1
|
Feng Z, Wang L, Yang J, Li T, Liao X, Kang Y, Xiao F, Zhang W. Sepsis: the evolution of molecular pathogenesis concepts and clinical management. MedComm (Beijing) 2025; 6:e70109. [PMID: 39991626 PMCID: PMC11847631 DOI: 10.1002/mco2.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/29/2024] [Accepted: 01/07/2025] [Indexed: 02/25/2025] Open
Abstract
The mortality rate of sepsis is approximately 22.5%, accounting for 19.7% of the total global mortality. Since Lewis Thomas proposed in 1972 that "it is our response that makes the disease (sepsis)" rather than the invading microorganisms, numerous drugs have been developed to suppress the "overwhelming" inflammatory response, but none of them has achieved the desired effect. Continued failure has led investigators to question whether deaths in septic patients are indeed caused by uncontrolled inflammation. Here, we review the history of clinical trials based on evolving concepts of sepsis pathogenesis over the past half century, summarize the factors that led to the failure of these historical drugs and the prerequisites for the success of future drugs, and propose the basic principles of preclinical research to ensure successful clinical translation. The strategy of targeting inflammatory factors are like attempting to eliminate invaders by suppressing the host's armed forces, which is logically untenable. Sepsis may not be that complex; rather, sepsis may be the result of a failure to fight microbes when the force of an invading pathogen overwhelms our defenses. Thus, strengthening the body's defense forces instead of suppressing them may be the correct strategy to overcome sepsis.
Collapse
Affiliation(s)
- Zhongxue Feng
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lijun Wang
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jing Yang
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Tingting Li
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xuelian Liao
- Department of Critical Care MedicineWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yan Kang
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Fei Xiao
- Department of Intensive Care Unit of Gynecology and ObstetricsWest China Second University Hospital, Sichuan UniversityChengduSichuanChina
| | - Wei Zhang
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Hiti L, Markovič T, Lainscak M, Farkaš Lainščak J, Pal E, Mlinarič-Raščan I. The immunopathogenesis of a cytokine storm: The key mechanisms underlying severe COVID-19. Cytokine Growth Factor Rev 2025:S1359-6101(24)00104-7. [PMID: 39884914 DOI: 10.1016/j.cytogfr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
A cytokine storm is marked by excessive pro-inflammatory cytokine release, and has emerged as a key factor in severe COVID-19 cases - making it a critical therapeutic target. However, its pathophysiology was poorly understood, which hindered effective treatment. SARS-CoV-2 initially disrupts angiotensin signalling, promoting inflammation through ACE-2 downregulation. Some patients' immune systems then fail to shift from innate to adaptive immunity, suppressing interferon responses and leading to excessive pyroptosis and neutrophil activation. This amplifies tissue damage and inflammation, creating a pro-inflammatory loop. The result is the disruption of Th1/Th2 and Th17/Treg balances, lymphocyte exhaustion, and extensive blood clotting. Cytokine storm treatments include glucocorticoids to suppress the immune system, monoclonal antibodies to neutralize specific cytokines, and JAK inhibitors to block cytokine receptor signalling. However, the most effective treatment options for mitigating SARS-CoV-2 infection remain vaccines as a preventive measure and antiviral drugs for the early stages of infection. This article synthesizes insights into immune dysregulation in COVID-19, offering a framework to better understand cytokine storms and to improve monitoring, biomarker discovery, and treatment strategies for COVID-19 and other conditions involving cytokine storms.
Collapse
Affiliation(s)
- Luka Hiti
- Faculty of Pharmacy, University of Ljubljana, Slovenia
| | | | - Mitja Lainscak
- General Hospital Murska Sobota, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Emil Pal
- General Hospital Murska Sobota, Slovenia
| | | |
Collapse
|
3
|
Keskin Sarıtaş Ç, Özsüt H, Benli A, Başaran S. Examination of Risk Factors Affecting the Development of BSI and Mortality in Critically Ill COVID-19 Patients Hospitalized in Intensive Care Unit (ICU): A Single-Center Retrospective Study. J Intensive Care Med 2024:8850666241305347. [PMID: 39704100 DOI: 10.1177/08850666241305347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
BACKGROUND Various studies have shown that the incidence of BSI is greater in COVID-19 patients hospitalized in the intensive care unit (ICU). AIMS Our study aimed to determine the risk factors for BSI, mortality rates, and factors affecting mortality in adult COVID-19 patients hospitalized in the ICU. METHODS All COVID-19 patients who met the study criteria and stayed in intensive care for more than 2 days at a tertiary university hospital during the two-year pandemic period were included in the study. Logistic regression analysis was used to determine the risk factors for BSI and mortality. RESULTS We found that respiratory rate (RR) ≥ 30 breaths per minute at the time of admission [OR: 2.342 (95% CI: 1.12-4.897)] and antibiotic use in the month before admission ICU [OR: 3.137 (95% CI: 1.321-7.451)] were independent risk factors for BSI in COVID-19 patients. Subanalysis was also performed according to the doses of immunomodulators such as anakinra, tocilizumab, and corticosteroids, and it was found that they had no effect on the BSI (P > .05). The predominant causative pathogens were K. pneumoniae, A. baumannii and enterococci. The multidrug resistant rate among bacteria was 78%. Although their comorbidities and disease severity at the time of ICU admission were similar, patients with BSIs had a higher mortality rate (58.1 to 81.9%, P = .000). The SAPS-2 score at ICU admission [OR: 3.095 (95% CI: 1.969-4.865)] and mechanical ventilation requirement throughout the ICU admission [OR: 9.314 (95% CI: 3.878-22.37)] were found to be independent risk factors for mortality by multivariate analysis. BSI was not found to be a risk factor for mortality (> .05). CONCLUSIONS Antibiotic use in patients with severe COVID-19 significantly increases the risk of BSI; unnecessary antibiotic use should be avoided.
Collapse
Affiliation(s)
- Çağla Keskin Sarıtaş
- Department of Infectious Diseases and Clinical Microbiology, Marmara University Training and Research Hospital, Istanbul, Turkey
| | - Halit Özsüt
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Aysun Benli
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Seniha Başaran
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Chen S, Zhang C, Luo J, Lin Z, Chang T, Dong L, Chen D, Tang ZH. Macrophage activation syndrome in Sepsis: from pathogenesis to clinical management. Inflamm Res 2024; 73:2179-2197. [PMID: 39404874 DOI: 10.1007/s00011-024-01957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Sepsis represents a significant global health and hygiene challenge. Excessive activation of macrophages in sepsis can result in certain patients displaying characteristics akin to those observed in Macrophage Activation Syndrome (MAS). MAS represents a grave immune system disorder characterized by persistent and severe inflammation within the body. In the context of sepsis, MAS presents atypically, leading some researchers to refer to it as Macrophage Activation-Like Syndrome (MALS). However, there are currently no effective treatment measures for this situation. The purpose of this article is to explore potential treatment methods for sepsis-associated MALS. OBJECTIVE The objective of this review is to synthesize the specific pathophysiological mechanisms and treatment strategies of MAS to investigate potential therapeutic approaches for sepsis-associated MALS. METHOD We searched major databases (including PubMed, Web of Science, and Google Scholar etc.) for literature encompassing macrophage activation syndrome and sepsis up to Mar 2024 and combined with studies found in the reference lists of the included studies. CONCLUSION We have synthesized the underlying pathophysiological mechanism of MALS in sepsis, and then summarized the diagnostic criteria and the effects of various treatment modalities utilized in patients with MAS or MALS. In both scenarios, heterogeneous treatment responses resulting from identical treatment approaches were observed. The determination of whether the patient is genuinely experiencing MALS significantly impacts the ultimate outcomes of therapeutic efficacy. In order to tackle this concern, additional clinical trials and research endeavors are imperative.
Collapse
Affiliation(s)
- Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jialiu Luo
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Lin
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liming Dong
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Wilar G, Suhandi C, Fukunaga K, Kawahata I. Efficacy and safety of tofacitinib on COVID-19 patients: A systematic review and meta-analysis. Heliyon 2024; 10:e38229. [PMID: 39381111 PMCID: PMC11456853 DOI: 10.1016/j.heliyon.2024.e38229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The use of drugs off-label for managing COVID-19 offers a potential approach. Among these potential drugs, tofacitinib, a JAK inhibitor, is strongly implicated in its ability to mitigate mortality by attenuating the cytokine storm syndrome. This study systematically reviewed and quantitatively assessed the effectiveness and safety profile of tofacitinib use through meta-analysis. Through searches of the PubMed, Scopus, and the Cochrane Library databases up to May 31, 2024, six articles meeting inclusion criteria were identified, encompassing 669 patients diagnosed with COVID-19. The review findings indicate that tofacitinib use demonstrates significant clinical efficacy, as evidenced by a reduced risk of mortality (P = 0.003), and a decreased need for invasive mechanical ventilation (P = 0.0002). Furthermore, tofacitinib use is not correlated with an increased risk of adverse drug reactions (P = 0.98), indicating a favorable safety profile. In conclusion, the evidence supports the clinical efficacy of tofacitinib for COVID-19 patients without concomitant risks of adverse effects. Further clinical studies, especially larger-scale randomized controlled trials, are necessary to validate the findings of this study.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
6
|
Samanta RJ, Chiollaz AC, Needham E, Yue JK, Helmy A, Zanier ER, Wang KKW, Kobeissy F, Posti JP, Summers C, Manley GT, Maas AI, Tenovuo O, Sanchez JC, Menon DK. Parsimonious immune-response endotypes and global outcome in patients with traumatic brain injury. EBioMedicine 2024; 108:105310. [PMID: 39293212 PMCID: PMC11424973 DOI: 10.1016/j.ebiom.2024.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND The inflammatory response in patients with traumatic brain injury (TBI) offers opportunities for stratification and intervention. Previous unselected approaches to immunomodulation in patients with TBI have not improved patient outcomes. METHODS Serum and plasma samples from two prospective, multi-centre observational studies of patients with TBI were used to discover (Collaborative European NeuroTrauma Effectiveness Research [CENTER-TBI], Europe) and validate (Transforming Research and Clinical Knowledge in Traumatic Brain Injury [TRACK-TBI] Pilot, USA) individual variations in the immune response using a multiplex panel of 30 inflammatory mediators. Mediators that were associated with unfavourable outcomes (Glasgow outcome score-extended [GOS-E] ≤ 4) were used for hierarchical clustering to identify patients with similar signatures. FINDINGS Two clusters were identified in both the discovery and validation cohorts, termed early-inflammatory and pauci-inflammatory. The early-inflammatory phenotype had higher concentrations of interleukin-6 (IL-6), IL-15, and monocyte chemoattractant protein 1 (MCP1). Patients with the early-inflammatory phenotype were older and more likely to have an unfavourable GOS-E at 6 months. There were no differences in the baseline injury severity scores between patients in each phenotype. A combined IL-15 and MCP1 signature identified patients with the early-inflammatory phenotype in both cohorts. Inflammatory processes mediated outcomes in older patients with moderate-severe TBI. INTERPRETATION Our findings offer a precision medicine approach for future clinical trials of immunomodulation in patients with TBI, by using inflammatory signatures to stratify patients. FUNDING CENTER-TBI study was supported by the European Union 7th Framework Programme. TRACK-TBI is supported by the National Institute of Neurological Disorders and Stroke.
Collapse
Affiliation(s)
- Romit J Samanta
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| | | | - Edward Needham
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - John K Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Kevin K W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, Decatur, GA, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jussi P Posti
- Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Charlotte Summers
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Ir Maas
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium; Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Olli Tenovuo
- Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | | | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Arrivé C, Bazzoli C, Jouve T, Noble J, Rostaing L, Stanke-Labesque F, Djerada Z. A Population Pharmacokinetic Model of Tocilizumab in Kidney Transplant Patients Treated for Chronic Active Antibody-Mediated Rejection: Comparison of Plasma Exposure Between Intravenous and Subcutaneous Administration Schemes. BioDrugs 2024; 38:703-716. [PMID: 39147956 DOI: 10.1007/s40259-024-00676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Tocilizumab prevents the clinical worsening of chronic active antibody-mediated rejection (CAAMR) in kidney transplant recipients. Following a global shortage of the intravenous pharmaceutical form in 2022, patients were switched from monthly intravenous administration of 8 mg/kg to weekly subcutaneous injection of 162 mg, raising the question of bioequivalence between these schemes of administration. AIMS We aimed to compare the areas under the curve (AUC) of tocilizumab in virtual simulations of populations treated with the two administration schemes and to identify the covariates that could contribute to pharmacokinetic variability of tocilizumab in kidney transplant patients with CAAMR who received tocilizumab as salvage treatment. METHODS This retrospective monocentric study included 43 kidney transplant patients (202 tocilizumab concentrations) with CAAMR treated with intravenous or subcutaneous tocilizumab between December 2020 and January 2023. We developed a population pharmacokinetic model using nonlinear mixed effects modeling and identified the covariates that could contribute to tocilizumab AUC variability. Monte Carlo simulations were then performed to assess the subcutaneous and intravenous tocilizumab AUC for 0-28 days (M1), 56-84 days (M3), 140-168 days (M6), and 308-336 days (M12). Bioequivalence was defined by SC/IV AUC geometric mean ratios (GMRs) between 0.80 and 1.25. RESULTS A two-compartment model with parallel linear and nonlinear elimination best described the concentration-time data. Significant covariates for tocilizumab clearance were body weight, urinary albumin-to-creatinine ratio (ACR), and inflammation status [C-reactive protein (CRP) ≥ 5 mg/L]. The GMR values and their 90% confidence intervals at M3, M6, and M12 were within the 0.8-1.25 margin for equivalence. Conversely, the 90% prediction intervals of the GMR were much wider than the 90% confidence intervals and did not fall within 0.8 and 1.25. CONCLUSIONS From month 3 of treatment, the subcutaneous and intravenous tocilizumab administration schemes provided average bioequivalent pharmacokinetic exposure at the population level but not at the individual level. Body weight, inflammation, ACR, and administration scheme should be considered to personalize the dose of tocilizumab for patients with CAAMR. Further studies are required to determine the target of tocilizumab exposure in kidney transplant patients with CAAMR.
