1
|
Ou SP, Liao XL, Huang ZT, Hu YC, Cai Z, Chen ZF. Bioaccessibility and health risk assessment of hydrophobic organic pollutants in soils from four typical industrial contaminated sites in China. J Environ Sci (China) 2025; 147:282-293. [PMID: 39003047 DOI: 10.1016/j.jes.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 07/15/2024]
Abstract
There have been reports of potential health risks for people from hydrophobic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons (PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used for residential housing or public utility and recreation areas, the soil-bound organic pollutants might pose a threat to human health. In this study, we investigated the contamination profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from four contaminated sites in China. We used an in vitro method to determine the oral bioaccessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g to 987 ng/g. PCHs (0.27‒14.3 ng/g) and OPFRs (6.30‒310 ng/g) were detected, but at low levels compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%, and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that the oral bioaccessibility of pollutants was correlated with their logKow and molecular weight, and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children. When considering oral bioaccessibility, nine soils still posed potential risks, while the risks in the remaining soils became negligible. The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.
Collapse
Affiliation(s)
- Shi-Ping Ou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zi-Tao Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan-Cong Hu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Yan Z, Feng C, Xu Y, Wang J, Huang N, Jin X, Wu F, Bai Y. Water temperature governs organophosphate ester dynamics in the aquatic food chain of Poyang Lake. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100401. [PMID: 38487363 PMCID: PMC10937237 DOI: 10.1016/j.ese.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/17/2024]
Abstract
Organophosphate esters (OPEs) are increasingly recognized as pervasive environmental contaminants, primarily from their extensive application in flame retardants and plasticizers. Despite their widespread presence, the intricacies of OPE bioaccumulation within aquatic ecosystems remain poorly understood, particularly the environmental determinants influencing their distribution and the bioaccumulation dynamics across aquatic food chains. Here we show that water temperature plays a crucial role in modulating the dispersion of OPE in the aquatic environment of Poyang Lake. We quantified OPE concentrations across various matrices, uncovering levels ranging from 0.198 to 912.622 ng L-1 in water, 0.013-493.36 ng per g dry weight (dw) in sediment, 0.026-41.92 ng per g wet weight (ww) in plankton, 0.13-2100.72 ng per g dw in benthic invertebrates, and 0.31-3956.49 ng per g dw in wild fish, highlighting a pronounced bioaccumulation gradient. Notably, the intestines emerged as the principal site for OPE absorption, displaying the highest concentrations among the seven tissues examined. Among the various OPEs, tris(chloroethyl) phosphate was distinguished by its significant bioaccumulation potential within the aquatic food web, suggesting a need for heightened scrutiny. The propensity for OPE accumulation was markedly higher in benthic invertebrates than wild fish, indicating a differential vulnerability within aquatic biota. This study lays a foundational basis for the risk assessment of OPEs as emerging contaminants and underscores the imperative to prioritize the examination of bioaccumulation effects, particularly in benthic invertebrates, to inform future environmental safeguarding strategies.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jindong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nannan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Yin H, Liu L, Xiong Y, Qiao Y. Pollution characteristics and risk assessment of organophosphate esters (OPEs) in typical industrial parks in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35206-35218. [PMID: 38720129 DOI: 10.1007/s11356-024-33160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/27/2024] [Indexed: 05/30/2024]
Abstract
As alternative substances of PBDEs, organophosphate esters (OPEs), an emerging organic pollutant, were increasingly produced and used in many kinds of industries and consumer products. However, OPEs also have various adverse toxic effects. Information on the pollution levels and exposure to OPEs in related industries is still limited. This study presented data on OPE contamination in the soil, leaf, and river water samples from seven typical industrial parks in Southwest China. Total concentration of seven OPEs (Σ7OPE) including tri-n-butyl phosphate (TnBP), tris-(2-ethylhexyl) phosphate (TEHP), tris-(2-butoxyethyl) phosphate (TBEP), tris-(2-carboxyethyl) phosphine (TCEP), triphenyl phosphate (TPhP), tris-(1,3-dichloro-2-propyl) ester (TDCPP), and tris-(chlorisopropyl) phosphate (TCPP) in the soil samples (36.2 ~ 219.7 ng/g) and the surrounding river water samples (118.9 ~ 287.7 ng/L) were mostly lower than those in other studies, while the Σ7OPE level in the leaves (2053.3 ~ 8152.7 ng/g) was relatively high. There were significant differences in the concentration and distribution of OPEs in the surrounding environment of different industrial parks. TDCPP, TnBP, and TCPP could be used as the characteristic compound in soil samples from auto industrial park, river samples from shoe making industrial park, and leaf samples from logistics park, respectively. The parameter m (the content ratio of chlorinated OPEs to alkyl OPEs) was suggested to distinguish the types of industrial park preliminary. When m ≥ 1, it mainly refers to heavy industries sources such as automobiles, electronics, and machinery, etc. When m<1, it mainly for the light industrial sources such as textile industry, transportation services, and resources processing, etc. For logistics park, furniture park and Wuhou comprehensive industrial park, the volatilization of materials was the main sources of OPEs in the surrounding environment, while more effort was required to strengthen the pollution control and management of the waste water and soil in the pharmacy industrial park, shoe making industrial park and auto industrial park. Risk assessment showed that there was a negligible non-cancer and carcinogenic risk in the soil, while high attention should be paid to the non-cancer risk for children.
Collapse
Affiliation(s)
- Hongling Yin
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610025, Sichuan, China.
| | - Liya Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610025, Sichuan, China
| | - Yuanming Xiong
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610025, Sichuan, China
| | - Yang Qiao
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610025, Sichuan, China
| |
Collapse
|
4
|
Green-Ojo B, Tan H, Botelho MT, Obanya H, Grinsted L, Parker MO, Ford AT. The effects of plastic additives on swimming activity and startle response in marine amphipod Echinogammarus marinus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170793. [PMID: 38336051 DOI: 10.1016/j.scitotenv.2024.170793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Plastic additives are widely used in plastic production and are found in the environment owing to their widespread applications. Among these additives, N-butyl benzenesulfonamide (NBBS) and triphenyl phosphate (TPHP) are under international watchlist for evaluation, with limited studies on amphipods. Di-ethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP) are banned in some countries and categorised as substances of very high concern. This study aimed to investigate the effects of NBBS, TPHP, DEHP and DBP on the swimming activity of a coastal intertidal marine amphipod, Echinogammarus marinus. Furthermore, this study is the first to quantify startle response in E. marinus in response to light stimuli. Amphipods were exposed to 0, 0.5, 5, 50 and 500 μg/l concentrations of all test compounds. Swimming activity and startle responses were assessed by video tracking and analysis using an 8-min alternating dark and light protocol after exposure on days 7 and 14. We observed an overall compound and light effect on the swimming activity of E. marinus. A significant decrease in swimming distance was found in 500 μg/l NBBS and TPHP. We observed that the startle response in E. marinus had a latency period of >2 s and animals were assessed at 1 s and the sum of the first 5 s. There was a clear startle response in E. marinus during dark to light transition, evident with increased swimming distance. NBBS exposure significantly increased startle response at environmental concentrations, while significant effects were only seen in 500 μg/l TPHP at 5 s. We found no significant effects of DEHP and DBP on swimming behaviour at the concentrations assessed. The findings of this study affirm the necessity for a continuous review of plastic additives to combat adverse behavioural effects that may be transferable to the population levels.
Collapse
Affiliation(s)
- Bidemi Green-Ojo
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK.
| | - Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Marina Tenório Botelho
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK; Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-120 São Paulo, Brazil
| | - Henry Obanya
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK
| | - Lena Grinsted
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry 1 Street, Portsmouth, UK
| | - Mathew O Parker
- School of Pharmacy & Biomedical Science, White Swan Road, St. Michael's Building, Portsmouth, UK; Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK.
| |
Collapse
|
5
|
Ke Z, Tang J, Sun J, Bu Q, Yang L, Xu Y. Influence of watershed characteristics and human activities on the occurrence of organophosphate esters related to dissolved organic matter in estuarine surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169956. [PMID: 38211871 DOI: 10.1016/j.scitotenv.2024.169956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Organophosphate esters (OPEs) are widespread in aquatic environments and pose potential threats to ecosystem and human health. Here, we profiled OPEs in surface water samples of heavily urbanized estuaries in eastern China and investigated the influence of watershed characteristics and human activities on the spatial distribution of OPEs related to dissolved organic matter (DOM). The total OPE concentration ranged from 22.3 to 1201 ng/L, with a mean of 162.6 ± 179.8 ng/L. Chlorinated OPEs were the predominant contaminant group, accounting for 27.4-99.6 % of the total OPE concentration. Tris(2-chloroisopropyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, and tributyl phosphate were the dominant compounds, with mean concentrations of 111.2 ± 176.0 ng/L, 22.6 ± 21.5 ng/L, and 14.8 ± 14.9 ng/L, respectively. Variable OPE levels were observed in various functional areas, with significantly higher concentrations in industrial areas than in other areas. Potential source analysis revealed that sewage treatment plant effluents and industrial activities were the primary OPE sources. The total OPE concentrations were negatively correlated to the mean slope, plan curvature, and elevation, indicating that watershed characteristics play a role in the occurrence of OPEs. Individual OPEs (triisobutyl phosphate, tris(2-butoxyethyl) phosphate, tris(2-chloroethyl) phosphate, and tricresyl phosphate) and Σalkyl-OPEs were positively correlated to the night light index or population density, suggesting a significant contribution of human activity to OPE pollution. The co-occurrence of OPEs and DOM was also observed, and the fluorescence indices of DOM were found to be possible indicators for tracing OPEs. These findings can elucidate the potential OPE dynamics in response to DOM in urbanized estuarine water environments with intensive human activities.
Collapse
Affiliation(s)
- Ziyan Ke
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China.
| | - Jing Sun
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| |
Collapse
|
6
|
Huang J, Li J, Meng W, Su G. A critical review on organophosphate esters in drinking water: Analysis, occurrence, sources, and human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169663. [PMID: 38159759 DOI: 10.1016/j.scitotenv.2023.169663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Organophosphate esters (OPEs) are ubiquitous in the environment. Copious studies assessed OPEs in various environmental media. However, there is limited summative information about OPEs in drinking water. This review provides comprehensive data for the analytical methods, occurrence, sources, and risk assessment of OPEs in drinking water. In general, liquid-liquid extraction and solid-phase extraction are the most common methods in the extraction of OPEs from drinking water, while gas chromatography and liquid chromatography are the most commonly used instrumental methods for detecting OPEs in drinking water. On the basis of these techniques, a variety of methods on OPEs pretreatment and determination have been developed to know the pollution situation of OPEs. Studies on the occurrence of OPEs in drinking water show that the total concentrations of OPEs vary seasonally and regionally, with tris(1-chloro-2-isopropyl) phosphate and tris(2-chloroethyl) phosphate dominant among different kinds of drinking water. Source identification studies show that there are three main sources of OPEs in drinking water: 1) source water contamination; 2) residual in drinking water treatment process; 3) leakage from device or pipeline. Besides, risk assessments indicate that individual and total OPEs pose no or negligible health risk to human, but this result may be significantly underestimated. Finally, the current knowledge gaps on the research of OPEs in drinking water are discussed and some suggestions are provided for future environmental research.
