxidant enzyme activity, pigment biosynthesis, and stomatal function. However, genetic manipulations, nutrient management, keeping photostasis, and application of phytohormones are among strategies for coping with metal stress. Consequently, a comprehensive understanding of the underlying mechanisms of metal/metalloid stress, as well as the exploration of potential strategies to mitigate its impact on plants are imperative. This review offers a mechanistic insight into the disruption of photosynthesis regulation by metal/metalloids and highlights adaptive approaches to ameliorate their effects on plants. Focus was made on photostasis, nutrient interactions, phytohormones, and genetic interventions for mitigating metal/metalloid stresses.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran; Controlled Environment Agriculture Center, College of Agricultural and Natural Sciences, University of Tehran, Iran
| | - Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala 673635, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala, India
| | - Vinod Kumar
- Department of Botany, Government College for Women Gandhi Nagar, Jammu 180004, Jammu and Kashmir, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran.
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala 673635, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
6
|
Huang T, Pan Y, Maréchal E, Hu H. Proteomes reveal the lipid metabolic network in the complex plastid of Phaeodactylum tricornutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:385-403. [PMID: 37733835 DOI: 10.1111/tpj.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Phaeodactylum tricornutum plastid is surrounded by four membranes, and its protein composition and function remain mysterious. In this study, the P. tricornutum plastid-enriched fraction was obtained and 2850 proteins were identified, including 92 plastid-encoded proteins, through label-free quantitative proteomic technology. Among them, 839 nuclear-encoded proteins were further determined to be plastidial proteins based on the BLAST alignments within Plant Proteome DataBase and subcellular localization prediction, in spite of the strong contamination by mitochondria-encoded proteins and putative plasma membrane proteins. According to our proteomic data, we reconstructed the metabolic pathways and highlighted the hybrid nature of this diatom plastid. Triacylglycerol (TAG) hydrolysis and glycolysis, as well as photosynthesis, glycan metabolism, and tocopherol and triterpene biosynthesis, occur in the plastid. In addition, the synthesis of long-chain acyl-CoAs, elongation, and desaturation of fatty acids (FAs), and synthesis of lipids including TAG are confined in the four-layered-membrane plastid based on the proteomic and GFP-fusion localization data. The whole process of generation of docosahexaenoic acid (22:6) from palmitic acid (16:0), via elongation and desaturation of FAs, occurs in the chloroplast endoplasmic reticulum membrane, the outermost membrane of the plastid. Desaturation that generates 16:4 from 16:0 occurs in the plastid stroma and outer envelope membrane. Quantitative analysis of glycerolipids between whole cells and isolated plastids shows similar composition, and the FA profile of TAG was not different. This study shows that the diatom plastid combines functions usually separated in photosynthetic eukaryotes, and differs from green alga and plant chloroplasts by undertaking the whole process of lipid biosynthesis.
Collapse
Affiliation(s)
- Teng Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRA, IRIG-LPCV, 38054, Grenoble Cedex 9, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Storti M, Hsine H, Uwizeye C, Bastien O, Yee DP, Chevalier F, Decelle J, Giustini C, Béal D, Curien G, Finazzi G, Tolleter D. Tailoring confocal microscopy for real-time analysis of photosynthesis at single-cell resolution. CELL REPORTS METHODS 2023; 3:100568. [PMID: 37751690 PMCID: PMC10545909 DOI: 10.1016/j.crmeth.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/27/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023]
Abstract
Photoautotrophs' environmental responses have been extensively studied at the organism and ecosystem level. However, less is known about their photosynthesis at the single-cell level. This information is needed to understand photosynthetic acclimation processes, as light changes as it penetrates cells, layers of cells, or organs. Furthermore, cells within the same tissue may behave differently, being at different developmental/physiological stages. Here, we describe an approach for single-cell and subcellular photophysiology based on the customization of confocal microscopy to assess chlorophyll fluorescence quenching by the saturation pulse method. We exploit this setup to (1) reassess the specialization of photosynthetic activities in developing tissues of non-vascular plants; (2) identify a specific subpopulation of phytoplankton cells in marine photosymbiosis, which consolidate energetic connections with their hosts; and (3) examine the link between light penetration and photoprotection responses inside the different tissues that constitute a plant leaf anatomy.
Collapse
Affiliation(s)
- Mattia Storti
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France
| | - Haythem Hsine
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France
| | - Clarisse Uwizeye
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France
| | - Olivier Bastien
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France
| | - Daniel P Yee
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Fabien Chevalier
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France
| | - Johan Decelle
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France
| | - Cécile Giustini
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France
| | | | - Gilles Curien
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France
| | - Giovanni Finazzi
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France.
| | - Dimitri Tolleter
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France.
| |
Collapse
|
8
|
Esteves SM, Jadoul A, Iacono F, Schloesser M, Bosman B, Carnol M, Druet T, Cardol P, Hanikenne M. Natural variation of nutrient homeostasis among laboratory and field strains of Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5198-5217. [PMID: 37235689 DOI: 10.1093/jxb/erad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Natural variation among individuals and populations exists in all species, playing key roles in response to environmental stress and adaptation. Micro- and macronutrients have a wide range of functions in photosynthetic organisms, and mineral nutrition thus plays a sizable role in biomass production. To maintain nutrient concentrations inside the cell within physiological limits and prevent the detrimental effects of deficiency or excess, complex homeostatic networks have evolved in photosynthetic cells. The microalga Chlamydomonas reinhardtii (Chlamydomonas) is a unicellular eukaryotic model for studying such mechanisms. In this work, 24 Chlamydomonas strains, comprising field isolates and laboratory strains, were examined for intraspecific differences in nutrient homeostasis. Growth and mineral content were quantified in mixotrophy, as full nutrition control, and compared with autotrophy and nine deficiency conditions for macronutrients (-Ca, -Mg, -N, -P, and -S) and micronutrients (-Cu, -Fe, -Mn, and -Zn). Growth differences among strains were relatively limited. However, similar growth was accompanied by highly divergent mineral accumulation among strains. The expression of nutrient status marker genes and photosynthesis were scored in pairs of contrasting field strains, revealing distinct transcriptional regulation and nutrient requirements. Leveraging this natural variation should enable a better understanding of nutrient homeostasis in Chlamydomonas.
Collapse
Affiliation(s)
- Sara M Esteves
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Alice Jadoul
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Fabrizio Iacono
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| | - Bernard Bosman
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Belgium
| | - Monique Carnol
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics (GIGA), University of Liège, Belgium
| | - Pierre Cardol
- InBioS-PhytoSystems, Genetics and Physiology of Microalgae, University of Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
| |
Collapse
|
9
|
Saito A, Hoshi K, Wakabayashi Y, Togashi T, Shigematsu T, Katori M, Ohyama T, Higuchi K. Barley Cultivar Sarab 1 Has a Characteristic Region on the Thylakoid Membrane That Protects Photosystem I under Iron-Deficient Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2111. [PMID: 37299090 PMCID: PMC10255597 DOI: 10.3390/plants12112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
The barley cultivar Sarab 1 (SRB1) can continue photosynthesis despite its low Fe acquisition potential via roots and dramatically reduced amounts of photosystem I (PSI) reaction-center proteins under Fe-deficient conditions. We compared the characteristics of photosynthetic electron transfer (ET), thylakoid ultrastructure, and Fe and protein distribution on thylakoid membranes among barley cultivars. The Fe-deficient SRB1 had a large proportion of functional PSI proteins by avoiding P700 over-reduction. An analysis of the thylakoid ultrastructure clarified that SRB1 had a larger proportion of non-appressed thylakoid membranes than those in another Fe-tolerant cultivar, Ehimehadaka-1 (EHM1). Separating thylakoids by differential centrifugation further revealed that the Fe-deficient SRB1 had increased amounts of low/light-density thylakoids with increased Fe and light-harvesting complex II (LHCII) than did EHM1. LHCII with uncommon localization probably prevents excessive ET from PSII leading to elevated NPQ and lower PSI photodamage in SRB1 than in EHM1, as supported by increased Y(NPQ) and Y(ND) in the Fe-deficient SRB1. Unlike this strategy, EHM1 may preferentially supply Fe cofactors to PSI, thereby exploiting more surplus reaction center proteins than SRB1 under Fe-deficient conditions. In summary, SRB1 and EHM1 support PSI through different mechanisms during Fe deficiency, suggesting that barley species have multiple strategies for acclimating photosynthetic apparatus to Fe deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kyoko Higuchi
- Laboratory of Biochemistry in Plant Productivity, Department of Agricultural Chemistry, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan; (A.S.); (T.O.)
| |
Collapse
|
10
|
Wilson S, Kim E, Ishii A, Ruban AV, Minagawa J. Overexpression of LHCSR and PsbS enhance light tolerance in Chlamydomonas reinhardtii. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 244:112718. [PMID: 37156084 DOI: 10.1016/j.jphotobiol.2023.112718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Nonphotochemical quenching (NPQ) is a crucial mechanism for fine-tuning light harvesting and protecting the photosystem II (PSII) reaction centres from excess light energy in plants and algae. This process is regulated by photoprotective proteins LHCSR1, LHCSR3, and PsbS in green algae, such as Chlamydomonas reinhardtii. The det1-2 phot mutant, which overexpresses these photoprotective proteins, resulting in a significantly higher NPQ response, has been recently discovered in C. reinhardtii. Here, we analysed the physiological impact of this response on algal cells and found that det1-2 phot was capable of efficient growth under high light intensities, where wild-type (WT) cells were unable to survive. The mutant exhibited a smaller PSII cross-section in the dark and showed a detachment of the peripheral light-harvesting complex II (LHCII) antenna in the NPQ state, as suggested by a rise in the chlorophyll fluorescence parameter of photochemical quenching in the dark (qPd > 1). Furthermore, fluorescence decay-associated spectra demonstrated a decreased excitation pressure on PSII, with excess energy being directed toward PSI. The amount of LHCSR1, LHCSR3, and PsbS in the mutant correlated with the magnitude of the protective NPQ response. Overall, the study suggests the mechanism by which the overexpression of photoprotective proteins in det1-2 phot brings about an efficient and effective photoprotective response, enabling the mutant to grow and survive under high light intensities that would otherwise be lethal for WT cells.