Collapse
Affiliation(s)
- Capucine Arrivé
- Laboratory of Pharmacology, Pharmacogenetics and Toxicology, Grenoble Alpes University Hospital, Grenoble, France.
- Univ. Grenoble Alpes, HP2 INSERM U1300, 38041, Grenoble, France.
| | - Caroline Bazzoli
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Thomas Jouve
- Department of Nephrology, Dialysis, Apheresis and Transplantation, Grenoble Alpes University Hospital, Grenoble, France
| | - Johan Noble
- Department of Nephrology, Dialysis, Apheresis and Transplantation, Grenoble Alpes University Hospital, Grenoble, France
| | - Lionel Rostaing
- Department of Nephrology, Dialysis, Apheresis and Transplantation, Grenoble Alpes University Hospital, Grenoble, France
| | - Françoise Stanke-Labesque
- Laboratory of Pharmacology, Pharmacogenetics and Toxicology, Grenoble Alpes University Hospital, Grenoble, France
- Univ. Grenoble Alpes, HP2 INSERM U1300, 38041, Grenoble, France
| | - Zoubir Djerada
- Department of Pharmacology, University of Reims Champagne-Ardenne, PPF UR 3801, Reims University Hospital, Reims, France
| |
Collapse
|
8
|
MacGregor F, Oprey A, Caulfield C, MacTavish P, Lowrie R, Henderson P. Does timing of tocilizumab administration affect mortality in COVID-19? A Scottish multicentre retrospective cohort study. BMJ Open Respir Res 2024; 11:e002264. [PMID: 39214629 PMCID: PMC11367351 DOI: 10.1136/bmjresp-2023-002264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The optimal timing of tocilizumab treatment during the disease course of COVID-19 has yet to be adequately defined in the context of randomised controlled trials and the effect of tocilizumab on real-world populations remains unclear. We examined the effect of different timing of tocilizumab, on mortality, in a cohort of adults with COVID-19. METHODS All adults (≥18 years old) with confirmed COVID-19 admitted to four hospitals in the West of Scotland between 8 January 2021 and 31 March 2021 and who received tocilizumab were included in a retrospective observational cohort study. Patients were assigned to either an early (day of admission or first day after admission) or late (days 2-7 of admission) cohort based on tocilizumab initiation. The primary outcome was 90-day all-cause mortality in early versus late cohorts. Secondary outcomes were 28 and 180-day all-cause mortality. RESULTS 203 patients were included in the analysis (138 in the early cohort, 65 in the late cohort). Mortality in 90 days in the early cohort was 22% (n=30) compared with 45% (n=29) in the late cohort (p<0.001). The adjusted mortality was significantly higher in the late cohort compared with the early cohort (adjusted OR: 3.33; 95% CI: 1.29 to 8.54; p=0.012). The secondary outcomes demonstrated the same effect with higher rates of death in 28 days (late cohort adjusted OR: 3.28; 95% CI: 1.23 to 8.75; p=0.018) and 180 days (late cohort adjusted OR: 3.70; 95% CI: 1.45 to 9.45; p=0.006). The effect was seen whether the outcome was adjusted or unadjusted. CONCLUSION Early administration of tocilizumab within the first 2 days of hospitalisation was associated with a significant survival benefit compared with late exposure. Late administration was associated with particularly high mortality. The observed association may be a result of residual confounders and further research is needed.
Collapse
Affiliation(s)
- Fiona MacGregor
- Royal Alexandra Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Alison Oprey
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Carolyn Caulfield
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Pamela MacTavish
- Glasgow Royal Infirmary, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Richard Lowrie
- Pharmacy Services, NHS Greater Glasgow and Clyde, Glasgow, Glasgow, UK
| | - Philip Henderson
- Royal Alexandra Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| |
Collapse
|
9
|
Pan L, Qiu W, Hu Z, Li J. Intolerance of uncertainty and internet addiction among college students in China post-pandemic era: the mediating role of future anxiety. Sci Rep 2024; 14:20098. [PMID: 39209922 PMCID: PMC11362300 DOI: 10.1038/s41598-024-70988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Due to the repeated changes in the COVID-19 pandemic, we live in an era of various uncertainties that raise future anxiety and behavioral addiction problems. According to the Protection Motivation Theory (PMT), the present study attempted to explore the impact of COVID-19 intolerance of uncertainty (COVID-19 IU) on internet addiction (IA) among college students and the mediating role of future anxiety (FA) by constructing a mediating model. A questionnaire survey was conducted on 679 Chinese college students and PROCESS 3.5 was utilized to test the hypotheses. The results indicated that the COVID-19 IU was significantly positively correlated with IA and FA, and FA was significantly positively correlated with IA. COVID-19 IU had a significant positive predictive effect on IA; FA played a complementary partial mediating role between COVID-19 IU and IA. The results supported the PMT, which not only enriched our understanding of FA under uncertain life circumstances, but also deepened our understanding of the potential mechanisms of the effects of IA. Finally, discussions and suggestions were presented based on the results.
Collapse
Affiliation(s)
- Ling Pan
- School of Education and Music, Hainan Vocational University of Science and Technology, Haikou, China
| | - Wusen Qiu
- School of Finance and Economics, Hainan Vocational University of Science and Technology, Haikou, China
| | - Ziao Hu
- School of Finance and Economics, Hainan Vocational University of Science and Technology, Haikou, China
| | - Jun Li
- School of Design, Hainan Vocational University of Science and Technology, Haikou, China.
| |
Collapse
|
10
|
Kilic HH, Gozukucuk R. Comparison of the Results of BAL and ETA Culture in Intubated COVID-19 Patients. Niger J Clin Pract 2024; 27:945-949. [PMID: 39212429 DOI: 10.4103/njcp.njcp_666_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The isolation of pathogens using bronchoalveolar lavage (BAL) culture or endotracheal aspirate (ETA) culture may enhance the treatment success for secondary pneumonia due to COVID-19, thereby reducing the risk of morbidity and mortality. AIM This study aimed to retrospectively analyze the results of BAL and ETA cultures in intubated COVID-19 patients and to determine whether BAL has an advantage over ETA. METHODS We routinely perform BAL culture via bronchoscopy or ETA culture within the first 48 h after intubation. We retrospectively reviewed cases that underwent BAL and ETA. The patients were divided into two groups: Group B (BAL) and Group E (ETA). Various parameters were evaluated and compared between the two groups. RESULTS The demographic data and blood test results were similar between the two groups. However, ICU stay, duration of intubation, and culture positivity were significantly higher in Group B. Although not statistically significant, the mortality rate was higher in Group E. The most commonly isolated microorganisms were Candida species. CONCLUSION The observed mortality rates were consistent with the existing literature. Since the microorganism isolation rate is higher with BAL, leading to more effective antimicrobial treatment, early deaths were prevented, and ICU stay durations were prolonged. Conversely, these durations were shorter in the ETA group due to higher mortality. In intubated COVID-19 patients, a more effective treatment process can be achieved by clearing the airway with fiberoptic bronchoscopy and tailoring the treatment based on BAL culture results. This approach may positively impact prognosis and mortality rates.
Collapse
Affiliation(s)
- H H Kilic
- Department of Anesthesiology, Dogus University, Istanbul, Türkiye
- Anaesthesiology and Reanimation Department, Hisar Intercontinental Hospital, Istanbul, Türkiye
| | - R Gozukucuk
- Clinical Microbiology and Infectious Diseases Department, Hisar Intercontinental Hospital, Istanbul, Türkiye
- Basic Sciences Department, Galata University, Istanbul, Türkiye
| |
Collapse
|
11
|
Chan JFW, Yuan S, Chu H, Sridhar S, Yuen KY. COVID-19 drug discovery and treatment options. Nat Rev Microbiol 2024; 22:391-407. [PMID: 38622352 DOI: 10.1038/s41579-024-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused substantial morbidity and mortality, and serious social and economic disruptions worldwide. Unvaccinated or incompletely vaccinated older individuals with underlying diseases are especially prone to severe disease. In patients with non-fatal disease, long COVID affecting multiple body systems may persist for months. Unlike SARS-CoV and Middle East respiratory syndrome coronavirus, which have either been mitigated or remained geographically restricted, SARS-CoV-2 has disseminated globally and is likely to continue circulating in humans with possible emergence of new variants that may render vaccines less effective. Thus, safe, effective and readily available COVID-19 therapeutics are urgently needed. In this Review, we summarize the major drug discovery approaches, preclinical antiviral evaluation models, representative virus-targeting and host-targeting therapeutic options, and key therapeutics currently in clinical use for COVID-19. Preparedness against future coronavirus pandemics relies not only on effective vaccines but also on broad-spectrum antivirals targeting conserved viral components or universal host targets, and new therapeutics that can precisely modulate the immune response during infection.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
12
|
Lee A, Aw YTV. Staphylococcus aureus subcapsular splenic abscess and associated empyema in the setting of tocilizumab therapy: A case report. Clin Case Rep 2024; 12:e8997. [PMID: 38799529 PMCID: PMC11126640 DOI: 10.1002/ccr3.8997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
We report a case of Staphylococcus aureus subcapsular splenic abscess and associated empyema after recent commencement of tocilizumab, masquerading as musculoskeletal pain. This highlights the importance of considering unusual underlying infections in patients on tocilizumab.