Collapse
Affiliation(s)
- Jianan Huang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weikun Meng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
7
|
Ding J, He W, Sha W, Shan G, Zhu L, Zhu L, Feng J. Physiologically based toxicokinetic modelling of Tri(2-chloroethyl) phosphate (TCEP) in mice accounting for multiple exposure routes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115976. [PMID: 38232524 DOI: 10.1016/j.ecoenv.2024.115976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Exposure routes are important for health risk assessment of chemical risks. The application of physiologically based toxicokinetic (PBTK) models to predict concentrations in vivo can determine the effects of harmful substances and tissue accumulation on the premise of saving experimental costs. In this study, Tri(2-chloroethyl) phosphate (TCEP), an organophosphate ester (OPE), was used as an example to study the PBTK model of mice exposed to different exposure doses by multiple routes. Different routes of exposure (gavage and intradermal injection) can cause differences in the concentration of chemicals in the organs. TCEP that enters the body through the mouth is mainly concentrated in the gastrointestinal tract and liver. However, the concentrations of chemicals that enter the skin into the mice are higher in skin, rest of body, and blood. In addition, TCEP was absorbed and accumulated very rapidly in mice, within half an hour after a single exposure. We have successfully established a mouse PBTK model of the TCEP accounting for multiple exposure Routes and obtained a series of kinetic parameters. The model includes blood, liver, kidney, stomach, intestine, skin, and rest of body compartments. Oral and dermal exposure route was considered for PBTK model. The PBTK model established in this study has a good predictive ability. More than 70% of the predicted values deviated from the measured values by less than 5-fold. In addition, we extrapolated the model to humans. A human PBTK model is built. We performed a health risk assessment for world populations based on human PBTK model. The risk of TCEP in dust is greater through mouth than through skin. The risk of TCEP in food of Chinese population is greater than dust.
Collapse
Affiliation(s)
- Jiaqi Ding
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Wanyu He
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Wanxiao Sha
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Guoqiang Shan
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lingyan Zhu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Zhu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Paun I, Pirvu F, Iancu VI, Niculescu M, Pascu LF, Chiriac FL. An Initial Survey on Occurrence, Fate, and Environmental Risk Assessment of Organophosphate Flame Retardants in Romanian Waterways. J Xenobiot 2023; 14:31-50. [PMID: 38249100 PMCID: PMC10801549 DOI: 10.3390/jox14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Organophosphate ester flame retardants (OPFRs) are ubiquitous organic pollutants in the environment and present an important preoccupation due to their potential toxicity to humans and biota. They can be found in various sources, including consumer products, building materials, transportation industry, electronic devices, textiles and clothing, and recycling and waste management. This paper presents the first survey of its kind in Romania, investigating the composition, distribution, possible sources, and environmental risks of OPFRs in five wastewater treatment plants (WWTPs) and the rivers receiving their effluents. Samples from WWTPs and surface waters were collected and subjected to extraction processes to determine the OPFRs using liquid chromatography with mass spectrometric detection. All the target OPFRs were found in all the matrices, with the average concentrations ranging from 0.6 to 1422 ng/L in wastewater, 0.88 to 1851 ng/g dry weight (d.w.) in sewage sludge, and 0.73 to 1036 ng/L in surface waters. The dominant compound in all the cases was tri(2-chloroisopropyl) phosphate (TCPP). This study observed that the wastewater treatment process was inefficient, with removal efficiencies below 50% for all five WWTPs. The environmental risk assessment indicated that almost all the targeted OPFRs pose a low risk, while TDCPP, TCPP, and TMPP could pose a moderate risk to certain aquatic species. These findings provide valuable information for international pollution research and enable the development of pollution control strategies.
Collapse
Affiliation(s)
| | | | | | | | - Luoana Florentina Pascu
- National Research and Development Institute for Industrial Ecology—ECOIND, Drumul Podu Dambovitei Street 57-73, 060652 Bucharest, Romania; (I.P.); (F.P.); (V.I.I.); (M.N.)
| | - Florentina Laura Chiriac
- National Research and Development Institute for Industrial Ecology—ECOIND, Drumul Podu Dambovitei Street 57-73, 060652 Bucharest, Romania; (I.P.); (F.P.); (V.I.I.); (M.N.)
| |
Collapse
|
9
|
Liu Y, Li Y, Xiao N, Liu M, Wang Y, Luo H, Yao Y, Feng Y, Wang S. Serum Organophosphate Flame retardants and plasticizers in Chinese females of childbearing age: Association with serum reproductive and thyroid hormones. CHEMOSPHERE 2023:139237. [PMID: 37331665 DOI: 10.1016/j.chemosphere.2023.139237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Organophosphate flame retardants (OPFRs) are extensively used as flame retardants and plasticizers, but their endocrine disrupting potentials have raised concerns. However, the impacts of OPFR exposures on reproductive and thyroid hormones in females remains unclear. In this study, serum concentrations of OPFRs were investigated, and levels of reproductive and thyroid hormones, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, anti-Müllerian hormone, prolactin (PRL), testosterone (T), and thyroid stimulating hormone, were analyzed in childbearing-age females undergoing in-vitro fertilization treatment from Tianjin, a coastal city in China (n = 319). Tris (2-chloroethyl) phosphate (TCEP) was the predominant OPFR, with a median concentration of 0.33 ng/mL and a detection frequency of 96.6%. In the whole population, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroisopropyl) phosphate (TCIPP) were positively associated with T (p < 0.05), while triethyl phosphate (TEP) was negatively associated with LH (p < 0.05) and LH/FSH (p < 0.01). Particularly, TCIPP was negatively associated with PRL in the younger subgroup (age≤30, p < 0.05). Moreover, TCIPP was negatively associated with diagnostic antral follicle counting (AFC) in the mediation analysis by a dominating direct effect (p < 0.01). In conclusion, serum levels of OPFRs were significantly associated with reproductive and thyroid hormone levels and a risk of decreased ovarian reserve in childbearing-age females, with age and body mass index being significant influencing factors.
Collapse
Affiliation(s)
- Yarui Liu
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China; School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, 156 Nankaisanma Road, Nankai District, Tianjin, 300100, China.
| | - Min Liu
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, 156 Nankaisanma Road, Nankai District, Tianjin, 300100, China.
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, 156 Nankaisanma Road, Nankai District, Tianjin, 300100, China.
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China.
| | - Shuo Wang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China.
| |
Collapse
|
10
|
Gu L, Hu B, Fu Y, Zhou W, Li X, Huang K, Zhang Q, Fu J, Zhang H, Zhang A, Fu J, Jiang G. Occurrence and risk assessment of organophosphate esters in global aquatic products. WATER RESEARCH 2023; 240:120083. [PMID: 37224669 DOI: 10.1016/j.watres.2023.120083] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Organophosphate esters (OPEs), as an important class of new pollutants, have been pervasively detected in global aquatic products, arousing widespread public concern due to their potential bioaccumulative behavior and consequent risks. With the continuous improvement of living standards of citizens, there have been constant increment of the proportion of aquatic products in diets of people. The levels of OPEs exposed to residents may also be rising due to the augmented consumption of aquatic products, posing potential hazards on human health, especially for people in coastal areas. The present study integrated the concentrations, profiles, bioaccumulation, and trophic transfer of OPEs in global aquatic products, including Mollusca, Crustacea, and fish, evaluated health risks of OPEs through aquatic products in daily diets by Mont Carol Simulation (MCS), and found Asia has been the most polluted area in terms of the concentration of OPEs in aquatic products, and would have been increasingly polluted. Among all studied OPEs, chlorinated OPEs generally showed accumulation predominance. It is worth noting that some OPEs were found bioaccumulated and/or biomagnified in aquatic ecosystems. Though MCS revealed relative low exposure risks of residents, sensitive and special groups such as children, adolescents, and fishermen may face more serious health risks than the average residents. Finally, knowledge gaps and recommendations for future research are discussed encouraging more long-term and systematic global monitoring, comprehensive studies of novel OPEs and OPEs metabolites, and more toxicological studies to completely evaluate the potential risks of OPEs.
Collapse
Affiliation(s)
- Luyao Gu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qun Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| |
Collapse
|
11
|
Castro G, Sørmo E, Yu G, Sait STL, González SV, Arp HPH, Asimakopoulos AG. Analysis, occurrence and removal efficiencies of organophosphate flame retardants (OPFRs) in sludge undergoing anaerobic digestion followed by diverse thermal treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161856. [PMID: 36708840 DOI: 10.1016/j.scitotenv.2023.161856] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Organophosphate flame retardants (OPFRs) are a complex group of contaminants to deal with in sewage sludge, as currently there is a lack of robust analytical methods to measure them and management strategies to remove them. To facilitate quantifications of the occurrence of OPFRs in sludge and to establish their removal efficiencies (REs%) during thermal treatments, a simple, reliable, and rapid sample preparation methodology was developed for the determination of 21 OPFRs in diverse sludge, ash and biochar matrices. Matrix-solid phase dispersion (MSPD) tailored to ultra-performance liquid chromatography (UPLC) coupled to tandem mass spectrometry (MS/MS) was applied. Under optimal conditions, 0.5 g of freeze-dried sample were dispersed in 2 g of Bondesil C18, and 1.5 g of deactivated florisil were used as clean-up sorbent. The target analytes were extracted with 5 mL of acetone. The obtained extract was ready for analysis within 20 min without the need of any further treatment. The proposed methodology was assessed, providing absolute recoveries (Abs%) ranging from 50.4 to 112 % with good method repeatability (RSDs <17.9 %). Method limits of quantification ranged from 0.10 to 14.0 ng g-1 dry weight (d.w.). The optimized methodology was applied to raw-, digested-, combusted and pyrolyzed sludge samples collected from different waste treatment plants located in Norway, where 16 out of 21 OPFRs were detected in digested sludge samples up to 2186 ng g-1 (d.w.; sum concentration of OPFRs). Diverse thermal treatments of combustion and dry pyrolysis were assessed for the removal of OPFRs from sludge. Combustion at 300 °C reduced the concentrations of OPFRs by 98 % (in the ashes formed), whereas pyrolysis at temperatures >500 °C effectively removed the OPFRs in the produced biochar. Thermal treatments, in particularly dry pyrolysis, showed potential for achieving zero pollution management and recycling of OPFR contaminated sludge.
Collapse
Affiliation(s)
- Gabriela Castro
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Guanhua Yu
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Shannen T L Sait
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Susana V González
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Hans Peter H Arp
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| |
Collapse
|
12
|
Sha W, Wang Y, Cai F, Zhang C, Wang C, Chen J, Liu C, Wang R, Gao P. Regional distribution of the plastic additive tris(butoxyethyl) phosphate in Nanyang Lake estuary, China, and toxic effects on Cyprinus carpio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53566-53576. [PMID: 36862296 DOI: 10.1007/s11356-023-26168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
There is increasing concern regarding the toxicological effects of plastic additives on humans and aquatic organisms. This study investigated effects of the plastic additive tris(butoxyethyl) phosphate (TBEP) on Cyprinus carpio by measuring concentration distribution of TBEP in the Nanyang Lake estuary, as well as toxic effects of varying doses of TBEP exposure on carp liver. This also included measuring responses of superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cysteinyl aspartate-specific protease (caspase). Concentrations of TBEP in the polluted water environment (water company inlets, urban sewage pipes, etc.) in the survey area were as high as 76.17-3875.29 μg/L, and 3.12 μg/L in the river flowing through the urban area, and 1.18 μg/L in the estuary of the lake. In the subacute toxicity test, SOD activity in liver tissue with an increase in TBEP concentration was reduced significantly, while the MDA content continued to increase with an increase in TBEP concentration. Inflammatory response factors (TNF-α and IL-1β) and apoptotic proteins (caspase-3 and caspase-9) gradually increased with increasing concentrations of TBEP. Additionally, reduced organelles, increased lipid droplets, swelling of mitochondria, and disorder of mitochondrial cristae structure were observed in liver cells of TBEP-treated carp. Generally, TBEP exposure induced severe oxidative stress in carp liver tissue, resulting in release of inflammatory factors and inflammatory response, mitochondrial structure changes, and the expression of apoptotic proteins. These findings benefit our understanding about the toxicological effects of TBEP in aquatic pollution.