Collapse
Affiliation(s)
- Sam Wilson
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Eunchul Kim
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Asako Ishii
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| |
Collapse
|
11
|
Glaesener AG, Merchant SS. Optimizing Fe Nutrition for Algal Growth. Methods Mol Biol 2023; 2665:203-215. [PMID: 37166603 DOI: 10.1007/978-1-0716-3183-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chlamydomonas is an excellent reference system for dissecting the impact of iron (Fe) nutrition on photosynthetic and other metabolisms. The operational definition of four stages of Fe nutrition is described and a guide to the practical use of these stages is offered, specifically the preparation of media and growth of mixotrophic cultures. A key consideration is the impact of carbon metabolism on the expression of Fe-containing enzymes and hence the Fe quota. The absolute concentration of Fe in the medium is less determinative of gene expression than the Fe available on a per-cell basis. In nature, algal cells may transition from Fe-replete to -deficient to -limited during a bloom.
Collapse
Affiliation(s)
- Anne G Glaesener
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
12
|
Bai R, Bai C, Han X, Liu Y, Yong JWH. The significance of calcium-sensing receptor in sustaining photosynthesis and ameliorating stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1019505. [PMID: 36304398 PMCID: PMC9594963 DOI: 10.3389/fpls.2022.1019505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Calcium ions (Ca2+) regulate plant growth and development during exposure to multiple biotic and abiotic stresses as the second signaling messenger in cells. The extracellular calcium-sensing receptor (CAS) is a specific protein spatially located on the thylakoid membrane. It regulates the intracellular Ca2+ responses by sensing changes in extracellular Ca2+ concentration, thereby affecting a series of downstream signal transduction processes and making plants more resilient to respond to stresses. Here, we summarized the discovery process, structure, and location of CAS in plants and the effects of Ca2+ and CAS on stomatal functionality, photosynthesis, and various environmental adaptations. Under changing environmental conditions and global climate, our study enhances the mechanistic understanding of calcium-sensing receptors in sustaining photosynthesis and mediating abiotic stress responses in plants. A better understanding of the fundamental mechanisms of Ca2+ and CAS in regulating stress responses in plants may provide novel mitigation strategies for improving crop yield in a world facing more extreme climate-changed linked weather events with multiple stresses during cultivation.
Collapse
Affiliation(s)
- Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
13
|
Naschberger A, Mosebach L, Tobiasson V, Kuhlgert S, Scholz M, Perez-Boerema A, Ho TTH, Vidal-Meireles A, Takahashi Y, Hippler M, Amunts A. Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex. NATURE PLANTS 2022; 8:1191-1201. [PMID: 36229605 PMCID: PMC9579051 DOI: 10.1038/s41477-022-01253-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/02/2022] [Indexed: 05/29/2023]
Abstract
Photosystem I (PSI) enables photo-electron transfer and regulates photosynthesis in the bioenergetic membranes of cyanobacteria and chloroplasts. Being a multi-subunit complex, its macromolecular organization affects the dynamics of photosynthetic membranes. Here we reveal a chloroplast PSI from the green alga Chlamydomonas reinhardtii that is organized as a homodimer, comprising 40 protein subunits with 118 transmembrane helices that provide scaffold for 568 pigments. Cryogenic electron microscopy identified that the absence of PsaH and Lhca2 gives rise to a head-to-head relative orientation of the PSI-light-harvesting complex I monomers in a way that is essentially different from the oligomer formation in cyanobacteria. The light-harvesting protein Lhca9 is the key element for mediating this dimerization. The interface between the monomers is lacking PsaH and thus partially overlaps with the surface area that would bind one of the light-harvesting complex II complexes in state transitions. We also define the most accurate available PSI-light-harvesting complex I model at 2.3 Å resolution, including a flexibly bound electron donor plastocyanin, and assign correct identities and orientations to all the pigments, as well as 621 water molecules that affect energy transfer pathways.
Collapse
Affiliation(s)
- Andreas Naschberger
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Sebastian Kuhlgert
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Annemarie Perez-Boerema
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Thi Thu Hoai Ho
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - André Vidal-Meireles
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Japan Science and Technology Agency-CREST, Saitama, Japan
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany.
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
14
|
Kotabova E, Malych R, Pierella Karlusich JJ, Kazamia E, Eichner M, Mach J, Lesuisse E, Bowler C, Prášil O, Sutak R. Complex Response of the Chlorarachniophyte Bigelowiella natans to Iron Availability. mSystems 2021; 6:e00738-20. [PMID: 33563784 PMCID: PMC7883536 DOI: 10.1128/msystems.00738-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022] Open
Abstract
The productivity of the ocean is largely dependent on iron availability, and marine phytoplankton have evolved sophisticated mechanisms to cope with chronically low iron levels in vast regions of the open ocean. By analyzing the metabarcoding data generated from the Tara Oceans expedition, we determined how the global distribution of the model marine chlorarachniophyte Bigelowiella natans varies across regions with different iron concentrations. We performed a comprehensive proteomics analysis of the molecular mechanisms underpinning the adaptation of B. natans to iron scarcity and report on the temporal response of cells to iron enrichment. Our results highlight the role of phytotransferrin in iron homeostasis and indicate the involvement of CREG1 protein in the response to iron availability. Analysis of the Tara Oceans metagenomes and metatranscriptomes also points to a similar role for CREG1, which is found to be widely distributed among marine plankton but to show a strong bias in gene and transcript abundance toward iron-deficient regions. Our analyses allowed us to define a new subfamily of the CobW domain-containing COG0523 putative metal chaperones which are involved in iron metabolism and are restricted to only a few phytoplankton lineages in addition to B. natans At the physiological level, we elucidated the mechanisms allowing a fast recovery of PSII photochemistry after resupply of iron. Collectively, our study demonstrates that B. natans is well adapted to dynamically respond to a changing iron environment and suggests that CREG1 and COG0523 are important components of iron homeostasis in B. natans and other phytoplankton.IMPORTANCE Despite low iron availability in the ocean, marine phytoplankton require considerable amounts of iron for their growth and proliferation. While there is a constantly growing knowledge of iron uptake and its role in the cellular processes of the most abundant marine photosynthetic groups, there are still largely overlooked branches of the eukaryotic tree of life, such as the chlorarachniophytes. In the present work, we focused on the model chlorarachniophyte Bigelowiella natans, integrating physiological and proteomic analyses in culture conditions with the mining of omics data generated by the Tara Oceans expedition. We provide unique insight into the complex responses of B. natans to iron availability, including novel links to iron metabolism conserved in other phytoplankton lineages.
Collapse
Affiliation(s)
- Eva Kotabova
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech Republic
| | - Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Juan José Pierella Karlusich
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Elena Kazamia
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Meri Eichner
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Emmanuel Lesuisse
- Jacques Monod Institute, UMR7592 CNRS, Paris Diderot University, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
15
|
Devadasu E, Pandey J, Dhokne K, Subramanyam R. Restoration of photosynthetic activity and supercomplexes from severe iron starvation in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148331. [PMID: 33127356 DOI: 10.1016/j.bbabio.2020.148331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
The eukaryotic alga Chlamydomonas (C.) reinhardtii is used as a model organism to study photosynthetic efficiency. We studied the organization and protein profile of thylakoid membranes under severe iron (Fe2+) deficiency condition and iron supplement for their restoration. Chlorophyll (Chl) a fluorescence fast OJIP transients were decreased in the severe Fe2+ deficient cells resulting in the reduction of the photochemical efficiency. The circular dichroism (CD) results from Fe2+ deficient thylakoid membranes show a significant change in pigment-pigment and pigment-protein excitonic interactions. The organization of super-complexes was also affected significantly. Furthermore, super-complexes of photosystem (PS) II and PSI, along with its dimers, were severely reduced. The complexes separated using sucrose gradient centrifugation shows that loss of super-complexes and excitonic pigment-pigment interactions were restored in the severely Fe2+ deficient cells upon Fe supplementation for three generations. Additionally, the immunoblots demonstrated that both PSII, PSI core, and their light-harvesting complex antenna proteins were differentially decreased. However, reduced core proteins were aggregated, which in turn proteins were unfold and destabilized the supercomplexes and its function. Interestingly, the aggregated proteins were insoluble after n-Dodecyl β-D-maltoside solubilization. Further, they were identified in the pellet form. When Fe2+ was added to the severely deficient cells, the photosynthetic activity, pigment-proteins complexes, and proteins were restored to the level of control after 3rd generation.