Collapse
Affiliation(s)
- Audrey Lee
- General Medicine DepartmentCanberra Hospital, Canberra Health ServicesCanberraAustralian Capital TerritoryAustralia
| | - Yi Tong Vincent Aw
- General Medicine DepartmentCanberra Hospital, Canberra Health ServicesCanberraAustralian Capital TerritoryAustralia
- Australian National University Medical School, School of Medicine and PsychologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- John Curtin School of Medical Research, College of Health and MedicineAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
13
|
Meunier É, Aubin vega M, Adam D, Privé A, Mohammad Nezhady MA, Lahaie I, Quiniou C, Chemtob S, Brochiero E. Evaluation of interleukin-1 and interleukin-6 receptor antagonists in a murine model of acute lung injury. Exp Physiol 2024; 109:966-979. [PMID: 38594909 PMCID: PMC11140168 DOI: 10.1113/ep091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The acute exudative phase of acute respiratory distress syndrome (ARDS), a severe form of respiratory failure, is characterized by alveolar damage, pulmonary oedema, and an exacerbated inflammatory response. There is no effective treatment for this condition, but based on the major contribution of inflammation, anti-inflammatory strategies have been evaluated in animal models and clinical trials, with conflicting results. In COVID-19 ARDS patients, interleukin (IL)-1 and IL-6 receptor antagonists (IL-1Ra and IL-6Ra, kineret and tocilizumab, respectively) have shown some efficacy. Moreover, we have previously developed novel peptides modulating IL-1R and IL-6R activity (rytvela and HSJ633, respectively) while preserving immune vigilance and cytoprotective pathways. We aimed to assess the efficacy of these novel IL-1Ra and IL-6Ra, compared to commercially available drugs (kineret, tocilizumab) during the exudative phase (day 7) of bleomycin-induced acute lung injury (ALI) in mice. Our results first showed that none of the IL-1Ra and IL-6Ra compounds attenuated bleomycin-induced weight loss and venousP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ increase. Histological analyses and lung water content measurements also showed that these drugs did not improve lung injury scores or pulmonary oedema, after the bleomycin challenge. Finally, IL-1Ra and IL-6Ra failed to alleviate the inflammatory status of the mice, as indicated by cytokine levels and alveolar neutrophil infiltration. Altogether, these results indicate a lack of beneficial effects of IL-1R and IL-6R antagonists on key parameters of ALI in the bleomycin mouse model.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Acute Lung Injury/drug therapy
- Acute Lung Injury/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Bleomycin
- Disease Models, Animal
- Lung/metabolism
- Lung/drug effects
- Mice, Inbred C57BL
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/metabolism
- Receptors, Interleukin-1/antagonists & inhibitors
- Receptors, Interleukin-1/metabolism
Collapse
Affiliation(s)
- Émilie Meunier
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Mélissa Aubin vega
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Damien Adam
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Anik Privé
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
| | | | - Isabelle Lahaie
- Centre de recherche du Centre hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
| | - Christiane Quiniou
- Centre de recherche du Centre hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
| | - Sylvain Chemtob
- Centre de recherche du Centre hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
- Département de pédiatrieUniversité de MontréalMontréalQuébecCanada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
14
|
Rezabakhsh A, Mojtahedi F, Tahsini Tekantapeh S, Mahmoodpoor A, Ala A, Soleimanpour H. Therapeutic Impact of Tocilizumab in the Setting of Severe COVID-19; an Updated and Comprehensive Review on Current Evidence. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2024; 12:e47. [PMID: 38994467 PMCID: PMC11239185 DOI: 10.22037/aaem.v12i1.2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Introduction The COVID-19 pandemic caused by SARS-CoV-2 has been the major health concern in 2019 globally. Considering the severity and phase of the disease, various pharmacotherapy schedules were proposed. Here, we set out to provide close-up insights on the clinical utility of Tocilizumab (TCZ), a biologic monoclonal antibody in this regard. Methods In this comprehensive review, various databases, including Scopus, PubMed Central, Medline, Embase, Google Scholar, and preprint publishers (med/bioRxiv) were searched until January 30, 2024, according to the keywords and search criteria. Results Besides the pros and cons, compelling evidence purported the safety and efficacy of TCZ and indicated that it exhibits great potential to reduce short-term and all-cause (28-30-day) mortality. TCZ significantly drops the adverse events if administered in the right time course (in the inflammatory phase) during critical/severe COVID-19 pneumonia. Despite contradictory results, the benefits of TCZ appear significant, especially in combination with add-on therapies, such as corticosteroids. Although the safety of TCZ is acceptable, solid data is lacking as to its benefits during pregnancy. There are limited data on TCZ combination therapies, such as hemoperfusion, intravenous immunoglobulin (IVIG), simple O2 therapy, vasopressor support, convalescent plasma therapy, and even in vaccinated patients and COVID-19 reinfection, especially in elderly persons. In addition, the impact of TCZ therapy on the long-lasting COVID-19 is unclear. Conclusion Personalized medicine based on individual characteristics and pertinent clinical conditions must be considered in the clinicians' decision-making policy. Finally, to mitigate the risk-to-benefit ratio of TCZ, a treatment algorithm, based on available literature and updated national institute of health (NIH) and Infectious Diseases Society of America (IDSA) guidelines, is also proposed.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- These authors contributed equally as the first co-authors
| | - Fatemeh Mojtahedi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- These authors contributed equally as the first co-authors
| | - Sepideh Tahsini Tekantapeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Rheumatology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ala
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Soleimanpour
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Özşahin A, Ilgar T, Mahmutoğlu Çolak S, Akyüz K, Gözükara MG, Kostakoğlu U, Yildiz İE, Ertürk A. The sharp edge of immunosuppressive treatments: infections. Turk J Med Sci 2024; 54:752-760. [PMID: 39295623 PMCID: PMC11407327 DOI: 10.55730/1300-0144.5845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/23/2024] [Accepted: 05/07/2024] [Indexed: 09/21/2024] Open
Abstract
Background and aim Different side effects, including infections, are encountered in patients receiving anticytokines used for the treatment of severe coronavirus disease 2019 (COVID-19). The aim of this study was to evaluate the infections and the effects of these infections that develop in this patient group. Materials and Methods This study included 208 patients who were followed-up with the diagnosis of severe COVID-19 in two different hospitals. Patient data were obtained retrospectively from the hospital information system. Results Of the 208 patients included, 54 were in the anakinra group, and 154 were in the tocilizumab group. Of these patients, 73 (35.1%) developed infection, 160 (76.9%) were admitted to the intensive care unit (ICU), and the 30-day mortality rate was 46.6%. The ICU admission, 30-day mortality, and infection rates were higher in the anakinra group, but it was not statistically significant (p = 0.137, p = 0.127, and p = 0.132, respectively), while pneumonia and bloodstream infection (BSI) rates were higher (p = 0.043 and p = 0.010 respectively). The 30-day mortality rate was significantly higher in patients who developed infection, especially in the tocilizumab group (p < 0.001 and p = 0.001). The independent risk factors affecting the development of infection were evaluated via regression analysis, in which it was found that age, sex, and the type of immunosuppressive treatment had no significant effect, while ICU admission increased the risk of infection by 32.8 times (95% CI: 4.4-245.8) and each day of hospitalization slightly increased the risk of infection by 1.06 times (95% CI: 1.03-1.09). Conclusion Infection rates were higher in the anakinra group, especially the pneumonia and BSI rates were higher than in the tocilizumab group. The 30-day mortality rates were higher in patients who had an infection, especially in the tocilizumab group. This is one of the rare studies that evaluated infections developing in patients treated with anakinra and tocilizumab together.
Collapse
Affiliation(s)
- Aybegüm Özşahin
- Department of Infectious Diseases and Clinical Microbiology, Recep Tayyip Erdoğan University Training and Research Hospital, Rize, Turkiye
| | - Tuba Ilgar
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkiye
| | - Sudem Mahmutoğlu Çolak
- Department of Infectious Diseases and Clinical Microbiology, Recep Tayyip Erdoğan University Training and Research Hospital, Rize, Turkiye
| | - Kübra Akyüz
- Department of Pulmonary Diseases, Üsküdar State Hospital, İstanbul, Turkiye
| | - Melih Gaffar Gözükara
- Department of Public Health, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkiye
| | - Uğur Kostakoğlu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkiye
| | - İlknur Esen Yildiz
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkiye
| | - Ayşe Ertürk
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkiye
| |
Collapse
|
16
|
Rodríguez-Hernández MÁ, Baena-Bustos M, Carneros D, Zurita-Palomo C, Muñoz-Pinillos P, Millán J, Padillo FJ, Smerdou C, von Kobbe C, Rose-John S, Bustos M. Targeting IL-6 trans-signalling by sgp130Fc attenuates severity in SARS-CoV-2 -infected mice and reduces endotheliopathy. EBioMedicine 2024; 103:105132. [PMID: 38677182 PMCID: PMC11061249 DOI: 10.1016/j.ebiom.2024.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.
Collapse
Affiliation(s)
- María Ángeles Rodríguez-Hernández
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain.
| | - Mercedes Baena-Bustos
- Pneumology Unit, Institute of Biomedicine of Seville (IBiS), Virgen Macarena University Hospital (HUVM), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - David Carneros
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Carola Zurita-Palomo
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Pablo Muñoz-Pinillos
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Francisco Javier Padillo
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain
| | - Cayetano von Kobbe
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | | | - Matilde Bustos
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain.
| |
Collapse
|
17
|
Zhang G, Su L, Wu W, Qiao Q, Gao S, Zhang Y, Zhang Y. Efficacy of different doses of corticosteroids in treating severe COVID-19 pneumonia. Virol J 2024; 21:74. [PMID: 38532424 PMCID: PMC10967132 DOI: 10.1186/s12985-024-02345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/17/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND To investigate the efficacy of different doses of corticosteroids in treating severe coronavirus disease 2019 (COVID-19) pneumonia. METHODS Between May 01, 2023, and June 20, 2023, 48 patients with severe COVID-19 pneumonia were treated at the Department of Respiratory and Critical Care Medicine of Jinan Fourth People's Hospital. The observation group (21 patients) received standard care and high-dose corticosteroids, (high-dose group). The control group (27 patients) received standard care and low-dose corticosteroids (low-dose group). We collected baseline data and recorded inflammatory marker levels after 3 days of treatment, body temperature recovery time, length of stay, and 28-day all-cause mortality. The results of outpatient follow-up were recorded after 1 month. RESULTS There were no significant differences in 28-day mortality and length of stay. The number of days it took for body temperature to return to normal in the high-dose group was less than in the low-dose group. The high-dose group had significantly more reduced inflammatory factors (C-reactive protein (CRP), interleukin-6 (IL-6). A total of 20 discharged patients were given 8-16 mg of methylprednisolone, depending on chest computed tomography (CT) and clinical symptoms after 1 month; in all discharged patients using oral corticosteroids, CT features improved. CONCLUSION High-dose corticosteroids had a significantly positive effect on the reduction of inflammatory factors and shortening body temperature recovery time. In the treatment of severe COVID-19 pneumonia, early administration of high-dose, short-course corticosteroids should be implemented.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| | - Lin Su
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China.
| | - Wenwen Wu
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| | - Qing Qiao
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| | - Shuncui Gao
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| | - Yan Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| | - Yanmei Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan Fourth People's Hospital, Shandong Jinan, 250000, China
| |
Collapse
|
18
|
Lacy MG, Filippov E, Nematollahi S. Controlling infections in hospitalized pretransplant candidates. Curr Opin Organ Transplant 2024; 29:56-63. [PMID: 37991047 DOI: 10.1097/mot.0000000000001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
PURPOSE OF REVIEW Infections in hospitalized patients awaiting solid organ transplantation can pose complicated diagnostic and therapeutic challenges. Goals of management include stabilizing the patient, treating or controlling infections, and decreasing the risk of reactivation of infection after transplant. RECENT FINDINGS Groups such as The Organ Procurement and Transplantation Network, American Society of Transplantation Infectious Diseases Community of Practice and the European Society of Clinical Microbiology and Infectious Diseases have updated their guidelines on screening and treatment of infection in transplant candidates. There are also recent developments in therapeutic options for tuberculosis, COVID-19, Clostridioides difficile colitis, bloodstream infections, and other common infections. SUMMARY Ideally, antimicrobial therapy should be complete prior to transplantation. In situations in which completion of therapy prior to transplant is not feasible, therapy may need to be prolonged or modified. In most situations, infections can be managed similarly to the general population, although some infections, particularly fungal and mycobacterial, require a different management approach. We review disease- and organ-specific management.
Collapse
Affiliation(s)
- Marian G Lacy
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Evgenii Filippov
- Department of Medicine, Sinai Hospital of Baltimore, Baltimore, Maryland, USA
| | - Saman Nematollahi
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
19
|
Guzel E, Mete B, Baydar Toprak O, Ates Ayhan N, Firat A, Bulut Y, Bayrakci S, Ozel Yesilyurt A, Ozyilmaz E. Use of CRP/lymphocyte ratio as a predictor of treatment selection and mortality in COVID-19 patients in the intensive care unit. Int J Immunopathol Pharmacol 2024; 38:3946320241303331. [PMID: 39699047 DOI: 10.1177/03946320241303331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
This study primarily aimed to examine the significance of the C-reactive protein to lymphocyte ratio (CLR), a key marker of inflammation, in relation to the disease progression and management of COVID-19 patients admitted to the intensive care unit (ICU). A total of 464 patients aged 18 years or older, diagnosed with COVID-19 and admitted to the ICU between April 1, 2021, and February 1, 2022, were included in the study. Sociodemographic, laboratory, radiological, and clinical data were collected for each patient. The cohort was then divided into two groups-those who survived and those who did not-and analyzed accordingly. Among the patients included in the study, 58.2% were male, and the mean age was 62.39 ± 15.65 years. The mortality rate was 42%. The analysis revealed that the need for high-flow oxygen and mechanical ventilation increased the risk of death by 9.64 times. Furthermore, for each 1-point increase in the SOFA Score, Charlson Comorbidity Index, and Nutric Score, the risk of death increased by 1.27, 1.18, and 1.40 times, respectively. Intravenous immunoglobulin, administered to a select group of patients, reduced the risk of death by 23.8 times. The optimal threshold value for CLR was identified as 103.05, with values above this increasing the risk of death by 1.84 times. Critically ill patients with CLR values exceeding the identified threshold should receive more intensive monitoring and timely adjustments in treatment. Given that CLR is a simple, accessible, and cost-effective marker, it holds particular value in managing aggressive diseases like COVID-19.