Collapse
Affiliation(s)
- Weilai Sha
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Ying Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Fengsen Cai
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Chen Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Chao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Junfeng Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Chunchen Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China.
| |
Collapse
|
13
|
Li Y, Luo D, Zhao X, Wang H, Zheng Z, Liu J, Liu C, Wang H, Chen Y, Shang Y, Lu W, Mei S, Wang Y. Urinary concentrations of organophosphate esters in relation to semen quality: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161202. [PMID: 36581274 DOI: 10.1016/j.scitotenv.2022.161202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in consumer products. Toxicological studies have indicated that OPEs may affect male reproductive health, but human evidence is inconclusive. In this study, we explored associations of individual and mixtures of OPE exposure with semen quality among 1015 Chinese men from an infertility clinic. After adjusting for potential confounders, we observed that higher diphenyl phosphate (DPHP) and [Bis(2-methylphenyl) phosphate (BMPP)] exposure was associated with increased odds ratios (ORs) of having below-reference total sperm count. Higher bis (2-butoxyethyl) phosphate (BBOEP) exposure was associated with increased ORs of having below-reference progressive motility and total motility. For semen quality parameters modeled as continuous outcomes, inverse associations with individual OPE were still observed. In addition, urinary 1-hydroxy-2-propyl bis (1-chloro-2-propyl) phosphate (BCIPHIPP) concentrations were inversely associated with the percentage of normal morphology while positively associated with the percentage of abnormal heads. Quantile g-computation regression analyses showed that exposure to higher OPE mixtures was associated with lower total sperm motility and normal morphology. Our results indicated that both individual and mixtures of OPE exposure were associated with reduced semen quality.
Collapse
Affiliation(s)
- Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Dan Luo
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoya Zhao
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Han Wang
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Zhiyi Zheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Jun Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Chong Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hui Wang
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Yingjun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yinzhu Shang
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Wenqing Lu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Yixin Wang
- Department of Nutrition and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
14
|
Yan Z, Feng C, Leung KMY, Luo Y, Wang J, Jin X, Wu F. Insights into the geographical distribution, bioaccumulation characteristics, and ecological risks of organophosphate esters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130517. [PMID: 36463749 DOI: 10.1016/j.jhazmat.2022.130517] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Organophosphate esters (OPEs), as flame retardants and plasticizers, have been numerously explored regarding the occurrence and ecotoxicology. Given their toxicity, persistency and bio-accumulative potential, however, they may pose negative effects on ecosystems, regarding which is a growing global concern. Accordingly, the present review systematically analyses the recent literature to (1) elucidate their worldwide distribution, bioaccumulation, and biomagnification potential, (2) determine their interim water quality criteria (i.e., effect thresholds), and (3) preliminarily assess the ecological risks for 32 OPEs in aquatic ecosystems. The results showed that the spatiotemporal distribution of OPEs was geographically specific and closely related to human activities (i.e., megacities), especially halogenated-OPEs. We also found that precipitation of airborne particulates could affect the concentrations of OPEs in soil, and there was a positive correlation between the bioaccumulation and hydrophobicity of OPEs. Tris(2-ethylhexyl) phosphate may exhibit high bioaccumulation in aquatic organisms. A substantial difference was found among interim water quality criteria for OPEs, partly attributable to the variation of their available toxicity data. Tris(phenyl) phosphate (TPHP) and tris(1,3-dichloroisopropyl) phosphate with the lowest predicted no-effect concentration showed the strongest toxicity of growth and reproduction. Through the application of the risk quotient and joint probability curve, TPHP and tris(chloroethyl) phosphate tended to pose moderate risks, which should receive more attention for risk management. Future research should focus on knowledge gaps in the mechanism of biomagnification, derivation of water quality criteria, and more precise assessment of ecological risks for OPEs.
Collapse
Affiliation(s)
- Zhenfei Yan
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jindong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Fengchang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
15
|
Li W, Yuan Y, Wang S, Liu X. Occurrence, spatiotemporal variation, and ecological risks of organophosphate esters in the water and sediment of the middle and lower streams of the Yellow River and its important tributaries. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130153. [PMID: 36244105 DOI: 10.1016/j.jhazmat.2022.130153] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Research on the environmental occurrence and behavior of organophosphate esters (OPEs) is very imperative. In this study, 12 targeted OPEs in the water and sediment samples collected from the middle and lower streams of the Yellow River (YR) and its tributaries during the dry, normal, and wet season were analyzed, to reveal their concentration, spatiotemporal variations, and ecological risks. The results indicated that the total concentration of OPEs (ΣOPE) ranged from 97.66 to 2433.30 ng/L in water, and from 47.33 to 234.08 ng/g in sediment. Tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl)phosphate (TCIPP), and triethyl phosphate (TEP) were the most abundant OPEs in the surface water and sediment. The OPEs levels in river water were ranked as the order of dry > normal > wet season. The ΣOPE concentrations in water and sediment were relatively high in the central and lower sections of the YR. The resorcinol-bis(diphenyl)phosphate (RDP) effectively transferred from the overlying water to the sediment. TCEP and RDP posed relatively higher ecological risk than other OPEs. Municipal and chemical industrial discharge might be sources of OPEs in the middle and lower streams of the YR.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science, Qufu Normal University, Qufu 273165, PR China; College of Resources and Environmental Science, Northwest A&F University, Yangling 712100, PR China
| | - Yin Yuan
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| | - Xiaoyu Liu
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
16
|
Yan Z, Feng C, Jin X, Wang F, Liu C, Li N, Qiao Y, Bai Y, Wu F, Giesy JP. Organophosphate esters cause thyroid dysfunction via multiple signaling pathways in zebrafish brain. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100198. [PMID: 36157343 PMCID: PMC9500371 DOI: 10.1016/j.ese.2022.100198] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 05/04/2023]
Abstract
Organophosphate esters (OPEs) are widespread in various environmental media, and can disrupt thyroid endocrine signaling pathways. Mechanisms by which OPEs disrupt thyroid hormone (TH) signal transduction are not fully understood. Here, we present in vivo-in vitro-in silico evidence establishing OPEs as environmental THs competitively entering the brain to inhibit growth of zebrafish via multiple signaling pathways. OPEs can bind to transthyretin (TTR) and thyroxine-binding globulin, thereby affecting the transport of TH in the blood, and to the brain by TTR through the blood-brain barrier. When GH3 cells were exposed to OPEs, cell proliferation was significantly inhibited given that OPEs are competitive inhibitors of TH. Cresyl diphenyl phosphate was shown to be an effective antagonist of TH. Chronic exposure to OPEs significantly inhibited the growth of zebrafish by interfering with thyroperoxidase and thyroglobulin to inhibit TH synthesis. Based on comparisons of modulations of gene expression with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, signaling pathways related to thyroid endocrine functions, such as receptor-ligand binding and regulation of hormone levels, were identified as being affected by exposure to OPEs. Effects were also associated with the biosynthesis and metabolism of lipids, and neuroactive ligand-receptor interactions. These findings provide a comprehensive understanding of the mechanisms by which OPEs disrupt thyroid pathways in zebrafish.
Collapse
Key Words
- AChE, acetylcholinesterase
- ANOVA, analysis of variance
- BCF, bioconcentration factor
- BFR, brominated flame retardant
- CD-FBS, charcoal-dextran-treated fetal bovine serum
- CDP, cresyl diphenyl phosphate
- Competitive inhibition assay
- DEG, differentially expressed gene
- DKA, β-diketone antibiotic
- DMSO, dimethyl sulfoxide
- EAS, estrogen
- FBS, fetal bovine serum
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GO, Gene Ontology
- HPLC-MS/MS, high-performance liquid chromatograph interfaced with a mass spectrometer
- HPT, hypothalamic–pituitary–thyroid
- HS, horse serum
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MAPK, mitogen-activated protein kinase
- Molecular docking simulation
- NIS, Na+/I− symporter
- OD490, optical density
- OPE, organophosphate ester
- OPFR, organophosphate flame retardant
- Organophosphate ester
- P/S, penicillin–streptomycin
- PBDE, polybrominated diphenyl ether
- PBS, phosphate-buffered saline
- RIC20/50, concentration inhibiting 20%/50%
- T4, thyroxin
- TBG, thyroxine-binding globulin
- TCIPP, tris(2-chloroisopropyl) phosphate
- TDCIPP, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP)
- TDCIPP-d15, tris(1,3-dichloroisopropyl) phosphate-D15
- TG, thyroglobulin
- TH, thyroid hormone
- THR, thyroid hormone receptor
- TIPP, tris(isopropyl) phosphate
- TPHP, triphenyl phosphate
- TPO, thyroperoxidase
- TRβ, thyroid hormone receptor β
- TTR, transthyretin
- Thyroid endocrine function
- Transcriptome sequencing
- androgen, and steroidogenesis
- cga, glycoprotein hormone
- qRT-PCR, quantitative real-time PCR
- tshβa, thyroid-stimulating hormone beta subunit a
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Corresponding author.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
- Corresponding author.
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Cong Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Sciences, Baylor University, Waco, TX, USA
| |
Collapse
|
17
|
Pan HY, Cheng FJ, Huang KC, Kung CT, Huang WT, You HL, Li SH, Wang CC, Lee WC, Hsu PC. Exposure to tris(2-butoxyethyl) phosphate induces abnormal sperm morphology and testicular histopathology in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113718. [PMID: 35660377 DOI: 10.1016/j.ecoenv.2022.113718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Tris(2-butoxyethyl) phosphate (TBEP) is one of the most abundant organophosphate flame retardants in the environment. This study aimed to evaluate the effect of TBEP exposure during adolescence on male reproductive function in adult rats. Male Sprague-Dawley rats were treated with 20 and 200 mg/kg body weight of TBEP or corn oil from postnatal day (PND) 42 to PND 105. A significant increase in the proportion of sperm with abnormal morphology (flattened head and bent tail) and superoxide anion (O2-.) production in the sperm of the 200 mg/kg treated group was observed (p < 0.05). Excessive production of sperm hydrogen peroxide (H2O2) was found in both the 20 and 200 mg/kg treatment groups (p < 0.05). Disruption of testicular structure was observed in the 20 and 200 mg/kg treated groups and seminiferous tubule degeneration was observed in the 200 mg/kg treated group. Our study demonstrated the adverse effects of TBEP on male reproductive function in rats.
