1
|
Kawaguchi K, Notaguchi M, Okayasu K, Sawai Y, Kojima M, Takebayashi Y, Sakakibara H, Otagaki S, Matsumoto S, Shiratake K. Plant hormone profiling of scion and rootstock incision sites and intra- and inter-family graft junctions in Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2024; 19:2331358. [PMID: 38513064 PMCID: PMC10962582 DOI: 10.1080/15592324.2024.2331358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Many previous studies have suggested that various plant hormones play essential roles in the grafting process. In this study, to understand the plant hormones that accumulate in the graft junctions, whether these are supplied from the scion or rootstock, and how these hormones play a role in the grafting process, we performed a hormonome analysis that accumulated in the incision site of the upper plants from the incision as "ungrafted scion" and lower plants from the incision as "ungrafted rootstock" in Nicotiana benthamiana. The results revealed that indole-3-acetic acid (IAA) and gibberellic acid (GA), which regulate cell division; abscisic acid (ABA) and jasmonic acid (JA), which regulate xylem formation; cytokinin (CK), which regulates callus formation, show different accumulation patterns in the incision sites of the ungrafted scion and rootstock. In addition, to try discussing the differences in the degree and speed of each event during the grafting process between intra- and inter-family grafting by determining the concentration and accumulation timing of plant hormones in the graft junctions, we performed hormonome analysis of graft junctions of intra-family grafted plants with N. benthamiana as scion and Solanum lycopersicum as rootstock (Nb/Sl) and inter-family grafted plants with N. benthamiana as scion and Arabidopsis thaliana as rootstock (Nb/At), using the ability of Nicotiana species to graft with many plant species. The results revealed that ABA and CK showed different accumulation timings; IAA, JA, and salicylic acid (SA) showed similar accumulation timings, while different accumulated concentrations in the graft junctions of Nb/Sl and Nb/At. This information is important for understanding the molecular mechanisms of plant hormones in the grafting process and the differences in molecular mechanisms between intra- and inter-family grafting.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Michitaka Notaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koji Okayasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yu Sawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Plant Productivity Systems Research Group, Yokohama, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Plant Productivity Systems Research Group, Yokohama, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- RIKEN Center for Sustainable Resource Science, Plant Productivity Systems Research Group, Yokohama, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Razi K, Suresh P, Mahapatra PP, Al Murad M, Venkat A, Notaguchi M, Bae DW, Prakash MAS, Muneer S. Exploring the role of grafting in abiotic stress management: Contemporary insights and automation trends. PLANT DIRECT 2024; 8:e70021. [PMID: 39678018 PMCID: PMC11646695 DOI: 10.1002/pld3.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 12/17/2024]
Abstract
Grafting is a technique that involves attaching a rootstock to the aerial part of another genotype or species (scion), leading to improved crop performance and sustainable growth. The ability to tolerate abiotic stresses depends on cell membrane stability, a reduction in electrolyte leakage, and the species of scion and rootstock chosen. This external mechanism, grafting, serves as a beneficial tool in influencing crop performance by combining nutrient uptake and translocation to shoots, promoting sustainable plant growth, and enhancing the potential yield of both fruit and vegetable crops. Grafting helps to enhance crop production and improve the capacity of plants to utilize water when undergoing abiotic stress, particularly in genotypes that produce high yields upon rootstocks that are capable of decreasing the impact of drought stress on the shoot. The rootstock plays a pivotal role in establishing a grafted plant by forming a union between the graft and the rootstock. This process is characterized by its integrative, reciprocal nature, enabling plants to tolerate abiotic stress conditions. Grafting has been shown to alleviate the overproduction of lipid peroxidation and reactive oxygen species in the leaves and roots and enhance drought tolerance in plants by maintaining antioxidant enzyme activities and stress-responsive gene expression. Phytohormones, such as cytokinin, auxin, and gibberellin, play a critical role in maintaining rootstock-scion interactions. This review unveils the role of grafting in mitigating various environmental stressors, establishment of a robust graft junction, physiology of rootstock-scion communication, the mechanism underlying rootstock influence, hormonal regulations and the utilization of agri-bots in perfect healing and further cultivation of vegetable crops through grafting.
Collapse
Affiliation(s)
- Kaukab Razi
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Preethika Suresh
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
- School of Biosciences and TechnologyVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Pritam Paramguru Mahapatra
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
- School of Biosciences and TechnologyVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Musa Al Murad
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Ajila Venkat
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
- School of Biosciences and TechnologyVellore Institute of TechnologyVelloreTamil NaduIndia
| | | | - Dong Won Bae
- Central Instrument FacilityGyeongsang National UniversityJinjuSouth Korea
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of AgricultureAnnamalai UniversityAnnamalai NagarTamil NaduIndia
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
| |
Collapse
|
3
|
Lazare S, Golshmid P, Krassin A, Simhon E, Cohen TL, Dag A. Grafting of Cannabis - The effect of the rootstock on vegetative and reproductive indices of the scion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112210. [PMID: 39096974 DOI: 10.1016/j.plantsci.2024.112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Among the commercial cannabis varieties, some are high yielders but characterized by a relatively poor root system. Roots absorb water and minerals from the soil, enabling vegetative development that directly affects yield, as vigorous plants have more resources to support reproduction. Moreover, healthy foliage is a primary key to high assimilation rates, leading to better production of photosynthetic products, including cannabinoids and terpenes, which are the main active components of cannabis. We grafted a high-THC variety, named 'Freud Super-Ego' (FSE) onto three chemotypes of rootstocks: high-THC (T), high-CBD (C), and Balanced (B). All the rootstocks had significantly greater root biomass compared to FSE. All the grafting treatments significantly improved FSE's vegetative indices and yield. The best overall vegetative performance - height, stem circumference, number of mature leaves - was that of plants grafted onto the Balanced and high-CBD rootstocks, resulting in high yields as well. However, the greatest number of inflorescences was counted when FSE was grafted onto a high-THC rootstock. According to leaf mineral content analysis, the highest nitrogen and phosphorus levels were found in leaves of FSE grafted on the balanced rootstock. The cannabinoid content profile analysis revealed that all grafting treatments raised the THC level in FSE's inflorescences by 8-12 % in comparison to the non-grafted control, and the THC rootstock led to the highest THC level. The results indicate the importance of grafting in cannabis as a tool to increase the productivity and quality of the product.
Collapse
Affiliation(s)
- Silit Lazare
- RCK Science-based Cannabis Genetics, Ruhama 7918000, Israel.
| | | | - Adi Krassin
- RCK Science-based Cannabis Genetics, Ruhama 7918000, Israel
| | - Ella Simhon
- RCK Science-based Cannabis Genetics, Ruhama 7918000, Israel
| | | | - Arnon Dag
- Gilat Research Center, Agricultural Research Organization, M.P. Negev, Gilat 8528000, Israel
| |
Collapse
|
4
|
Hirose S, Sakai K, Kobayashi S, Tsuro M, Morikami A, Tsukagoshi H. Eugenol transport and biosynthesis through grafting in aromatic plants of the Ocimum genus. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:111-120. [PMID: 39463769 PMCID: PMC11500594 DOI: 10.5511/plantbiotechnology.24.0124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 10/29/2024]
Abstract
Aromatic compounds play essential roles in plant physiology and various industries because of their unique fragrances and beneficial properties. In this study, we investigated the transport and biosynthesis of eugenol, a prominent aromatic compound, within the Ocimum genus, using grafting experiments. Grafting sweet basil (Ocimum basilicum) scions onto diverse rootstocks, including tobacco (Nicotiana benthamiana) and thyme (Thymus vulgaris), revealed that eugenol is transported from the shoot to the root across distinct plant species. Furthermore, grafting within the Ocimum genus, which includes O. basilicum, O. tenuiflorum, and O. americanum, resulted in variations in eugenol transport and accumulation. The eugenol content in the shoots remained constant across all combinations, whereas the root eugenol levels varied depending on the scion-rootstock pair. To elucidate the biosynthetic capabilities of eugenol in Ocimum roots, we performed in vitro enzyme assays using crude protein extracts from roots, which revealed that eugenol can be synthesized in roots in addition to being transported. Expression analysis of eugenol synthase (EGSs) genes showed that EGS4 expression was influenced by grafting in O. basilicum roots, suggesting compensation by other EGSs. Our results suggest that eugenol transport and biosynthesis are multifaceted processes influenced by the interactions between different species and tissues. The potential to engineer eugenol levels in rootstocks lacking biosynthetic capacity has potential applications in agriculture and industry. This study reveals the dynamic interplay between eugenol transport and biosynthesis in the Ocimum genus, providing insights into the manipulation of aromatic compound production in plants.
Collapse
|
5
|
Febres VJ, Fadli A, Meyering B, Yu F, Bowman KD, Chaparro JX, Albrecht U. Dissection of transcriptional events in graft incompatible reactions of "Bearss" lemon ( Citrus limon) and "Valencia" sweet orange ( C. sinensis) on a novel citrandarin ( C. reticulata × Poncirus trifoliata) rootstock. FRONTIERS IN PLANT SCIENCE 2024; 15:1421734. [PMID: 38966146 PMCID: PMC11222572 DOI: 10.3389/fpls.2024.1421734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Citrus is commercially propagated via grafting, which ensures trees have consistent fruit traits combined with favorable traits from the rootstock such as soil adaptability, vigor, and resistance to soil pathogens. Graft incompatibility can occur when the scion and rootstock are not able to form a permanent, healthy union. Understanding and preventing graft incompatibility is of great importance in the breeding of new fruit cultivars and in the choice of scion and rootstock by growers. The rootstock US-1283, a citrandarin generated from a cross of "Ninkat" mandarin (Citrus reticulata) and "Gotha Road" #6 trifoliate orange (Poncirus trifoliata), was released after years of field evaluation because of its superior productivity and good fruit quality on "Hamlin" sweet orange (C. sinensis) under Florida's growing conditions. Subsequently, it was observed that trees of "Bearss" lemon (C. limon) and "Valencia" sweet orange (C. sinensis) grafted onto US-1283 exhibited unhealthy growth near the graft union. The incompatibility manifested as stem grooving and necrosis underneath the bark on the rootstock side of the graft. Another citrandarin rootstock, US-812 (C. reticulata "Sunki" × P. trifoliata "Benecke"), is fully graft compatible with the same scions. Transcriptome analysis was performed on the vascular tissues above and below the graft union of US-812 and US-1283 graft combinations with "Bearss" and "Valencia" to identify expression networks associated with incompatibility and help understand the processes and potential causes of incompatibility. Transcriptional reprogramming was stronger in the incompatible rootstock than in the grafted scions. Differentially expressed genes (DEGs) in US-1283, but not the scions, were associated with oxidative stress and plant defense, among others, similar to a pathogen-induced immune response localized to the rootstock; however, no pathogen infection was detected. Therefore, it is hypothesized that this response could have been triggered by signaling miscommunications between rootstock and scion either through (1) unknown molecules from the scion that were perceived as danger signals by the rootstock, (2) missing signals from the scion or missing receptors in the rootstock necessary for the formation of a healthy graft union, (3) the overall perception of the scion by the rootstock as non-self, or (4) a combination of the above.