Collapse
Affiliation(s)
- Efraim Guzel
- Department of Chest Diseases, Cukurova University, Adana, Turkey
| | - Burak Mete
- Department of Public Health, Cukurova University, Adana, Turkey
| | | | - Nazire Ates Ayhan
- Department of Intensive Care Unit, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Ahmet Firat
- Department of Intensive Care Unit, Aksaray Training and Research Hospital, Aksaray, Turkey
| | - Yurdaer Bulut
- Department of Intensive Care Unit, Adana Baskent University Seyhan Application and Research Hospital, Adana, Turkey
| | - Sinem Bayrakci
- Department of Intensive Care Unit, Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | | | - Ezgi Ozyilmaz
- Department of Intensive Care Unit, Cukurova University, Adana, Turkey
| |
Collapse
|
20
|
Howard-Jones AR, Huang S, Orde SR, Branley JM. Risk factors for mortality in severe COVID-19: Exploring the interplay of immunomodulatory therapy and coinfection. Anaesth Intensive Care 2024; 52:52-63. [PMID: 37717183 DOI: 10.1177/0310057x231183451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
Patients with severe clinical manifestations of coronavirus disease 2019 (COVID-19) present particular diagnostic and management challenges to critical care physicians, including identifying and responding to concurrent bacterial and fungal coinfections. This study evaluates risk factors for in-hospital mortality in patients admitted to the intensive care unit with severe COVID-19 during circulation of the B.1.617.2 (Delta) variant, including the impact of immunomodulators and bacterial and/or fungal coinfection. This retrospective cohort study enrolled patients with severe COVID-19. A Cox proportional hazard ratio analysis identified risk factors for in-hospital mortality. Outcomes were also compared between patients receiving and not receiving immunomodulatory therapy alongside standard care. Ninety patients admitted to the intensive care unit were enrolled. On multivariate analysis, the greatest risk factors for in-hospital mortality were invasive mechanical ventilation (hazard ratio (HR) = 15.27; 95% confidence interval (CI) 3.29-71.0; P < 0.001), elevated body mass index (HR = 1.07 per unit; 95% CI 1.02-1.13; P = 0.007) and older age (HR = 1.53 per decade; 95% CI 1.05-2.24; P = 0.028). Bacterial and/or fungal coinfection occurred at equal frequency in patients receiving and not receiving immunomodulatory therapy. However, in patients receiving immunomodulators, coinfection carried a significantly higher mortality risk (63.0%) compared with those without coinfection (15.4%; P = 0.038). Mortality from severe COVID-19 is significantly higher in older patients and those with elevated body mass index and requiring mechanical ventilation. Immunomodulatory therapy necessitates vigilance towards evolving coinfection in the intensive care setting.
Collapse
Affiliation(s)
- Annaleise R Howard-Jones
- New South Wales Health Pathology-Nepean, Nepean Hospital, Kingswood, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Stephen Huang
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, Australia
| | - Sam R Orde
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, Australia
| | - James M Branley
- New South Wales Health Pathology-Nepean, Nepean Hospital, Kingswood, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Infectious Diseases and Microbiology, Nepean Hospital, Kingswood, Australia
| |
Collapse
|
21
|
Quincho-Lopez A, Poma N, José Montenegro-Idrogo J. COVID-19 associated with cryptococcosis: a scoping review. Ther Adv Infect Dis 2024; 11:20499361241232851. [PMID: 38361915 PMCID: PMC10868154 DOI: 10.1177/20499361241232851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Background There is growing evidence of fungal infections associated with COVID-19. The development of cryptococcosis in these patients has been infrequently reported. However, it can be life-threatening. Objective To identify cases of COVID-19 patients who developed cryptococcosis and to compare baseline characteristics and management between those who survived and those who died. Methods We conducted a scoping review using PubMed, Scopus, Web of Science, and Embase to identify studies that reported patients with COVID-19 and cryptococcosis. No language restriction was applied. Single case reports, case series, and original articles were included. It is important to note that 'n' refers to the total number of individuals with the specified variable. Results A total of 58 studies were included. Among these studies, 51 included individual patient data, detailing information on a total of 65 patients, whereas eight studies reported the proportion of cryptococcosis in COVID-19 patients. One study provided both individual and aggregate case information. From individual patient data, the majority were male (73.9%; n = 48) with a median age of 60 years (range: 53-70). Severe COVID-19 and multiple comorbidities, led by arterial hypertension and diabetes mellitus, were frequently reported, but few had classic immunosuppression factors. On the other hand, HIV status, either negative or positive, was reported in just over half of the patients (61.5%; n = 40). Most were admitted to the intensive care unit (ICU) (58.5%; n = 31), received mechanical ventilation (MV) (50.0%; n = 26), and developed disseminated cryptococcosis (55.4%; n = 36). Secondary infection, mainly bacterial, was reported in 19 patients (29.2%). Mortality was 47.7% (n = 31). Of the studies that reported the proportion of cryptococcosis in COVID-19 cases, the majority were descriptive studies published as conference abstracts. Conclusion Cryptococcosis in COVID-19 patients has been reported more frequently. However, it is still not as common as other fungal infections associated with COVID-19. Few patients have some classic immunosuppression factors. The factors associated with mortality were male sex, age, ICU admission, MV, secondary infections, and lymphopenia.
Collapse
Affiliation(s)
- Alvaro Quincho-Lopez
- Unidad de Investigación en Bibliometría, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| | - Nuvith Poma
- Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Juan José Montenegro-Idrogo
- Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru
- Infectious Diseases and Tropical Medicine Service, Hospital Nacional Dos de Mayo, Lima, Peru
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
22
|
Ho M, Levy TJ, Koulas I, Founta K, Coppa K, Hirsch JS, Davidson KW, Spyropoulos AC, Zanos TP. Longitudinal dynamic clinical phenotypes of in-hospital COVID-19 patients across three dominant virus variants in New York. Int J Med Inform 2024; 181:105286. [PMID: 37956643 PMCID: PMC10843635 DOI: 10.1016/j.ijmedinf.2023.105286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND COVID-19 is a challenging disease to characterize given its wide-ranging heterogeneous symptomatology. Several studies have attempted to extract clinical phenotypes but often relied on data from small patient cohorts, usually limited to only one viral variant and utilizing a static snapshot of patient data. OBJECTIVE This study aimed to identify clinical phenotypes of hospitalized COVID-19 patients and investigate their longitudinal dynamics throughout the pandemic, with the goal to relate these phenotypes to clinical outcomes and treatment strategies. METHODS We utilized routinely collected demographic and clinical data throughout the hospitalization of 38,077 patients admitted between 3/2020 to 5/2022, in 12 New York hospitals. Uniform Manifold Approximation and Projection and agglomerative hierarchical clustering were used to derive the clusters, followed by exploratory data analysis to compare the prevalence of comorbidities and treatments per cluster. RESULTS 4 distinct clinical phenotypes remained robust in multi-site validation and were associated with different mortality rates. The temporal progression of these phenotypes throughout the COVID-19 pandemic demonstrated increased variability across the waves of the three dominant viral variants (alpha, delta, omicron). Longitudinal analysis evaluating changes in clinical phenotypes of each patient throughout the course of a 4-week hospital stay exemplified the dynamic nature of the disease progression. Factors such as sex, race/ethnicity and specific treatment modalities revealed significant and clinically relevant differences between the observed phenotypes. CONCLUSIONS Our proposed methodology has the potential of enabling clinicians and policy makers to draw evidence-based conclusions for guiding treatment modalities in a dynamic fashion.
Collapse
Affiliation(s)
- Matthew Ho
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Todd J Levy
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Ioannis Koulas
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Kyriaki Founta
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Kevin Coppa
- Department of Clinical Digital Solutions, Northwell Health, New Hyde Park, NY 11042
| | - Jamie S Hirsch
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549; Department of Clinical Digital Solutions, Northwell Health, New Hyde Park, NY 11042
| | - Karina W Davidson
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Alex C Spyropoulos
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Theodoros P Zanos
- Institute of Health Systems Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549.
| |
Collapse
|
23
|
Lisius G, Duttagupta R, Ahmed AA, Hensley M, Al-Yousif N, Lu M, Bain W, Shah F, Blauwkamp TA, Bercovici S, Schaefer C, Qin S, Wang X, Zhang Y, Mitchell KJ, Hughes EK, Jacobs JL, Naqvi A, Haidar G, Mellors JW, Methé B, McVerry BJ, Morris A, Kitsios GD. Noninvasive diagnosis of secondary infections in COVID-19 by sequencing of plasma microbial cell-free DNA. iScience 2023; 26:108093. [PMID: 37965142 PMCID: PMC10641743 DOI: 10.1016/j.isci.2023.108093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Secondary infection (SI) diagnosis in severe COVID-19 remains challenging. We correlated metagenomic sequencing of plasma microbial cell-free DNA (mcfDNA-Seq) with clinical SI assessment, immune response, and outcomes. We classified 42 COVID-19 inpatients as microbiologically confirmed-SI (Micro-SI, n = 8), clinically diagnosed-SI (Clinical-SI, n = 13, i.e., empiric antimicrobials), or no-clinical-suspicion-for-SI (No-Suspected-SI, n = 21). McfDNA-Seq was successful in 73% of samples. McfDNA detection was higher in Micro-SI (94%) compared to Clinical-SI (57%, p = 0.03), and unexpectedly high in No-Suspected-SI (83%), similar to Micro-SI. We detected culture-concordant mcfDNA species in 81% of Micro-SI samples. McfDNA correlated with LRT 16S rRNA bacterial burden (r = 0.74, p = 0.02), and biomarkers (white blood cell count, IL-6, IL-8, SPD, all p < 0.05). McfDNA levels were predictive of worse 90-day survival (hazard ratio 1.30 [1.02-1.64] for each log10 mcfDNA, p = 0.03). High mcfDNA levels in COVID-19 patients without clinical SI suspicion may suggest SI under-diagnosis. McfDNA-Seq offers a non-invasive diagnostic tool for pathogen identification, with prognostic value on clinical outcomes.
Collapse
Affiliation(s)
- Grace Lisius
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | - Matthew Hensley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nameer Al-Yousif
- Division of Pulmonary, Critical Care, and Sleep Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Michael Lu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | | | | | - Caitlin Schaefer
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Ellen K. Hughes
- Computer Vision Group, VeyTel LLC, Pittsburgh, PA 15217, USA
| | - Jana L. Jacobs
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - Asma Naqvi
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - Ghady Haidar
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - John W. Mellors
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15213, USA
| | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Crook P, Logan C, Mazzella A, Wake RM, Cusinato M, Yau T, Ong YE, Planche T, Basarab M, Bicanic T. The impact of immunosuppressive therapy on secondary infections and antimicrobial use in COVID-19 inpatients: a retrospective cohort study. BMC Infect Dis 2023; 23:808. [PMID: 37978457 PMCID: PMC10656831 DOI: 10.1186/s12879-023-08697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Immunosuppressive therapies have become a cornerstone of the management of severe COVID-19. The impact of these therapies on secondary infections and antimicrobial prescribing remains unclear. We sought to assess antimicrobial use and the incidence of bacterial and fungal infections in patients with severe COVID-19, and to explore their associations with receipt of immunosuppressive therapies. METHODS Our retrospective cohort study included 715 hospitalised, adult patients with severe COVID-19 admitted to St George's Hospital, London, UK, during the first UK pandemic wave (1st March-10th June 2020). Co-infections (occurring within 48 h of admission) and secondary infections (≥ 48 h) were defined as a positive microbiological culture with supporting clinical, radiological or laboratory data to suggest true infection. Cox regression models with time-dependent covariates were used to explore the association between immunosuppressant use and secondary infection. RESULTS Microbiologically confirmed co-infection occurred in 4.2% (n = 30) and secondary infection in 9.3% (n = 66) of the cohort (n = 715) and were associated with in-hospital mortality (48% vs 35%, OR 1.8, 95%CI 1.1-2.7, p = 0.01). Respiratory (n = 41, 39%) and bloodstream infections (n = 38, 36%) predominated, with primarily Gram-negative pathogens. 606 (84.7%) patients received an antimicrobial, amounting to 742 days of therapy per 1000 patient-days (DOTs). In multivariable models, receipt of high-dose steroids (≥ 30 mg prednisolone or equivalent) or tocilizumab was significantly associated with increased antimicrobial consumption (+ 5.5 DOTs, 95%CI 3.4-7.7 days) but not secondary infection (HR 0.56, 95%CI 0.26-1.18). CONCLUSIONS Bacterial and fungal infections in severe COVID-19 were uncommon. Receipt of steroids or tocilizumab was independently associated with antimicrobial consumption despite its lack of association with secondary infection. These findings should galvanise efforts to promote antimicrobial stewardship in patients with COVID-19.
Collapse
Affiliation(s)
- Peter Crook
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| | - Clare Logan
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK.
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK.
| | - Andrea Mazzella
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| | - Rachel M Wake
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| | - Martina Cusinato
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| | - Ting Yau
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Yee-Ean Ong
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
- Institute of Medical and Biomedical Education, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Timothy Planche
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| | - Marina Basarab
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Tihana Bicanic
- St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
- Institute of Infection & Immunity, St George's, University London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
25
|
Guo W, Zheng Y, Feng S. Omicron related COVID-19 prevention and treatment measures for patients with hematological malignancy and strategies for modifying hematologic treatment regimes. Front Cell Infect Microbiol 2023; 13:1207225. [PMID: 37928188 PMCID: PMC10622671 DOI: 10.3389/fcimb.2023.1207225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 has rapidly become the dominant strain worldwide due to its high transmissibility, although it appears to be less pathogenic than previous strains. However, individuals with hematological malignancy (HM) and COVID-19 remain susceptible to severe infection and mortality, especially those with chronic lymphocytic leukemia (CLL) and those undergoing chimeric antigen receptor T-cell (CAR-T) treatment. Hematologists should thoroughly assess the severity of the patient's hematological disease and the potential risk of SARS-CoV-2 infection before initiating chemotherapy or immunosuppressive treatment. Vaccination and booster doses are strongly recommended and patients with a poor vaccine response may benefit from long-acting COVID-19 neutralizing monoclonal antibodies (such as Evusheld). Early use of small molecule antiviral drugs is recommended for managing mild COVID-19 in HM patients and those with severe immunodeficiency may benefit from SARS-CoV-2 neutralizing monoclonal antibody therapy and high-titer COVID-19 convalescent plasma (CCP). For moderate to severe cases, low-dose glucocorticoids in combination with early antiviral treatment can be administered, with cytokine receptor antagonists or JAK inhibitors added if the condition persists or worsens. In the treatment of hematological malignancies, delaying chemotherapy is preferable for CLL, acute leukemia (AL), and low-risk myelodysplastic syndrome (MDS), but if the disease progresses, appropriate adjustments in dosage and frequency of treatment are required, with the avoidance of anti-CD20 monoclonal antibody, CAR-T and hematopoietic stem cell transplantation (HSCT). Patients with chronic myelocytic leukemia (CML) and myeloproliferative neoplasms (MPNs) can continue current treatment. What's more, non-drug protective measures, the development of new vaccines and antiviral drugs, and monitoring of mutations in immunocompromised populations are particularly important.