Collapse
Affiliation(s)
- Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan; Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Kuo-Chen Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung County, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan.
| |
Collapse
|
18
|
Chen JY, Hu HL, Feng L, Ding GH. Ecotoxicity assessment of triphenyl phosphate (TPhP) exposure in Hoplobatrachus rugulosus tadpoles. CHEMOSPHERE 2022; 292:133480. [PMID: 34974044 DOI: 10.1016/j.chemosphere.2021.133480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Triphenyl phosphate (TPhP), a widely used aromatic organophosphate flame retardant, is known to accumulate in organisms through water, air, and soil, consequently, causing toxicity. This study is the first to evaluate the acute and sub-chronic toxicities of TPhP to amphibians. In the acute toxicity analysis, the 96-h median lethal concentration (LC50) for GS35 Hoplobatrachus rugulosus tadpoles was 2.893 mg/L, and the 10% effect concentration (EC10) was 289 μg/L. After two weeks of exposure to low TPhP concentrations, the survival and metamorphosis rates of H. rugulosus tadpoles decreased, and the metamorphosis time was prolonged as the TPhP concentration increased. The threshold concentration that affected tadpole survival and metamorphosis time was 50 μg/L and 100 μg/L, respectively. No significant differences were observed in the condition factor and hepatic somatic index of the tadpole after metamorphosis; however, tadpole body mass and TPhP concentration were negatively correlated. Further, TPhP inhibited the expressions of Cu-Zn sod and cat, thereby reducing the activities of superoxide dismutase and catalase in the tadpole liver. The threshold for affecting gene expression and enzymatic activity was 100 μg/L. These findings provide significant insights on the stress ecology of aquatic organisms.
Collapse
Affiliation(s)
- Jing-Yi Chen
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| | - Hua-Li Hu
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| | - Lei Feng
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui 323000, Zhejiang, China.
| |
Collapse
|
19
|
Fan B, Dai L, Liu C, Sun Q, Yu L. Nano-TiO 2 aggravates bioaccumulation and developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. CHEMOSPHERE 2022; 287:132161. [PMID: 34562708 DOI: 10.1016/j.chemosphere.2021.132161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
This study explored the combined effects of titanium dioxide nanoparticles (nano-TiO2) and triphenyl phosphate (TPhP) on the neurodevelopment of zebrafish larvae as well as the underlying mechanisms. With this regard, zebrafish embryos were exposed to nano-TiO2 of 100 μg·L-1, TPhP of 0, 8, 24, 72, and 144 μg·L-1, or their combinations until 120 h post-fertilization (hpf). Results indicated 100 μg·L-1 nano-TiO2 alone to be nontoxic to zebrafish larvae. However, obvious developmental toxicity manifested as inhibition of surviving rate, heart rate and body length as well as increased malformation was observed in the higher concentrations of TPhP (72 and 144 μg·L-1) alone and the co-exposure groups. Additionally, results suggested that nano-TiO2 significantly enhanced the bioaccumulation of TPhP in zebtafish larvae, and thus aggravated the abnormities of spontaneous movement and swimming behavior in zebrafish larvae induced by TPhP. Nano-TiO2 also exacerbated the TPhP-induced inhibition of the axonal growth on the secondary motor neuron, and aggravated the TPhP-induced decrease on expressions of neuron-specific green fluorescent protein (GFP) and neuronal marker genes (ngn1 and elavl3). Further, the content of neurotransmitter serotonin was not altered by TPhP alone exposure, but was decreased significantly in the co-exposure group of 144 μg·L-1 TPhP and nano-TiO2. Our data indicated that nano-TiO2 might aggravate the neuron abnormities and serotonin system dysfunction by enhancing the TPhP accumulation, leading to exacerbated abnormal locomotors in zebrafish larvae.
Collapse
Affiliation(s)
- Boya Fan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
20
|
Huang J, Li R, Shi T, Ye J, Zhang H, Jin S, Gao H, Wang Q, Na G. Determination of multiple organic flame retardants in maricultural water using High-volume/High-throughput Solid-phase extraction followed by liquid/gas chromatography tandem mass spectrometry. J Chromatogr A 2021; 1663:462766. [PMID: 34971860 DOI: 10.1016/j.chroma.2021.462766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/28/2022]
Abstract
A rapid and efficient analytical method is proposed and optimized for the enrichment, extraction and instrument analysis of four typical organic flame retardants (OFRs), including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDs) and dechlorane compounds (Dechloranes) in maricultural waters using High-volume/High-throughput Solid-phase extraction with in-situ ultrasonic technique followed by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS) instrumental detection. The optimized pretreatment conditions were that the analytes were enriched by XAD-2 resins and eluted repeatedly with 50 mL hexane/acetone (1:1, v:v) for 5 min. The results of method validation exhibited that the developed method can be used for quantitative detection of 11 OPEs, 13 PBDEs, 3 HBCDs and 5 Dechloranes in water samples. The method detection limits (MDLs) and limits of quantification (LOQs) are 0.4-26.2 pg/L and 1.5-87.4 pg/L for OPEs, 23.3-35.4 pg/L and 77.5-117.9 pg/L for HBCDs, 0.8-97.4 pg/L and 2.6-324.7 pg/L for PBDEs and 9.3-78.5 pg/L and 31.0-261.8 pg/L for Dechloranes, respectively. The method was successfully applied in lagoon maricultural areas in Hainan province, and the results showed that 4 OFRs were detected in almost all water samples. Total concentrations of 18 water samples were 1.89-39.97 ng/L for OPEs, 0.18-5.40 ng/L for PBDEs, ND-0.24 ng/L for HBCDs and 0.01-1.77 ng/L for Dechloranes, respectively. The optimized analytical method is highly sensitive and efficient with expectation to play an essential role in monitoring the ultra-trace organic pollutants and providing an effective risk assessment in ecological environment.
Collapse
Affiliation(s)
- Jiajin Huang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Tengda Shi
- National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Jiandong Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haibo Zhang
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Shuaichen Jin
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Guangshui Na
- Hainan Tropical Ocean University, Sanya, 572022, China; Yazhou Bay Innovation Institute of Hainan Tropical Ocean University, Sanya, 572025, China.
| |
Collapse
|
21
|
Ding J, Liu W, Zhang H, Zhu L, Zhu L, Feng J. Liver-Based Probabilistic Risk Assessment of Exposure to Organophosphate Esters via Dust Ingestion Using a Physiologically Based Toxicokinetic (PBTK) Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312469. [PMID: 34886193 PMCID: PMC8657049 DOI: 10.3390/ijerph182312469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Organophosphate esters (OPEs) are widely used and harmful to organisms and human health. Dust ingestion is an important exposure route for OPEs to humans. In this study, by integrating ToxCast high-throughput in vitro assays with in vitro to in vivo extrapolation (IVIVE) via physiologically based Toxicokinetic (PBTK) modeling, we assessed the hepatocyte-based health risk for humans around the world due to exposure to two typical OPEs (TPHP and TDCPP) through the dust ingestion exposure route. Results showed that the health guidance value of TPHP and TCDPP obtained in this study was lower than the value obtained through animal experiments. In addition, probabilistic risk assessment results indicate that populations worldwide are at low risk of exposure to TPHP and TDCPP through dust ingestion due to low estimated daily intakes (EDIs) which are much lower than the reference dose (RfDs) published by the US EPA, except in some regional cases. Most margin of exposure (MOE) ranges of TDCPP for children are less than 100, which indicates a moderately high risk. Researchers should be concerned about exposure to TDCPP in this area. The method proposed in this study is expected to be applied to the health risk assessment of other chemicals.
Collapse
Affiliation(s)
| | | | | | | | - Lin Zhu
- Correspondence: (L.Z.); (J.F.)
| | | |
Collapse
|
22
|
Hong H, Zhao Y, Huang L, Zhong D, Shi D. Bone developmental toxicity of organophosphorus flame retardants TDCIPP and TPhP in marine medaka Oryzias melastigma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112605. [PMID: 34371453 DOI: 10.1016/j.ecoenv.2021.112605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The global phase-out has decreased the use of polybrominated diphenyl ethers (PBDEs), thereby, rapidly increasing the production and use of their important surrogates, organophosphorus flame retardants (OPFRs). Currently, OPFRs are often found at higher levels in the environments compared to PBDEs. Although the two typical OPFRs, tris (1,3-dichloroisopropyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP), have been frequently detected in marine environments with significant concentrations, their toxicity to marine organisms remains unknown. We used Oryzias melastigma to investigate and compare their developmental toxicity in marine organisms through two-generational chronic exposure. The results showed that TDCIPP and TPhP exposure shortened the body length and length of the pectoral fin of O. melastigma. Both TDCIPP and TPhP deformed the pectoral fins in the 1st fry and caused spinal curvature in adult fish. Therefore, these two chemicals may pose potential risks to marine fish and marine ecosystems. Further studies suggested that although these two chemicals caused similar developmental bone toxicity, they had different modes of modulating the expression of bone developmental genes such as, bmp4, bmp2 and runx2.
Collapse
Affiliation(s)
- Haizheng Hong
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Yunchen Zhao
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lingming Huang
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Daiyin Zhong
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
23
|
Chen X, Li W, Li J, Fan S, Shi Z. Rapid determination of 13 organophosphorus flame retardants in milk by using modified quick, easy, cheap, effective, rugged, and safe technique, solid‐phase extraction, and HPLC‐MS/MS. J Sep Sci 2021; 44:2269-2278. [DOI: 10.1002/jssc.202001227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 01/01/2023]
Affiliation(s)
- Xuelei Chen
- School of Public Health Capital Medical University Beijing P. R. China
| | - Wei Li
- Engineering Research Center of High Performance Polymer and Molding Technology Qingdao University of Science and Technology Qingdao P. R. China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment Chinese Academy of Medical Science Research Unit (No. 2019RU014) China National Center for Food Safety Risk Assessment Beijing P. R. China
| | - Sai Fan
- Beijing Center for Disease Prevention and Control Beijing Research Center for Preventive Medicine Beijing P. R. China
| | - Zhixiong Shi
- School of Public Health Capital Medical University Beijing P. R. China
| |
Collapse
|
24
|
Wang Q, Zhao H, Bekele TG, Qu B, Chen J. Organophosphate esters (OPEs) in wetland soil and Suaeda salsa from intertidal Laizhou Bay, North China: Levels, distribution, and soil-plant transfer model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142891. [PMID: 33109368 DOI: 10.1016/j.scitotenv.2020.142891] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Wetlands have attracted much attention due to releases of organophosphate esters (OPEs) and other emerging contaminants into this particular environment. Here, Suaeda salsa plants and wetland soils collected from Laizhou Bay, North China, were analyzed to investigate the levels, distribution, and soil-plant transfer of OPEs in these ecosystems. The Σ18OPEs concentrations ranged from 137 to 386 ng/g dry weight (dw), whereas in rhizosphere the concentrations were between 99.8 and 198 ng/g dw. Suaeda salsa rhizosphere could promote the absorption of OPEs in wetlands, and Suaeda salsa root presents a greater rate of absorption. The Σ18OPEs concentrations ranged from 32.9 to 56.8 ng/g dw in roots, 3.93 to 7.51 ng/g dw in stems, and 2.79 to 4.06 ng/g dw in leaves. Log RCFs, log TFr-s and log TFs-l showed no significant correlations with their log KOW, indicating the complexity of uptake and translocation in the natural environment. Predictive model for the OPEs availability to Suaeda salsa was established from the experimental data. The field-based BCFs of all OPEs were dependent on KOW, decreased with increasing KOW. This study provides important insights into the phytoremediation potential of OPEs using Suaeda salsa as an effective strategy and their role in environmental risk assessment of OPEs in wetlands.