Collapse
Affiliation(s)
- Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India
| | - Jayendra Pandey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India
| | - Kunal Dhokne
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India.
| |
Collapse
|
16
|
Negi S, Perrine Z, Friedland N, Kumar A, Tokutsu R, Minagawa J, Berg H, Barry AN, Govindjee G, Sayre R. Light regulation of light-harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae †. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:584-603. [PMID: 32180283 DOI: 10.1111/tpj.14751] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 05/25/2023]
Abstract
One of the major factors limiting biomass productivity in algae is the low thermodynamic efficiency of photosynthesis. The greatest thermodynamic inefficiencies in photosynthesis occur during the conversion of light into chemical energy. At full sunlight the light-harvesting antenna captures photons at a rate nearly 10 times faster than the rate-limiting step in photosynthetic electron transport. Excess captured energy is dissipated by non-productive pathways including the production of reactive oxygen species. Substantial improvements in photosynthetic efficiency have been achieved by reducing the optical cross-section of the light-harvesting antenna by selectively reducing chlorophyll b levels and peripheral light-harvesting complex subunits. Smaller light-harvesting antenna, however, may not exhibit optimal photosynthetic performance in low or fluctuating light environments. We describe a translational control system to dynamically adjust light-harvesting antenna sizes for enhanced photosynthetic performance. By expressing a chlorophyllide a oxygenase (CAO) gene having a 5' mRNA extension encoding a Nab1 translational repressor binding site in a CAO knockout line it was possible to continuously alter chlorophyll b levels and correspondingly light-harvesting antenna sizes by light-activated Nab1 repression of CAO expression as a function of growth light intensity. Significantly, algae having light-regulated antenna sizes had substantially higher photosynthetic rates and two-fold greater biomass productivity than the parental wild-type strains as well as near wild-type ability to carry out state transitions and non-photochemical quenching. These results have broad implications for enhanced algae and plant biomass productivity.
Collapse
Affiliation(s)
- Sangeeta Negi
- New Mexico Consortium and Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Zoee Perrine
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | - Anil Kumar
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency (JST), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency (JST), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Howard Berg
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Amanda N Barry
- Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | |
Collapse
|
17
|
Redekop P, Rothhausen N, Rothhausen N, Melzer M, Mosebach L, Dülger E, Bovdilova A, Caffarri S, Hippler M, Jahns P. PsbS contributes to photoprotection in Chlamydomonas reinhardtii independently of energy dissipation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148183. [DOI: 10.1016/j.bbabio.2020.148183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
|
18
|
Theis J, Niemeyer J, Schmollinger S, Ries F, Rütgers M, Gupta TK, Sommer F, Muranaka LS, Venn B, Schulz-Raffelt M, Willmund F, Engel BD, Schroda M. VIPP2 interacts with VIPP1 and HSP22E/F at chloroplast membranes and modulates a retrograde signal for HSP22E/F gene expression. PLANT, CELL & ENVIRONMENT 2020; 43:1212-1229. [PMID: 31994740 DOI: 10.1111/pce.13732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
VIPP proteins aid thylakoid biogenesis and membrane maintenance in cyanobacteria, algae, and plants. Some members of the Chlorophyceae contain two VIPP paralogs termed VIPP1 and VIPP2, which originate from an early gene duplication event during the evolution of green algae. VIPP2 is barely expressed under nonstress conditions but accumulates in cells exposed to high light intensities or H2 O2 , during recovery from heat stress, and in mutants with defective integration (alb3.1) or translocation (secA) of thylakoid membrane proteins. Recombinant VIPP2 forms rod-like structures in vitro and shows a strong affinity for phosphatidylinositol phosphate. Under stress conditions, >70% of VIPP2 is present in membrane fractions and localizes to chloroplast membranes. A vipp2 knock-out mutant displays no growth phenotypes and no defects in the biogenesis or repair of photosystem II. However, after exposure to high light intensities, the vipp2 mutant accumulates less HSP22E/F and more LHCSR3 protein and transcript. This suggests that VIPP2 modulates a retrograde signal for the expression of nuclear genes HSP22E/F and LHCSR3. Immunoprecipitation of VIPP2 from solubilized cells and membrane-enriched fractions revealed major interactions with VIPP1 and minor interactions with HSP22E/F. Our data support a distinct role of VIPP2 in sensing and coping with chloroplast membrane stress.
Collapse
Affiliation(s)
- Jasmine Theis
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Justus Niemeyer
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Stefan Schmollinger
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Fabian Ries
- Molecular Genetics of Eukaryotes, TU Kaiserslautern, Kaiserslautern, Germany
| | - Mark Rütgers
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Tilak Kumar Gupta
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | | | - Benedikt Venn
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Miriam Schulz-Raffelt
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, TU Kaiserslautern, Kaiserslautern, Germany
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
19
|
Zheng Z, Gao S, Wang G. High salt stress in the upper part of floating mats of Ulva prolifera, a species that causes green tides, enhances non-photochemical quenching. JOURNAL OF PHYCOLOGY 2019; 55:1041-1049. [PMID: 31062364 DOI: 10.1111/jpy.12881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Salt stress is a major abiotic stress factor that can induce many adverse effects on photosynthetic organisms. Plants and algae have developed several mechanisms that help them respond to adverse environments. Non-photochemical quenching (NPQ) is one of these mechanisms. The thalli of algae in the intertidal zone that are attached to rocks can be subjected to salt stress for a short period of time due to the rise and fall of the tide. Ulva prolifera causes green tides and can form floating mats when green tides occur and the upper part of the thalli is subjected to high salt stress for a long period of time. In this study, we compared the Ulva prolifera photosynthetic activities and NPQ kinetics when it is subjected to different salinities over various periods of time. Thalli exposed to a salinity of 90 for 4 d showed enhanced NPQ, and photosynthetic activities decreased from 60 min after exposure up to 4 d. This indicated that the induction of NPQ in Ulva prolifera under salt stress was closely related to the stressing extent and stressing time. The enhanced NPQ in the treated samples exposed for 4 d may explain why the upper layer of the floating mats formed by Ulva prolifera thalli were able to survive in the harsh environment. Further inhibitor experiments demonstrated that the enhanced NPQ was xanthophyll cycle and transthylakoid proton gradient-dependent. However, photosystem II subunit S and light-harvesting complex stress-related protein didn't over accumulate and may not be responsible for the enhanced NPQ.
Collapse
Affiliation(s)
- Zhenbing Zheng
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Tsednee M, Castruita M, Salomé PA, Sharma A, Lewis BE, Schmollinger SR, Strenkert D, Holbrook K, Otegui MS, Khatua K, Das S, Datta A, Chen S, Ramon C, Ralle M, Weber PK, Stemmler TL, Pett-Ridge J, Hoffman BM, Merchant SS. Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions. J Biol Chem 2019; 294:17626-17641. [PMID: 31527081 DOI: 10.1074/jbc.ra119.009130] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
Exposing cells to excess metal concentrations well beyond the cellular quota is a powerful tool for understanding the molecular mechanisms of metal homeostasis. Such improved understanding may enable bioengineering of organisms with improved nutrition and bioremediation capacity. We report here that Chlamydomonas reinhardtii can accumulate manganese (Mn) in proportion to extracellular supply, up to 30-fold greater than its typical quota and with remarkable tolerance. As visualized by X-ray fluorescence microscopy and nanoscale secondary ion MS (nanoSIMS), Mn largely co-localizes with phosphorus (P) and calcium (Ca), consistent with the Mn-accumulating site being an acidic vacuole, known as the acidocalcisome. Vacuolar Mn stores are accessible reserves that can be mobilized in Mn-deficient conditions to support algal growth. We noted that Mn accumulation depends on cellular polyphosphate (polyP) content, indicated by 1) a consistent failure of C. reinhardtii vtc1 mutant strains, which are deficient in polyphosphate synthesis, to accumulate Mn and 2) a drastic reduction of the Mn storage capacity in P-deficient cells. Rather surprisingly, X-ray absorption spectroscopy, EPR, and electron nuclear double resonance revealed that only little Mn2+ is stably complexed with polyP, indicating that polyP is not the final Mn ligand. We propose that polyPs are a critical component of Mn accumulation in Chlamydomonas by driving Mn relocation from the cytosol to acidocalcisomes. Within these structures, polyP may, in turn, escort vacuolar Mn to a number of storage ligands, including phosphate and phytate, and other, yet unidentified, compounds.
Collapse
Affiliation(s)
| | - Madeli Castruita
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095.,Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Brianne E Lewis
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - Stefan R Schmollinger
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095.,Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095.,Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Kristen Holbrook
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Kaustav Khatua
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Sayani Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439
| | - Christina Ramon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 .,Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| |
Collapse
|
21
|
Scholz M, Gäbelein P, Xue H, Mosebach L, Bergner SV, Hippler M. Light-dependent N-terminal phosphorylation of LHCSR3 and LHCB4 are interlinked in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:877-894. [PMID: 31033075 PMCID: PMC6851877 DOI: 10.1111/tpj.14368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/15/2019] [Accepted: 04/16/2019] [Indexed: 05/08/2023]
Abstract
Phosphorylation dynamics of LHCSR3 were investigated in Chlamydomonas reinhardtii by quantitative proteomics and genetic engineering. LHCSR3 protein expression and phosphorylation were induced in high light. Our data revealed synergistic and dynamic N-terminal LHCSR3 phosphorylation. Phosphorylated and nonphosphorylated LHCSR3 associated with PSII-LHCII supercomplexes. The phosphorylation status of LHCB4 was closely linked to the phosphorylation of multiple sites at the N-terminus of LHCSR3, indicating that LHCSR3 phosphorylation may operate as a molecular switch modulating LHCB4 phosphorylation, which in turn is important for PSII-LHCII disassembly. Notably, LHCSR3 phosphorylation diminished under prolonged high light, which coincided with onset of CEF. Hierarchical clustering of significantly altered proteins revealed similar expression profiles of LHCSR3, CRX, and FNR. This finding indicated the existence of a functional link between LHCSR3 protein abundance and phosphorylation, photosynthetic electron flow, and the oxidative stress response.