Collapse
Affiliation(s)
- Vicente J. Febres
- Horticultural Sciences Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL, United States
| | - Anas Fadli
- Southwest Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Immokalee, FL, United States
| | - Bo Meyering
- Southwest Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Immokalee, FL, United States
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, United States
| | - Kim D. Bowman
- Horticultural Research Laboratory, United States Department of Agriculture (USDA), Fort Pierce, FL, United States
| | - Jose Xavier Chaparro
- Horticultural Sciences Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL, United States
| | - Ute Albrecht
- Southwest Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Immokalee, FL, United States
| |
Collapse
|
6
|
Liang H, Liu J, Shi X, Ge M, Zhu J, Wang D, Zhou M. An Integrated Analysis of Anatomical and Sugar Contents Identifies How Night Temperatures Regulate the Healing Process of Oriental Melon Grafted onto Pumpkin. PLANTS (BASEL, SWITZERLAND) 2024; 13:1506. [PMID: 38891314 PMCID: PMC11174965 DOI: 10.3390/plants13111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Graft healing is a complex process affected by environmental factors, with temperature being one of the most important influencing factors. Here, oriental melon grafted onto pumpkin was used to study changes in graft union formation and sugar contents at the graft interface under night temperatures of 18 °C and 28 °C. Histological analysis suggested that callus formation occurred 3 days after grafting with a night temperature of 28 °C, which was one day earlier than with a night temperature of 18 °C. Vascular reconnection with a night temperature of 28 °C was established 2 days earlier than with a night temperature of 18 °C. Additionally, nine sugars were significantly enriched in the graft union, with the contents of sucrose, trehalose, raffinose, D-glucose, D-fructose, D-galactose, and inositol initially increasing but then decreasing. Furthermore, we also found that exogenous glucose and fructose application promotes vascular reconnection. However, exogenous sucrose application did not promote vascular reconnection. Taken together, our results reveal that elevated temperatures improve the process of graft union formation through increasing the contents of sugars. This study provides information to develop strategies for improving grafting efficiency under low temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mobing Zhou
- Wuhan Academy of Agricultural Sciences, Wuhan 430070, China; (H.L.); (J.L.); (X.S.); (M.G.); (J.Z.); (D.W.)
| |
Collapse
|
7
|
Morey K, Khakhar A. Exploring the frontier of rapid prototyping technologies for plant synthetic biology and what could lie beyond. THE NEW PHYTOLOGIST 2024; 242:903-908. [PMID: 38426415 DOI: 10.1111/nph.19650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Realizing the full potential of plant synthetic biology both to elucidate the relationship between genotype and phenotype and to apply these insights to engineer traits requires rapidly iterating through design-build-test cycles. However, the months-long process of transgenesis, the long generation times, and the size-based limitations on experimentation have stymied progress by limiting the speed and scale of these cycles. Herein, we review a representative sample of recent studies that demonstrate a variety of rapid prototyping technologies that overcome some of these bottlenecks and accelerate progress. However, each of them has caveats that limit their broad utility. Their complementary strengths and weaknesses point to the intriguing possibility that these strategies could be combined in the future to enable rapid and scalable deployment of synthetic biology in plants.
Collapse
Affiliation(s)
- Kevin Morey
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80525, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80525, USA
| |
Collapse
|
8
|
Zhu Y, Hu S, Min J, Zhao Y, Yu H, Irfan M, Xu C. Transcriptomic analysis provides an insight into the function of CmGH9B3, a key gene of β-1, 4-glucanase, during the graft union healing of oriental melon scion grafted onto squash rootstock. Biotechnol J 2024; 19:e2400006. [PMID: 38581090 DOI: 10.1002/biot.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of β-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.
Collapse
Affiliation(s)
- Yulei Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Shengwei Hu
- Hermiston Agricultural Research and Extension Station, Oregon State University, Hermiston, Oregon, USA
| | - Jiahuan Min
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Yingtong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Hanqi Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of science, University of Sargodha Pakistan, Sargodha, Pakistan
| | - Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
- Key Laboratory of Horticultural Equipment (Ministry of Agriculture and Rural Affairs), Shenyang, China
| |
Collapse
|
9
|
Zhang Y, Cai G, Zhang K, Sun H, Huang L, Ren W, Ding Y, Wang N. PdeERF114 recruits PdeWRKY75 to regulate callus formation in poplar by modulating the accumulation of H 2 O 2 and the relaxation of cell walls. THE NEW PHYTOLOGIST 2024; 241:732-746. [PMID: 37872751 DOI: 10.1111/nph.19349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
Callus formation is important for numerous biological processes in plants. Previously, we revealed that the PdeWRKY75-PdeRBOHB module positively regulates hydrogen peroxide (H2 O2 ) accumulation, thereby affecting callus formation in poplar. In this study, we identified and confirmed a transcription factor, PdeERF114, that interacts with PdeWRKY75 both in vitro and in vivo. Gene expression analysis identified both PdeRBOHB and PdeEXPB2 as downstream genes of PdeERF114 and PdeWRKY75. Overexpression (OE) and reduced-expression (RE) transgenic poplar lines for these four genes were generated, and the observation of callus formation was also performed in all plant materials. We demonstrated that PdeERF114 and PdeWRKY75 formed a protein complex and that this complex could bind W-Box motifs in the promoters of PdeRBOHB and PdeEXPB2, thereby positively regulating the expression of PdeRBOHB and PdeEXPB2. The OE/RE transgenic lines for these four genes also showed enhanced/reduced callus formation. Overall, we revealed a novel gene regulatory network for the regulation of callus formation in plants that involves four genes and regulates callus formation through two pathways: the accumulation of H2 O2 in explants and the relaxation of cell walls. In the future, the four genes could be used to enhance transformation effectiveness in genetic engineering.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Guanghua Cai
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keai Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanxi Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyu Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyu Ren
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Ding
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| |
Collapse
|
10
|
Feng M, Augstein F, Kareem A, Melnyk CW. Plant grafting: Molecular mechanisms and applications. MOLECULAR PLANT 2024; 17:75-91. [PMID: 38102831 DOI: 10.1016/j.molp.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
People have grafted plants since antiquity for propagation, to increase yields, and to improve stress tolerance. This cutting and joining of tissues activates an incredible regenerative ability as different plants fuse and grow as one. For over a hundred years, people have studied the scientific basis for how plants graft. Today, new techniques and a deepening knowledge of the molecular basis for graft formation have allowed a range of previously ungraftable combinations to emerge. Here, we review recent developments in our understanding of graft formation, including the attachment and vascular formation steps. We analyze why plants graft and how biotic and abiotic factors influence successful grafting. We also discuss the ability and inability of plants to graft, and how grafting has transformed both horticulture and fundamental plant science. As our knowledge about plant grafting improves, new combinations and techniques will emerge to allow an expanded use of grafting for horticultural applications and to address fundamental research questions.
Collapse
Affiliation(s)
- Ming Feng
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Frauke Augstein
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Abdul Kareem
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden.
| |
Collapse
|
11
|
Feng M, Zhang A, Nguyen V, Bisht A, Almqvist C, De Veylder L, Carlsbecker A, Melnyk CW. A conserved graft formation process in Norway spruce and Arabidopsis identifies the PAT gene family as central regulators of wound healing. NATURE PLANTS 2024; 10:53-65. [PMID: 38168607 PMCID: PMC10808061 DOI: 10.1038/s41477-023-01568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
The widespread use of plant grafting enables eudicots and gymnosperms to join with closely related species and grow as one. Gymnosperms have dominated forests for over 200 million years, and despite their economic and ecological relevance, we know little about how they graft. Here we developed a micrografting method in conifers using young tissues that allowed efficient grafting with closely related species and between distantly related genera. Conifer graft junctions rapidly connected vasculature and differentially expressed thousands of genes including auxin and cell-wall-related genes. By comparing these genes to those induced during Arabidopsis thaliana graft formation, we found a common activation of cambium, cell division, phloem and xylem-related genes. A gene regulatory network analysis in Norway spruce (Picea abies) predicted that PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) acted as a core regulator of graft healing. This gene was strongly up-regulated during both spruce and Arabidopsis grafting, and Arabidopsis mutants lacking PAT genes failed to attach tissues or successfully graft. Complementing Arabidopsis PAT mutants with the spruce PAT1 homolog rescued tissue attachment and enhanced callus formation. Together, our data show an ability for young tissues to graft with distantly related species and identifies the PAT gene family as conserved regulators of graft healing and tissue regeneration.
Collapse
Affiliation(s)
- Ming Feng
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ai Zhang
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Van Nguyen
- Department of Organismal Biology, Physiological Botany, Evolutionary Biology Centre and Linnean Centre for Plant Biology, Uppsala University, Uppsala, Sweden
| | - Anchal Bisht
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Curt Almqvist
- Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, Uppsala, Sweden
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Annelie Carlsbecker
- Department of Organismal Biology, Physiological Botany, Evolutionary Biology Centre and Linnean Centre for Plant Biology, Uppsala University, Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
12
|
Loupit G, Fonayet JV, Lorensen MDBB, Franc C, De Revel G, Janfelt C, Cookson SJ. Tissue-specific stilbene accumulation is an early response to wounding/grafting as revealed by using spatial and temporal metabolomics. PLANT, CELL & ENVIRONMENT 2023; 46:3871-3886. [PMID: 37646324 DOI: 10.1111/pce.14693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Grafting is widely used in horticulture. Shortly after grafting, callus tissues appear at the graft interface and the vascular tissues of the scion and rootstock connect. The graft interface contains a complex mix of tissues, we hypothesised that each tissue has its own metabolic response to wounding/grafting and accumulates different metabolites at different rates. We made intact and wounded cuttings and grafts of grapevine, and then measured changes in bulk flavonoid, phenolic acid and stilbenoid concentration and used metabolite imaging to study tissue-specific responses. We show that some metabolites rapidly accumulate in specific tissues after grafting, for example, stilbene monomers accumulate in necrotic tissues surrounding mature xylem vessels. Whereas other metabolites, such as complex stilbenes, accumulate in the same tissues at later stages. We also observe that other metabolites accumulate in the newly formed callus tissue and identify genotype-specific responses. In addition, exogenous resveratrol application did not modify grafting success rate, potentially suggesting that the accumulation of resveratrol at the graft interface is not linked to graft union formation. The increasing concentration of complex stilbenes often occurs in response to plant stresses (via unknown mechanisms), and potentially increases antioxidant activity and antifungal capacities.
Collapse
Affiliation(s)
- Grégoire Loupit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Josep V Fonayet
- Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, Villenave d'Ornon, France
- Bordeaux Metabolome Facility, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, France
| | - Marcus D B B Lorensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Céline Franc
- Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Gilles De Revel
- Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah J Cookson
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| |
Collapse
|
13
|
Frey C, Martínez-Romera N, Encina A, Acebes JL. Immunohistochemical dynamics of cell wall matrix polymers during tomato autograft healing. PLANT MOLECULAR BIOLOGY 2023; 113:353-365. [PMID: 37079121 PMCID: PMC10730687 DOI: 10.1007/s11103-023-01351-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
A large part of the production of tomato plants is grafted. Although it has recently been described that cell walls play an important role in tomato graft healing, the spatiotemporal dynamics of cell wall changes in this critical process remains largely unknown. The aim of this work was to immunolocalize changes in the major cell wall matrix components of autograft union tissues throughout the course of healing, from 1 to 20 days after grafting (DAG). Homogalacturonan was de novo synthetized and deposited in the cut edges, displaying the low methyl-esterified homogalacturonan a stronger labelling. Labelling of galactan side chains of rhamnogalacturonan increased until 8 DAG, although remarkably a set of cells at the graft union did not show labelling for this epitope. Changes in xylan immunolocalization were associated to the xylem vasculature development throughout, while those of xyloglucan revealed early synthesis at the cut edges. Arabinogalactan proteins increased up to 8 DAG and showed scion-rootstock asymmetry, with a higher extent in the scion. The combination of these changes appears to be related with the success of the autograft, specifically facilitating the adhesion phase between scion-rootstock tissues. This knowledge paves the way for improved grafting using methods that facilitate appropriate changes in the time and space dynamics of these cell wall compounds.