Collapse
Affiliation(s)
- Qingzhi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Yan Z, Feng C, Jin X, Liu D, Hong Y, Qiao Y, Bai Y, Moon HB, Qadeer A, Wu F. In vitro metabolic kinetics of cresyl diphenyl phosphate (CDP) in liver microsomes of crucian carp (Carassius carassius). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116586. [PMID: 33529897 DOI: 10.1016/j.envpol.2021.116586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 05/03/2023]
Abstract
Cresyl diphenyl phosphate (CDP), as a kind of aryl substituted organophosphate esters (OPEs), is commonly used as emerging flame retardants and plasticizers detected in environmental media. Due to the accumulation of CDP in organisms, it is very important to discover the toxicological mechanism and metabolic process of CDP. Hence, liver microsomes of crucian carps (Carassius carassius) were prepared for in vitro metabolism kinetics assay to estimate metabolism rates of CDP. After 140 min incubation, the depletion of CDP accounted for 58.1%-77.1% (expect 0.5 and 2 μM) of the administrated concentrations. The depletion rates were best fitted to the Michaelis-Menten model (R2 = 0.995), where maximum velocity (Vmax) and Michaelis-Menten constant (Km) were 12,700 ± 2120 pmol min-1·mg-1 protein and 1030 ± 212 μM, respectively. Moreover, the in vitro hepatic clearance (CLint) of CDP was 12.3 μL min-1·mg-1 protein. Log Kow and bioconcentration factor (BCF) of aryl-OPEs were both higher than those of alkyl- and chlorinated-OPEs, indicating that CDP may easily accumulate in aquatic organisms. The results made clear that the metabolism rate of CDP was greater than those of other OPEs detected in liver microsomes in previous research. This paper was first of its kind to comprehensively investigate the in vitro metabolic kinetics of CDP in fish liver microsomes. The present study might provide useful information to understand the environmental fate and metabolic processes of these kinds of substances, and also provide a theoretical basis for the ecological risk assessment of emerging contaminants.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Abdul Qadeer
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan, 426-791, Republic of Korea; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
26
|
Yan Z, Jin X, Liu D, Hong Y, Liao W, Feng C, Bai Y. The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms. CHEMOSPHERE 2021; 266:128989. [PMID: 33228983 DOI: 10.1016/j.chemosphere.2020.128989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/03/2023]
Abstract
Following the world-wide ban of brominated flame retardants (BFRs), organophosphate esters (OPEs), which could potentially affect human health and ecosystem safety, have been frequently detected in various environmental media. However, the knowledge regarding the underlying toxicity effects of OPEs remains limited. In order to address these issues, this study reviewed the related reports which have been published in recent years. This analysis process included 12 OPEs, 10 model organisms, and 15 cell lines, which were used to systematically examine the mechanisms of endocrine disruption, neurotoxicity, hepatotoxicity, and cardiotoxicity, as well as reproductive and developmental toxicity. Subsequently, an adverse outcome pathway (AOP) framework of the toxicological effects of OPEs was built. The results demonstrated that multiple different pathways may lead to a single same adverse outcome (AO), and there was a certain degree of correlation among the different AOs. It was found that among all the 12 OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) may potentially be the most toxic. In addition, rather than the parent chemicals, the metabolites of OPEs may also have different degrees of toxicity effects on aquatic organisms and humans. Overall, the results of the present study also suggested that an AOP framework should be built via fully utilizing the existing toxicity data of OPEs based on in vivo-in vitro-in silico to completely and deeply understand the toxic mechanisms of OPEs. This improved knowledge could then provide a theoretical basis for ecological risk assessments and water quality criteria research in the near future.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Jiangxi Irrigation Experiment Central Station, Nanchang, 330201, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
27
|
Yin H, Liu Q, Deng X, Liu X, Fang S, Xiong Y, Song J. Organophosphate esters in water, suspended particulate matter (SPM) and sediments of the Minjiang River, China. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Yao Y, Li M, Pan L, Duan Y, Duan X, Li Y, Sun H. Exposure to organophosphate ester flame retardants and plasticizers during pregnancy: Thyroid endocrine disruption and mediation role of oxidative stress. ENVIRONMENT INTERNATIONAL 2021; 146:106215. [PMID: 33113466 DOI: 10.1016/j.envint.2020.106215] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in consumer and industrial products. Human exposure to OPEs raises concerns due to their endocrine disruptive potentials. Till now, the effects of OPEs on thyroid hormones (THs) and the mediating role of oxidative stress in pregnant women have not been studied. In this study, prenatal urinary concentrations of OPE metabolites (mOPEs), levels of free triiodothyronine (FT3), free thyroxine (FT4), thyroid-stimulating hormone (TSH), and oxidative stress levels of 8-hydroxy-2-deoxy guanosine (8-OHdG) and malondialdehyde (MDA) were measured in pregnant women (n = 360) from a coastal urbanized region and moderate socioeconomic status. Neonatal TSH in heel blood was also measured in newborns (n = 309). Dibutyl phosphate (DBP) and diphenyl phosphate (DPHP) were extensively detected with a median creatinine-adjusted level of 0.19 μg/g and 0.66 μg/g, respectively, and the median of ∑mOPEs was 1.82 μg/g. DBP and DPHP were included in the analysis. The concentrations of DBP and DPHP were positively associated with either maternal or neonatal TSH levels, while not for maternal FT3 and FT4 levels. Positive associations for maternal and neonatal TSH were particularly observed in girls as stratified by newborn sex suggesting a sex-selective difference. Furthermore, 8-OHdG, the biomarker of DNA damage, was found to be a major mediator (>60%) for the association between neonatal TSH and DPHP, suggesting that DNA damage is involved in fetal thyroid function disruption. On the other hand, MDA showed a partially suppressing effect (<40%) for the associations between mOPEs and neonatal TSH, which needs further clarification. For maternal TSH, both 8-OHdG and MDA showed moderate mediating effects while the direct effects of mOPEs on maternal TSH also contributed. These results suggest thyroid disrupting effects of OPE exposure on mothers and fetuses during pregnancy and the potential influence mediated by the oxidative stresses of DNA damage and lipid peroxidation.
Collapse
Affiliation(s)
- Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, China
| | - Mengqi Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, China
| | - Liyang Pan
- Dalian Center for Disease Control and Prevention, Dalian, Liaoning Province, China.
| | - Yishuang Duan
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Xiaoyu Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, China.
| |
Collapse
|
29
|
Kaziur-Cegla W, Salemi A, Jochmann MA, Schmidt TC. Optimization and validation of automated solid-phase microextraction arrow technique for determination of phosphorus flame retardants in water. J Chromatogr A 2020; 1626:461349. [PMID: 32797829 DOI: 10.1016/j.chroma.2020.461349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/14/2023]
Abstract
In the present work, a very sensitive and fully automated direct immersion PAL SPME Arrow procedure, coupled with GC-MS, has been developed and validated for determination of nine phosphorus flame retardants in different types of water samples (river, drinking and rainwater). PDMS/DVB was selected among three commercially available SPME Arrows (PDMS/DVB, DVB/PDMS/CWR and PDMS/CWR), since it resulted in the best sensitivity. The important experimental parameters were optimized via a central composite design response surface methodology and as result, extraction time of 65 min, extraction temperature of 80 °C and added salt concentration of 19% (w/v), were selected as the optimum values. The optimized method showed linear response over the calibration range (2 - 500 ng L-1), with R2-values higher than 0.9937. The precision (RSD%) measured by replicate analyses (n = 7) was estimated at 2 and 100 ng L-1 and was less than 29% and 21%, respectively. The LOQ of PAL SPME Arrow, calculated as S/N = 10, was between 0.2 and 1.2 ng L-1 (for triphenyl phosphate and tris-(1‑chloro‑2-propyl) phosphate, respectively) with extraction efficiencies between 5.9 and 31% (for tris-(1,3-dichloro-2-propyl) phosphate and tri-n‑butyl phosphate, respectively). To assess the performance of the developed technique for real samples, two river water samples, tap water from two regions and a rainwater sample were analyzed. Most of the target analytes were observed in the river samples with concentrations of 1.0 - 250 ng L-1 and the obtained recoveries at 50 ng L-1 ranged between 60 and 107%. Considering the figures of merit of the optimized method, PAL SPME Arrow-GC-MS showed to be the most sensitive analytical approach for determination of phosphorus flame retardants in water, with satisfying precision and accuracy, compared with conventional SPME-NPD, LLE-GC-MS and SPE-LC-MS/MS.
Collapse
Affiliation(s)
- Wiebke Kaziur-Cegla
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Amir Salemi
- Environmental Sciences Research Institute, Shahid Beheshti University, Zip Code 19839-63113, Tehran, Iran.
| | - Maik A Jochmann
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
30
|
Wang X, Zhu Q, Yan X, Wang Y, Liao C, Jiang G. A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139071. [PMID: 32438088 DOI: 10.1016/j.scitotenv.2020.139071] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate esters (OPEs) are used as additives in flame retardants and plasticizers. Due to phase out of several congeners of polybrominated diphenyl ethers (PBDEs), the application of organophosphorus flame retardants (OPFRs) is continuously increasing over the years. As a consequence, large amounts of OPEs enter the environment. Sewage and solid waste (especially e-waste) treatment plants are the important sources of OPEs released to the environment. Other sources include emissions of OPE-containing materials and vehicle fuel into the atmosphere. OPEs are widely detected in air, dust, water, soil, sediment and sludge. To know the pollution situation of OPEs, a variety of methods on their pretreatment and determination have been developed. We discussed and compared the analytical methods of OPEs, including extraction, purification as well as GC- and LC-based determination techniques. Much attention has been paid to OPEs because some of them are recognized highly toxic to biota, and the toxicological investigations of the most concerned OPEs were summarized. Risk assessments showed that the aquatic and benthic environments in some regions are under considerable ecological risks of OPEs. Finally, we pointed out problems in the current studies on OPEs and provided some suggestions for future research.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
31
|
Chen L, Jian Y, Cheng J, Yan L, Huang X. Preparation and application of graphene oxide-based surface molecularly imprinted polymer for monolithic fiber array solid phase microextraction of organophosphate flame retardants in environmental water. J Chromatogr A 2020; 1623:461200. [DOI: 10.1016/j.chroma.2020.461200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/24/2022]
|
32
|
Yanagisawa R, Koike E, Win-Shwe TT, Kawaguchi M, Takano H. The impact of oral exposure to low-dose tris(2-butoxyethyl) phosphate in allergic asthmatic mice. J Appl Toxicol 2020; 40:1498-1510. [PMID: 32497324 DOI: 10.1002/jat.4001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Tris(2-butoxyethyl) phosphate (TBEP) is a major organophosphorus flame retardant and has been widely increasing as a substitute for brominated flame retardants. TBEP may have adverse effects on human health; however, its impact on immune and allergic responses remains largely uncharacterized. In this study, the effects of low-dose TBEP comparable with the level of actual human exposure to that of human tolerable daily intake on allergic asthmatic mice were explored. Five-week-old C3H/HeJSlc male mice consumed a diet containing approximately 0.02, 0.2 or 2 μg/kg/day TBEP and were intratracheally administrated ovalbumin (OVA) (1 μg/mouse every 2 weeks from 5 to 11 weeks of age). Exposure to 2 μg/kg/day TBEP with OVA tended to enhance allergic pulmonary inflammation and significantly elevated mRNA levels of interleukin-5, eotaxin-1 and estrogen receptor alpha (ERα) compared with OVA alone. In mediastinal lymph nodes (MLNs), TBEP (0.2 or 2 μg/kg/day) with OVA significantly increased in total cell number and promoted conventional dendritic cell activation than OVA alone; MLN cell proliferation by OVA restimulation was also enhanced in these groups. In the bone marrow (BM), TBEP (0.02 or 0.2 μg/kg/day) with OVA resulted in a net decrease in total cell number and fraction of CCR2+ Gr-1+ cells; the fraction of Gr-1+ cells increased. In conclusion, oral exposure to low-dose TBEP levels equivalent to tolerable daily intake may exacerbate allergic pulmonary inflammation by promoting a skewed T-helper 2 cell response, upregulation of ERα and dysregulation of both MLN and BM microenvironments.