Collapse
Affiliation(s)
- Martin Scholz
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
| | - Philipp Gäbelein
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
| | - Huidan Xue
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
| | - Laura Mosebach
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
| | - Sonja Verena Bergner
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
- Present address:
Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1Potsdam‐Golm14476Germany
| | - Michael Hippler
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
| |
Collapse
|
22
|
Cook G, Teufel A, Kalra I, Li W, Wang X, Priscu J, Morgan-Kiss R. The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron. PHOTOSYNTHESIS RESEARCH 2019; 141:209-228. [PMID: 30729447 DOI: 10.1007/s11120-019-00621-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Chlamydomonas sp. UWO241 is a psychrophilic alga isolated from the deep photic zone of a perennially ice-covered Antarctic lake (east lobe Lake Bonney, ELB). Past studies have shown that C. sp. UWO241 exhibits constitutive downregulation of photosystem I (PSI) and high rates of PSI-associated cyclic electron flow (CEF). Iron levels in ELB are in the nanomolar range leading us to hypothesize that the unusual PSI phenotype of C. sp. UWO241 could be a response to chronic Fe-deficiency. We studied the impact of Fe availability in C. sp. UWO241, a mesophile, C. reinhardtii SAG11-32c, as well as a psychrophile isolated from the shallow photic zone of ELB, Chlamydomonas sp. ICE-MDV. Under Fe-deficiency, PsaA abundance and levels of photooxidizable P700 (ΔA820/A820) were reduced in both psychrophiles relative to the mesophile. Upon increasing Fe, C. sp. ICE-MDV and C. reinhardtii exhibited restoration of PSI function, while C. sp. UWO241 exhibited only moderate changes in PSI activity and lacked almost all LHCI proteins. Relative to Fe-excess conditions (200 µM Fe2+), C. sp. UWO241 grown in 18 µM Fe2+ exhibited downregulation of light harvesting and photosystem core proteins, as well as upregulation of a bestrophin-like anion channel protein and two CEF-associated proteins (NdsS, PGL1). Key enzymes of starch synthesis and shikimate biosynthesis were also upregulated. We conclude that in response to variable Fe availability, the psychrophile C. sp. UWO241 exhibits physiological plasticity which includes restructuring of the photochemical apparatus, increased PSI-associated CEF, and shifts in downstream carbon metabolism toward storage carbon and secondary stress metabolites.
Collapse
Affiliation(s)
- Greg Cook
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - Amber Teufel
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - Isha Kalra
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - Wei Li
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Xin Wang
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - John Priscu
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Rachael Morgan-Kiss
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA.
| |
Collapse
|
23
|
Salama ES, Govindwar SP, Khandare RV, Roh HS, Jeon BH, Li X. Can Omics Approaches Improve Microalgal Biofuels under Abiotic Stress? TRENDS IN PLANT SCIENCE 2019; 24:611-624. [PMID: 31085124 DOI: 10.1016/j.tplants.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Microalgae hold the promise of an inexpensive and sustainable source of biofuels. The existing microalgal cultivation technologies need significant improvement to outcompete other biofuel sources such as terrestrial plants. Application of 'algomics' approaches under different abiotic stress conditions could be an effective strategy for optimization of microalgal growth and production of high-quality biofuels. In this review, we discuss the roles of omics in understanding genome structure and biocomponents metabolism in various microalgal species to optimize sustainable biofuel production. Application of individual and integrated omics revealed that genes and metabolic pathways of microalgae have been altered under multiple stress conditions, resulting in an increase in biocomponents, providing a research platform for expansion of genetic engineering studies in microalgal strains.
Collapse
Affiliation(s)
- El-Sayed Salama
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Rahul V Khandare
- Amity Institute of Biotechnology, Amity University, Mumbai, 410206, India
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 220-710, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
24
|
Toyoshima M, Sakata M, Ohnishi K, Tokumaru Y, Kato Y, Tokutsu R, Sakamoto W, Minagawa J, Matsuda F, Shimizu H. Targeted proteome analysis of microalgae under high-light conditions by optimized protein extraction of photosynthetic organisms. J Biosci Bioeng 2019; 127:394-402. [DOI: 10.1016/j.jbiosc.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/23/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
|
25
|
Devadasu E, Chinthapalli DK, Chouhan N, Madireddi SK, Rasineni GK, Sripadi P, Subramanyam R. Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency. PHOTOSYNTHESIS RESEARCH 2019; 139:253-266. [PMID: 30218258 DOI: 10.1007/s11120-018-0580-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/28/2018] [Indexed: 05/19/2023]
Abstract
The unicellular photosynthetic alga Chlamydomonas reinhardtii was propagated in iron deficiency medium and patterns of growth, photosynthetic efficiency, lipid accumulation, as well as the expression of lipid biosynthetic and photosynthesis-related proteins were analysed and compared with iron-sufficient growth conditions. As expected, the photosynthetic rate was reduced (maximally after 4 days of growth) as a result of increased non-photochemical quenching (NPQ). Surprisingly, the stress-response protein LHCSR3 was expressed in conditions of iron deficiency that cause NPQ induction. In addition, the protein contents of both the PSI and PSII reaction centres were gradually reduced during growth in iron deficiency medium. Interestingly, the two generations of Fe deficiency cells could be able to recover the photosynthesis but the second generation cells recovered much slower as these cells were severely in shock. Analysis by flow cytometry with fluorescence-activated cell sorting and thin layer chromatography showed that iron deficiency also induced the accumulation of triacylglycerides (TAG), which resulted in the formation of lipid droplets. This was most significant between 48 and 72 h of growth. Dramatic increases in DGAT2A and PDAT1 levels were caused by iron starvation, which indicated that the biosynthesis of TAG had been increased. Analysis using gas chromatography mass spectrometry showed that levels of 16:0, 18:0, 18:2 and 18:3Δ9,12,15 fatty acids were significantly elevated. The results of this study highlight the genes/enzymes of Chlamydomonas that affect lipid synthesis through their influence on photosynthesis, and these represent potential targets of metabolic engineering to develop strains for biofuel production.
Collapse
Affiliation(s)
- Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Dinesh Kumar Chinthapalli
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Analytical Chemistry and Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Nisha Chouhan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Girish Kumar Rasineni
- Center for Excellence in Medical Services Pvt. Ltd., Kineta Towers, Road No. 3, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Prabhakar Sripadi
- Analytical Chemistry and Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
26
|
LHC-like proteins involved in stress responses and biogenesis/repair of the photosynthetic apparatus. Biochem J 2019; 476:581-593. [PMID: 30765616 DOI: 10.1042/bcj20180718] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 01/04/2023]
Abstract
LHC (light-harvesting complex) proteins of plants and algae are known to be involved both in collecting light energy for driving the primary photochemical reactions of photosynthesis and in photoprotection when the absorbed light energy exceeds the capacity of the photosynthetic apparatus. These proteins usually contain three transmembrane (TM) helices which span the thylakoid membranes and bind several chlorophyll, carotenoid and lipid molecules. In addition, the LHC protein family includes LHC-like proteins containing one, two, three or even four TM domains. One-helix proteins are not only present in eukaryotic photosynthetic organisms but also in cyanobacteria where they have been named high light-inducible proteins. These small proteins are probably the ancestors of the members of the extant LHC protein family which arouse through gene duplications, deletions and fusions. During evolution, some of these proteins have diverged and acquired novel functions. In most cases, LHC-like proteins are induced in response to various stress conditions including high light, high salinity, elevated temperature and nutrient limitation. Many of these proteins play key roles in photoprotection, notably in non-photochemical quenching of absorbed light energy. Moreover, some of these proteins appear to be involved in the regulation of chlorophyll synthesis and in the assembly and repair of Photosystem II and also of Photosystem I possibly by mediating the insertion of newly synthesized pigments into the photosynthetic reaction centers.