Collapse
Affiliation(s)
- Wenjing Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
26
|
Membrillo de Novales FJ, Ramírez-Olivencia G, Mata Forte MT, Zamora Cintas MI, Simón Sacristán MM, Sánchez de Castro M, Estébanez Muñoz M. The Impact of Antibiotic Prophylaxis on a Retrospective Cohort of Hospitalized Patients with COVID-19 Treated with a Combination of Steroids and Tocilizumab. Antibiotics (Basel) 2023; 12:1515. [PMID: 37887216 PMCID: PMC10604609 DOI: 10.3390/antibiotics12101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVES In the context of COVID-19, patients with a severe or critical illness may be more susceptible to developing secondary bacterial infections. This study aims to investigate the relationship between the use of prophylactic antibiotic therapy and the occurrence of bacterial or fungal isolates following the administration of tocilizumab in hospitalized COVID-19 patients who had previously received steroids during the first and second waves of the pandemic in Spain. METHODS This retrospective observational study included 70 patients hospitalized with COVID-19 who received tocilizumab and steroids between January and December 2020. Data on demographics, comorbidities, laboratory tests, microbiologic results, treatment, and outcomes were collected from electronic health records. The patients were divided into two groups based on the use of antibiotic prophylaxis, and the incidence of bacterial and fungal colonizations/infections was analyzed. RESULTS Among the included patients, 45 patients received antibiotic prophylaxis. No significant clinical differences were observed between the patients based on prophylaxis use regarding the number of clinically diagnosed infections, ICU admissions, or mortality rates. However, the patients who received antibiotic prophylaxis showed a higher incidence of colonization by multidrug-resistant bacteria compared to that of the subgroup that did not receive prophylaxis. The most commonly isolated microorganisms were Candida albicans, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus epidermidis. Conclusions: In this cohort of hospitalized COVID-19 patients treated with tocilizumab and steroids, the use of antibiotic prophylaxis did not reduce the incidence of secondary bacterial infections. However, it was associated with an increased incidence of colonization by multidrug-resistant bacteria.
Collapse
Affiliation(s)
| | - Germán Ramírez-Olivencia
- CBRN and Infectious Diseases Department, Hospital Central de la Defensa “Gómez Ulla”, 28047 Madrid, Spain
| | - Maj. Tatiana Mata Forte
- CBRN and Infectious Diseases Department, Hospital Central de la Defensa “Gómez Ulla”, 28047 Madrid, Spain
| | | | | | | | - Miriam Estébanez Muñoz
- CBRN and Infectious Diseases Department, Hospital Central de la Defensa “Gómez Ulla”, 28047 Madrid, Spain
| |
Collapse
|
27
|
Paszynska E, Gawriolek M, Hernik A, Otulakowska-Skrzynska J, Winiarska H, Springer D, Roszak M, Slebioda Z, Krahel A, Cofta S. Prevalence of oral complications in the course of severe SARS-CoV-2 infection under mechanical non-invasive ventilation. Eur J Med Res 2023; 28:293. [PMID: 37608339 PMCID: PMC10463896 DOI: 10.1186/s40001-023-01273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND The management of oral health during severe symptoms of Covid-19 is still a challenge, especially in intensive care units under invasive/noninvasive ventilation in hospital. Understanding the cause-and-effect relationships may allow for individual adjustment of oral care recommendations during Covid-19 disease. The study's objective was to assess Covid-19 patients' oral health status under hospital treatment due to pulmonary adverse Covid-19 outcomes. MATERIAL AND METHODS Covid-19 patients (mean age 74.4 ± 15.4; n = 120, male n = 50/female n = 70) were admitted to hospital in the acute phase of Covid-19 between January and March 2022 who required oxygen therapy due to pneumonia, rapid respiratory failure, low saturation. Blood and radiological tests were taken according to National Health Fund guidelines. The condition of teeth (Decayed, Missing, Filled teeth as DMFT index), dental hygiene (Plaque Control Record as PCR index), periodontal status (probing depth PD, clinical attachment CAL, bleeding on probing BOP) and oral mucosa (BRUSHED and Beck scores) were examined. RESULTS Charateristics of the teeth (dental caries 35.2%, DMFT Median 22), plaque retention (83.4%), advanced periodontitis (48.3%), xerostomia (74.2%), oral mucosa inflammation (80.8%), angular cheilitis (53.3%), hemorrhagic (21.7%) showed a high incidence of harmful oral conditions. BRUSHED model and Beck score indicated moderate oral dysfunction and need for oral care every 8 h. Spearman's analysis revealed a significant positive correlation between pneumonia and neutrophile, interleukin-6 IL-6, C-reactive protein CRP (p = 0.01, p < 0.001, p < 0.001), negative to lymphocyte count (p < 0.001). Multiple and logistic regressions selected the following risk predictors for pneumonia as IL-6, CRP, obesity and for severe COVID-19 symptoms D-dimer level and a lack of targeted vaccination (p < 0.001). Among oral predictors, the PCR index and Beck score were significant for both outcomes (respectively p < 0.001, p < 0.012). Patients who received oxygen therapy with face masks had more often angular heilitis and debris (p = 0.025, p = 0.035). CONCLUSIONS COVID-19 hospitalised patients with severe symptoms crossing with poor oral health-related conditions. This may exacerbate a response for COVID infection, and play a role in cytokine storm. For Covid-19 management, to inhibit extraoral/intraoral complications, it is recommended to adjust oral hygiene procedures, including antibacterial, protective, moisturising agents after individual oral health assessment.
Collapse
Affiliation(s)
- Elzbieta Paszynska
- Department of Integrated Dentistry, Poznan University of Medical Sciences (PUMS), Bukowska st. 70, 60-812, Poznan, Poland.
| | - Maria Gawriolek
- Department of Integrated Dentistry, Poznan University of Medical Sciences (PUMS), Bukowska st. 70, 60-812, Poznan, Poland
| | - Amadeusz Hernik
- Department of Integrated Dentistry, Poznan University of Medical Sciences (PUMS), Bukowska st. 70, 60-812, Poznan, Poland
| | - Justyna Otulakowska-Skrzynska
- Department of Integrated Dentistry, Poznan University of Medical Sciences (PUMS), Bukowska st. 70, 60-812, Poznan, Poland
| | - Hanna Winiarska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences (PUMS), Szamarzewskiego 82/84, 60-569, Poznan, Poland
| | - Daria Springer
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences (PUMS), Szamarzewskiego 82/84, 60-569, Poznan, Poland
| | - Magdalena Roszak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences (PUMS), Rokietnicka st. 7, 60-806 Poznan, Poland
| | - Zuzanna Slebioda
- Department of Gerodontology and Oral Pathology, Poznan University of Medical Sciences, 60-812 Poznan, Bukowska st. 70, Poland
| | - Anna Krahel
- Department of Integrated Dentistry, Poznan University of Medical Sciences (PUMS), Bukowska st. 70, 60-812, Poznan, Poland
| | - Szczepan Cofta
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences (PUMS), Szamarzewskiego 82/84, 60-569, Poznan, Poland
| |
Collapse
|
28
|
Osborn R, Alamri M, Tomic R, Ison MG. Infectious Complications of Lung Transplant for Coronavirus Disease 2019-Associated Lung Injury: A Single-Center Case-Control Cohort Study. Clin Infect Dis 2023; 77:220-228. [PMID: 36942560 PMCID: PMC10517091 DOI: 10.1093/cid/ciad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Lung transplantation is one of the only options for patients with severe coronavirus disease 2019 (COVID-19)-associated lung injury (CALI). Studies on patients who received a lung transplant for CALI have, to date, not looked at the infectious outcomes. METHODS After institutional review board approval, a retrospective case-control cohort study, matched 1:1, collected data on patients who underwent lung transplantation for CALI (case) and for non-COVID-19 end-stage lung disease (control) between 1 June 2020 and 1 April 2022 at a large academic hospital in Chicago. We assessed infectious complications and other key outcomes pre-transplant and for 1 year post-transplant. RESULTS Among 78 patients (39 CALI and 39 matched control lung transplant patients), those in the CALI cohort were less likely to be vaccinated pre-transplant and were more likely to have diabetes, to be obese, to not be ambulatory, and to require pre-transplant extracorporeal membrane oxygenation and mechanical ventilation. Patients transplanted for CALI had higher rates of infection pre-transplant (66.7% vs 15.4% of patients in the control) and in the first 30 days post-transplant (43.6% vs 20.5%). Numbers and types of infection were similar in both groups at other time points. One-year mortality was similar for CALI and control groups (12.8% vs 10.3%, respectively). CONCLUSIONS Patients who received a lung transplant for CALI are more deconditioned with prolonged hospital stays and experience more infectious complications immediately pre- and post-transplant. Infections due to multidrug-resistant organisms are important contributors to morbidity and mortality in this population. Antimicrobial stewardship is urgently needed.
Collapse
Affiliation(s)
- Rebecca Osborn
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maha Alamri
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rade Tomic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael G Ison
- Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| |
Collapse
|
29
|
Chen S, Zhang C, Chen D, Dong L, Chang T, Tang ZH. Advances in attractive therapeutic approach for macrophage activation syndrome in COVID-19. Front Immunol 2023; 14:1200289. [PMID: 37483597 PMCID: PMC10358730 DOI: 10.3389/fimmu.2023.1200289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Nowadays, people have relaxed their vigilance against COVID-19 due to its declining infection numbers and attenuated virulence. However, COVID-19 still needs to be concern due to its emerging variants, the relaxation of restrictions as well as breakthrough infections. During the period of the COVID-19 infection, the imbalanced and hyper-responsive immune system plays a critical role in its pathogenesis. Macrophage Activation Syndrome (MAS) is a fatal complication of immune system disease, which is caused by the excessive activation and proliferation of macrophages and cytotoxic T cells (CTL). COVID-19-related hyperinflammation shares common clinical features with the above MAS symptoms, such as hypercytokinemia, hyperferritinemia, and coagulopathy. In MAS, immune exhaustion or defective anti-viral responses leads to the inadequate cytolytic capacity of CTL which contributes to prolonged interaction between CTL, APCs and macrophages. It is possible that the same process also occurred in COVID-19 patients, and further led to a cytokine storm confined to the lungs. It is associated with the poor prognosis of severe patients such as multiple organ failure and even death. The main difference of cytokine storm is that in COVID-19 pneumonia is mainly the specific damage of the lung, while in MAS is easy to develop into a systemic. The attractive therapeutic approach to prevent MAS in COVID-19 mainly includes antiviral, antibiotics, convalescent plasma (CP) therapy and hemadsorption, extensive immunosuppressive agents, and cytokine-targeted therapies. Here, we discuss the role of the therapeutic approaches mentioned above in the two diseases. And we found that the treatment effect of the same therapeutic approach is different.
Collapse
Affiliation(s)
- Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Dong
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Arcani R, Correard F, Suchon P, Kaplanski G, Jean R, Cauchois R, Leprince M, Arcani V, Seguier J, De Sainte Marie B, Andre B, Koubi M, Rossi P, Gayet S, Gobin N, Garrido V, Weiland J, Jouve E, Couderc AL, Villani P, Daumas A. Tocilizumab versus anakinra in COVID-19: results from propensity score matching. Front Immunol 2023; 14:1185716. [PMID: 37304271 PMCID: PMC10250610 DOI: 10.3389/fimmu.2023.1185716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background Tocilizumab and anakinra are anti-interleukin drugs to treat severe coronavirus disease 2019 (COVID-19) refractory to corticosteroids. However, no studies compared the efficacy of tocilizumab versus anakinra to guide the choice of the therapy in clinical practice. We aimed to compare the outcomes of COVID-19 patients treated with tocilizumab or anakinra. Methods Our retrospective study was conducted in three French university hospitals between February 2021 and February 2022 and included all the consecutive hospitalized patients with a laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection assessed by RT-PCR who were treated with tocilizumab or anakinra. A propensity score matching was performed to minimize confounding effects due to the non-random allocation. Results Among 235 patients (mean age, 72 years; 60.9% of male patients), the 28-day mortality (29.4% vs. 31.2%, p = 0.76), the in-hospital mortality (31.7% vs. 33.0%, p = 0.83), the high-flow oxygen requirement (17.5% vs. 18.3%, p = 0.86), the intensive care unit admission rate (30.8% vs. 22.2%, p = 0.30), and the mechanical ventilation rate (15.4% vs. 11.1%, p = 0.50) were similar in patients receiving tocilizumab and those receiving anakinra. After propensity score matching, the 28-day mortality (29.1% vs. 30.4%, p = 1) and the rate of high-flow oxygen requirement (10.1% vs. 21.5%, p = 0.081) did not differ between patients receiving tocilizumab or anakinra. Secondary infection rates were similar between the tocilizumab and anakinra groups (6.3% vs. 9.2%, p = 0.44). Conclusion Our study showed comparable efficacy and safety profiles of tocilizumab and anakinra to treat severe COVID-19.