Collapse
Affiliation(s)
- Rie Yanagisawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | | | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto, Japan
| |
Collapse
|
33
|
Shi Y, Zhang Y, Du Y, Kong D, Wu Q, Hong Y, Wang Y, Tam NFY, Leung JYS. Occurrence, composition and biological risk of organophosphate esters (OPEs) in water of the Pearl River Estuary, South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14852-14862. [PMID: 32060833 DOI: 10.1007/s11356-020-08001-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Since the production of brominated flame retardants has been gradually phased out, organophosphate esters (OPEs) are increasingly used as the substitutes. Given their toxicity and water solubility, OPEs may jeopardize the aquatic environment and organisms. Here, we examined the concentration, composition, and biological risk of OPEs in the water collected from the eight major waterways in the Pearl River Delta, a highly industrialized region in China. We found a widespread occurrence of OPEs in this region (∑9OPEs: 134 to 442 ng L-1), dominated by TCPP, TCEP, and TnBP. Halogenated OPEs were dominant over alkyl and aromatic OPEs. The biological risk of OPEs, mainly contributed by TPhP and TnBP, was low (RQ < 0.1). The contamination level of OPEs in the Pearl River Delta was likely associated with the degree of industrial activities. Although OPEs posed low risk to aquatic organisms, more attention should be paid to some OPEs in the future, such as TnBP, due to the high usage and toxicity. Considering the concentrations of OPEs worldwide and their usage, OPEs may become the emerging pollutants of global concern in the next decade.
Collapse
Affiliation(s)
- Yongfeng Shi
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ying Zhang
- Monitoring and Research Center for Eco-Environmental Sciences, Ecology and Environment Administration of Pearl River Valley and South China Sea, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Yongming Du
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Deguan Kong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China.
| | - Yiguo Hong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
| | - Yu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
| | - Nora F Y Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jonathan Y S Leung
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
34
|
Chen S, Gong Z, Letcher RJ, Liu C. Promotion effect of liver tumor progression in male kras transgenic zebrafish induced by tris (1, 3-dichloro-2-propyl) phosphate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110220. [PMID: 31991394 DOI: 10.1016/j.ecoenv.2020.110220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
A previous study reported that exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) could promote the progression of hepatocellular carcinoma (HCC) in female HCC model zebrafish. Due to the existence of gender disparity in the development of HCC between females and males, whether the promotion effect of TDCIPP still exists in male HCC model zebrafish remains unclear. In this study, Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasG12V), referred as kras transgenic zebrafish which was shown to be an inducible liver tumor model, was applied as experimental model to assess the promotion potential of TDCIPP for HCC in males. In brief, kras males were exposed to 20 mg/L doxycycline (DOX), 0.3 mg/L TDCIPP and a binary mixture of 20 mg/L DOX with 0.3 mg/L TDCIPP, and after exposure liver size, histopathology and transcriptional profiles of liver from these treatments were examined. With the involvement of TDCIPP, the liver size was significantly increased and the lesion of hepatocyte became more aggressive. Furthermore, expressions of genes involved in DNA replication and inflammatory response were simultaneously up-regulated in the treatment of TDCIPP compared with the solvent control and in the treatment of the binary mixture of the two chemicals compared to the single DOX treatment. Overall, our results suggested that TDCIPP had promotion effect on the progression of liver tumor in kras males.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Li M, Yao Y, Wang Y, Bastiaensen M, Covaci A, Sun H. Organophosphate ester flame retardants and plasticizers in a Chinese population: Significance of hydroxylated metabolites and implication for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113633. [PMID: 31761590 DOI: 10.1016/j.envpol.2019.113633] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants, plasticizers and defoamers and their exposure are likely associated with a number of adverse effects in humans. In this study, tris(chloroethyl) phosphate and thirteen OPE metabolites including six hydroxylated OPEs (HO-OPEs) were analyzed in 46 urine samples, collected from 8 provinces located across different regions in China. 1-Hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and 2-hydroxyethyl bis(2-butoxyethyl) phosphate (BBOEHEP) were major metabolites of their parent compounds with detection frequencies of 54.3%-89.1%, which were all higher than their corresponding OPE diesters (2.2%-6.5%). The urine-based estimated daily intake (EDI) of OPEs ranged from 0.06 ng/kg·bw for tris(2-butoxyethyl) phosphate (TBOEP) to 273 ng/kg·bw for 2-ethylhexyl phenyl phosphate. Analyzed with concentrations in paired dust samples, dust exposure to OPEs and their diesters may explain 0.28%-23.8% of the urine-based EDI of OPEs and the contribution of dust TBOEP was the highest. Although direct exposure to OPE diesters in dust showed a minor contribution, their intake via food and drinking water may account for a larger portion of urinary OPE metabolites. Overall, the hazard quotients of four OPEs indicated no immediate exposure risk for the investigated Chinese residents but the cumulative and long-term chronic effects involving exposure to other OPEs and OPE diesters are worth further concerns.
Collapse
Affiliation(s)
- Mengqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
36
|
Li Y, Chen R, He J, Ma H, Zhao F, Tao S, Liu J, Hu J. Triphenyl Phosphate at Environmental Levels Retarded Ovary Development and Reduced Egg Production in Japanese Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14709-14715. [PMID: 31751126 DOI: 10.1021/acs.est.9b05669] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Since triphenyl phosphate (TPhP) elicits both antiestrogenic activities via blocking the estrogen receptor (ER) and estrogenic activity by elevating 17β-estradiol (17β-E2) synthesis, its adverse effect on female reproduction is uncertain. In this study, we exposed Japanese medaka to TPhP at 131, 363, and 1773 ng/L for 100 days following hatching. TPhP significantly induced ovary retardation in all exposure groups (incidence: from 11.9 to 37.8%) and reduced egg production by 38.9 and 50.9% in the 363 and 1773 ng/L exposure groups, respectively. Vitellogenin (vtg) transcription was significantly downregulated by 35.4-57.4% after TPhP exposure, explaining the ovary retardation. Considering that 17β-E2 was only significantly decreased in the 1773 ng/L exposure group, ER antagonism could be the dominant contributor to the inhibition of vtg transcription and female reproductive toxicity of TPhP. As 4-hydroxyphenyl diphenyl phosphate, a metabolite of TPhP, was detected in livers with similar concentration [68.4-1237 ng/g lipid weight (lw)] to that of TPhP (485-1594 ng/g lw) and elicited medaka ER antagonistic activity (50% inhibitory concentration = 78.1 μM), TPhP and its metabolite should both contribute to the reproductive inhibition. We demonstrate that TPhP at environmentally relevant concentrations is toxic to female reproduction, which poses an ecological risk to wild fish at the population level.
Collapse
Affiliation(s)
- Yu Li
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Ruichao Chen
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Jianwu He
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Haojia Ma
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Fanrong Zhao
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Shu Tao
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Junfeng Liu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
37
|
Chen S, Dang Y, Gong Z, Letcher RJ, Liu C. Progression of liver tumor was promoted by tris(1,3-dichloro-2-propyl) phosphate through the induction of inflammatory responses in kras V12 transgenic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113315. [PMID: 31606661 DOI: 10.1016/j.envpol.2019.113315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been detected in various environmental media and has been implicated as a weak mutagen or carcinogen, but whether TDCIPP can promote the progression of liver tumor remains unclear. In this study, krasV12 genetically modified zebrafish, Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasG12V), a model system in which liver tumors can be induced by doxycycline (DOX), was used to evaluate the liver tumor promotion potential of TDCIPP. Briefly, krasV12 transgenic females were exposed to 0.3 mg/L TDCIPP, 20 mg/L DOX or a binary mixture of 0.3 mg/L TDCIPP with 20 mg/L DOX, and liver size, histopathology, and transcriptional profiles of liver were determined. Treatment with TDCIPP resulted in increased liver size and caused more aggressive hepatocellular carcinoma (HCC). Compared with the exposure to DOX, TDCIPP in the presence of DOX up-regulated the expression of genes relevant with salmonella infection and the toll-like receptor signaling pathway. These results implied an occurrence of inflammatory reaction, which was sustained by the increase in the amount of infiltrated neutrophils in the liver of Tg(lyz:DsRed2) transgenic zebrafish larvae whose neutrophils were labelled by red fluorescent protein under the lysozyme C promoter. Furthermore, compared with the binary exposure of DOX and TDCIPP, treatment with a ternary mixture of TDCIPP, DOX and inflammatory response inhibitor (ketoprofen) significantly decrease the liver size and the amounts of neutrophils in the livers of kras and lyz double transgenic zebrafish larvae. Collectively, our results suggested that TDCIPP could promote the liver tumor progression by induction of hepatic inflammatory responses.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Dang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
38
|
Wang S, Hu X, Li X. Sub-chronic exposure to Tris(1,3-dichloro-2-propyl) phosphate induces sex-dependent hepatotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33351-33362. [PMID: 31522405 DOI: 10.1007/s11356-019-06383-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
As the application and environmental release of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) are being increased rapidly, serious concerns have been raised regarding its adverse effects on human health. Exposure to TDCIPP has been implicated in hepatotoxicity, but the molecular mechanisms remain unclear. Here, both male and female Sprague Dawley rats were administered TDCIPP with 125, 250, or 500 mg/kg/day for 12 weeks. Then the ultrastructure of liver, biochemical indicators in serum and liver, and hepatic gene expression were analyzed to reveal molecular mechanisms of hepatotoxicity induced by TDCIPP. Continuous TDCIPP exposure decreased body weight, particularly in 500 mg/kg/day TDCIPP-exposed males, and dose dependently increased the ratio of liver to body weight in both genders. The decreased levels of triglyceride, cholesterol, and transaminase in the serum and livers were observed in both genders after TDCIPP exposure, which indicated dysfunction in the hepatic metabolism. Liver histopathology revealed hepatocellular damages in males and females after TDCIPP exposure. The transcriptomic analysis indicated that TDCIPP exposure significantly changed pathways of bile acid metabolism, inflammatory response, oxidative phosphorylation and carcinogenicity in 250 and 500 mg/kg/day TDCIPP-exposed males and 500 mg/kg/day TDCIPP-exposed females, and there was no statistical significance in any other TDCIPP-exposed groups. The transcriptional analysis showed that TDCIPP exposure led to oxidative stress in the livers of rats, thereby increasing the inflammatory response and promoting mechanisms of carcinogenesis in both genders. Finally, TDCIPP led to more severe adverse phenotypic effects in male than female rats.