Collapse
Affiliation(s)
- Carlos Frey
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain
| | - Nerea Martínez-Romera
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain.
| | - José L Acebes
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain.
| |
Collapse
|
14
|
Yang L, Chen Y, Liu X, Zhang S, Han Q. Genome-wide identification and expression analysis of xyloglucan endotransglucosylase/hydrolase genes family in Salicaceae during grafting. BMC Genomics 2023; 24:676. [PMID: 37946112 PMCID: PMC10636897 DOI: 10.1186/s12864-023-09762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Poplar (Populus cathayana)and willow (Salix rehderiana) are important fast-growing trees in China. Grafting plays an important role in improving plant stress resistance and construction of ornamental plants. It is found that willow scions grafted onto poplar rootstocks can form ornamental plants. However, this grafted combination has a low survival rate. Many studies have reported that the xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in the healing process of grafts. RESULTS A total of 38 PtrXTHs and 32 SpuXTHs were identified in poplar and willow respectively, and were classified into three subfamilies. Tandem duplication was the main reason for the expansion of the PtrXTHs. Grafting treatment and Quantitative real time PCR (RT-qPCR) analysis revealed that five XTH genes differentially expressed between self-grafted and reciprocal grafted combinations. Specifically, the high expression levels of SrXTH16, SrXTH17, SrXTH25, PcXTH22 and PcXTH17 may contribute to the high survival rate of the grafted combination with willow scion and poplar rootstock. Subcellular localization identified that the SrXTH16, SrXTH17, SrXTH25, PcXTH17 and PcXTH22 proteins were located on the cell walls. Transcription factors (NAC, MYB and DOF) may regulate the five XTH genes. CONCLUSIONS This study provides a new understanding of the roles of PcXTH and SrXTH genes and their roles in grafting. Our results will give some hints to explore the molecular mechanisms of PcXTH and SrXTH genes involved in grafting in the future.
Collapse
Affiliation(s)
- Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xuejiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
| |
Collapse
|
15
|
Ding X, Miao C, Li R, He L, Zhang H, Jin H, Cui J, Wang H, Zhang Y, Lu P, Zou J, Yu J, Jiang Y, Zhou Q. Artificial Light for Improving Tomato Recovery Following Grafting: Transcriptome and Physiological Analyses. Int J Mol Sci 2023; 24:15928. [PMID: 37958910 PMCID: PMC10650788 DOI: 10.3390/ijms242115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Grafting is widely used to enhance the phenotypic traits of tomatoes, alleviate biotic and abiotic stresses, and control soil-borne diseases of the scion in greenhouse production. There are many factors that affect the healing and acclimatization stages of seedlings after grafting. However, the role of light has rarely been studied. In this study, we compared the effects of artificial light and traditional shading (under shaded plastic-covered tunnels) on the recovery of grafted tomato seedlings. The results show that the grafted tomato seedlings recovered using artificial light had a higher healthy index, leaf chlorophyll content, shoot dry weight, and net photosynthetic rate (Pn) and water use efficiency (WUE) compared with grafted seedling recovered using the traditional shading method. Transcriptome analysis showed that the differentially expressed genes (DEGs) of grafted seedlings restored using artificial light were mainly enriched in the pathways corresponding to plant hormone signal transduction. In addition, we measured the endogenous hormone content of grafted tomato seedlings. The results show that the contents of salicylic acid (SA) and kinetin (Kin) were significantly increased, and the contents of indoleacetic acid (IAA) and jasmonic acid (JA) were decreased in artificial-light-restored grafted tomato seedlings compared with those under shading treatments. Therefore, we suggest that artificial light affects the morphogenesis and photosynthetic efficiency of grafted tomato seedlings, and it can improve the performance of tomato seedlings during grafting recovery by regulating endogenous hormone levels.
Collapse
Affiliation(s)
- Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Chen Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Rongguang Li
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Lizhong He
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Hongmei Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Haijun Jin
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Jiawei Cui
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Hong Wang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Yongxue Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Panling Lu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Jun Zou
- College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Jizhu Yu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Yuping Jiang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Qiang Zhou
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| |
Collapse
|
16
|
Thomas HR, Gevorgyan A, Frank MH. Anatomical and biophysical basis for graft incompatibility within the Solanaceae. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4461-4470. [PMID: 37103969 PMCID: PMC10687351 DOI: 10.1093/jxb/erad155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/26/2023] [Indexed: 06/19/2023]
Abstract
Interspecies grafting is an economically relevant technique that allows beneficial shoot and root combinations from separate species to be combined. One hypothesis for the basis of graft compatibility revolves around taxonomic relatedness. To test how phylogenetic distance affects interspecific graft compatibility within the economically important Solanaceae subfamily, Solanoideae, we characterized the anatomical and biophysical integrity of graft junctions between four species: tomato (Solanum lycopersicum), eggplant (Solanum melongena), pepper (Capsicum annuum), and groundcherry (Physalis pubescens). We analyzed the survival, growth, integrity, and cellular composition of the graft junctions. Utilizing various techniques, we were able to quantitatively assess compatibility among the interspecific grafts. Even though most of our graft combinations could survive, we show that only intrageneric combinations between tomato and eggplant are compatible. Unlike incompatible grafts, the formation of substantial vascular reconnections between tomato and eggplant in the intrageneric heterografts likely contributed to biophysically stable grafts. Furthermore, we identified 10 graft combinations that show delayed incompatibility, providing a useful system to pursue deeper work into graft compatibility. This work provides new evidence that graft compatibility may be limited to intrageneric combinations within the Solanoideae subfamily. Further research amongst additional Solanaceous species can be used to test the extent to which our hypothesis applies to this family.
Collapse
Affiliation(s)
- Hannah R Thomas
- Cornell University, School of Integrative Plant Science, Ithaca, NY 14850, USA
| | - Alice Gevorgyan
- Cornell University, School of Integrative Plant Science, Ithaca, NY 14850, USA
| | - Margaret H Frank
- Cornell University, School of Integrative Plant Science, Ithaca, NY 14850, USA
| |
Collapse
|
17
|
Huang C, Kurotani KI, Tabata R, Mitsuda N, Sugita R, Tanoi K, Notaguchi M. Nicotiana benthamiana XYLEM CYSTEINE PROTEASE genes facilitate tracheary element formation in interfamily grafting. HORTICULTURE RESEARCH 2023; 10:uhad072. [PMID: 37303612 PMCID: PMC10251136 DOI: 10.1093/hr/uhad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/08/2023] [Indexed: 06/13/2023]
Abstract
Grafting is a plant propagation technique widely used in agriculture. A recent discovery of the capability of interfamily grafting in Nicotiana has expanded the potential combinations of grafting. In this study, we showed that xylem connection is essential for the achievement of interfamily grafting and investigated the molecular basis of xylem formation at the graft junction. Transcriptome and gene network analyses revealed gene modules for tracheary element (TE) formation during grafting that include genes associated with xylem cell differentiation and immune response. The reliability of the drawn network was validated by examining the role of the Nicotiana benthamiana XYLEM CYSTEINE PROTEASE (NbXCP) genes in TE formation during interfamily grafting. Promoter activities of NbXCP1 and NbXCP2 genes were found in differentiating TE cells in the stem and callus tissues at the graft junction. Analysis of a Nbxcp1;Nbxcp2 loss-of-function mutant indicated that NbXCPs control the timing of de novo TE formation at the graft junction. Moreover, grafts of the NbXCP1 overexpressor increased the scion growth rate as well as the fruit size. Thus, we identified gene modules for TE formation at the graft boundary and demonstrated potential ways to enhance Nicotiana interfamily grafting.
Collapse
Affiliation(s)
- Chaokun Huang
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryo Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Ryohei Sugita
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Radioisotope Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keitaro Tanoi
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|
18
|
Graham EM, Oliver JD, Hendrycks R, Maglic D, Mendenhall SD. Alternative Tendon Coaptations to the Pulvertaft Weave Technique: A Systematic Review and Meta-Analysis of Biomechanical Studies. Hand (N Y) 2023; 18:446-455. [PMID: 34528473 PMCID: PMC10152540 DOI: 10.1177/15589447211043213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Pulvertaft weave technique (PT) is frequently used during tendon repairs and transfers. However, this technique is associated with limitations. In this systematic review and meta-analysis, quantitative and qualitative analyses were performed on in vitro, biomechanical studies that compared the PT with alternative techniques. METHODS Articles included for qualitative and/or qualitative analysis were identified following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies included in the meta-analysis were analyzed either as continuous data with inverse variance and random effects or as dichotomous data using a Mantel-Haenszel analysis assuming random effects to calculate an odds ratio. RESULTS A comprehensive electronic search yielded 8 studies meeting inclusion criteria for meta-analysis. Two studies with a total of 65 tendon coaptations demonstrated no significant difference in strength between the PT and traditional side-to-side (STS) techniques (P = .92). Two studies with a total of 43 tendon coaptations showed that the STS with 1 weave has a higher yield strength than the PT (P = .03). Two studies with a total of 62 tendon repairs demonstrated no significant difference in strength between the PT and the step-cut (SC) techniques (P = .70). The final 2 studies included 46 tendon repairs and demonstrated that the wrap around (WA) technique has a higher yield strength than the PT (P < .001). CONCLUSIONS The STS, SC, and WA techniques are preferred for improving tendon form. The STS and WA techniques have superior yield strengths than the PT, and the SC technique withstands similar stress to failure as the PT.
Collapse
Affiliation(s)
- Emily M. Graham
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jeremie D. Oliver
- Department of Biomedical Engineering, University of Utah, Salt Lake
City, UT, USA
| | | | - Dino Maglic
- Division of Plastic Surgery, Department of Surgery, University of Utah
School of Medicine, Salt Lake City, UT, USA
| | - Shaun D. Mendenhall
- Division of Plastic Surgery, Department of Surgery, University of Utah
School of Medicine, Salt Lake City, UT, USA
- Division of Plastic and Reconstructive Surgery, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Kaseb MO, Umer MJ, Lu X, He N, Anees M, El-Remaly E, Yousef AF, Salama EAA, Kalaji HM, Liu W. Comparative physiological and biochemical mechanisms in diploid, triploid, and tetraploid watermelon (Citrullus lanatus L.) grafted by branches. Sci Rep 2023; 13:4993. [PMID: 36973331 PMCID: PMC10043263 DOI: 10.1038/s41598-023-32225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Seed production for polyploid watermelons is costly, complex, and labor-intensive. Tetraploid and triploid plants produce fewer seeds/fruit, and triploid embryos have a harder seed coat and are generally weaker than diploid seeds. In this study, we propagated tetraploid and triploid watermelons by grafting cuttings onto gourd rootstock (C. maxima × C. mochata). We used three different scions: the apical meristem (AM), one-node (1N), and two-node (2N) branches of diploid, triploid, and tetraploid watermelon plants. We then evaluated the effects of grafting on plant survival, some biochemical traits, oxidants, antioxidants, and hormone levels at different time points. We found significant differences between the polyploid watermelons when the 1N was used as a scion. Tetraploid watermelons had the highest survival rates and the highest levels of hormones, carbohydrates, and antioxidant activity compared to diploid watermelons, which may explain the high compatibility of tetraploid watermelons and the deterioration of the graft zone in diploid watermelons. Our results show that hormone production and enzyme activity with high carbohydrate content, particularly in the 2-3 days after transplantation, contribute to a high survival rate. Sugar application resulted in increased carbohydrate accumulation in the grafted combination. This study also presents an alternative and cost-effective approach to producing more tetraploid and triploid watermelon plants for breeding and seed production by using branches as sprouts.
Collapse
Affiliation(s)
- Mohamed Omar Kaseb
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China.