Collapse
|
27
|
Rea G, Antonacci A, Lambreva MD, Mattoo AK. Features of cues and processes during chloroplast-mediated retrograde signaling in the alga Chlamydomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:193-206. [PMID: 29807591 DOI: 10.1016/j.plantsci.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Retrograde signaling is an intracellular communication process defined by cues generated in chloroplast and mitochondria which traverse membranes to their destination in the nucleus in order to regulate nuclear gene expression and protein synthesis. The coding and decoding of such organellar message(s) involve gene medleys and metabolic components about which more is known in higher plants than the unicellular organisms such as algae. Chlamydomonas reinhardtii is an oxygenic microalgal model for genetic and physiological studies. It harbors a single chloroplast and is amenable for generating mutants. The focus of this review is on studies that delineate retrograde signaling in Chlamydomonas vis a vis higher plants. Thus, communication networks between chloroplast and nucleus involving photosynthesis- and ROS-generated signals, functional tetrapyrrole biosynthesis intermediates, and Ca2+-signaling that modulate nuclear gene expression in this alga are discussed. Conceptually, different signaling components converge to regulate either the same or functionally-overlapping gene products.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Autar K Mattoo
- The Henry A Wallace Agricultural Research Centre, U.S. Department of Agriculture, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
28
|
Düner M, Lambertz J, Mügge C, Hemschemeier A. The soluble guanylate cyclase CYG12 is required for the acclimation to hypoxia and trophic regimes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:311-337. [PMID: 29161457 DOI: 10.1111/tpj.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
Oxygenic phototrophs frequently encounter environmental conditions that result in intracellular energy crises. Growth of the unicellular green alga Chlamydomonas reinhardtii in hypoxia in the light depends on acclimatory responses of which the induction of photosynthetic cyclic electron flow is essential. The microalga cannot grow in the absence of molecular oxygen (O2 ) in the dark, although it possesses an elaborate fermentation metabolism. Not much is known about how the microalga senses and signals the lack of O2 or about its survival strategies during energy crises. Recently, nitric oxide (NO) has emerged to be required for the acclimation of C. reinhardtii to hypoxia. In this study, we show that the soluble guanylate cyclase (sGC) CYG12, a homologue of animal NO sensors, is also involved in this response. CYG12 is an active sGC, and post-transcriptional down-regulation of the CYG12 gene impairs hypoxic growth and gene expression in C. reinhardtii. However, it also results in a disturbed photosynthetic apparatus under standard growth conditions and the inability to grow heterotrophically. Transcriptome profiles indicate that the mis-expression of CYG12 results in a perturbation of responses that, in the wild-type, maintain the cellular energy budget. We suggest that CYG12 is required for the proper operation of the photosynthetic apparatus which, in turn, is essential for survival in hypoxia and darkness.
Collapse
Affiliation(s)
- Melis Düner
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jan Lambertz
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carolin Mügge
- Junior Research Group for Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
29
|
Kim E, Akimoto S, Tokutsu R, Yokono M, Minagawa J. Fluorescence lifetime analyses reveal how the high light-responsive protein LHCSR3 transforms PSII light-harvesting complexes into an energy-dissipative state. J Biol Chem 2017; 292:18951-18960. [PMID: 28972177 DOI: 10.1074/jbc.m117.805192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
In green algae, light-harvesting complex stress-related 3 (LHCSR3) is responsible for the pH-dependent dissipation of absorbed light energy, a function vital for survival under high-light conditions. LHCSR3 binds the photosystem II and light-harvesting complex II (PSII-LHCII) supercomplex and transforms it into an energy-dissipative form under acidic conditions, but the molecular mechanism remains unclear. Here we show that in the green alga Chlamydomonas reinhardtii, LHCSR3 modulates the excitation energy flow and dissipates the excitation energy within the light-harvesting complexes of the PSII supercomplex. Using fluorescence decay-associated spectra analysis, we found that, when the PSII supercomplex is associated with LHCSR3 under high-light conditions, excitation energy transfer from light-harvesting complexes to chlorophyll-binding protein CP43 is selectively inhibited compared with that to CP47, preventing excess excitation energy from overloading the reaction center. By analyzing femtosecond up-conversion fluorescence kinetics, we further found that pH- and LHCSR3-dependent quenching of the PSII-LHCII-LHCSR3 supercomplex is accompanied by a fluorescence emission centered at 684 nm, with a decay time constant of 18.6 ps, which is equivalent to the rise time constant of the lutein radical cation generated within a chlorophyll-lutein heterodimer. These results suggest a mechanism in which LHCSR3 transforms the PSII supercomplex into an energy-dissipative state and provide critical insight into the molecular events and characteristics in LHCSR3-dependent energy quenching.
Collapse
Affiliation(s)
- Eunchul Kim
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585
| | - Seiji Akimoto
- the Graduate School of Science, Kobe University, Kobe 657-8501, and
| | - Ryutaro Tokutsu
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585
| | - Makio Yokono
- the Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Jun Minagawa
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585,
| |
Collapse
|
30
|
Cantrell M, Peers G. A mutant of Chlamydomonas without LHCSR maintains high rates of photosynthesis, but has reduced cell division rates in sinusoidal light conditions. PLoS One 2017. [PMID: 28644828 PMCID: PMC5482440 DOI: 10.1371/journal.pone.0179395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The LHCSR protein belongs to the light harvesting complex family of pigment-binding proteins found in oxygenic photoautotrophs. Previous studies have shown that this complex is required for the rapid induction and relaxation of excess light energy dissipation in a wide range of eukaryotic algae and moss. The ability of cells to rapidly regulate light harvesting between this dissipation state and one favoring photochemistry is believed to be important for reducing oxidative stress and maintaining high photosynthetic efficiency in a rapidly changing light environment. We found that a mutant of Chlamydomonas reinhardtii lacking LHCSR, npq4lhcsr1, displays minimal photoinhibition of photosystem II and minimal inhibition of short term oxygen evolution when grown in constant excess light compared to a wild type strain. We also investigated the impact of no LHCSR during growth in a sinusoidal light regime, which mimics daily changes in photosynthetically active radiation. The absence of LHCSR correlated with a slight reduction in the quantum efficiency of photosystem II and a stimulation of the maximal rates of photosynthesis compared to wild type. However, there was no reduction in carbon accumulation during the day. Another novel finding was that npq4lhcsr1 cultures underwent fewer divisions at night, reducing the overall growth rate compared to the wild type. Our results show that the rapid regulation of light harvesting mediated by LHCSR is required for high growth rates, but it is not required for efficient carbon accumulation during the day in a sinusoidal light environment. This finding has direct implications for engineering strategies directed at increasing photosynthetic productivity in mass cultures.
Collapse
Affiliation(s)
- Michael Cantrell
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
- * E-mail:
| |
Collapse
|
31
|
A Method for Microalgae Proteomics Analysis Based on Modified Filter-Aided Sample Preparation. Appl Biochem Biotechnol 2017; 183:923-930. [DOI: 10.1007/s12010-017-2473-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
32
|
Cui Y, Zhang H, Lin S. Enhancement of Non-photochemical Quenching as an Adaptive Strategy under Phosphorus Deprivation in the Dinoflagellate Karlodinium veneficum. Front Microbiol 2017; 8:404. [PMID: 28360892 PMCID: PMC5350143 DOI: 10.3389/fmicb.2017.00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/27/2017] [Indexed: 11/18/2022] Open
Abstract
Intensified water column stratification due to global warming has the potential to decrease nutrient availability while increasing excess light for the photosynthesis of phytoplankton in the euphotic zone, which together will increase the need for photoprotective strategies such as non-photochemical quenching (NPQ). We investigated whether NPQ is enhanced and how it is regulated molecularly under phosphorus (P) deprivation in the dinoflagellate Karlodinium veneficum. We grew K. veneficum under P-replete and P-depleted conditions, monitored their growth rates and chlorophyll fluorescence, and conducted gene expression and comparative proteomic analyses. The results were used to characterize NPQ modulation and associated gene expression dynamics under P deprivation. We found that NPQ in K. veneficum was elevated significantly under P deprivation. Accordingly, the abundances of three light-harvesting complex stress-related proteins increased under P-depleted condition. Besides, many proteins related to genetic information flow were down-regulated while many proteins related to energy production and conversion were up-regulated under P deprivation. Taken together, our results indicate that K. veneficum cells respond to P deprivation by reconfiguring the metabolic landscape and up-tuning NPQ to increase the capacity to dissipate excess light energy and maintain the fluency of energy flow, which provides a new perspective about what adaptive strategy dinoflagellates have evolved to cope with P deprivation.
Collapse
Affiliation(s)
- Yudong Cui
- State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University Xiamen, China
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton CT, USA
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen UniversityXiamen, China; Department of Marine Sciences, University of Connecticut, GrotonCT, USA
| |
Collapse
|
33
|
Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress. PLoS One 2017; 12:e0172135. [PMID: 28278262 PMCID: PMC5344333 DOI: 10.1371/journal.pone.0172135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/31/2017] [Indexed: 11/19/2022] Open
Abstract
Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similar diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N-assimilation under the 625 μmol photons m-2 s-1 supplied in the HL treatment. NIRFU’s domain structure suggests it may have more efficient electron transfer than plant NIR proteins. Our analyses indicate that Micromonas can readily respond to abrupt environmental changes, such that strong photoinhibition was provoked by combined exposure to HL and UV, but a ca. 6-fold increase in light was stimulatory.
Collapse
|
34
|
UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2016; 113:14864-14869. [PMID: 27930292 DOI: 10.1073/pnas.1607695114] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.
Collapse
|
35
|
Devadasu ER, Madireddi SK, Nama S, Subramanyam R. Iron deficiency cause changes in photochemistry, thylakoid organization, and accumulation of photosystem II proteins in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2016; 130:469-478. [PMID: 27325385 DOI: 10.1007/s11120-016-0284-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/13/2016] [Indexed: 05/11/2023]
Abstract
A trace element, iron (Fe) plays a pivotal role in photosynthesis process which in turn mediates the plant growth and productivity. Here, we have focused majorly on the photochemistry of photosystem (PS) II, abundance of proteins, and organization of supercomplexes of thylakoids from Fe-depleted cells in Chlamydomonas reinhardtii. Confocal pictures show that the cell's size has been reduced and formed rosette-shaped palmelloids; however, there is no cell death. Further, the PSII photochemistry was reduced remarkably. Further, the photosynthetic efficiency analyzer data revealed that both donor and acceptor side of PSII were equally damaged. Additionally, the room-temperature emission spectra showed the fluorescence emission maxima increased due to impaired energy transfer from PSII to PSI. Furthermore, the protein data reveal that most of the proteins of reaction center and light-harvesting antenna were reduced in Fe-depleted cells. Additionally, the supercomplexes of PSI and PSII were destabilized from thylakoids under Fe-deficient condition showing that Fe is an important element in photosynthesis mechanism.