Collapse
Affiliation(s)
- Robin Arcani
- Internal Medicine and Therapeutics Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Center for Cardiovascular and Nutrition Research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University, Marseille, France
| | | | - Pierre Suchon
- Hematology Laboratory, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Gilles Kaplanski
- Center for Cardiovascular and Nutrition Research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University, Marseille, France
- Internal Medicine and Clinical Immunology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Rodolphe Jean
- Internal Medicine and Clinical Immunology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Raphael Cauchois
- Center for Cardiovascular and Nutrition Research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University, Marseille, France
- Internal Medicine and Clinical Immunology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Marine Leprince
- Internal Medicine and Clinical Immunology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Vincent Arcani
- Pharmacy Department, CHU La Timone, AP-HM, Marseille, France
| | - Julie Seguier
- Internal Medicine Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Benjamin De Sainte Marie
- Internal Medicine Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Baptiste Andre
- Internal Medicine Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Marie Koubi
- Department of Internal Medicine, CHU Nord, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Pascal Rossi
- Department of Internal Medicine, CHU Nord, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Stéphane Gayet
- Internal Medicine and Therapeutics Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Nirvina Gobin
- Internal Medicine and Therapeutics Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Victoria Garrido
- Internal Medicine and Therapeutics Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Joris Weiland
- Internal Medicine and Therapeutics Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Elisabeth Jouve
- Service Evaluation Médicale, CHU la Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Anne-Laure Couderc
- Internal Medicine, Geriatrics and Therapeutic Department, CHU Sainte-Marguerite, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Patrick Villani
- Internal Medicine and Therapeutics Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Aurélie Daumas
- Internal Medicine and Therapeutics Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Center for Cardiovascular and Nutrition Research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University, Marseille, France
| |
Collapse
|
31
|
Swets MC, Moss RJ, Kor F, Hilarius D, Moes DJAR, Berkhout WE, van den Toorn LM, van den Oever NCG, de Valk R, Rosendaal FR, Hunfeld N, Groeneveld GH, de Boer MGJ. A comparison of the effectiveness of different doses of tocilizumab and sarilumab in the treatment of severe COVID-19: a natural experiment due to drug shortages. Int J Infect Dis 2023; 129:57-62. [PMID: 36738957 PMCID: PMC9893803 DOI: 10.1016/j.ijid.2023.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Interleukin (IL)-6 inhibitors are administered to treat patients hospitalized with COVID-19. In 2021, due to shortages, different dosing regimens of tocilizumab, and a switch to sarilumab, were consecutively implemented. Using real-world data, we compare the effectiveness of these IL-6 inhibitors. METHODS Hospitalized patients with COVID-19, treated with IL-6 inhibitors, were included in this natural experiment study. Sixty-day survival, hospital- and intensive care unit (ICU) length of stay, and progression to ICU or death were compared between 8 mg/kg tocilizumab, fixed-dose tocilizumab, low-dose tocilizumab, and fixed-dose sarilumab treatment groups. RESULTS A total of 5485 patients from 49 hospitals were included. After correction for confounding, increased hazard ratios (HRs) for 60-day mortality were observed for fixed-dose tocilizumab (HR 1.20, 95% confidence interval [CI] 1.04-1.39), low-dose tocilizumab (HR 1.12, 95% CI 0.97-1.31), and sarilumab (HR 1.24, 95% CI 1.08-1.42), all relative to 8 mg/kg. The 8 mg/kg dosing regimen had lower odds of progression to ICU or death. Both hospital- and ICU length of stay were shorter for low-dose tocilizumab than for the 8 mg/kg group. CONCLUSION We found differences in the probability of 60-day survival and the incidence of the combined outcome of mortality or ICU admission, mostly favoring 8 mg/kg tocilizumab. Because of potential time-associated residual confounding, further clinical studies are warranted.
Collapse
Affiliation(s)
- Maaike C Swets
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | - Rob J Moss
- Dutch National Medication Coordination Centre, The Hague, The Netherlands
| | - Flip Kor
- LOGEX, Amsterdam, The Netherlands
| | - Doranne Hilarius
- Department of Pharmacy, Red Cross Hospital, Beverwijk, The Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Leon M van den Toorn
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicole Hunfeld
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Geert H Groeneveld
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands; Department of Internal Medicine- Acute Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark G J de Boer
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
32
|
Vâţă A, Roşu FM, Dorneanu OS, Lehaci AE, Luca Ş, Loghin II, Miftode ID, Luca CM, Miftode EG. Antibiotic Usage in the COVID-19 Intensive Care Unit of an Infectious Diseases Hospital from Nord-Eastern Romania. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040645. [PMID: 37109601 PMCID: PMC10145934 DOI: 10.3390/medicina59040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives. The intensive care unit (ICU), especially in an infectious disease hospital, is both an area with a high consumption of antibiotics (atb) and a "reservoir" of multidrug-resistant bacteria. We proposed the analysis of antibiotic therapy practices in such a department that treated, in conditions of a pandemic wave, patients with COVID-19 and its complications. Materials and Methods. This was a retrospective transversal study of 184 COVID-19 patients treated in the ICU of a regional infectious disease hospital of Iaşi, Romania, in a 3-month interval of 2020 and 2021. Results. All the included patients (Caucasians, 53% males, with a median age of 68 years, and a Charlton comorbidity index of 3) received at least one antibiotic during their stay in the ICU (43% also had antibiotics prior to hospital admission and 68% in the Infectious Diseases ward). Only 22.3% of the ICU patients had only one antibiotic. A total of 77.7% of them started with an association of two antibiotics, and 19.6% of them received more than three antibiotics. The most-used ones were linezolid (77.2%), imipenem (75.5%), and ceftriaxone (33.7%). The median atb duration was 9 days. No change in the number or type of atb prescription was seen in 2021 (compared to 2020). Only 9.8% of the patients had a microbiological confirmation of bacterial infection. A total of 38.3% of the tested patients had elevated procalcitonin levels at ICU admission. The overall fatality rate was 68.5%, with no significant differences between the two analyzed periods or the number of administered antibiotics. More than half (51.1%) of the patients developed oral candidiasis during their stay in the ICU, but only 5.4% had C. difficile colitis. Conclusion. Antibiotics were widely used in our ICU patients in the presence of a reduced microbiological confirmation of a bacterial co-infection, and were justified by other clinical or biological criteria.
Collapse
Affiliation(s)
- Andrei Vâţă
- Department of Infectious Diseases, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Florin Manuel Roşu
- Department of Dento-Alveolar Surgery, Anesthesia, Sedation and Medical-Surgical Emergencies, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Olivia Simona Dorneanu
- Microbiology Department, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | | | - Ştefana Luca
- Department of Plastic Surgery and Reconstructive Microsurgery, "St Spiridon" County Emergency Hospital, 700111 Iasi, Romania
| | - Isabela Ioana Loghin
- Department of Infectious Diseases, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana Diandra Miftode
- Department of Radiology, "St. Spiridon" County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Cătălina Mihaela Luca
- Department of Infectious Diseases, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Egidia Gabriela Miftode
- Department of Infectious Diseases, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
33
|
Schmidt W, Pawlak-Buś K, Jóźwiak B, Leszczyński P. Identification of Clinical Response Predictors of Tocilizumab Treatment in Patients with Severe COVID-19 Based on Single-Center Experience. J Clin Med 2023; 12:jcm12062429. [PMID: 36983429 PMCID: PMC10051490 DOI: 10.3390/jcm12062429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Hyperinflammation in COVID-19 plays a crucial role in pathogenesis and severity; thus, many immunomodulatory agents are applied in its treatment. We aimed to identify good clinical response predictors of tocilizumab (TCZ) treatment in severe COVID-19, among clinical, laboratory, and radiological variables. We conducted a prospective, observational study with 120 patients with severe COVID-19 not improving despite dexamethasone (DEX) treatment. We used parametric and non-parametric statistics, univariate logistic regression, receiver operating characteristic (ROC) curves, and nonlinear factors tertile analysis. In total, 86 (71.7%) patients achieved the primary outcome of a good clinical response to TCZ. We identified forty-nine predictive factors with potential utility in patient selection and treatment monitoring. The strongest included time from symptom onset between 9 and 12 days, less than 70% of estimated radiological lung involvement, and lower activity of lactate dehydrogenase. Additional predictors were associated with respiratory function, vitamin D concentration, comorbidities, and inflammatory/organ damage biomarkers. Adverse events analysis proved the safety of such a regimen. Our study confirmed that using TCZ early in the hyperinflammatory phase, before severe respiratory failure development, is most beneficial. Considering the described predictive factors, employing simple and widely available laboratory, radiological, and clinical tools can optimize patient selection for immunomodulatory treatment with TCZ.
Collapse
Affiliation(s)
- Wiktor Schmidt
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Strus Municipal Hospital, 61-285 Poznan, Poland
- Department of Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Katarzyna Pawlak-Buś
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Strus Municipal Hospital, 61-285 Poznan, Poland
- Department of Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Barbara Jóźwiak
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Strus Municipal Hospital, 61-285 Poznan, Poland
| | - Piotr Leszczyński
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Strus Municipal Hospital, 61-285 Poznan, Poland
- Department of Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
34
|
Bongiovanni M, Barda B. Pseudomonas aeruginosa Bloodstream Infections in SARS-CoV-2 Infected Patients: A Systematic Review. J Clin Med 2023; 12:jcm12062252. [PMID: 36983256 PMCID: PMC10056033 DOI: 10.3390/jcm12062252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Bacterial co-infections increase the severity of respiratory viral infections and are frequent causes of mortality in COVID-19 infected subjects. During the COVID-19 period, especially at the beginning of the pandemic, an inappropriate use of broad-spectrum antibiotic treatments has been frequently described, mainly due to prolonged hospitalization, especially in intensive care unit departments, and the use of immune-suppressive treatments as steroids. This misuse has finally led to the occurrence of infections by multi-drug resistant (MDR) bacteria in hospitalized COVID-19 patients. Although different reports assessed the prevalence of Gram-negative infections in COVID-19 infected patients, scarce data are currently available on bloodstream infections caused by Pseudomonas aeruginosa in hospitalized COVID-19 patients. The aim of our systematic review is to describe data on this specific population and to discuss the possible implications that these co-infections could have in the management of COVID-19 pandemics in the future. We systematically analysed the current literature to find all the relevant articles that describe the occurrence of P. aeruginosa bloodstream infections in COVID-19 patients. We found 40 papers that described in detail P. aeruginosa HAIs-BSI in COVID-19 patients, including 756,067 patients overall. The occurrence of severe infections due to MDR bacteria had a significant impact in the management of hospitalized patients with COVID-19 infections, leading to a prolonged time of hospitalization and to a consequent increase in mortality. In the near future, the increased burden of MDR bacteria due to the COVID-19 pandemic might partially be reduced by maintaining the preventive measures of infection control implemented during the acute phase of the COVID-19 pandemic. Finally, we discuss how the COVID-19 pandemic changed the role of antimicrobial stewardship in healthcare settings, according to the isolation of MDR bacteria and how to restore on a large scale the optimization of antibiotic strategies in COVID-19 patients.