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza, 12611, Egypt.
| | - Muhammad Jawad Umer
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
| | - Muhammad Anees
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
| | - Eman El-Remaly
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza, 12611, Egypt
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, 71524, Egypt
| | - Ehab A A Salama
- Agricultural Botany Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, TNAU, Coimbatore, 641003, India
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China.
| |
Collapse
|
20
|
Kuzin A, Solovchenko A, Khort D, Filippov R, Lukanin V, Lukina N, Astashev M, Konchekov E. Effects of Plasma-Activated Water on Leaf and Fruit Biochemical Composition and Scion Growth in Apple. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020385. [PMID: 36679098 PMCID: PMC9865715 DOI: 10.3390/plants12020385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 05/13/2023]
Abstract
The application of plasma-activated water (PAW) in agriculture has gained the attention of researchers and practitioners. In particular, treatment with PAW is a promising method for increasing scion and rootstock survival as well as augmenting the mineral nutrition applicable to tree fruit crops. However, the applications of PAW are hampered by the lack of information about the effects of PAW on apple tree condition and yield. The increase in survival rate by PAW is believed to stem from the general stimulation of physiological processes in the plant tissue. To assess the actual effect of the PAW treatments, one needs to consider an important indicator of young tree quality such as their vegetative growth. We conducted field experiments to study the possibility of use of PAW for increase in primary nutrient contents in fruits and leaves in an orchard, as well as to assess the scion survival rate and vegetative growth of young grafts in a nursery. The application of PAW influenced the fruitset, yield, leaf nitrogen (N) and potassium (K), fruit phosphorus (P), calcium (Ca) ascorbic acid (AA) and titratable acidity (TA). Treatment with PAW did not significantly reduce the negative impact of the rootstock thickness on the survival rate of bench grafts and their subsequent development. At the same time, scion survival tended to increase in the case when the scions and the rootstocks were of compatible thickness. Further studies of the PAW treatment effects are needed to better understand its applicability in diverse fields of horticulture.
Collapse
Affiliation(s)
- Andrei Kuzin
- Michurin Federal Scientific Center, 393766 Michurinsk, Russia
- Fruit and Vegetable Growing Department, Michurinsk State Agrarian University, 393766 Michurinsk, Russia
- Correspondence:
| | - Alexei Solovchenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia
| | - Dmitry Khort
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia
| | | | - Vladimir Lukanin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalya Lukina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Evgeny Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
21
|
Tejada-Alvarado JJ, Meléndez-Mori JB, Vilca-Valqui NC, Neri JC, Ayala-Tocto RY, Huaman-Huaman E, Gill ERA, Oliva M, Goñas M. Impact of wild solanaceae rootstocks on morphological and physiological response, yield, and fruit quality of tomato (S olanum lycopersicum L.) grown under deficit irrigation conditions. Heliyon 2022; 9:e12755. [PMID: 36685469 PMCID: PMC9849928 DOI: 10.1016/j.heliyon.2022.e12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
It has been established that climate change has a direct impact on water availability, an essential resource for agricultural development. As a result, controlling, mitigating, and adapting to water deficit requires the advancement of research on promising wild flora species. As recent studies have shown, wild relatives of certain cultivars are tolerant to adverse factors, enabling the development of sustainable and resilient agriculture. The present study evaluated the morpho-physiology and productivity of tomato scions grafted on wild Solanaceae (Datura stramonium, Solanum sisymbriifolium, Solanum quitoense, and Cyphomandra betacea) grown under water deficit conditions (100% ETc - high level, 75% ETc - moderate level, 50% ETc - medium level, and 25% ETc - low level). The results showed that tomato plants grafted on Datura stramonium rootstocks performed better morpho-physiologically under deficit irrigation. The improved osmoregulation caused by a higher relative water content (98.49%) allowed the scion to be more tolerant to water stress. In addition, these scions showed high water potential during their phenological stages (vegetative -0.47 MPa, flowering -0.59 MPa, and production -0.64 MPa), as well as improved photosynthetic efficiency. The overall tolerance of the scion resulted in better yield (8.14 kg/plant) with higher number of commercially valuable fruits. The D. stramonium rootstock allowed better management and use of irrigation water, increasing productivity (54.95 kg/m3); that is, it is presented as a species with potential for establishing tomato production areas in scenarios of water scarcity or cultivation under deficit irrigation.
Collapse
Affiliation(s)
- José Jesús Tejada-Alvarado
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
| | - Jegnes Benjamín Meléndez-Mori
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru,Corresponding author.
| | - Nuri Carito Vilca-Valqui
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
| | - Juan C. Neri
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
| | - Rosmery Y. Ayala-Tocto
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
| | - Eyner Huaman-Huaman
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
| | - Elizabeth Renee Ambler Gill
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru,College of Life Sciences and Agriculture COLSA, University of New Hampshire, Durham, NH, United States
| | - Manuel Oliva
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
| | - Malluri Goñas
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas 01001, Peru
| |
Collapse
|
22
|
Tzeela P, Yechezkel S, Serero O, Eliyahu A, Sherf S, Manni Y, Doron-Faigenboim A, Carmelli-Weissberg M, Shaya F, Dwivedi V, Sadot E. Comparing adventitious root-formation and graft-unification abilities in clones of Argania spinosa. FRONTIERS IN PLANT SCIENCE 2022; 13:1002703. [PMID: 36452103 PMCID: PMC9702570 DOI: 10.3389/fpls.2022.1002703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Argania spinosa trees have attracted attention in recent years due to their high resistance to extreme climate conditions. Initial domestication activities practiced in Morocco. Here we report on selection and vegetative propagation of A. spinosa trees grown in Israel. Trees yielding relatively high amounts of fruit were propagated by rooting of stem cuttings. High variability in rooting ability was found among the 30 clones selected. In-depth comparison of a difficult-to-root (ARS7) and easy-to-root (ARS1) clone revealed that the rooted cuttings of ARS7 have a lower survival rate than those of ARS1. In addition, histological analysis of the adventitious root primordia showed many abnormal fused primordia in ARS7. Hormone profiling revealed that while ARS1 accumulates more cytokinin, ARS7 accumulates more auxin, suggesting different auxin-to-cytokinin ratios underlying the different rooting capabilities. The hypothesized relationship between rooting and grafting abilities was addressed. Reciprocal grafting was performed with ARS1/ARS7 but no significant differences in the success of graft unification between the trees was detected. Accordingly, comparative RNA sequencing of the rooting and grafting zones showed more differentially expressed genes related to rooting than to grafting between the two trees. Clustering, KEGG and Venn analyses confirmed enrichment of genes related to auxin metabolism, transport and signaling, cytokinin metabolism and signaling, cell wall modification and cell division in both regions. In addition, the differential expression of some key genes in ARS1 vs. ARS7 rooting zones was revealed. Taken together, while both adventitious root-formation and graft-unification processes share response to wounding, cell reprogramming, cell division, cell differentiation and reconnection of the vasculature, there are similar, but also many different genes regulating the two processes. Therefore an individual genotype can have low rooting capacity but good graft-unification ability.
Collapse
Affiliation(s)
- Pann Tzeela
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sela Yechezkel
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
| | - Ori Serero
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avi Eliyahu
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sara Sherf
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
| | - Yair Manni
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
| | - Mira Carmelli-Weissberg
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
| | - Felix Shaya
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
| | - Vikas Dwivedi
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
| | - Einat Sadot
- The Institute of Plant Sciences, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
23
|
Migicovsky Z, Quigley MY, Mullins J, Ali T, Swift JF, Agasaveeran AR, Dougherty JD, Grant BM, Korkmaz I, Malpeddi MR, McNichol EL, Sharp AW, Harris JL, Hopkins DR, Jordan LM, Kwasniewski MT, Striegler RK, Dowtin AL, Stotts S, Cousins P, Chitwood DH. X-ray imaging of 30 year old wine grape wood reveals cumulative impacts of rootstocks on scion secondary growth and Ravaz index. HORTICULTURE RESEARCH 2022; 10:uhac226. [PMID: 36643757 PMCID: PMC9832875 DOI: 10.1093/hr/uhac226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Annual rings from 30 year old vines in a California rootstock trial were measured to determine the effects of 15 different rootstocks on Chardonnay and Cabernet Sauvignon scions. Viticultural traits measuring vegetative growth, yield, berry quality, and nutrient uptake were collected at the beginning (1995 to 1999) and end (2017 to 2020) of the lifetime of a vineyard initially planted in 1991 and removed in 2021. X-ray Computed Tomography (CT) was used to measure ring widths in 103 vines. Ring width was modeled as a function of ring number using a negative exponential model. Early and late wood ring widths, cambium width, and scion trunk radius were correlated with 27 traits. Modeling of annual ring width shows that scions alter the width of the first rings but that rootstocks alter the decay of later rings, consistently shortening ring width throughout the lifetime of the vine. Ravaz index, juice pH, photosynthetic assimilation and transpiration rates, and instantaneous water use efficiency are correlated with scion trunk radius. Ultimately, our research indicates that rootstocks modulate secondary growth over years, altering physiology and agronomic traits. Rootstocks act in similar but distinct ways from climate to modulate ring width, which borrowing techniques from dendrochronology, can be used to monitor both genetic and environmental effects in woody perennial crop species.
Collapse
Affiliation(s)
| | - Michelle Y Quigley
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
| | - Joey Mullins
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
| | - Tahira Ali
- College of Natural Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Neuroscience, Michigan State University, East Lansing, MI, 48823, USA
| | - Joel F Swift
- Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA
| | - Anita Rose Agasaveeran
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48823, USA
| | - Joseph D Dougherty
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48823, USA
- College of Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Brendan Michael Grant
- College of Social Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Economics, Michigan State University, East Lansing, MI, 48823, USA
| | - Ilayda Korkmaz
- College of Natural Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Maneesh Reddy Malpeddi
- College of Social Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Economics, Michigan State University, East Lansing, MI, 48823, USA
| | - Emily L McNichol
- College of Engineering, Michigan State University, East Lansing, MI, 48823, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Andrew W Sharp
- College of Arts and Letters, Michigan State University, East Lansing, MI, 48823, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | | | | | - Lindsay M Jordan
- E. & J. Gallo Winery, Acampo, CA, 95220, USA
- Current affiliation: Constellation Brands, Soledad, CA, 93960, USA
| | - Misha T Kwasniewski
- Department of Food Science, The Pennsylvania State University, State College, PA, 16803, USA
| | | | - Asia L Dowtin
- Department of Forestry, Michigan State University, East Lansing, MI, 48823, USA
| | - Stephanie Stotts
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | | | | |
Collapse
|
24
|
Battiston E, Falsini S, Giovannelli A, Schiff S, Tani C, Panaiia R, Papini A, Di Marco S, Mugnai L. Xylem anatomy and hydraulic traits in Vitis grafted cuttings in view of their impact on the young grapevine decline. FRONTIERS IN PLANT SCIENCE 2022; 13:1006835. [PMID: 36275539 PMCID: PMC9581319 DOI: 10.3389/fpls.2022.1006835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Grapevine grafting is an essential practice in viticulture and over the years, various bench grafting techniques have been developed to mechanize the nursery process and to increase the yield in number of viable cuttings. Bench grafting is a fundamental nursery practice that can potentially affect the quality of propagation material also in young decline associated to grapevine trunk diseases and has been recently reported to influence leaf symptoms development associated with diseases of Esca complex. The study aimed to investigate how three bench grafting methods [i.e., (i) Omega graft as mechanical technique, (ii) Whip and Tongue graft as manual technique and (iii) Full Cleft graft as semi-mechanical technique] can influence these phenomena. Specifically, the different methods were compared for their effect on the anatomical development of the grafting point and the functionality of the xylem, also considering two factors: the grapevine cultivar (Cabernet Sauvignon, Glera and Teroldego) and the scion/rootstock diameter (thin and large). Observations by light microscopy on the anatomical evolution and measurements on the xylem morphology and hydraulic traits were correlated with the grafting methods and the investigated varieties. The anatomical observations revealed that the mechanical (Omega) and semi-mechanical (Full Cleft) grafting methods have a faster callusing response while the manual technique (Whip and Tongue) has a slower but greater vascularization of the differentiated callus. Significant differences between cultivars and/or grafting types were also detected in necrotic area on the grafted tissues. Statistical analysis of the grapevine vessels suggested differences in xylem parameters between cultivars, while grafting type had no significant effects. On the other hand, the grafting type significantly affected the intrinsic growth rate. The study confirms the potential incidence of lesions and dysfunctionalities correlated with the grafting method applied, which can potentially induce grafted vine declines in vineyards due to the necrotic area detected on the grafted tissues.