Collapse
Affiliation(s)
- Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xueyan Li
- Department of Digestion, General Hospital, Shenyang Military Command, Shenyang, 110016, China.
| |
Collapse
|
39
|
Abafe OA, Martincigh BS. Concentrations, sources and human exposure implications of organophosphate esters in indoor dust from South Africa. CHEMOSPHERE 2019; 230:239-247. [PMID: 31103870 DOI: 10.1016/j.chemosphere.2019.04.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
The concentrations of four organophosphate esters (OPEs) were measured in 50 dust samples from homes (n = 10), offices (n = 9), university computer laboratories (n = 12) and cars (n = 19) in Durban, South Africa. The median concentrations Σn=4 OPEs were 22940, 26930, 19565 and 49010 ng g⁻1 in homes, offices, university computer laboratories and cars respectively. OPEs were detected in all samples with the exception of one car and one computer laboratory sample in which TDCIPP was not detected. Significant association of indoor characteristics with OPE concentrations was observed. OPEs positively correlated (r = 0.22, p value = 0.4862) with electronics and correlated (r = 0.522, p value = 0.0675) with foams and furniture in homes. By employing the median concentrations and an average dust intake rate, the exposure doses (ng d-1) were found to be 169 (TCEP), 74 (TCIPP), 162 (TDCIPP) and 55 (TPHP) for adults; 159 (TCEP), 70 (TCIPP), 108 (TDCIPP) and 57 (TPHP) for teenagers; 317 (TCEP), 152 (TCIPP), 334 (TDCIPP) and 94 (TPHP) for toddlers. The predominance and exposure magnitude of OPEs in the South African environment require further investigations to determine cumulative human health effects arising from mixtures of these compounds through multiple exposure routes.
Collapse
Affiliation(s)
- Ovokeroye A Abafe
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
40
|
Wang Q, Zhao H, Xu L, Wang Y. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:683-689. [PMID: 30878008 DOI: 10.1016/j.ecoenv.2019.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The increasing load of organophosphate flame retardants (OPFRs) has generated wide concerns about their potential residues in aquatic environments. The uptake and translocation of fourteen OPFRs by wheat (Triticum aestivum L.) were studied under hydroponic conditions. The results revealed that OPFRs were removed from hydroponic solution by wheat, and the removal processes followed first-order kinetics. After 10 days, the removal efficiencies were in a range of 57.9 ± 3.8%-63.8 ± 5.6%. The potential for translocation of these OPFRs from the roots to foliage was also assessed. OPFRs with relatively higher hydrophobicity were more likely taken up by roots, and OPFRs with lower hydrophobicity were more prone to be translocated. Root concentration factors (RCFs), transpiration stream concentration factors (TSCFs), and foliage/root concentration factors (FRCFs) were calculated. Furthermore, significant correlations were found between RCF, FRCF or TSCF values of OPFRs and log Kow (p < 0.05), and translocation of OPFRs depended on their physicochemical properties. The findings of this study develop better understanding of accumulation and translocation of OPFRs in plants, which is valuable for environmental and human health assessments of such kind of contaminants.
Collapse
Affiliation(s)
- Qingzhi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Ling Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
41
|
A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs). Int J Mol Sci 2019; 20:ijms20122874. [PMID: 31212857 PMCID: PMC6627825 DOI: 10.3390/ijms20122874] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023] Open
Abstract
Organophosphate flame retardants (OPFRs) have been detected in various environmental matrices and have been identified as emerging contaminants (EC). Given the adverse influence of OPFRs, many researchers have focused on the absorption, bioaccumulation, metabolism, and internal exposure processes of OPFRs in animals and humans. This paper first reviews the evolution of various types of flame retardants (FRs) and the environmental pollution of OPFRs, the different absorption pathways of OPFRs by animals and humans (such as inhalation, ingestion, skin absorption and absorption), and then summarizes the environmental impacts of OPFRs, including their biological toxicity, bioaccumulation, persistence, migration, endocrine disruption and carcinogenicity. Based on limited available data and results, this study also summarizes the bioaccumulation and biomagnification potential of OPFRs in different types of biological and food nets. In addition, a new governance idea for the replacement of existing OPFRs from the source is proposed, seeking environmentally friendly alternatives to OPFRs in order to provide new ideas and theoretical guidance for the removal of OPFRs.
Collapse
|
42
|
Ji Y, Wang Y, Yao Y, Ren C, Lan Z, Fang X, Zhang K, Sun W, Alder AC, Sun H. Occurrence of organophosphate flame retardants in farmland soils from Northern China: Primary source analysis and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:832-838. [PMID: 30731308 DOI: 10.1016/j.envpol.2019.01.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Ninety-eight soil samples were collected from farmland soils from Beijing-Tianjin-Hebei core area, Northern China, where agricultural lands were subjected to contamination from intense urban and industrial activities. Twelve organophosphates flame retardants (OPFRs) were analyzed with total soil concentrations ranging from 0.543 μg/kg to 54.9 μg/kg. Chlorinated OPFRs were dominating at mean level of 3.64 μg/kg and Tris(2-chloroisopropyl) phosphate contributed the most (mean 3.36 ± 5.61 μg/kg, 98.0%). Tris(2-ethylhexyl) phosphate was fully detected at levels of 0.041-1.95 μg/kg. Generally, tris(2-butoxyethyl) phosphate and triphenyl phosphate contributed the most to alkyl- (53.6%) and aryl-OPFRs (54.3%), respectively. The levels of ∑OPFRs close to the core urban areas were significantly higher than those from background sites. The occurrence and fate of OPFRs in soil were significantly associated with total organic carbon content and mostly with fine soil particles (<0.005 mm), and a transfer potential from the atmosphere was predicted with logKSA values. Comparable soil levels with poly brominated diphenyl ethers s in other studies suggested that the contamination of OPFRs occurred in farmland soil with an increasing trend but currently showed no significant environmental risk based on risk quotient estimation (<1). This investigation warrants further study on behaviors of OPFRs in a soil system and a continual monitoring for their risk assessment.
Collapse
Affiliation(s)
- Yan Ji
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Chao Ren
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zhonghui Lan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xiangguang Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Weijie Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Alfredo C Alder
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China; Eawag, Swiss Federal Institute of Environmental Science and Technology, 8600, Dübendorf, Switzerland
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
43
|
He MJ, Lu JF, Wei SQ. Organophosphate esters in biota, water, and air from an agricultural area of Chongqing, western China: Concentrations, composition profiles, partition and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:388-397. [PMID: 30352353 DOI: 10.1016/j.envpol.2018.10.085] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
We measured the concentrations of organophosphate esters (OPEs) in some biotic samples which can serve as human foodstuffs and ambient environments including air and river water from an agricultural area of Chongqing, western China. Fish samples exhibited highest OPEs levels (960 ng/g lipid weight) among the biota, followed by chicken (676 ng/g lw), cattle (545 ng/g lw) and pigs (535 ng/g lw). Tributyl phosphate (TNBP), tris (2-methylpropyl) (TIBP) and chlorinated OPEs were the major analogs in biotic samples, which appeared similar with the patterns from river water and outdoor air, but apparently different from indoor air. To further investigate the influence of ambient environment on the distribution of OPEs in biota, we analyzed the correlation between OPEs concentrations in ambient environment and biological samples, and the results revealed that most of the samples (except for pig samples) heavily correlated with outdoor air, whereas only fish and cattle samples were strongly correlated with river water. The partitioning behaviors of OPEs among biota, air and river water were also studied through calculating the biota-water accumulation factors (BWAFs), biota-air accumulation factors (BAAFs) and air-water partitioning factor (AWPFs). Significantly linear correlations (P < 0.05) were observed between log (BWAFs) and log (KOW) values, and between log (AWPFs) and log H (Henry's law constants), nevertheless log (BAAFs) was increasing along with the log (KOA) values. The daily intake (DI) values were estimated via foodstuffs ingestion and environmental exposure. The estimated DI values of OPEs from food and ambient environments were 1.78 ng/kg-bw/day, 1.23 ng/kg-bw/day and 1.42 ng/kg-bw/day in toddlers, children and adults, respectively, which lay at the low end of the reported data and well below the reference dose (RfD).
Collapse
Affiliation(s)
- Ming-Jing He
- College of Resources and Environment, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Jun-Feng Lu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Shi-Qiang Wei
- College of Resources and Environment, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China
| |
Collapse
|
44
|
Nam S, Easson MW, Condon BD, Hillyer MB, Sun L, Xia Z, Nagarajan R. A reinforced thermal barrier coat of a Na–tannic acid complex from the view of thermal kinetics. RSC Adv 2019; 9:10914-10926. [PMID: 35515292 PMCID: PMC9062495 DOI: 10.1039/c9ra00763f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
The poor burning resistance of cotton necessitates the control of its pyrolytic reactions, but many approaches have relied on the use of synthetically engineered chemicals. Herein, we show how a natural polyphenol from plants—tannic acid—acts with sodium ions to create a robust thermal barrier coat on cotton, with a focus on thermal kinetics. The kinetic information, combined with thermal and spectral analyses, revealed that the outer layer of galloyl units in tannic acid decomposes via a two-step reaction, producing a multicellular char of crosslinked aromatic rings, followed by the blowing of carbonaceous cells into a further expanded structure. This intumescent function of tannic acid was found to be enhanced upon its complexation with sodium ions, which greatly increased the activation energy for the first step of the reaction of tannic acid, to promote the formation of a stable char. The resulting blown char coated the cotton fiber below the thermal decomposition temperature of cellulose and was sustained throughout the decomposition. The enhanced thermal barrier performance of the Na–tannic acid complex was demonstrated by the reduced heat release capacity of cotton, the value of which was only about one-third that of tannic acid itself, and the inhibition of flame generation on cotton. A reinforced thermal barrier coat of a Na–tannic acid complex controls the high flammability of cotton.![]()
Collapse
Affiliation(s)
- Sunghyun Nam
- United States Department of Agriculture
- Agricultural Research Service
- Southern Regional Research Center
- New Orleans
- USA
| | - Michael W. Easson
- United States Department of Agriculture
- Agricultural Research Service
- Southern Regional Research Center
- New Orleans
- USA
| | - Brian D. Condon
- United States Department of Agriculture
- Agricultural Research Service
- Southern Regional Research Center
- New Orleans
- USA
| | - Matthew B. Hillyer
- United States Department of Agriculture
- Agricultural Research Service
- Southern Regional Research Center
- New Orleans
- USA
| | - Luyi Sun
- Polymer Program
- Institute of Materials Science and Department of Chemical & Biomolecular Engineering
- University of Connecticut
- USA
| | - Zhiyu Xia
- Department of Plastics Engineering
- University of Massachusetts
- Lowell
- USA
| | | |
Collapse
|
45
|
Moldovan Z, Marincas O, Povar I, Lupascu T, Longree P, Rota JS, Singer H, Alder AC. Environmental exposure of anthropogenic micropollutants in the Prut River at the Romanian-Moldavian border: a snapshot in the lower Danube river basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31040-31050. [PMID: 30187404 DOI: 10.1007/s11356-018-3025-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
The Prut River, the second longest tributary of the Danube river, was investigated for a wide range of anthropogenic organic pollutants to fill the data gap on environmental contamination in eastern European surface waters. In this study, the occurrence of a wide range of organic pollutants was measured along the transboundary Prut River, between Sculeni and Branza in 2010-2012. Using two different analytical methods, gas chromatography coupled to mass spectrometry and liquid chromatography coupled to high-resolution mass spectrometry, over 300 compounds were screened for and 88 compounds were determined in the Prut River. In general, the chemicals occurred at low levels. At the last sampling site upstream of the confluence with the Danube river at Branza, the highest average concentrations (≥ 100 ng L-1) were determined for the artificial sweetener acesulfame, the pharmaceuticals metformin, 4-acetamidoantipyrene, and 4,4,5,8-tetramethylchroman-2-ol, the antioxidants 2,4-di-tert-butylphenol, 3-tert-butyl-4-hydroxyanisol, and 3,5-di-tert-butyl-4-hydroxy-toluene, the personal care products HHCB (galaxolide), 4-phenyl-benzophenone, and octyl dimethyl-p-aminobenzoic acid, the industrial chemical diphenylsulfone, and the sterol cholesterol. Low concentrations of agricultural pesticides occurred in the catchment. At Branza, the total accumulated load of all measured compounds was calculated to be almost 19 kg day-1. In comparison to the Rhine River, the loads in the Prut, determined with same LC-HRMS method for the same set of analytes, were two orders of magnitude lower. Discharge of wastewater without proper treatment from the city of Iasi in the Jijia catchment (Romania) as well as from the city of Cahul (Moldova) revealed a distinct increase in concentrations and loads in the Prut at Frasinesti and Branza. Thus, an implementation of wastewater treatment capacities in the Prut River basin would considerably reduce the loads of micropollutants from urban point sources.