Collapse
Affiliation(s)
- Elsin Raju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Srilatha Nama
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
36
|
Strenkert D, Limso CA, Fatihi A, Schmollinger S, Basset GJ, Merchant SS. Genetically Programmed Changes in Photosynthetic Cofactor Metabolism in Copper-deficient Chlamydomonas. J Biol Chem 2016; 291:19118-31. [PMID: 27440043 DOI: 10.1074/jbc.m116.717413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 01/08/2023] Open
Abstract
Genetic and genomic studies indicate that copper deficiency triggers changes in the expression of genes encoding key enzymes in various chloroplast-localized lipid/pigment biosynthetic pathways. Among these are CGL78 involved in chlorophyll biosynthesis and HPPD1, encoding 4-hydroxyphenylpyruvate dioxygenase catalyzing the committed step of plastoquinone and tocopherol biosyntheses. Copper deficiency in wild-type cells does not change the chlorophyll content, but a survey of chlorophyll protein accumulation in this situation revealed increased accumulation of LHCSR3, which is blocked at the level of mRNA accumulation when either CGL78 expression is reduced or in the crd1 mutant, which has a copper-nutrition conditional defect at the same step in chlorophyll biosynthesis. Again, like copper-deficient crd1 strains, cgl78 knock-down lines also have reduced chlorophyll content concomitant with loss of PSI-LHCI super-complexes and reduced abundance of a chlorophyll binding subunit of PSI, PSAK, which connects LHCI to PSI. For HPPD1, increased mRNA results in increased abundance of the corresponding protein in copper-deficient cells concomitant with CRR1-dependent increased accumulation of γ-tocopherols, but not plastoquinone-9 nor total tocopherols. In crr1 mutants, where increased HPPD1 expression is blocked, plastochromanol-8, derived from plastoquinone-9 and purported to also have an antioxidant function, is found instead. Although not previously found in algae, this metabolite may occur only in stress conditions.
Collapse
Affiliation(s)
- Daniela Strenkert
- From the Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Clariss Ann Limso
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Abdelhak Fatihi
- the Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, 78026 Versailles Cedex, France, and
| | - Stefan Schmollinger
- From the Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Gilles J Basset
- the Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Sabeeha S Merchant
- From the Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095,
| |
Collapse
|
37
|
LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells. Proc Natl Acad Sci U S A 2016; 113:7673-8. [PMID: 27335457 DOI: 10.1073/pnas.1605380113] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To avoid photodamage, photosynthetic organisms are able to thermally dissipate the energy absorbed in excess in a process known as nonphotochemical quenching (NPQ). Although NPQ has been studied extensively, the major players and the mechanism of quenching remain debated. This is a result of the difficulty in extracting molecular information from in vivo experiments and the absence of a validation system for in vitro experiments. Here, we have created a minimal cell of the green alga Chlamydomonas reinhardtii that is able to undergo NPQ. We show that LHCII, the main light harvesting complex of algae, cannot switch to a quenched conformation in response to pH changes by itself. Instead, a small amount of the protein LHCSR1 (light-harvesting complex stress related 1) is able to induce a large, fast, and reversible pH-dependent quenching in an LHCII-containing membrane. These results strongly suggest that LHCSR1 acts as pH sensor and that it modulates the excited state lifetimes of a large array of LHCII, also explaining the NPQ observed in the LHCSR3-less mutant. The possible quenching mechanisms are discussed.
Collapse
|
38
|
Hochmal AK, Zinzius K, Charoenwattanasatien R, Gäbelein P, Mutoh R, Tanaka H, Schulze S, Liu G, Scholz M, Nordhues A, Offenborn JN, Petroutsos D, Finazzi G, Fufezan C, Huang K, Kurisu G, Hippler M. Calredoxin represents a novel type of calcium-dependent sensor-responder connected to redox regulation in the chloroplast. Nat Commun 2016; 7:11847. [PMID: 27297041 PMCID: PMC4911631 DOI: 10.1038/ncomms11847] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/05/2016] [Indexed: 11/30/2022] Open
Abstract
Calcium (Ca(2+)) and redox signalling play important roles in acclimation processes from archaea to eukaryotic organisms. Herein we characterized a unique protein from Chlamydomonas reinhardtii that has the competence to integrate Ca(2+)- and redox-related signalling. This protein, designated as calredoxin (CRX), combines four Ca(2+)-binding EF-hands and a thioredoxin (TRX) domain. A crystal structure of CRX, at 1.6 Å resolution, revealed an unusual calmodulin-fold of the Ca(2+)-binding EF-hands, which is functionally linked via an inter-domain communication path with the enzymatically active TRX domain. CRX is chloroplast-localized and interacted with a chloroplast 2-Cys peroxiredoxin (PRX1). Ca(2+)-binding to CRX is critical for its TRX activity and for efficient binding and reduction of PRX1. Thereby, CRX represents a new class of Ca(2+)-dependent 'sensor-responder' proteins. Genetically engineered Chlamydomonas strains with strongly diminished amounts of CRX revealed altered photosynthetic electron transfer and were affected in oxidative stress response underpinning a function of CRX in stress acclimation.
Collapse
Affiliation(s)
- Ana Karina Hochmal
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Karen Zinzius
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | | | - Philipp Gäbelein
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Stefan Schulze
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - André Nordhues
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Jan Niklas Offenborn
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Dimitris Petroutsos
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, UMR1200, F-38054 Grenoble, France
| | - Giovanni Finazzi
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, UMR1200, F-38054 Grenoble, France
| | - Christian Fufezan
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| |
Collapse
|
39
|
Weisz DA, Gross ML, Pakrasi HB. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:617. [PMID: 27242823 PMCID: PMC4862242 DOI: 10.3389/fpls.2016.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Himadri B. Pakrasi
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
40
|
Zouhaier B, Mariem M, Mokded R, Rouached A, Alsane K, Chedly A, Abderrazek S, Abdallah A. Physiological and biochemical responses of the forage legume Trifolium alexandrinum to different saline conditions and nitrogen levels. JOURNAL OF PLANT RESEARCH 2016; 129:423-34. [PMID: 26818949 DOI: 10.1007/s10265-016-0791-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/05/2015] [Indexed: 05/18/2023]
Abstract
Salinity stress reduces plant productivity, but low levels of salinity often increase plant growth rates in some species. We herein describe the effects of salinity on plant growth while focusing on nitrogen use. We treated Trifolium alexandrinum with two nitrogen concentrations and salinity levels and determined growth rates, mineral concentrations, nitrogen use efficiency, photosynthesis rates, and nitrate reductase (NR, E.C. 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) activities. The T. alexandrinum growth rate increased following treatment with 100 mM NaCl in low nitrogen (LN) and high nitrogen (HN) conditions. Salt treatment also increased root volume, intrinsic water use efficiency, and nitrogen use efficiency in LN and HN conditions. These changes likely contributed to higher biomass production. Salinity also increased accumulations of sodium, chloride, and phosphate, but decreased potassium and calcium levels and total nitrogen concentrations in all plant organs independently of the available nitrogen level. However, the effect of salt treatment on magnesium and nitrate concentrations in photosynthetic organs depended on nitrogen levels. Salt treatment reduced photosynthesis rates in LN and HN conditions because of inhibited stomatal conductance. The effects of salinity on leaf NR and GS activities depended on nitrogen levels, with activities increasing in LN conditions. In saline conditions, LN availability resulted in optimal growth because of low chloride accumulation and increases in total nitrogen concentrations, nitrogen use efficiency, and NR and GS activities in photosynthetic organs. Therefore, T. alexandrinum is a legume forage crop that can be cultivated in low-saline soils where nitrogen availability is limited.
Collapse
Affiliation(s)
- Barhoumi Zouhaier
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria, Université de Tunis El Manar, B.P. 901, Hammam-Lif, 2050, Tunisia.
- Biology Department, King Khalid University, P.O. Box 9004, Abha, 61413, Kingdom of Saudi Arabia.
| | - Maatallah Mariem
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria, Université de Tunis El Manar, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Rabhi Mokded
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria, Université de Tunis El Manar, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Aida Rouached
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria, Université de Tunis El Manar, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Khaldoun Alsane
- Biology Department, King Khalid University, P.O. Box 9004, Abha, 61413, Kingdom of Saudi Arabia
| | - Abdelly Chedly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria, Université de Tunis El Manar, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Smaoui Abderrazek
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria, Université de Tunis El Manar, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Atia Abdallah
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria, Université de Tunis El Manar, B.P. 901, Hammam-Lif, 2050, Tunisia
| |
Collapse
|
41
|
López-Millán AF, Duy D, Philippar K. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology. FRONTIERS IN PLANT SCIENCE 2016; 7:178. [PMID: 27014281 DOI: 10.3389/fpls201600178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/02/2016] [Indexed: 05/22/2023]
Abstract
Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.
Collapse
Affiliation(s)
- Ana F López-Millán
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service, Houston TX, USA
| | - Daniela Duy
- Plastid Fatty Acid and Iron Transport - Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Katrin Philippar
- Plastid Fatty Acid and Iron Transport - Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|
42
|
López-Millán AF, Duy D, Philippar K. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology. FRONTIERS IN PLANT SCIENCE 2016; 7:178. [PMID: 27014281 PMCID: PMC4780311 DOI: 10.3389/fpls.2016.00178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/02/2016] [Indexed: 05/08/2023]
Abstract
Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.