Collapse
Affiliation(s)
- Enrico Battiston
- Sezione Patologia Vegetale ed Entomologia, Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Florence, Italy
| | - Sara Falsini
- Laboratorio di Biomorfologie, Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Alessio Giovannelli
- Istituto di Ricerca Sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
| | - Silvia Schiff
- Laboratorio di Biomorfologie, Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Corrado Tani
- Laboratorio di Biomorfologie, Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Roberta Panaiia
- Laboratorio di Biomorfologie, Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Alessio Papini
- Laboratorio di Biomorfologie, Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Stefano Di Marco
- Istituto per la Bioeconomia, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Laura Mugnai
- Sezione Patologia Vegetale ed Entomologia, Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
25
|
Yang Y, Mei J, Chen J, Yang Y, Gu Y, Tang X, Lu H, Yang K, Sharma A, Wang X, Yan D, Wu R, Zheng B, Yuan H. Expression analysis of PIN family genes in Chinese hickory reveals their potential roles during grafting and salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:999990. [PMID: 36247577 PMCID: PMC9557188 DOI: 10.3389/fpls.2022.999990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Grafting is an effective way to improve Chinese hickory while salt stress has caused great damage to the Chinese hickory industry. Grafting and salt stress have been regarded as the main abiotic stress types for Chinese hickory. However, how Chinese hickory responds to grafting and salt stress is less studied. Auxin has been proved to play an essential role in the stress response through its re-distribution regulation mediated by polar auxin transporters, including PIN-formed (PIN) proteins. In this study, the PIN gene family in Chinese hickory (CcPINs) was identified and structurally characterized for the first time. The expression profiles of the genes in response to grafting and salt stress were determined. A total of 11 CcPINs with the open reading frames (ORFs) of 1,026-1,983 bp were identified. Transient transformation in tobacco leaves demonstrated that CcPIN1a, CcPIN3, and CcPIN4 were localized in the plasma membrane. There were varying phylogenetic relationships between CcPINs and homologous genes in different species, but the closest relationships were with those in Carya illinoinensis and Juglans regia. Conserved N- and C-terminal transmembrane regions as well as sites controlling the functions of CcPINs were detected in CcPINs. Five types of cis-acting elements, including hormone- and stress-responsive elements, were detected on the promoters of CcPINs. CcPINs exhibited different expression profiles in different tissues, indicating their varied roles during growth and development. The 11 CcPINs responded differently to grafting and salt stress treatment. CcPIN1a might be involved in the regulation of the grafting process, while CcPIN1a and CcPIN8a were related to the regulation of salt stress in Chinese hickory. Our results will lay the foundation for understanding the potential regulatory functions of CcPIN genes during grafting and under salt stress treatment in Chinese hickory.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Jiaqi Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Juanjuan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Yujie Gu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Huijie Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Kangbiao Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Rongling Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
26
|
Wu H, Deng Z, Wang X, Liang D. The emergence of spiraling tracheary element bundles in incompatible grafts. PeerJ 2022; 10:e14020. [PMID: 36124132 PMCID: PMC9482358 DOI: 10.7717/peerj.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
In distantly-related plant grafting, incompatibility often occurs between scion and rootstock, resulting in growth stagnation, and eventually graft failure. In this study, we found that an emergent structure, or the spiraling tracheary element (TE) bundles consisting of TE masses occurring at the graft interface, was extensively present in the highly incompatible interfamilial graft of Brassica napus/Portulaca oleracea (Bn/Po) and Nicotiana benthamiana/Portulaca oleracea (Nb/Po). This special structure mostly appeared in the local area near the grafting union, and the frequency and quantity of the spiraling tracheary element bundles were much higher in the scion than in the rootstock. Nevertheless, only a small portion of Arabidopsis thaliana/Portulaca oleracea (At/Po) interfamilial grafts showed a less spiraled TEs at the grafting union (usually a circular TE), which is consistent with its growth performance. This study consolidated that spiraling TE bundles were an important indicator for graft incompatibility. The possible reason for the formation of spiraling TE bundles in interfamilial grafts was discussed.
Collapse
|
27
|
Fuentes-Merlos MI, Bamba M, Sato S, Higashitani A. Comparative Transcriptome Analysis of Grafted Tomato with Drought Tolerance. PLANTS 2022; 11:plants11151947. [PMID: 35893651 PMCID: PMC9332811 DOI: 10.3390/plants11151947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Grafting is a method used in agriculture to improve crop production and tolerance to biotic and abiotic stress. This technique is widely used in tomato, Solanum lycopersicum L.; however, the effects of grafting on changes in gene expression associated with stress tolerance in shoot apical meristem cells are still under-discovered. To clarify the effect of grafting, we performed a transcriptomic analysis between non-grafted and grafted tomatoes using the tomato variety Momotaro-scion and rootstock varieties, TD1, GS, and GF. Drought tolerance was significantly improved not only by a combination of compatible resistant rootstock TD1 but also by self-grafted compared to non-grafted lines. Next, we found the differences in gene expression between grafted and non-grafted plants before and during drought stress treatment. These altered genes are involved in the regulation of plant hormones, stress response, and cell proliferation. Furthermore, when comparing compatible (Momo/TD1 and Momo/Momo) and incompatible (Momo/GF) grafted lines, the incompatible line reduced gene expression associated with phytohormones but increased in wounding and starvation stress-response genes. These results conclude that grafting generates drought stress tolerance through several gene expression changes in the apical meristem.
Collapse
Affiliation(s)
| | | | | | - Atsushi Higashitani
- Correspondence: (M.I.F.-M.); (A.H.); Tel.: +81-22-217-5715 (A.H.); Fax: +81-22-217-5691 (A.H.)
| |
Collapse
|
28
|
Liu X, Wu H, Zeng Y, Deng Z, Wang X, Liang D. The dynamic changes of tracheary elements in an intraspecific quinoa (Chenopodium quinoa) graft. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153691. [PMID: 35483247 DOI: 10.1016/j.jplph.2022.153691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Vascular connection is key to successful graft. Little study has been devoted to the behavior of tracheary elements (TEs), the basic component of vascular bundles, during vascular connection between scion and rootstock. Here we report the structural changes of TEs at the graft interface between two quinoa cultivars, Qaidam White-1 (QW1) and Qaidam Red-1 (QR1). Our results showed that TEs in ungrafted plants developed following an ontogenetic sequence, i.e., the annular vessel, helical vessel, scalariform vessel, reticulate vessel, and pitted vessel. However, this process was greatly accelerated in grafted plants, resulting in quick developmental transition of TE wall patterning. At the early stage of intraspecific grafting (e.g., 5 days after grafting), the membrane-like cellular patches were heavily accumulated at the graft interface but quickly retreated within 2-4 days, suggesting an early emergency response to grafting. The TE length in both scion and rootstock was significantly shorter (more than 50% on average, nTE = 747) than the ungrafted plants in the same period. These short TEs were gradually integrated into a long, continuous conduit, thereby enabling the functional vasculature at the graft union. In addition, the pit size was gradually reduced, for example, for the surface area of outer pit aperture, from 12.73 ± 3.15 to 5.40 ± 0.30 μm2, or for the surface area of inner pit aperture, from 9.34 ± 3.33 to 1.96 ± 1.04 μm2, in 18 days (npits = 2830). Taken together, the morphological changes of TEs and cellular responses to grafting in the intraspecific grafts seemed to be conservative to other homografts and heterografts, implying that these behavioral changes are highly adaptive to the scion-rootstock interaction.
Collapse
Affiliation(s)
- Xiaofang Liu
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Huiyan Wu
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Yu Zeng
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Zhuying Deng
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Xue Wang
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Dacheng Liang
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| |
Collapse
|
29
|
Lambolez A, Kawamura A, Takahashi T, Rymen B, Iwase A, Favero DS, Ikeuchi M, Suzuki T, Cortijo S, Jaeger KE, Wigge PA, Sugimoto K. Warm Temperature Promotes Shoot Regeneration in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2022; 63:618-634. [PMID: 35157760 DOI: 10.1093/pcp/pcac017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Many plants are able to regenerate upon cutting, and this process can be enhanced in vitro by incubating explants on hormone-supplemented media. While such protocols have been used for decades, little is known about the molecular details of how incubation conditions influence their efficiency. In this study, we find that warm temperature promotes both callus formation and shoot regeneration in Arabidopsis thaliana. We show that such an increase in shoot regenerative capacity at higher temperatures correlates with the enhanced expression of several regeneration-associated genes, such as CUP-SHAPED COTYLEDON 1 (CUC1) encoding a transcription factor involved in shoot meristem formation and YUCCAs (YUCs) encoding auxin biosynthesis enzymes. ChIP-sequencing analyses further reveal that histone variant H2A.Z is enriched on these loci at 17°C, while its occupancy is reduced by an increase in ambient temperature to 27°C. Moreover, we provide genetic evidence to demonstrate that H2A.Z acts as a repressor of de novo shoot organogenesis since H2A.Z-depleted mutants display enhanced shoot regeneration. This study thus uncovers a new chromatin-based mechanism that influences hormone-induced regeneration and additionally highlights incubation temperature as a key parameter for optimizing in vitro tissue culture.
Collapse
Affiliation(s)
- Alice Lambolez
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyō-ku, Tōkyō 113-8654, Japan
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tatsuya Takahashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Bart Rymen
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg 67084, France
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - David S Favero
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Momoko Ikeuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Niigata 950-2181, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Sandra Cortijo
- UMR5004 Biochimie et Physiologie Moléculaire des Plantes, Université de Montpellier, CNRS, INRAE, Institut Agro, 2 place Pierre Viala, Montpellier 34060, France
| | - Katja E Jaeger
- Leibniz-Institut für Gemüse- und Zierpflanzenbau (IGZ) e.V., Theodor-Echtermeyer-Weg 1, Großbeeren 14979, Germany
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau (IGZ) e.V., Theodor-Echtermeyer-Weg 1, Großbeeren 14979, Germany
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyō-ku, Tōkyō 113-8654, Japan
| |
Collapse
|
30
|
Kaseb MO, Umer MJ, Anees M, Zhu H, Zhao S, Lu X, He N, El-Remaly E, El-Eslamboly A, Yousef AF, Salama EAA, Alrefaei AF, Kalaji HM, Liu W. Transcriptome Profiling to Dissect the Role of Genome Duplication on Graft Compatibility Mechanisms in Watermelon. BIOLOGY 2022; 11:575. [PMID: 35453774 PMCID: PMC9029962 DOI: 10.3390/biology11040575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Watermelon (Citrullus lanatus) is a popular crop worldwide. Compared to diploid seeded watermelon, triploid seedless watermelon cultivars are in great demand. Grafting in triploid and tetraploid watermelon produces few seedlings. To learn more about how genome duplication affects graft compatibility, we compared the transcriptomes of tetraploid and diploid watermelons grafted on squash rootstock using a splicing technique. WGCNA was used to compare the expression of differentially expressed genes (DEGs) between diploid and tetraploid watermelon grafted seedlings at 0, 3, and 15 days after grafting (DAG). Only four gene networks/modules correlated significantly with phenotypic characteristics. We found 11 genes implicated in hormone, AOX, and starch metabolism in these modules based on intramodular significance and RT-qPCR. Among these genes, two were linked with IAA (r2 = 0.81), one with ZR (r2 = 0.85) and one with POD (r2 = 0.74). In the MElightsteelblue1 module, Cla97C11G224830 gene was linked with CAT (r2 = 0.81). Two genes from the MEivory module, Cla97C07G139710 and Cla97C04G077300, were highly linked with SOD (r2 = 0.72). Cla97C01G023850 and Cla97C01G006680 from the MEdarkolivegreen module were associated with sugars and starch (r2 = 0.87). Tetraploid grafted seedlings had higher survival rates and hormone, AOX, sugar, and starch levels than diploids. We believe that compatibility is a complicated issue that requires further molecular research. We found that genome duplication dramatically altered gene expression in the grafted plants' IAA and ZR signal transduction pathways and AOX biosynthesis pathways, regulating hormone levels and improving plant survival.