Collapse
|
35
|
Labrosse R, Haddad E. Immunodeficiency secondary to biologics. J Allergy Clin Immunol 2023; 151:686-690. [PMID: 36706964 DOI: 10.1016/j.jaci.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Affiliation(s)
- Roxane Labrosse
- Department of Pediatrics, Immunology and Infectious Diseases, CHU Sainte-Justine, University of Montréal, Montréal, Québec, Canada
| | - Elie Haddad
- Department of Pediatrics, Immunology and Infectious Diseases, CHU Sainte-Justine, University of Montréal, Montréal, Québec, Canada; Department of Microbiology, Immunology and Infectious Diseases, CHU Sainte-Justine, University of Montréal, Montréal, Québec, Canada.
| |
Collapse
|
36
|
An Overview of the Impact of Bacterial Infections and the Associated Mortality Predictors in Patients with COVID-19 Admitted to a Tertiary Center from Eastern Europe. Antibiotics (Basel) 2023; 12:antibiotics12010144. [PMID: 36671345 PMCID: PMC9854454 DOI: 10.3390/antibiotics12010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
1. BACKGROUND Literature data on bacterial infections and their impact on the mortality rates of COVID-19 patients from Romania are scarce, while worldwide reports are contrasting. 2. MATERIALS AND METHODS We conducted a unicentric retrospective observational study that included 280 patients with SARS-CoV-2 infection, on whom we performed various microbiological determinations. Based on the administration or not of the antibiotic treatment, we divided the patients into two groups. First, we sought to investigate the rates and predictors of bacterial infections, the causative microbial strains, and the prescribed antibiotic treatment. Secondly, the study aimed to identify the risk factors associated with in-hospital death and evaluate the biomarkers' performance for predicting short-term mortality. 3. RESULTS Bacterial co-infections or secondary infections were confirmed in 23 (8.2%) patients. Acinetobacter baumannii was the pathogen responsible for most of the confirmed bacterial infections. Almost three quarters of the patients (72.8%) received empiric antibiotic therapy. Multivariate logistic regression has shown leukocytosis and intensive care unit admission as risk factors for bacterial infections and C-reactive protein, together with the length of hospital stay, as mortality predictors. The ROC curves revealed an acceptable performance for the erythrocyte sedimentation rate (AUC: 0.781), and C-reactive protein (AUC: 0.797), but a poor performance for fibrinogen (AUC: 0.664) in predicting fatal events. 4. CONCLUSIONS This study highlighted the somewhat paradoxical association of a low rate of confirmed infections with a high rate of empiric antibiotic therapy. A thorough assessment of the risk factors for bacterial infections, in addition to the acknowledgment of various mortality predictors, is crucial for identifying high-risk patients, thus allowing a timely therapeutic intervention, with a direct impact on improving patients' prognosis.
Collapse
|
37
|
Gea-Banacloche JC. Infectious complications of chimeric antigen receptor (CAR) T-cell therapies. Semin Hematol 2023; 60:52-58. [PMID: 37080711 PMCID: PMC10119490 DOI: 10.1053/j.seminhematol.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
CAR T-cells have revolutionized the treatment of many hematological malignancies. Thousands of patients with lymphoma, acute lymphoblastic leukemia, and multiple myeloma have received this "living medicine" and achieved durable remissions. Their place in therapy continues to evolve, and there is ongoing development of new generation CAR constructs, CAR T-cells against solid tumors and CAR T-cells against chronic infections like human immunodeficiency virus and hepatitis B. A significant fraction of CAR T-cell recipients, unfortunately, develop infections. This is in part due to factors intrinsic to the patient, but also to the treatment, which requires lymphodepletion (LD), causes neutropenia and hypogammaglobulinemia and necessarily increases the state of immunosuppression of the patient. The goal of this review is to present the infectious complications of CAR T-cell therapy, explain their temporal course and risk factors, and provide recommendations for their prevention, diagnosis, and management.
Collapse
Affiliation(s)
- Juan C Gea-Banacloche
- Division of Clinical Research, NIAID, Bethesda, MD; NIH Clinical Center, Bethesda, MD.
| |
Collapse
|
38
|
Huang SF, Ying-Jung Wu A, Shin-Jung Lee S, Huang YS, Lee CY, Yang TL, Wang HW, Chen HJ, Chen YC, Ho TS, Kuo CF, Lin YT. COVID-19 associated mold infections: Review of COVID-19 associated pulmonary aspergillosis and mucormycosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022:S1684-1182(22)00285-7. [PMID: 36586744 PMCID: PMC9751001 DOI: 10.1016/j.jmii.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
COVID-19-associated mold infection (CAMI) is defined as development of mold infections in COVID-19 patients. Co-pathogenesis of viral and fungal infections include the disruption of tissue barrier following SARS CoV-2 infection with the damage in the alveolar space, respiratory epithelium and endothelium injury and overwhelming inflammation and immune dysregulation during severe COVID-19. Other predisposing risk factors permissive to fungal infections during COVID-19 include the administration of immune modulators such as corticosteroids and IL-6 antagonist. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) is increasingly reported during the COVID-19 pandemic. CAPA usually developed within the first month of COVID infection, and CAM frequently arose 10-15 days post diagnosis of COVID-19. Diagnosis is challenging and often indistinguishable during the cytokine storm in COVID-19, and several diagnostic criteria have been proposed. Development of CAPA and CAM is associated with a high mortality despiteappropriate anti-mold therapy. Both isavuconazole and amphotericin B can be used for treatment of CAPA and CAM; voriconazole is the primary agent for CAPA and posaconazole is an alternative for CAM. Aggressive surgery is recommended for CAM to improve patient survival. A high index of suspicion and timely and appropriate treatment is crucial to improve patient outcome.
Collapse
Affiliation(s)
- Shiang-Fen Huang
- Division of Infectious Disease, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,School of Internal Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
| | - Alice Ying-Jung Wu
- Division of Infectious Diseases, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan,MacKay Medical College, New Taipei City, Taiwan
| | - Susan Shin-Jung Lee
- School of Internal Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan,Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Taiwan
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Yuan Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Te-Liang Yang
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan,Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Hsiao-Wei Wang
- Division of Infectious Diseases, Department of Internal Medicine, Shin Kong Wu Ho- Su Memorial Hospital, Taipei, Taiwan
| | - Hung Jui Chen
- Department of Infectious Diseases, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yi Ching Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan,College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Chien-Feng Kuo
- Division of Infectious Diseases, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan,Corresponding author
| | - Yi-Tsung Lin
- Division of Infectious Disease, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Corresponding author
| | | |
Collapse
|
39
|
Haddad F, Dokmak G, Karaman R. A Comprehensive Review on the Efficacy of Several Pharmacologic Agents for the Treatment of COVID-19. Life (Basel) 2022; 12:1758. [PMID: 36362912 PMCID: PMC9692303 DOI: 10.3390/life12111758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2, the coronavirus disease-2019 (COVID-19), and the cause of the pandemic is extremely contagious among people and has spread around the world. Antivirals, immunomodulators, and other medications, such as antibiotics, stem cells, and plasma therapy, have all been utilized in the treatment of COVID-19. To better understand the clinical efficacy of these agents and to aid in the selection of effective COVID-19 therapies in various countries, this study reviewed the effectiveness of the various pharmacologic agents that have been used for COVID-19 therapy globally by summarizing the clinical outcomes that have been obtained from the clinical trials published on each drug related to COVID-19 infection. The Food and Drug Administration (FDA) has authorized the use of remdesivir, paxlovid, molnupiravir, baricitinib, tixagevimab-cilgavimab, and bebtelovimab for the management of COVID-19. On the other hand, most research advises against using chloroquine and hydroxychloroquine to treat COVID-19 patients because they are not beneficial. Although the FDA has given emergency use authorization for some monoclonal antibodies, including bamlanivimab, etesevimab, casirivimab, and imdevimab for managing COVID-19, they are not currently approved for use because the Omicron variant has significantly reduced their in vitro susceptibility. In this study, we also included a wide range of alternative therapy strategies that effectively treat COVID-19 patients, although further randomized studies are necessary to support and assess their applicability.
Collapse
Affiliation(s)
- Fatma Haddad
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ghadeer Dokmak
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
40
|
Rezaei Tolzali MM, Noori M, Shokri P, Rahmani S, Khanzadeh S, Nejadghaderi SA, Fazlollahi A, Sullman MJM, Singh K, Kolahi A, Arshi S, Safiri S. Efficacy of tocilizumab in the treatment of COVID-19: An umbrella review. Rev Med Virol 2022; 32:e2388. [PMID: 36029180 PMCID: PMC9539231 DOI: 10.1002/rmv.2388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/09/2023]
Abstract
Tocilizumab is an interleukin (IL)-6 receptor inhibitor that has been proposed as a therapeutic agent for treating coronavirus disease 2019 (COVID-19). The aim of this umbrella review was to determine the efficacy of tocilizumab in treating COVID-19, and to provide an overview of all systematic reviews on this topic. We systematically searched PubMed, Scopus, the Web of Science collection, the Cochrane library, Epistemonikos, and Google Scholar, as well as the medRxiv preprint server. These databases were searched up to 30 September 2021, using the following keywords: 'SARS-CoV-2', 'COVID-19', 'tocilizumab', 'RHPM-1', 'systematic review', and 'meta-analysis'. Studies were included if they were systematic reviews (with or without meta-analysis) investigating the efficacy or safety of tocilizumab in confirmed COVID-19 patients. The AMSTAR 2 checklist was used to assess quality of the included articles, while publication bias was examined using Egger's test. A total of 50 eligible systematic reviews were included. The pooled estimates showed significant reductions in clinical failure (risk ratio (RR) 0.75; 95% confidence interval (CI), 0.61-0.93), deaths (RR 0.78; 95%CI, 0.71-0.85) and the need for mechanical ventilation (RR 0.77; 95%CI, 0.64-0.92) for those receiving tocilizumab compared with the control group. Also, an emerging survival benefit was demonstrated for those who received tocilizumab, over those in the control group (adjusted hazard ratio (aHR) 0.52; 95%CI, 0.43-0.63). In addition, tocilizumab substantially increased the number of ventilator-free days, compared with the control treatments (weighted mean difference (WMD) 3.38; 95%CI, 0.51-6.25). Furthermore, lymphocyte count (WMD 0.26 × 109 /L; 95%CI, 0.14-0.37), IL-6 (WMD 176.99 pg/mL; 95%CI, 76.34-277.64) and D-dimer (WMD 741.08 ng/mL; 95%CI, 109.42-1372.75) were all significantly elevated in those receiving tocilizumab. However, the level of lactate dehydrogenase (LDH) (WMD -30.88 U/L; 95%CI, -51.52, -10.24) and C-reactive protein (CRP) (WMD -104.83 mg/L; 95%CI, -133.21, -76.46) were both significantly lower after treatment with tocilizumab. Tocilizumab treatment reduced the risk of intubation, mortality and the length of hospital stay, without increasing the risk of superimposed infections in COVID-19 patients. Therefore, tocilizumab can be considered an effective therapeutic agent for treating patients with COVID-19.
Collapse
Affiliation(s)
| | - Maryam Noori
- Student Research CommitteeSchool of MedicineIran University of Medical SciencesTehranIran
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Pourya Shokri
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Shayan Rahmani
- Student Research CommitteeSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Network of Immunity in InfectionMalignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | | | - Seyed Aria Nejadghaderi
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Asra Fazlollahi
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Mark J. M. Sullman
- Department of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
- Department of Social SciencesUniversity of NicosiaNicosiaCyprus
| | - Kuljit Singh
- Department of MedicineGriffith UniversitySouthportQueenslandAustralia
| | - Ali‐Asghar Kolahi
- Social Determinants of Health Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Shahnam Arshi
- Social Determinants of Health Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Saeid Safiri
- Research Center for Integrative Medicine in AgingAging Research InstituteTabriz University of Medical SciencesTabrizIran
- Department of Community MedicineFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
41
|
Bourlond B, Cipriano A, Regamey J, Papadimitriou-Olivgeris M, Kamani C, Seidel D, Lamoth F, Muller O, Yerly P. Case report: Disseminated Scedosporium apiospermum infection with invasive right atrial mass in a heart transplant patient. Front Cardiovasc Med 2022; 9. [PMID: 36386301 PMCID: PMC9660239 DOI: 10.3389/fcvm.2022.1045353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024] Open
Abstract
Scedosporium apiospermum associated endocarditis is extremely rare. We report a case of a disseminated S. apiospermum infection with an invasive right atrial mass in a 52-year-old male, 11 months after heart transplantation, referred to our institution for an endogenous endophthalmitis with a one-month history of diffuse myalgias and fatigue. The patient had been supported two times with extracorporeal membrane oxygenation (ECMO) during the first three postoperative months. The echocardiography on admission revealed a mass in the right atrium attached to a thickened lateral wall. The whole-body [18F]FDG PET/CT revealed systemic dissemination in the lungs, muscles, and subcutaneous tissue. Blood cultures were positive on day three for filamentous fungi later identified as S. apiospermum. The disease was refractory to a 3-week dual antifungal therapy with voriconazole and anidulafungin in addition to reduced immunosuppression, and palliative care was implemented.