Collapse
Affiliation(s)
- Ana F. López-Millán
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service, HoustonTX, USA
| | - Daniela Duy
- Plastid Fatty Acid and Iron Transport – Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of MunichMunich, Germany
| | - Katrin Philippar
- Plastid Fatty Acid and Iron Transport – Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of MunichMunich, Germany
- *Correspondence: Katrin Philippar,
| |
Collapse
|
43
|
Turnover rates in microorganisms by laser ablation electrospray ionization mass spectrometry and pulse-chase analysis. Anal Chim Acta 2015; 902:1-7. [PMID: 26703248 DOI: 10.1016/j.aca.2015.08.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 12/20/2022]
Abstract
Biochemical processes rely on elaborate networks containing thousands of compounds participating in thousands of reaction. Rapid turnover of diverse metabolites and lipids in an organism is an essential part of homeostasis. It affects energy production and storage, two important processes utilized in bioengineering. Conventional approaches to simultaneously quantify a large number of turnover rates in biological systems are currently not feasible. Here we show that pulse-chase analysis followed by laser ablation electrospray ionization mass spectrometry (LAESI-MS) enable the simultaneous and rapid determination of metabolic turnover rates. The incorporation of ion mobility separation (IMS) allowed an additional dimension of analysis, i.e., the detection and identification of isotopologs based on their collision cross sections. We demonstrated these capabilities by determining metabolite, lipid, and peptide turnover in the photosynthetic green algae, Chlamydomonas reinhardtii, in the presence of (15)N-labeled ammonium chloride as the main nitrogen source. Following the reversal of isotope patterns in the chase phase by LAESI-IMS-MS revealed the turnover rates and half-lives for biochemical species with a wide range of natural concentrations, e.g., chlorophyll metabolites, lipids, and peptides. For example, the half-lives of lyso-DGTS(16:0) and DGTS(18:3/16:0), t1/2 = 43.6 ± 4.5 h and 47.6 ± 2.2 h, respectively, provided insight into lipid synthesis and degradation in this organism. Within the same experiment, half-lives for chlorophyll a, t1/2 = 24.1 ± 2.2 h, and a 2.8 kDa peptide, t1/2 = 10.4 ± 3.6 h, were also determined.
Collapse
|
44
|
Bergner SV, Scholz M, Trompelt K, Barth J, Gäbelein P, Steinbeck J, Xue H, Clowez S, Fucile G, Goldschmidt-Clermont M, Fufezan C, Hippler M. STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes. PLANT PHYSIOLOGY 2015; 168:615-34. [PMID: 25858915 PMCID: PMC4453777 DOI: 10.1104/pp.15.00072] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/04/2015] [Indexed: 05/18/2023]
Abstract
In plants and algae, the serine/threonine kinase STN7/STT7, orthologous protein kinases in Chlamydomonas reinhardtii and Arabidopsis (Arabidopsis thaliana), respectively, is an important regulator in acclimation to changing light environments. In this work, we assessed STT7-dependent protein phosphorylation under high light in C. reinhardtii, known to fully induce the expression of light-harvesting complex stress-related protein3 (LHCSR3) and a nonphotochemical quenching mechanism, in relationship to anoxia where the activity of cyclic electron flow is stimulated. Our quantitative proteomics data revealed numerous unique STT7 protein substrates and STT7-dependent protein phosphorylation variations that were reliant on the environmental condition. These results indicate that STT7-dependent phosphorylation is modulated by the environment and point to an intricate chloroplast phosphorylation network responding in a highly sensitive and dynamic manner to environmental cues and alterations in kinase function. Functionally, the absence of the STT7 kinase triggered changes in protein expression and photoinhibition of photosystem I (PSI) and resulted in the remodeling of photosynthetic complexes. This remodeling initiated a pronounced association of LHCSR3 with PSI-light harvesting complex I (LHCI)-ferredoxin-NADPH oxidoreductase supercomplexes. Lack of STT7 kinase strongly diminished PSII-LHCII supercomplexes, while PSII core complex phosphorylation and accumulation were significantly enhanced. In conclusion, our study provides strong evidence that the regulation of protein phosphorylation is critical for driving successful acclimation to high light and anoxic growth environments and gives new insights into acclimation strategies to these environmental conditions.
Collapse
Affiliation(s)
- Sonja Verena Bergner
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Kerstin Trompelt
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Johannes Barth
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Philipp Gäbelein
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Janina Steinbeck
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Huidan Xue
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Sophie Clowez
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Geoffrey Fucile
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Michel Goldschmidt-Clermont
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Christian Fufezan
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| |
Collapse
|
45
|
Minagawa J, Tokutsu R. Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:413-428. [PMID: 25702778 DOI: 10.1111/tpj.12805] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 05/10/2023]
Abstract
Plants and algae have acquired the ability to acclimatize to ever-changing environments to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2 . The efficiency of photosynthesis is modulated by many environmental factors, including temperature, drought, CO2 concentration, and the quality and quantity of light. Recently, our understanding of such regulators of photosynthesis and the underlying molecular mechanisms has increased considerably. The photosynthetic supercomplexes undergo supramolecular reorganizations within a short time after receiving environmental cues. These reorganizations include state transitions that balance the excitation of the two photosystems: qE quenching, which thermally dissipates excess energy at the level of the light-harvesting antenna, and cyclic electron flow, which supplies the increased ATP demanded by CO2 assimilation and the pH gradient to activate qE quenching. This review focuses on the recent findings regarding the environmental regulation of photosynthesis in model organisms, paying particular attention to the unicellular green alga Chlamydomonas reinhardtii, which offer a glimpse into the dynamic behavior of photosynthetic machinery in nature.
Collapse
Affiliation(s)
- Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| |
Collapse
|
46
|
Xue H, Tokutsu R, Bergner SV, Scholz M, Minagawa J, Hippler M. PHOTOSYSTEM II SUBUNIT R is required for efficient binding of LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 to photosystem II-light-harvesting supercomplexes in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2015; 167:1566-78. [PMID: 25699588 PMCID: PMC4378180 DOI: 10.1104/pp.15.00094] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
In Chlamydomonas reinhardtii, the LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 (LHCSR3) protein is crucial for efficient energy-dependent thermal dissipation of excess absorbed light energy and functionally associates with photosystem II-light-harvesting complex II (PSII-LHCII) supercomplexes. Currently, it is unknown how LHCSR3 binds to the PSII-LHCII supercomplex. In this study, we investigated the role of PHOTOSYSTEM II SUBUNIT R (PSBR) an intrinsic membrane-spanning PSII subunit, in the binding of LHCSR3 to PSII-LHCII supercomplexes. Down-regulation of PSBR expression diminished the efficiency of oxygen evolution and the extent of nonphotochemical quenching and had an impact on the stability of the oxygen-evolving complex as well as on PSII-LHCII-LHCSR3 supercomplex formation. Its down-regulation destabilized the PSII-LHCII supercomplex and strongly reduced the binding of LHCSR3 to PSII-LHCII supercomplexes, as revealed by quantitative proteomics. PHOTOSYSTEM II SUBUNIT P deletion, on the contrary, destabilized PHOTOSYSTEM II SUBUNIT Q binding but did not affect PSBR and LHCSR3 association with PSII-LHCII. In summary, these data provide clear evidence that PSBR is required for the stable binding of LHCSR3 to PSII-LHCII supercomplexes and is essential for efficient energy-dependent quenching and the integrity of the PSII-LHCII-LHCSR3 supercomplex under continuous high light.
Collapse
Affiliation(s)
- Huidan Xue
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| | - Ryutaro Tokutsu
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| | - Sonja Verena Bergner
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| | - Jun Minagawa
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| |
Collapse
|
47
|
Xue H, Bergner SV, Scholz M, Hippler M. Novel insights into the function of LHCSR3 in Chlamydomonas reinhardtii. PLANT SIGNALING & BEHAVIOR 2015; 10:e1058462. [PMID: 26237677 PMCID: PMC4854336 DOI: 10.1080/15592324.2015.1058462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Light is essential for photosynthesis but excess light is hazardous as it may lead to the formation of reactive oxygen species. Photosynthetic organisms struggle to optimize light utilization and photosynthesis while minimizing photo-oxidative damage. Hereby light to heat dissipation via specialized proteins is a potent mechanism to acclimate toward excess light. In the green alga Chlamydomonas reinhardtii the expression of an ancient light-harvesting protein LHCSR3 enables cells to dissipate harmful excess energy. Herein we summarize newest insights into the function of LHCSR3 from C. reinhardtii.