Collapse
Affiliation(s)
- Mohamed Omar Kaseb
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza 12119, Egypt; (E.E.-R.); (A.E.-E.)
| | - Muhammad Jawad Umer
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Anees
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Eman El-Remaly
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza 12119, Egypt; (E.E.-R.); (A.E.-E.)
| | - Ahmed El-Eslamboly
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza 12119, Egypt; (E.E.-R.); (A.E.-E.)
| | - Ahmed F. Yousef
- Department of Horticulture, College of Agriculture, Al-Azhar University (Branch Assiut), Assiut 71524, Egypt;
| | - Ehab A. A. Salama
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 1145, Saudi Arabia;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 02-787 Warsaw, Poland;
- Institute of Technology and Life Sciences–National Research Institute (ITP), 05-090 Raszyn, Poland
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| |
Collapse
|
31
|
Zhang A, Matsuoka K, Kareem A, Robert M, Roszak P, Blob B, Bisht A, De Veylder L, Voiniciuc C, Asahina M, Melnyk CW. Cell-wall damage activates DOF transcription factors to promote wound healing and tissue regeneration in Arabidopsis thaliana. Curr Biol 2022; 32:1883-1894.e7. [DOI: 10.1016/j.cub.2022.02.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/16/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
|
32
|
Ji P, Liang C, Yang Y, Wang R, Wang Y, Yuan M, Qiu Z, Cheng Y, Liu J, Li D. Comparisons of Anatomical Characteristics and Transcriptomic Differences between Heterografts and Homografts in Pyrus L. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050580. [PMID: 35270050 PMCID: PMC8912356 DOI: 10.3390/plants11050580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/06/2023]
Abstract
Pear (Pyrus L.) is an important temperate fruit worldwide, and grafting is widely used in pear vegetative propagation. However, the mechanisms of graft healing or incompatibility remain poorly understood in Pyrus. To study the differences in graft healing in Pyrus, the homograft "Qingzhen D1/Qingzhen D1" and the heterograft "QAUP-1/Qingzhen D1" as compatibility and incompatibility combinations were compared. Anatomical differences indicated the healing process was faster in homografts than in heterografts. During the healing process, four critical stages in graft union formation were identified in the two types of grafts. The expression of the genes associated with hormone signaling (auxin and cytokinins), and lignin biosynthesis was delayed in the healing process of heterografts. In addition, the PbBglu13 gene, encoded β-glucosidase, was more highly up-regulated in heterografts than in homografts to promote healing. Meanwhile, the most of DEGs related starch and sucrose metabolism were found to be up-regulated in heterografts; those results indicated that cellulose and sugar signals were also involved in graft healing. The results of this study improved the understanding of the differences in the mechanisms of graft healing between homografts and heterografts.
Collapse
Affiliation(s)
- Piyu Ji
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Chenglin Liang
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China;
| | - Yingjie Yang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Ran Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Yue Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Meitong Yuan
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Zhiyun Qiu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Yuanyuan Cheng
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Jianlong Liu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Dingli Li
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| |
Collapse
|
33
|
Habibi F, Liu T, Folta K, Sarkhosh A. Physiological, biochemical, and molecular aspects of grafting in fruit trees. HORTICULTURE RESEARCH 2022; 9:uhac032. [PMID: 35184166 PMCID: PMC8976691 DOI: 10.1093/hr/uhac032] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 05/27/2023]
Abstract
Grafting is a widely used practice for asexual propagation of fruit trees. Many physiological, biochemical, and molecular changes occur upon grafting that can influence important horticultural traits. This technology has many advantages, including avoidance of juvenility, modifying the scion architecture, improving productivity, adapting scion cultivars to unfavourable environmental conditions, and developing traits in resistance to insect pests, bacterial and fungal diseases. A limitation of grafting is scion-rootstock incompatibility. It may be caused by many factors, including insufficient genetic proximity, physiological or biochemical factors, lignification at the graft union, poor graft architecture, insufficient cell recognition between union tissues, and metabolic differences in the scion and the rootstock. Plant hormones, like auxin, ethylene (ET), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), and jasmonic acid (JA) orchestrate several crucial physiological and biochemical processes happening at the site of the graft union. Additionally, epigenetic changes at the union affect chromatin architecture by DNA methylation, histone modification, and the action of small RNA molecules. The mechanism triggering these effects likely is affected by hormonal crosstalk, protein and small molecules movement, nutrients uptake, and transport in the grafted trees. This review provides an overview of the basis of physiological, biochemical, and molecular aspects of fruit tree grafting between scion and rootstock.
Collapse
Affiliation(s)
- Fariborz Habibi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Tie Liu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Kevin Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
34
|
Amsbury S. Making a connection: cell-cell communication at the graft interface. PLANT PHYSIOLOGY 2022; 188:19-21. [PMID: 35051287 PMCID: PMC8774714 DOI: 10.1093/plphys/kiab516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
|
35
|
Kurotani KI, Huang C, Okayasu K, Suzuki T, Ichihashi Y, Shirasu K, Higashiyama T, Niwa M, Notaguchi M. Interfamily grafting capacity of petunia. HORTICULTURE RESEARCH 2022; 9:uhab056. [PMID: 35048114 PMCID: PMC8969063 DOI: 10.1093/hr/uhab056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
In grafting, an agricultural technique for propagating flower species and fruit trees, two plants are combined to exploit their beneficial characteristics, such as rootstock disease tolerance and vigor. Grafting incompatibility has been observed, however, between distantly related plant combinations, which limits the availability of plant resources. A high grafting capacity has been found in Nicotiana, belonging to Solanaceae, but not in Ipomoea nil, a Convolvulaceae species. Here, we found that Petunia hybrida, another solanaceous species, has similar ability of interfamily grafting, which indicates that interfamily grafting capability in Solanaceae is not limited to the genus Nicotiana. RNA sequencing-based comparative time-series transcriptomic analyses of Nicotiana benthamiana, I. nil, and P. hybrida revealed that N. benthamiana and P. hybrida share a common gene expression pattern, with continued elevated expression of the β-1,4-glucanase subclade gene GH9B3 observed after interfamily grafting. During self-grafting, GH9B3 expression in each species was similarly elevated, thus suggesting that solanaceous plants have altered regulatory mechanisms for GH9B3 gene expression that allow tissue fusion even with other species. Finally, we tested the effect of the β-1,4-glucanase inhibitor D-glucono-1,5-lactone, using glucose as a control, on the interfamily grafting usability of P. hybrida with Arabidopsis rootstock. Strong inhibition of graft establishment was observed only with D-glucono-1,5-lactone, thus suggesting the important role of GH9B3 in P. hybrida grafting. The newly discovered grafting compatibility of Petunia with different families enhances the propagation techniques and the production of flower plants.
Collapse
Affiliation(s)
- Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Chaokun Huang
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Koji Okayasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai 487-8501, Japan
| | - Yasunori Ichihashi
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Science, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masaki Niwa
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- GRA&GREEN Inc., Incubation Facility, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- GRA&GREEN Inc., Incubation Facility, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
36
|
He W, Xie R, Wang Y, Chen Q, Wang H, Yang S, Luo Y, Zhang Y, Tang H, Gmitter FG, Wang X. Comparative transcriptomic analysis on compatible/incompatible grafts in citrus. HORTICULTURE RESEARCH 2022; 9:uhab072. [PMID: 35043167 PMCID: PMC8931943 DOI: 10.1093/hr/uhab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Grafting is a useful cultivation technology to resist abiotic and biotic stresses and is an integral part of citrus production. However, some widely utilized rootstocks may still exhibit graft incompatibility in the orchard. "Hongmian miyou" (Citrus maxima (Burm.) Merrill) is mutated from "Guanxi miyou", but these two scions showed different compatibility with available Poncirus trifoliata rootstock. Foliage etiolation is an observed symptom of graft incompatibility, but its mechanism remains poorly understood. This study is the first to investigate the morphological, physiological, and anatomical differences between the compatible/incompatible grafts, and perform transcriptome profiling at crucial stages of the foliage etiolation process. Based on the comprehensive analyses, hormonal balance was disordered, and two rate-limiting genes, NCED3 (9-cis-epoxycarotenoid dioxygenases 3) and NCED5, being responsible for ABA (abscisic acid) accumulation, were highlighted. Further correlation analysis indicated that IAA (indole-3-acetic acid) and ABA were the most likely inducers of the expression of stresses-related genes. In addition, excessive starch accumulation was observed in lamina and midribs of incompatible grafts leaves. These results provided a new insight into the role of the hormonal balance and abscisic acid biosynthesis genes in regulation and contribution to the graft incompatibility, and will further define and deploy candidate genes to explore the mechanisms underlying citrus rootstock- scion interactions.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Frederick G Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred 33850, FL, USA
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
37
|
Frey C, Manga-Robles A, Acebes JL, Encina A. The graft framework: Quantitative changes in cell wall matrix polysaccharides throughout the tomato graft union formation. Carbohydr Polym 2022; 276:118781. [PMID: 34823794 DOI: 10.1016/j.carbpol.2021.118781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Plant cell walls provide essential functions in cell recognition, differentiation, adhesion and wound responses. Therefore, it is tempting to hypothesize that cell walls play a key role in grafting, but to date there are no quantitative studies targeting on cell wall changes during grafting. The aim of this work was to investigate the dynamics of pectic and hemicellulosic polysaccharides at the graft junctions in tomato homografts throughout the first 12 days after grafting. Cell wall fractionation, combined with ATR-FTIR spectroscopy and gas-chromatography, evidenced a marked increase in pectin content and a decrease in the degree of methyl-esterification of homogalacturonan in scion and rootstock throughout grafting. Also, recovery of tightly-bound hemicelluloses decreased at late times after grafting suggesting an increase of cross-linked hemicelluloses along grafting. In addition, immuno-dot assays revealed an increase in xyloglucan and arabinogalactan proteins in the first days after grafting, pointing to a presumed role in tissue adhesion-cohesion.
Collapse
Affiliation(s)
- Carlos Frey
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, s/n, E-24007 León, Spain.