Collapse
Affiliation(s)
- Zaharie Moldovan
- National Institute for Research and Development of Isotopic and Molecular Technology, RO-3400, Cluj-Napoca, Romania
| | - Olivian Marincas
- National Institute for Research and Development of Isotopic and Molecular Technology, RO-3400, Cluj-Napoca, Romania
| | - Igor Povar
- Academy of Sciences of Moldova, Institute of Chemistry, MD-2028, Chisinau, Republic of Moldova
| | - Tudor Lupascu
- Academy of Sciences of Moldova, Institute of Chemistry, MD-2028, Chisinau, Republic of Moldova
| | - Philipp Longree
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Jelena Simovic Rota
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Alfredo C Alder
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland.
| |
Collapse
|
46
|
Zou YT, Fang Z, Li Y, Wang R, Zhang H, Jones KC, Cui XY, Shi XY, Yin D, Li C, Liu ZD, Ma LQ, Luo J. Novel Method for in Situ Monitoring of Organophosphorus Flame Retardants in Waters. Anal Chem 2018; 90:10016-10023. [DOI: 10.1021/acs.analchem.8b02480] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Tao Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhou Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Yuan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Runmei Wang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Kevin C. Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Xin-Yao Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Daixia Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhao-Dong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Lena Q. Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Soil and Water Science Department, University of Florida, Gainesville, Florida 32611, United States
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
47
|
Zhang Y, Zheng X, Wei L, Sun R, Guo H, Liu X, Liu S, Li Y, Mai B. The distribution and accumulation of phosphate flame retardants (PFRs) in water environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:164-170. [PMID: 29477114 DOI: 10.1016/j.scitotenv.2018.02.215] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Phosphate flame retardants (PFRs) were measured in surface water (n=11), suspended particle matter (SPM, n=11), sediment (n=11), and fish samples (n=26) from the Pearl River Delta located in South China. Triethyl phosphate (TEP), tri(2-chloroethyl) phosphate (TCEP), tris(chloroisopropyl) phosphate (TCIPP), tri-n-butyl phosphate (TNBP), triphenyl phosphate (TPHP), and tricresyl phosphate (TMPP) were detected in more than half of surface water, SPM, and sediment samples. The median ΣPFR levels were 837ng/L, 54.6ng/g dry weight (dw), and 37.1ng/g dw in surface water, SPM, and sediment samples, respectively. No significant correlations were found between the concentrations of most PFRs and organic carbon contents in SPM and sediment (p>0.05). In surface water samples, tris(2-butoxyethyl) phosphate (TBOEP, 27% of ΣPFRs) and TEP (23% of ΣPFRs) were the predominant chemicals, while TNBP (38% of ΣPFRs) and TCEP (32% of ΣPFRs) dominated in ΣPFRs in SPM samples, and TCEP (48% of ΣPFRs) and TCIPP (25% of ΣPFRs) dominated in ΣPFRs in sediment samples. The proportions of phenyl-PFRs and chlorinated-PFRs in ΣPFRs increased from surface water to SPM and sediment. The distribution ratios of PFRs between water and organic carbon in SPM (or observed KOC) were generally 2-3 orders of magnitude higher than the predicted KOC. TNBP (nd-2.42ng/g wet weight (ww)), TCEP (nd-4.96ng/g ww), and TCIPP (nd-2.42ng/g ww) were detected in 27%, 35%, and 23% of all fish samples, respectively. The log bioaccumulation factors (BAFs) ranged 2.56-2.78, 2.15-3.11, and 2.61-3.10 for TNBP, TCEP, and TCIPP, respectively. The biota-sediment accumulation factors (BSAFs) of TNBP, TCEP, and TCIPP were generally lower than 1 except for the BSAF of TCIPP in common carp. The results indicate the species-specific bioaccumulation of PFRs in fish species.
Collapse
Affiliation(s)
- Ying Zhang
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Lifei Wei
- Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Runxia Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huiying Guo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinyu Liu
- Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Shengyu Liu
- Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Yi Li
- Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
48
|
Chen Y, Fang J, Ren L, Fan R, Zhang J, Liu G, Zhou L, Chen D, Yu Y, Lu S. Urinary metabolites of organophosphate esters in children in South China: Concentrations, profiles and estimated daily intake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:358-364. [PMID: 29306213 DOI: 10.1016/j.envpol.2017.12.092] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 05/24/2023]
Abstract
Organophosphate esters (OPEs) are widely used in household products as flame retardants or plasticizers and have become ubiquitous pollutants in environmental media. However, little is known about OPE metabolites in humans, especially in children. In this study, eight OPE metabolites were measured in 411 urine samples collected from 6 to 14-year-old children in South China. Bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP) and diphenyl phosphate (DPHP) were the dominant OPE metabolites, and their median concentrations were 1.04, 0.15 and 0.28 μg/L, respectively. The levels of urinary OPE metabolites in the present study were much lower than those in participants from other countries, with the exception of BCEP, suggesting widespread exposure to tris(2-chlorethyl) phosphate (TCEP, the parent chemical of BCEP) in South China. No significant difference in the concentrations of any of the OPE metabolites was observed between males and females (p > .05). Significant negative correlations were observed between age and BCEP, BCIPP, bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), di-o-cresyl phosphate (DoCP) and di-p-cresyl phosphate (DpCP) (DCP), or DPHP (p < .05). Pearson correlation coefficients between urinary OPE metabolites indicated multiple sources and OPE exposure pathways in children. The estimated daily intake suggested that children in South China have a relatively high exposure level to TCEP. To the best of our knowledge, this is the first study to report the urinary levels of OPE metabolites in Chinese children.
Collapse
Affiliation(s)
- Yi Chen
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianzhang Fang
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| | - Lu Ren
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ruifang Fan
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Li Zhou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Dingyan Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yingxin Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
49
|
Aznar-Alemany Ò, Aminot Y, Vilà-Cano J, Köck-Schulmeyer M, Readman JW, Marques A, Godinho L, Botteon E, Ferrari F, Boti V, Albanis T, Eljarrat E, Barceló D. Halogenated and organophosphorus flame retardants in European aquaculture samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:492-500. [PMID: 28865267 DOI: 10.1016/j.scitotenv.2017.08.199] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 05/13/2023]
Abstract
This work monitors flame retardants in sediment, mussel and water samples from European fish farms. Polybrominated diphenyl ethers (PBDEs) were detected in 95% of the sediment and mussel samples with mean levels of 8.60±22.6ngg-1 dw in sediments and 0.07±0.18ngg-1 dw in mussels. BDE-209 was the main contributor for the sediments and BDE-47 was found in about 60% of the samples of both matrices. Pentabromoethylbenzene (PBEB) and hexabromobenzene (HBB) were detected in 42% of the sediments, but not in mussels. Decabromodiphenyl ethane (DBDPE) was found in about 55% of the samples of both matrices. The same happened for dechloranes in mussels, but they were detected in 92% of the sediments. Syn-DP and anti-DP were always the main contributors. Methoxylated PBDEs (MeO-PBDEs) were detected in all mussels and some sediments, mainly 6-MeO-BDE-47 and 2'-MeO-BDE-68. Organophosphorus flame retardants (OPFRs) were found in all matrices with concentrations of 0.04-92.8ngg-1 dw in sediment, 0.50-102ngg-1 dw in mussel and 0.43-867ngl-1 in water. Only OPFRs were analysed in water samples as halogenated flame retardants and MeO-PBDEs are highly unlikely to be detected in water due to their physicochemical properties. Flame retardants have no application in fish farming so results should reflect the impact of human activity on the farm locations. A large majority of the most contaminated samples were collected from sampling spots that were at urban shores or in enclosed water bodies not completely open to the sea.
Collapse
Affiliation(s)
- Òscar Aznar-Alemany
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Yann Aminot
- Biogeochemistry Research Centre, Plymouth University, Plymouth, United Kingdom.
| | - Judit Vilà-Cano
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Marianne Köck-Schulmeyer
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| | - James W Readman
- Biogeochemistry Research Centre, Plymouth University, Plymouth, United Kingdom; Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom.
| | - António Marques
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida de Brasília, 1449-006 Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal.
| | - Lia Godinho
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida de Brasília, 1449-006 Lisbon, Portugal.
| | - Elena Botteon
- Aeiforia Srl, Località Faggiola 12-16, 29027 Gariga, Podenzano (PC), Italy.
| | - Federico Ferrari
- Aeiforia Srl, Località Faggiola 12-16, 29027 Gariga, Podenzano (PC), Italy.
| | - Vasiliki Boti
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, Panepistimioupolis, 45110 Ioannina, Greece.
| | - Triantafyllos Albanis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, Panepistimioupolis, 45110 Ioannina, Greece.
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Emili Grahit, 101, 17003 Girona, Spain.
| |
Collapse
|
50
|
Cai C, Zhang P, Deng J, Zhou H, Cheng J. Ultrasensitive determination of highly polar trimethyl phosphate in environmental water by molecularly imprinted polymeric fiber headspace solid-phase microextraction. J Sep Sci 2018; 41:1104-1111. [DOI: 10.1002/jssc.201701048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Cuicui Cai
- Key Laboratory of Pesticide and Chemical Biology; Ministry of Education; Institute of Environmental Chemistry; College of Chemistry; Central China Normal University; Wuhan China
| | - Pengcheng Zhang
- Department of Biological Science and Technology, School of Environmental Studies; China University of Geosciences; Wuhan China
| | - Jiali Deng
- Key Laboratory of Pesticide and Chemical Biology; Ministry of Education; Institute of Environmental Chemistry; College of Chemistry; Central China Normal University; Wuhan China
| | - Hongbin Zhou
- Key Laboratory of Pesticide and Chemical Biology; Ministry of Education; Institute of Environmental Chemistry; College of Chemistry; Central China Normal University; Wuhan China
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology; Ministry of Education; Institute of Environmental Chemistry; College of Chemistry; Central China Normal University; Wuhan China
| |
Collapse
|