Collapse
Affiliation(s)
- Huidan Xue
- Institute of Plant Biology and Biotechnology; University of Münster; Münster, Germany
| | - Sonja Verena Bergner
- Institute of Plant Biology and Biotechnology; University of Münster; Münster, Germany
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology; University of Münster; Münster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology; University of Münster; Münster, Germany
| |
Collapse
|
48
|
Mentewab A, Matheson K, Adebiyi M, Robinson S, Elston B. RNA-seq analysis of the effect of kanamycin and the ABC transporter AtWBC19 on Arabidopsis thaliana seedlings reveals changes in metal content. PLoS One 2014; 9:e109310. [PMID: 25310285 PMCID: PMC4195610 DOI: 10.1371/journal.pone.0109310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022] Open
Abstract
Plants are exposed to antibiotics produced by soil microorganisms, but little is known about their responses at the transcriptional level. Likewise, few endogenous mechanisms of antibiotic resistance have been reported. The Arabidopsis thaliana ATP Binding Cassette (ABC) transporter AtWBC19 (ABCG19) is known to confer kanamycin resistance, but the exact mechanism of resistance is not well understood. Here we examined the transcriptomes of control seedlings and wbc19 mutant seedlings using RNA-seq analysis. Exposure to kanamycin indicated changes in the organization of the photosynthetic apparatus, metabolic fluxes and metal uptake. Elemental analysis showed a 60% and 80% reduction of iron uptake in control and wbc19 mutant seedlings respectively, upon exposure to kanamycin. The drop in iron content was accompanied by the upregulation of the gene encoding for FERRIC REDUCTION OXIDASE 6 (FRO6) in mutant seedlings but not by the differential expression of other transport genes known to be induced by iron deficiency. In addition, wbc19 mutants displayed a distinct expression profile in the absence of kanamycin. Most notably the expression of several zinc ion binding proteins, including ZINC TRANSPORTER 1 PRECURSOR (ZIP1) was increased, suggesting abnormal zinc uptake. Elemental analysis confirmed a 50% decrease of zinc content in wbc19 mutants. Thus, the antibiotic resistance gene WBC19 appears to also have a role in zinc uptake.
Collapse
Affiliation(s)
- Ayalew Mentewab
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- * E-mail:
| | - Kinnari Matheson
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- Molecular Biology Department, Princeton University, Princeton, New Jersey, United States of America
| | - Morayo Adebiyi
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Shanice Robinson
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
| | - Brianna Elston
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- College of Health Care Sciences, Nova Southeastern University, Davie, Florida, United States of America
| |
Collapse
|
49
|
Kukuczka B, Magneschi L, Petroutsos D, Steinbeck J, Bald T, Powikrowska M, Fufezan C, Finazzi G, Hippler M. Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress Adaptation. PLANT PHYSIOLOGY 2014; 165:1604-1617. [PMID: 24948831 PMCID: PMC4119042 DOI: 10.1104/pp.114.240648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To investigate the functional importance of Proton Gradient Regulation5-Like1 (PGRL1) for photosynthetic performances in the moss Physcomitrella patens, we generated a pgrl1 knockout mutant. Functional analysis revealed diminished nonphotochemical quenching (NPQ) as well as decreased capacity for cyclic electron flow (CEF) in pgrl1. Under anoxia, where CEF is induced, quantitative proteomics evidenced severe down-regulation of photosystems but up-regulation of the chloroplast NADH dehydrogenase complex, plastocyanin, and Ca2+ sensors in the mutant, indicating that the absence of PGRL1 triggered a mechanism compensatory for diminished CEF. On the other hand, proteins required for NPQ, such as light-harvesting complex stress-related protein1 (LHCSR1), violaxanthin de-epoxidase, and PSII subunit S, remained stable. To further investigate the interrelation between CEF and NPQ, we generated a pgrl1 npq4 double mutant in the green alga Chlamydomonas reinhardtii lacking both PGRL1 and LHCSR3 expression. Phenotypic comparative analyses of this double mutant, together with the single knockout strains and with the P. patens pgrl1, demonstrated that PGRL1 is crucial for acclimation to high light and anoxia in both organisms. Moreover, the data generated for the C. reinhardtii double mutant clearly showed a complementary role of PGRL1 and LHCSR3 in managing high light stress response. We conclude that both proteins are needed for photoprotection and for survival under low oxygen, underpinning a tight link between CEF and NPQ in oxygenic photosynthesis. Given the complementarity of the energy-dependent component of NPQ (qE) and PGRL1-mediated CEF, we suggest that PGRL1 is a capacitor linked to the evolution of the PSII subunit S-dependent qE in terrestrial plants.
Collapse
Affiliation(s)
- Bernadeta Kukuczka
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (B.K., L.M., D.P., J.S., T.B., C.F., M.H.);Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France (D.P., G.F.);Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France (D.P., G.F.);Institut National Recherche Agronomique, Unité Mixte Recherche 1200, F-38054 Grenoble, France (D.P., G.F.);Université Grenoble Alpes, F-38041 Grenoble, France (D.P., G.F.); andDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark (M.P.)
| | - Leonardo Magneschi
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (B.K., L.M., D.P., J.S., T.B., C.F., M.H.);Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France (D.P., G.F.);Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France (D.P., G.F.);Institut National Recherche Agronomique, Unité Mixte Recherche 1200, F-38054 Grenoble, France (D.P., G.F.);Université Grenoble Alpes, F-38041 Grenoble, France (D.P., G.F.); andDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark (M.P.)
| | - Dimitris Petroutsos
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (B.K., L.M., D.P., J.S., T.B., C.F., M.H.);Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France (D.P., G.F.);Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France (D.P., G.F.);Institut National Recherche Agronomique, Unité Mixte Recherche 1200, F-38054 Grenoble, France (D.P., G.F.);Université Grenoble Alpes, F-38041 Grenoble, France (D.P., G.F.); andDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark (M.P.)
| | - Janina Steinbeck
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (B.K., L.M., D.P., J.S., T.B., C.F., M.H.);Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France (D.P., G.F.);Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France (D.P., G.F.);Institut National Recherche Agronomique, Unité Mixte Recherche 1200, F-38054 Grenoble, France (D.P., G.F.);Université Grenoble Alpes, F-38041 Grenoble, France (D.P., G.F.); andDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark (M.P.)
| | - Till Bald
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (B.K., L.M., D.P., J.S., T.B., C.F., M.H.);Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France (D.P., G.F.);Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France (D.P., G.F.);Institut National Recherche Agronomique, Unité Mixte Recherche 1200, F-38054 Grenoble, France (D.P., G.F.);Université Grenoble Alpes, F-38041 Grenoble, France (D.P., G.F.); andDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark (M.P.)
| | - Marta Powikrowska
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (B.K., L.M., D.P., J.S., T.B., C.F., M.H.);Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France (D.P., G.F.);Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France (D.P., G.F.);Institut National Recherche Agronomique, Unité Mixte Recherche 1200, F-38054 Grenoble, France (D.P., G.F.);Université Grenoble Alpes, F-38041 Grenoble, France (D.P., G.F.); andDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark (M.P.)
| | - Christian Fufezan
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (B.K., L.M., D.P., J.S., T.B., C.F., M.H.);Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France (D.P., G.F.);Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France (D.P., G.F.);Institut National Recherche Agronomique, Unité Mixte Recherche 1200, F-38054 Grenoble, France (D.P., G.F.);Université Grenoble Alpes, F-38041 Grenoble, France (D.P., G.F.); andDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark (M.P.)
| | - Giovanni Finazzi
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (B.K., L.M., D.P., J.S., T.B., C.F., M.H.);Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France (D.P., G.F.);Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France (D.P., G.F.);Institut National Recherche Agronomique, Unité Mixte Recherche 1200, F-38054 Grenoble, France (D.P., G.F.);Université Grenoble Alpes, F-38041 Grenoble, France (D.P., G.F.); andDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark (M.P.)
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (B.K., L.M., D.P., J.S., T.B., C.F., M.H.);Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France (D.P., G.F.);Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France (D.P., G.F.);Institut National Recherche Agronomique, Unité Mixte Recherche 1200, F-38054 Grenoble, France (D.P., G.F.);Université Grenoble Alpes, F-38041 Grenoble, France (D.P., G.F.); andDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark (M.P.)
| |
Collapse
|
50
|
Johnson X, Steinbeck J, Dent RM, Takahashi H, Richaud P, Ozawa SI, Houille-Vernes L, Petroutsos D, Rappaport F, Grossman AR, Niyogi KK, Hippler M, Alric J. Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ΔATpase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2014; 165:438-52. [PMID: 24623849 PMCID: PMC4012601 DOI: 10.1104/pp.113.233593] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/07/2014] [Indexed: 05/18/2023]
Abstract
The Chlamydomonas reinhardtii proton gradient regulation5 (Crpgr5) mutant shows phenotypic and functional traits similar to mutants in the Arabidopsis (Arabidopsis thaliana) ortholog, Atpgr5, providing strong evidence for conservation of PGR5-mediated cyclic electron flow (CEF). Comparing the Crpgr5 mutant with the wild type, we discriminate two pathways for CEF and determine their maximum electron flow rates. The PGR5/proton gradient regulation-like1 (PGRL1) ferredoxin (Fd) pathway, involved in recycling excess reductant to increase ATP synthesis, may be controlled by extreme photosystem I acceptor side limitation or ATP depletion. Here, we show that PGR5/PGRL1-Fd CEF functions in accordance with an ATP/redox control model. In the absence of Rubisco and PGR5, a sustained electron flow is maintained with molecular oxygen instead of carbon dioxide serving as the terminal electron acceptor. When photosynthetic control is decreased, compensatory alternative pathways can take the full load of linear electron flow. In the case of the ATP synthase pgr5 double mutant, a decrease in photosensitivity is observed compared with the single ATPase-less mutant that we assign to a decreased proton motive force. Altogether, our results suggest that PGR5/PGRL1-Fd CEF is most required under conditions when Fd becomes overreduced and photosystem I is subjected to photoinhibition. CEF is not a valve; it only recycles electrons, but in doing so, it generates a proton motive force that controls the rate of photosynthesis. The conditions where the PGR5 pathway is most required may vary in photosynthetic organisms like C. reinhardtii from anoxia to high light to limitations imposed at the level of carbon dioxide fixation.
Collapse
|