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, s/n, E-24007 León, Spain.
| | - José Luis Acebes
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, s/n, E-24007 León, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, s/n, E-24007 León, Spain.
| |
Collapse
|
38
|
Monocotyledonous plants graft at the embryonic root-shoot interface. Nature 2021; 602:280-286. [PMID: 34937943 DOI: 10.1038/s41586-021-04247-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Grafting is possible in both animals and plants. Although in animals the process requires surgery and is often associated with rejection of non-self, in plants grafting is widespread, and has been used since antiquity for crop improvement1. However, in the monocotyledons, which represent the second largest group of terrestrial plants and include many staple crops, the absence of vascular cambium is thought to preclude grafting2. Here we show that the embryonic hypocotyl allows intra- and inter-specific grafting in all three monocotyledon groups: the commelinids, lilioids and alismatids. We show functional graft unions through histology, application of exogenous fluorescent dyes, complementation assays for movement of endogenous hormones, and growth of plants to maturity. Expression profiling identifies genes that unify the molecular response associated with grafting in monocotyledons and dicotyledons, but also gene families that have not previously been associated with tissue union. Fusion of susceptible wheat scions to oat rootstocks confers resistance to the soil-borne pathogen Gaeumannomyces graminis. Collectively, these data overturn the consensus that monocotyledons cannot form graft unions, and identify the hypocotyl (mesocotyl in grasses) as a meristematic tissue that allows this process. We conclude that graft compatibility is a shared ability among seed-bearing plants.
Collapse
|
39
|
Kurotani KI, Notaguchi M. Cell-to-Cell Connection in Plant Grafting-Molecular Insights into Symplasmic Reconstruction. PLANT & CELL PHYSIOLOGY 2021; 62:1362-1371. [PMID: 34252186 DOI: 10.1093/pcp/pcab109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 05/06/2023]
Abstract
Grafting is a means to connect tissues from two individual plants and grow a single chimeric plant through the establishment of both apoplasmic and symplasmic connections. Recent molecular studies using RNA-sequencing data have provided genetic information on the processes involved in tissue reunion, including wound response, cell division, cell-cell adhesion, cell differentiation and vascular formation. Thus, studies on grafting increase our understanding of various aspects of plant biology. Grafting has also been used to study systemic signaling and transport of micromolecules and macromolecules in the plant body. Given that graft viability and molecular transport across graft junctions largely depend on vascular formation, a major focus in grafting biology has been the mechanism of vascular development. In addition, it has been thought that symplasmic connections via plasmodesmata are fundamentally important to share cellular information among newly proliferated cells at the graft interface and to accomplish tissue differentiation correctly. Therefore, this review focuses on plasmodesmata formation during grafting. We take advantage of interfamily grafts for unambiguous identification of the graft interface and summarize morphological aspects of de novo formation of plasmodesmata. Important molecular events are addressed by re-examining the time-course transcriptome of interfamily grafts, from which we recently identified the cell-cell adhesion mechanism. Plasmodesmata-associated genes upregulated during graft healing that may provide a link to symplasm establishment are described. We also discuss future research directions.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
40
|
Lv X, Sun Y, Hao P, Zhang C, Tian J, Fu M, Xu Z, Wang Y, Zhang X, Xu X, Wu T, Han Z. RBP differentiation contributes to selective transmissibility of OPT3 mRNAs. PLANT PHYSIOLOGY 2021; 187:1587-1604. [PMID: 34618059 PMCID: PMC8566248 DOI: 10.1093/plphys/kiab366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Long-distance mobile mRNAs play key roles in gene regulatory networks that control plant development and stress tolerance. However, the mechanisms underlying species-specific delivery of mRNA still need to be elucidated. Here, the use of grafts involving highly heterozygous apple (Malus) genotypes allowed us to demonstrate that apple (Malus domestica) oligopeptide transporter3 (MdOPT3) mRNA can be transported over a long distance, from the leaf to the root, to regulate iron uptake; however, the mRNA of Arabidopsis (Arabidopsis thaliana) oligopeptide transporter 3 (AtOPT3), the MdOPT3 homolog from A. thaliana, does not move from shoot to root. Reciprocal heterologous expression of the two types of mRNAs showed that the immobile AtOPT3 became mobile and moved from the shoot to the root in two woody species, Malus and Populus, while the mobile MdOPT3 became immobile in two herbaceous species, A. thaliana and tomato (Solanum lycopersicum). Furthermore, we demonstrated that the different transmissibility of OPT3 in A. thaliana and Malus might be caused by divergence in RNA-binding proteins between herbaceous and woody plants. This study provides insights into mechanisms underlying differences in mRNA mobility and validates the important physiological functions associated with this process.
Collapse
Affiliation(s)
- Xinmin Lv
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yaqiang Sun
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Pengbo Hao
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Mengmeng Fu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhen Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
41
|
Moosavi-Nezhad M, Salehi R, Aliniaeifard S, Tsaniklidis G, Woltering EJ, Fanourakis D, Żuk-Gołaszewska K, Kalaji HM. Blue Light Improves Photosynthetic Performance during Healing and Acclimatization of Grafted Watermelon Seedlings. Int J Mol Sci 2021; 22:ijms22158043. [PMID: 34360809 PMCID: PMC8347074 DOI: 10.3390/ijms22158043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate the importance of light on healing and acclimatization, in the present study, grafted watermelon seedlings were exposed to darkness (D) or light, provided by blue (B), red (R), a mixture of R (68%) and B (RB), or white (W; 35% B, 49% intermediate spectra, 16% R) LEDs for 12 days. Survival ratio, root and shoot growth, soluble carbohydrate content, photosynthetic pigments content, and photosynthetic performance were evaluated. Seedling survival was not only strongly limited in D but the survived seedlings had an inferior shoot and root development, reduced chlorophyll content, and attenuated photosynthetic efficiency. RB-exposed seedlings had a less-developed root system. R-exposed seedlings showed leaf epinasty, and had the smallest leaf area, reduced chlorophyll content, and suppressed photosynthetic apparatus performance. The R-exposed seedlings contained the highest amount of soluble carbohydrate and together with D-exposed seedlings the lowest amount of chlorophyll in their scions. B-exposed seedlings showed the highest chlorophyll content and improved overall PSII photosynthetic functioning. W-exposed seedling had the largest leaf area, and closely resembled the photosynthetic properties of RB-exposed seedlings. We assume that, during healing of grafted seedlings monochromatic R light should be avoided. Instead, W and monochromatic B light may be willingly adopted due to their promoting effect on shoot, pigments content, and photosynthetic efficiency.
Collapse
Affiliation(s)
- Moein Moosavi-Nezhad
- Department of Horticultural Sciences, Campus of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran;
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran P.O. Box 33916-53755, Iran
| | - Reza Salehi
- Department of Horticultural Sciences, Campus of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran;
- Correspondence: (R.S.); (S.A.); Tel.: +98-263-224-8721 (R.S.); +98-212-252-0188 (S.A.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran P.O. Box 33916-53755, Iran
- Correspondence: (R.S.); (S.A.); Tel.: +98-263-224-8721 (R.S.); +98-212-252-0188 (S.A.)
| | - Georgios Tsaniklidis
- Laboratory of Vegetable Crops, Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization ‘ELGO DIMITRA’, 73100 Chania, Greece;
| | - Ernst J. Woltering
- Wageningen Food & Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands;
- Horticulture & Product Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Dimitrios Fanourakis
- Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Greece;
| | - Krystyna Żuk-Gołaszewska
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 8, 10-718 Olsztyn, Poland;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw, University of Life Sciences SGGW, 02-776 Warsaw, Poland;
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
| |
Collapse
|
42
|
Schramm S, Rozhon W, Adedeji-Badmus AN, Liang Y, Nayem S, Winkelmann T, Poppenberger B. The Orphan Crop Crassocephalum crepidioides Accumulates the Pyrrolizidine Alkaloid Jacobine in Response to Nitrogen Starvation. FRONTIERS IN PLANT SCIENCE 2021; 12:702985. [PMID: 34394157 PMCID: PMC8355542 DOI: 10.3389/fpls.2021.702985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Crassocephalum crepidioides is an African orphan crop that is used as a leafy vegetable and medicinal plant. Although it is of high regional importance in Sub-Saharan Africa, the plant is still mainly collected from the wild and therefore efforts are made to promote its domestication. However, in addition to beneficial properties, there was first evidence that C. crepidioides can accumulate the highly toxic pyrrolizidine alkaloid (PA) jacobine and here it was investigated, how jacobine production is controlled. Using ecotypes from Africa and Asia that were characterized in terms of their PA profiles, it is shown that the tetraploid C. crepidioides forms jacobine, an ability that its diploid close relative Crassocephalum rubens appears to lack. Evidence is provided that nitrogen (N) deficiency strongly increases jacobine in the leaves of C. crepidioides, that this capacity depends more strongly on the shoot than the root system, and that homospermidine synthase (HSS) activity is not rate-limiting for this reaction. A characterization of HSS gene representation and transcription showed that C. crepidioides and C. rubens possess two functional versions, one of which is conserved, that the HSS transcript is mainly present in roots and that its abundance is not controlled by N deficiency. In summary, this work improves our understanding of how environmental cues impact PA biosynthesis in plants and provides a basis for the development of PA-free C. crepidioides cultivars, which will aid its domestication and safe use.
Collapse
Affiliation(s)
- Sebastian Schramm
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Adebimpe N. Adedeji-Badmus
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Yuanyuan Liang
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Shahran Nayem
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Traud Winkelmann
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
43
|
Furuta KM, Xiang L, Cui S, Yoshida S. Molecular dissection of haustorium development in Orobanchaceae parasitic plants. PLANT PHYSIOLOGY 2021; 186:1424-1434. [PMID: 33783524 PMCID: PMC8260117 DOI: 10.1093/plphys/kiab153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Characterizing molecular aspects of haustorium development by parasitic plants in the Orobanchaceae family has identified hormone signaling/transport and specific genes as major players.
Collapse
Affiliation(s)
- Kaori Miyashima Furuta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Lei Xiang
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Songkui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Satoko Yoshida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
44
|
Deng Z, Wu H, Jin T, Cai T, Jiang M, Wang M, Liang D. A Sequential Three-Phase Pathway Constitutes Tracheary Element Connection in the Arabidopsis/ Nicotiana Interfamilial Grafts. FRONTIERS IN PLANT SCIENCE 2021; 12:664342. [PMID: 34290723 PMCID: PMC8287886 DOI: 10.3389/fpls.2021.664342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/31/2021] [Indexed: 06/06/2023]
Abstract
Scion-rootstock union formation is a critical step toward the functional assemblage of heterogeneous plants. Interfamilial scion-rootstock interaction often results in graft incompatibility during the assemblage process, and the underlying mechanisms are largely unknown. In this study, we reported that tracheary element (TE) remodeling, including TE segmentation and deformation, rather than de novo formation from callus or adjacent tissues, took place at the early stage of grafting interface between Arabidopsis thaliana and Nicotiana benthamiana (At/Nb). Following cellular deposits, the short TEs from both partners were overlapping, dependent on the homogeneity of contacting TEs, with each other. Without overlapping, the TEs at the interface would grow laterally, and the TEs above and below the interface would undergo self-fusion to form insulating spiraling bundles. Finally, the overlapping TEs constituted a continuous network through alignment. Our results provide a definitive framework for the critical process of TE behavior in the At/Nb distant grafts, including (1) segmentation and/or deformation, (2) matching, overlapping, and cellular deposits, and (3) aligning or spiraling. These insights might guide us in the future into constructing more compatible distant grafts from the perspective of TE homogeneity.