Collapse
|
42
|
Manna PR, Gray ZC, Sikdar M, Reddy H. COVID-19 and its genomic variants: Molecular pathogenesis and therapeutic interventions. EXCLI JOURNAL 2022; 21:1196-1221. [PMID: 36381644 PMCID: PMC9650701 DOI: 10.17179/excli2022-5315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Coronavirus disease-19 (COVID-19), caused by a β-coronavirus and its genomic variants, is associated with substantial morbidities and mortalities globally. The COVID-19 virus and its genomic variants enter host cells upon binding to the angiotensin converting enzyme 2 receptors that are expressed in a variety of tissues, but predominantly in the lungs, heart, and blood vessels. Patients afflicted with COVID-19 may be asymptomatic or present with critical symptoms possibly due to diverse lifestyles, immune responses, aging, and underlying medical conditions. Geriatric populations, especially men in comparison to women, with immunocompromised conditions, are most vulnerable to severe COVID-19 associated infections, complications, and mortalities. Notably, whereas immunomodulation, involving nutritional consumption, is essential to protecting an individual from COVID-19, immunosuppression is detrimental to a person with this aggressive disease. As such, immune health is inversely correlated to COVID-19 severity and resulting consequences. Advances in genomic and proteomic technologies have helped us to understand the molecular events underlying symptomatology, transmission and, pathogenesis of COVID-19 and its genomic variants. Accordingly, there has been development of a variety of therapeutic interventions, ranging from mask wearing to vaccination to medication. This review summarizes the current understanding of molecular pathogenesis of COVID-19, effects of comorbidities on COVID-19, and prospective therapeutic strategies for the prevention and treatment of this contagious disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA,*To whom correspondence should be addressed: Pulak R. Manna, Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Tel: +1-806-743-3573, Fax: +1-806-743-3143, E-mail:
| | - Zackery C. Gray
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Malabika Sikdar
- Department of Zoology, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Public Health Department of the Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
43
|
Shishido AA, Mathew M, Baddley JW. Overview of COVID-19-Associated Invasive Fungal Infection. CURRENT FUNGAL INFECTION REPORTS 2022; 16:87-97. [PMID: 35846240 PMCID: PMC9274633 DOI: 10.1007/s12281-022-00434-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Purpose of Review Invasive fungal infections are a complication of COVID-19 disease. This article reviews literature characterizing invasive fungal infections associated with COVID-19. Recent Findings Multiple invasive fungal infections including aspergillosis, candidiasis, pneumocystosis, other non-Aspergillus molds, and endemic fungi have been reported in patients with COVID-19. Risk factors for COVID-19-associated fungal disease include underlying lung disease, diabetes, steroid or immunomodulator use, leukopenia, and malignancy. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) are the most common fungal infections described. However, there is variability in the reported incidences related to use of differing diagnostic algorithms. Summary Fungal pathogens are important cause of infection in patients with COVID-19, and the diagnostic strategies continue to evolve. Mortality in these patients is increased, and providers should operate with a high index of suspicion. Further studies will be required to elucidate the associations and pathogenesis of these diseases and best management and prevention strategies.
Collapse
Affiliation(s)
- Akira A. Shishido
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
| | - Minu Mathew
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
| | - John W. Baddley
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
| |
Collapse
|
44
|
Diorio C, Vatsayan A, Talleur AC, Annesley C, Jaroscak JJ, Shalabi H, Ombrello AK, Hudspeth M, Maude SL, Gardner RA, Shah NN. Anakinra utilization in refractory pediatric CAR T-cell associated toxicities. Blood Adv 2022; 6:3398-3403. [PMID: 35395068 PMCID: PMC9198909 DOI: 10.1182/bloodadvances.2022006983] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Caroline Diorio
- Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Anant Vatsayan
- Division of BMT, Children’s National Hospital, Washington, DC
| | - Aimee C. Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN
| | - Colleen Annesley
- Department of Pediatrics, Seattle Children’s Hospital, Seattle, WA
| | - Jennifer J. Jaroscak
- Pediatric Hematology/Oncology, Medical University of South Carolina, Charleston, SC
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and
| | - Amanda K. Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Michelle Hudspeth
- Pediatric Hematology/Oncology, Medical University of South Carolina, Charleston, SC
| | - Shannon L. Maude
- Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and
| |
Collapse
|
45
|
Serapide F, Quirino A, Scaglione V, Morrone HL, Longhini F, Bruni A, Garofalo E, Matera G, Marascio N, Scarlata GGM, Cicino C, Russo A, Trecarichi EM, Torti C. Is the Pendulum of Antimicrobial Drug Resistance Swinging Back after COVID-19? Microorganisms 2022; 10:microorganisms10050957. [PMID: 35630400 PMCID: PMC9146770 DOI: 10.3390/microorganisms10050957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
The COVID-19 pandemic may have had an effect on antimicrobial resistance. We compared the prevalence of ESKAPE multidrug-resistant (MDR) bacterial infections in COVID-19 affected/unaffected patients admitted to intensive care units (ICU) or infectious disease units at the “Mater Domini” University Hospital of Catanzaro between 1 March 2020 and 31 July 2021. Moreover, an analysis of MDR rates in ICU comparing the pre-pandemic period with the pandemic period was performed, and the possible consequence on in-hospital mortality was explored. One hundred and eighty-four ESKAPE isolates were analyzed from 362 SARS-CoV-2 positive and 199 negative patients. In total, 116 out of 171 Gram-negative isolates were classified as MDR, and a higher frequency was observed in COVID-19 compared with non-COVID-19 patients (74.2% vs. 60.3%; p = 0.052). A higher rate of MDR ESKAPE bacteria was observed in COVID-19 patients admitted to the ICU compared with COVID-19 unaffected patients admitted to the same ward in 2019 (88% vs. 80.4%; p = 0.186). Acinetobacter baumannii was the main pathogen in COVID-19 patients (58.7%), where it was the most frequent cause of bloodstream infection with the highest mortality rate (68.7%). Increase in MDR appeared to be associated with COVID-19 but only in the ICU setting. Acinetobacter baumannii was associated with the risk of death, indicating the importance of implementing infection control measures urgently.
Collapse
Affiliation(s)
- Francesca Serapide
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (F.S.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Graecia” University, 88110 Catanzaro, Italy; (A.Q.); (G.M.); (N.M.); (G.G.M.S.); (C.C.)
| | - Vincenzo Scaglione
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (F.S.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Correspondence: ; Tel.: +39-0961-364-7833
| | - Helen Linda Morrone
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (F.S.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Federico Longhini
- Unit of Intensive Care, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (F.L.); (A.B.); (E.G.)
| | - Andrea Bruni
- Unit of Intensive Care, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (F.L.); (A.B.); (E.G.)
| | - Eugenio Garofalo
- Unit of Intensive Care, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (F.L.); (A.B.); (E.G.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Graecia” University, 88110 Catanzaro, Italy; (A.Q.); (G.M.); (N.M.); (G.G.M.S.); (C.C.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Graecia” University, 88110 Catanzaro, Italy; (A.Q.); (G.M.); (N.M.); (G.G.M.S.); (C.C.)
| | - Giuseppe Guido Maria Scarlata
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Graecia” University, 88110 Catanzaro, Italy; (A.Q.); (G.M.); (N.M.); (G.G.M.S.); (C.C.)
| | - Claudia Cicino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Graecia” University, 88110 Catanzaro, Italy; (A.Q.); (G.M.); (N.M.); (G.G.M.S.); (C.C.)
| | - Alessandro Russo
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (F.S.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Enrico Maria Trecarichi
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (F.S.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Carlo Torti
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (F.S.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| |
Collapse
|
46
|
Potential Pathophysiological Mechanisms Underlying Multiple Organ Dysfunction in Cytokine Release Syndrome. Mediators Inflamm 2022; 2022:7137900. [PMID: 35431655 PMCID: PMC9007670 DOI: 10.1155/2022/7137900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
In recent decades, many serious respiratory infections have broken out all over the world, including SARS-CoV, MERS, and COVID-19. They are characterized by strong infectivity, rapid disease progression, high mortality, and poor prognosis. Excessive immune system activation results in cytokine hypersecretion, which is an important reason for the aggravation of symptoms, and can spread throughout the body leading to systemic multiple organ dysfunction, namely, cytokine release syndrome (CRS). Although many diseases related to CRS have been identified, the mechanism of CRS is rarely mentioned clearly. This review is intended to clarify the pathogenetic mechanism of CRS in the deterioration of related diseases, describe the important signaling pathways and clinical pathophysiological characteristics of CRS, and provide ideas for further research and development of specific drugs for corresponding targets to treat CRS.
Collapse
|
47
|
Kuczborska K, Buda P, Książyk JB. Different Course of SARS-CoV-2 Infection in Two Adolescents With Other Immunosuppressive Factors. Cureus 2022; 14:e22710. [PMID: 35386177 PMCID: PMC8967115 DOI: 10.7759/cureus.22710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2022] [Indexed: 12/31/2022] Open
Abstract
Even after two years of the Coronavirus Disease 2019 (COVID-19) pandemic, despite known risk factors, we are still unable to predict the severity of the infection in specific patients. Due to the contradictory data, the protective role of immunosuppression in preventing the severe course of the infection remains uncertain. Therefore, we want to discuss the influence of several immunosuppressive factors on the COVID-19 pattern in children, based on two case reports regarding 17-year-old boys with other immunosuppressive factors and a completely different course of the disease. The first patient suffered from AIDS, syphilis and primary central nervous system B-cell lymphoma, treated with radiotherapy. He experienced a light path of the infection, presenting only periodically appearing cough with no X-ray inflammatory changes. Nevertheless, due to the risk of severe COVID-19 and transient hypoxia, remdesivir was administered. He remained in a generally good condition and his follow-up did not reveal any noticeable complications. The second patient was characterised by Down syndrome, obesity, polyarteritis nodosa and chronic immunosuppressive therapy. He developed massive pneumonia, required treatment in the intensive care unit with the use of mechanical ventilation, remdesivir and anakinra. Despite the initial improvement of his general condition, including the degree of lung involvement and respiratory function, he developed an intracerebral haemorrhage, leading to brain herniation and ultimately death. In conclusion, HIV infection, oncological and immunosuppressive treatment do not seem to predispose to the severe course of COVID-19, whereas Down syndrome and obesity do.
Collapse
Affiliation(s)
- Karolina Kuczborska
- Pediatrics, Nutrition and Metabolic Disorders, Children's Memorial Health Institute, Warsaw, POL
| | - Piotr Buda
- Pediatrics, Nutrition and Metabolic Disorders, Children's Memorial Health Institute, Warsaw, POL
| | - Janusz B Książyk
- Pediatrics, Nutrition and Metabolic Disorders, Children's Memorial Health Institute, Warsaw, POL
| |
Collapse
|
48
|
Marcuzzi A, Melloni E, Zauli G, Romani A, Secchiero P, Maximova N, Rimondi E. Autoinflammatory Diseases and Cytokine Storms-Imbalances of Innate and Adaptative Immunity. Int J Mol Sci 2021; 22:11241. [PMID: 34681901 PMCID: PMC8541037 DOI: 10.3390/ijms222011241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Innate and adaptive immune responses have a well-known link and represent the distinctive origins of several diseases, many of which may be the consequence of the loss of balance between these two responses. Indeed, autoinflammation and autoimmunity represent the two extremes of a continuous spectrum of pathologic conditions with numerous overlaps in different pathologies. A common characteristic of these dysregulations is represented by hyperinflammation, which is an exaggerated response of the immune system, especially involving white blood cells, macrophages, and inflammasome activation with the hyperproduction of cytokines in response to various triggering stimuli. Moreover, hyperinflammation is of great interest, as it is one of the main manifestations of COVID-19 infection, and the cytokine storm and its most important components are the targets of the pharmacological treatments used to combat COVID-19 damage. In this context, the purpose of our review is to provide a focus on the pathogenesis of autoinflammation and, in particular, of hyperinflammation in order to generate insights for the identification of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Elisabetta Melloni
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| | - Giorgio Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Arianna Romani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Paola Secchiero
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| | - Natalia Maximova
- Bone Marrow Transplant Unit, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Erika Rimondi
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| |
Collapse
|
49
|
Peng J, Fu M, Mei H, Zheng H, Liang G, She X, Wang Q, Liu W. Efficacy and secondary infection risk of tocilizumab, sarilumab and anakinra in COVID-19 patients: A systematic review and meta-analysis. Rev Med Virol 2021; 32:e2295. [PMID: 34558756 PMCID: PMC8646369 DOI: 10.1002/rmv.2295] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022]
Abstract
As the pandemic progresses, the pathophysiology of coronavirus disease 2019 (COVID‐19) is becoming clearer and the potential for immunotherapy is increasing. However, clinical efficacy and safety of immunosuppressants (including tocilizumab, sarilumab and anakinra) treatment in COVID‐19 patients are not yet known. We searched PubMed, Embase Medline, Web of Science and MedRxiv using specific search terms in studies published from 1 January 2020 to 20 December 2020. In total, 33 studies, including 3073 cases and 6502 controls, were selected for meta‐analysis. We found that immunosuppressant therapy significantly decreased mortality in COVID‐19 patients on overall analysis (odds ratio = 0.71, 95% confidence interval = 0.57–0.89, p = 0.004). We also found that tocilizumab and anakinra significantly decreased mortality in patients without any increased risk of secondary infection. In addition, we found similar results in several subgroups. However, we found that tocilizumab therapy significantly increased the risk of fungal co‐infections in COVID‐19 patients. This represents the only systematic review and meta‐analysis to investigate the efficacy and secondary infection risk of immunosuppressant treatment in COVID‐19 patients. Overall, immunosuppressants significantly decreased mortality but had no effect on increased risk of secondary infections. Our analysis of tocilizumab therapy showed a significantly increased risk of fungal co‐infections in these patients.
Collapse
Affiliation(s)
- Jingwen Peng
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Meihua Fu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Huan Mei
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Hailin Zheng
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Guanzhao Liang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xiaodong She
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Qiong Wang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|