Collapse
Affiliation(s)
- Zhuying Deng
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Huiyan Wu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Tianlin Jin
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Tingting Cai
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Mengting Jiang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Mi Wang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Dacheng Liang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
45
|
Miao L, Li Q, Sun TS, Chai S, Wang C, Bai L, Sun M, Li Y, Qin X, Zhang Z, Yu X. Sugars promote graft union development in the heterograft of cucumber onto pumpkin. HORTICULTURE RESEARCH 2021; 8:146. [PMID: 34193850 PMCID: PMC8245404 DOI: 10.1038/s41438-021-00580-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 05/11/2023]
Abstract
The use of heterografts is widely applied for the production of several important commercial crops, but the molecular mechanism of graft union formation remains poorly understood. Here, cucumber grafted onto pumpkin was used to study graft union development, and genome-wide tempo-spatial gene expression at the graft interface was comprehensively investigated. Histological analysis suggested that resumption of the rootstock growth occurred after both phloem and xylem reconnection, and the scion showed evident callus production compared with the rootstock 3 days after grafting. Consistently, transcriptome data revealed specific responses between the scion and rootstock in the expression of genes related to cambium development, the cell cycle, and sugar metabolism during both vascular reconnection and healing, indicating distinct mechanisms. Additionally, lower levels of sugars and significantly changed sugar enzyme activities at the graft junction were observed during vascular reconnection. Next, we found that the healing process of grafted etiolated seedlings was significantly delayed, and graft success, xylem reconnection, and the growth of grafted plants were enhanced by exogenous glucose. This demonstrates that graft union formation requires the correct sugar content. Furthermore, we also found that graft union formation was delayed with a lower energy charge by the target of rapamycin (TOR) inhibitor AZD-8055, and xylem reconnection and the growth of grafted plants were enhanced under AZD-8055 with exogenous glucose treatment. Taken together, our results reveal that sugars play a positive role in graft union formation by promoting the growth of cucumber/pumpkin and provide useful information for understanding graft union healing and the application of heterografting in the future.
Collapse
Affiliation(s)
- Li Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Qing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Tian-Shu Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Sen Chai
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Changlin Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Longqiang Bai
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi, 030801, China
| | - Mintao Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Yansu Li
- Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xing Qin
- Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Zhonghua Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xianchang Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| |
Collapse
|
46
|
Miao L, Li SZ, Shi AK, Li YS, He CX, Yan Y, Wang J, Sun MT, Yu XC. Genome-wide analysis of the AINTEGUMENTA-like (AIL) transcription factor gene family in pumpkin (Cucurbita moschata Duch.) and CmoANT1.2 response in graft union healing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:706-715. [PMID: 33799182 DOI: 10.1016/j.plaphy.2021.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
AINTEGUMENTA-like (AIL) proteins are members of the APETALA 2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain family of transcription factors involved in plant growth, development, and abiotic stress responses. However, the biological functions of AIL members in pumpkin (Cucurbita moschata Duch.) remain unknown. In this study, we identified 12 AIL genes in the pumpkin genome encoding proteins predicted to be localized in the nucleus. Phylogenetic analysis showed that the AIL gene family could be classified into six major subfamilies, with each member encoding two AP2/ERF domains separated by a linker region. CmoAIL genes were expressed at varying levels in the examined tissues, and CmoANT genes showed different expression patterns under auxin (IAA), 1-naphthylphthalamic acid (NPA), and abscisic acid (ABA) treatments. Ectopic overexpression of CmoANT1.2 in Arabidopsis increased organ size and promoted growth of grafted plants by accelerating graft union formation. However, there was no significant difference at the graft junction for WT/WT and WT/ANT under IAA or NPA treatments. Taken together, the results of this study provide critical information about CmoAIL genes and their encoded proteins, and suggest future work should investigate the functions of CmoANT1.2 in the grafting process in pumpkin.
Collapse
Affiliation(s)
- Li Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Zhen Li
- College of Life Science, Gannan Normal University, Ganzhou 341000, China
| | - Ao-Kun Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Su Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao-Xing He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Yan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min-Tao Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xian-Chang Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
47
|
Zhai L, Wang X, Tang D, Qi Q, Yer H, Jiang X, Han Z, McAvoy R, Li W, Li Y. Molecular and physiological characterization of the effects of auxin-enriched rootstock on grafting. HORTICULTURE RESEARCH 2021; 8:74. [PMID: 33790234 PMCID: PMC8012700 DOI: 10.1038/s41438-021-00509-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 05/12/2023]
Abstract
Grafting is a highly useful technique, and its success largely depends on graft union formation. In this study, we found that root-specific expression of the auxin biosynthetic gene iaaM in tobacco, when used as rootstock, resulted in more rapid callus formation and faster graft healing. However, overexpression of the auxin-inactivating iaaL gene in rootstocks delayed graft healing. We observed increased endogenous auxin levels and auxin-responsive DR5::GUS expression in scions of WT/iaaM grafts compared with those found in WT/WT grafts, which suggested that auxin is transported upward from rootstock to scion tissues. A transcriptome analysis showed that auxin enhanced graft union formation through increases in the expression of genes involved in graft healing in both rootstock and scion tissues. We also observed that the ethylene biosynthetic gene ACS1 and the ethylene-responsive gene ERF5 were upregulated in both scions and rootstocks of the WT/iaaM grafts. Furthermore, exogenous applications of the ethylene precursor ACC to the junction of WT/WT grafts promoted graft union formation, whereas application of the ethylene biosynthesis inhibitor AVG delayed graft healing in WT/WT grafts, and the observed delay was less pronounced in the WT/iaaM grafts. These results demonstrated that elevated auxin levels in the iaaM rootstock in combination with the increased auxin levels in scions caused by upward transport/diffusion enhanced graft union formation and that ethylene was partially responsible for the effects of auxin on grafting. Our findings showed that grafting success can be enhanced by increasing the auxin levels in rootstocks using transgenic or gene-editing techniques.
Collapse
Affiliation(s)
- Longmei Zhai
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China
| | - Xiaomin Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, PR China
| | - Dan Tang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Qi Qi
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, PR China
| | - Huseyin Yer
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, PR China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China
| | - Richard McAvoy
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Wei Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA.
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China.
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
48
|
Arias Padró MD, Caboni E, Salazar Morin KA, Meraz Mercado MA, Olalde-Portugal V. Effect of Bacillus subtilis on antioxidant enzyme activities in tomato grafting. PeerJ 2021; 9:e10984. [PMID: 33763301 PMCID: PMC7958894 DOI: 10.7717/peerj.10984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/31/2021] [Indexed: 11/20/2022] Open
Abstract
Grafting generally means stress to a plant and this triggers antioxidant defense systems. An imbalance in reactive oxygen species may negatively affect the grafting success. Several research projects have studied the association with plant growth-promoting rhizobacteria (PGPR) and it has been documented that they enhance nutrient acquisition, regulate hormone levels, and influence the antioxidant response in crops. However, little is known about the strategy of inoculating grafted herbaceous plants with PGPR and its effect on the antioxidant response. The effects of inoculating a strain of Bacillus subtilis on the antioxidant metabolism of grafted tomato were evaluated. In this study, two different rootstocks were used for tomato (Solanum lycopersicum L. var. Rio Grande (RG)): [S. lycopersicum L. var. cerasiforme (Ch)] and eggplant [(Solanum melanogena L. (Ber)] to establish a compatible graft (RGCh) and a semicompatible graft (RGBer). Enzyme activities involved in the antioxidant defense system: superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), and total phenols were measured during 4 weeks after grafting. The results show that for RGCh, during the first two weeks after grafting, the tendency was a decrease of the enzyme activity for SOD, CAT, PAL when inoculated with B. subtilis; while in the semicompatible graft RGBer, PPO and PAL decreased their activity after inoculation. For both combinations, the quantity of total phenols varied depending on the day. In both graft combinations, applications of B. subtilis resulted in 86 and 80% callusing compared with the uninoculated control where the percentages were 74 and 70% for RGCh and RGBer, respectively. The highest significant graft success (95%) was recorded 28 days after grafting for inoculated RGBer. These findings imply that B. subtilis induced antioxidant mechanisms in grafted plants and suggest that inoculation with this growth-promoting bacterium can represent a biotechnological approach to improve success in tomato grafting.
Collapse
Affiliation(s)
- Maria D. Arias Padró
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Emilia Caboni
- Consiglio per la Ricerca in Agricoltura e l ’Analisi dell’Economia Agraria (CREA), Olivicoltura, Frutticoltura e Agrumicoltura (OFA), Rome, Italy
| | - Karla Azucena Salazar Morin
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Marco Antonio Meraz Mercado
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Víctor Olalde-Portugal
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| |
Collapse
|
49
|
Okayasu K, Aoki K, Kurotani KI, Notaguchi M. Tissue adhesion between distant plant species in parasitism and grafting. Commun Integr Biol 2021; 14:21-23. [PMID: 33552383 PMCID: PMC7849753 DOI: 10.1080/19420889.2021.1877016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plant grafting is generally performed between closely related species. Recently, we have discovered that Nicotiana species of Solanaceae show the ability to graft with distantly related plant species beyond the family. Graft adhesion with diverse angiosperms by Nicotiana species was probably facilitated by the secretion of a subclade of ß-1,4-glucanases. The capability of interfamily grafting was also found in the model Orobanchaceae hemiparasitic plant, Phtheirospermum japonicum, which naturally invades to the tissues of host plants of different families. Transcriptome analysis indicated that the same clade of ß-1,4-glucanase plays an important role in plant parasitism. Thus, the tissue adhesion between distant plant species occurs both naturally and artificially. Here, we further observed the capability of interfamily grafting in the stem holoparasitic genus, Cuscuta. These findings indicate that the natural process of tissue adhesion is a potential clue to improve plant-grafting techniques.
Collapse
Affiliation(s)
- Koji Okayasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Michitaka Notaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
50
|
Tsaballa A, Xanthopoulou A, Madesis P, Tsaftaris A, Nianiou-Obeidat I. Vegetable Grafting From a Molecular Point of View: The Involvement of Epigenetics in Rootstock-Scion Interactions. FRONTIERS IN PLANT SCIENCE 2021; 11:621999. [PMID: 33488662 PMCID: PMC7817540 DOI: 10.3389/fpls.2020.621999] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 05/25/2023]
Abstract
Vegetable grafting is extensively used today in agricultural production to control soil-borne pathogens, abiotic and biotic stresses and to improve phenotypic characteristics of the scion. Commercial vegetable grafting is currently practiced in tomato, watermelon, melon, eggplant, cucumber, and pepper. It is also regarded as a rapid alternative to the relatively slow approach of breeding for increased environmental-stress tolerance of fruit vegetables. However, even though grafting has been used for centuries, until today, there are still many issues that have not been elucidated. This review will emphasize on the important mechanisms taking place during grafting, especially the genomic interactions between grafting partners and the impact of rootstocks in scion's performance. Special emphasis will be drawn on the relation between vegetable grafting, epigenetics, and the changes in morphology and quality of the products. Recent advances in plant science such as next-generation sequencing provide new information regarding the molecular interactions between rootstock and scion. It is now evidenced that genetic exchange is happening across grafting junctions between rootstock and scion, potentially affecting grafting-mediated effects already recorded in grafted plants. Furthermore, significant changes in DNA methylation are recorded in grafted scions, suggesting that these epigenetic mechanisms could be implicated in grafting effects. In this aspect, we also discuss the process and the molecular aspects of rootstock scion communication. Finally, we provide with an extensive overview of gene expression changes recorded in grafted plants and how these are related to the phenotypic changes observed. Τhis review finally seeks to elucidate the dynamics of rootstock-scion interactions and thus stimulate more research on grafting in the future. In a future where sustainable agricultural production is the way forward, grafting could play an important role to develop products of higher yield and quality in a safe and "green" way.
Collapse
Affiliation(s)
- Aphrodite Tsaballa
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO-Dimitra), Thessaloniki, Greece
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO-Dimitra), Thessaloniki, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, Volos, Greece
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Athanasios Tsaftaris
- Perrotis College, American Farm School, Thessaloniki, Greece
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|