1
|
Ambigapathy G, McCowan TJ, Carvelli L. Amphetamine exposure during embryogenesis changes expression and function of the dopamine transporter in Caenorhabditis elegans offspring. J Neurochem 2024; 168:2989-2998. [PMID: 38960397 PMCID: PMC11449651 DOI: 10.1111/jnc.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
The dopamine transporter (DAT) is a transmembrane protein that regulates dopamine (DA) neurotransmission by binding to and moving DA from the synaptic cleft back into the neurons. Besides moving DA and other endogenous monoamines, DAT is also a neuronal carrier for exogenous compounds such as the psychostimulant amphetamine (Amph), and several studies have shown that Amph-induced behaviors require a functional DAT. Here, we demonstrate that exposure to Amph during early development causes behavioral, functional, and epigenetic modifications at the Caenorhabditis elegans DAT gene homolog, dat-1, in C. elegans offspring. Specifically, we show that, while embryos exposed to Amph generate adults that produce offspring with no obvious behavioral alterations, both adults and offspring exhibit an increased behavioral response when challenged with Amph. Our functional studies suggest that a decrease in DAT-1 expression underlies the increased behavioral response to Amph seen in offspring. Moreover, our epigenetic data suggest that histone methylation is a mechanism utilized by Amph to maintain changes in DAT-1 expression in offspring. Taken together, our data reveal that Amph, by altering the epigenetic landscape of DAT, propagates long-lasting functional and behavioral changes in offspring.
Collapse
Affiliation(s)
- Ganesh Ambigapathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Talus J McCowan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Lucia Carvelli
- Harriet L. Wilkes Honors College Florida Atlantic University, Jupiter, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
2
|
Zhang KK, Yang JZ, Cheng CH, Wan JY, Chen YC, Zhou HQ, Zheng DK, Lan ZX, You QH, Wang Q, Sun J. Short-chain fatty acids mitigate Methamphetamine-induced hepatic injuries in a Sigma-1 receptor-dependent manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116538. [PMID: 38833980 DOI: 10.1016/j.ecoenv.2024.116538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Methamphetamine (Meth) is a potent psychostimulant with well-established hepatotoxicity. Gut microbiota-derived short-chain fatty acids (SCFAs) have been reported to yield beneficial effects on the liver. In this study, we aim to further reveal the mechanisms of Meth-induced hepatic injuries and investigate the potential protective effects of SCFAs. Herein, mice were intraperitoneally injected with 15 mg/kg Meth to induce hepatic injuries. The composition of fecal microbiota and SCFAs was profiled using 16 S rRNA sequencing and Gas Chromatography/Mass Spectrometry (GC/MS) analysis, respectively. Subsequently, SCFAs supplementation was performed to evaluate the protective effects against hepatic injuries. Additionally, Sigma-1 receptor knockout (S1R-/-) mice and fluvoxamine (Flu), an agonist of S1R, were introduced to investigate the mechanisms underlying the protective effects of SCFAs. Our results showed that Meth activated S1R and induced hepatic autophagy, inflammation, and oxidative stress by stimulating the MAPK/ERK pathway. Meanwhile, Meth disrupted SCFAs product-related microbiota, leading to a reduction in fecal SCFAs (especially Acetic acid and Propanoic acid). Accompanied by the optimization of gut microbiota, SCFAs supplementation normalized S1R expression and ameliorated Meth-induced hepatic injuries by repressing the MAPK/ERK pathway. Effectively, S1R knockout repressed Meth-induced activation of the MAPK/ERK pathway and further ameliorated hepatic injuries. Finally, the overexpression of S1R stimulated the MAPK/ERK pathway and yielded comparable adverse phenotypes to Meth administration. These findings suggest that Meth-induced hepatic injuries relied on the activation of S1R, which could be alleviated by SCFAs supplementation. Our study confirms the crucial role of S1R in Meth-induced hepatic injuries for the first time and provides a potential preemptive therapy.
Collapse
Affiliation(s)
- Kai-Kai Zhang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chang-Hao Cheng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Yuan Wan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu-Chuan Chen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - He-Qi Zhou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - De-Kai Zheng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhi-Xian Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qiu-Hong You
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Jian Sun
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
3
|
Bellot M, Soria F, López-Arnau R, Gómez-Canela C, Barata C. Daphnia magna an emerging environmental model of neuro and cardiotoxicity of illicit drugs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123355. [PMID: 38228265 DOI: 10.1016/j.envpol.2024.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Cocaine, methamphetamine, ectasy (3,4-methylenedioxy amphetamine (MDMA)) and ketamine are among the most consumed drugs worldwide causing cognitive, oxidative stress and cardiovascular problems in humans. Residue levels of these drugs and their transformation products may still enter the aquatic environment, where concentrations up to hundreds of ng/L have been measured. In the present work we tested the hypothesis that psychotropic effects and the mode of action of these drugs in D. magna cognitive, oxidative stress and cardiovascular responses are equivalent to those reported in humans and other vertebrate models. Accordingly we expose D. magna juveniles to pharmacological and environmental relevant concentrations. The study was complemented with the measurement of the main neurotransmitters involved in the known mechanisms of action of these drugs in mammals and physiological relevant amino acids. Behavioural cognitive patters clearly differentiate the 3 psychostimulant drugs (methamphetamine, cocaine, MDMA) from the dissociative one ketamine. Psychostimulant drugs at pharmacological doses (10-200 μM), increased basal locomotion activities and responses to light, and decreased habituation to it. Ketamine only increased habituation to light. The four drugs enhanced the production of reactive oxygen species in a concentration related manner, and at moderate concentrations (10-60 μM) increased heartbeats, diminishing them at high doses (200 μM). In chronic exposures to environmental low concentrations (10-1000 ng/L) the four drugs did not affect any of the behavioural responses measured but methamphetamine and cocaine inhibited reproduction at 10 ng/L. Observed effects on neurotransmitters and related metabolites were in concern with reported responses in mammalian and other vertebrate models: cocaine and MDMA enhanced dopamine and serotonin levels, respectively, methamphetamine and MDMA decreased dopamine and octopamine, and all but MDMA decreased 3 MT levels. Drug effects on the concentration of up to 10 amino acids evidence disruptive effects on neurotransmitter synthesis, the urea cycle, lipid metabolism and cardiac function.
Collapse
Affiliation(s)
- Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Fernando Soria
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Raul López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Institut de Biomedicina IBUB, University of Barcelona, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
4
|
Čechová B, Jurčovičová J, Petríková I, Vaculín Š, Šandera Š, Šlamberová R. Impact of altered environment and early postnatal methamphetamine exposure on serotonin levels in the rat hippocampus during adolescence. Lab Anim Res 2024; 40:1. [PMID: 38308379 PMCID: PMC10835812 DOI: 10.1186/s42826-024-00192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Methamphetamine (MA) is a highly abused psychostimulant across all age groups including pregnant women. Because developing brain is vulnerable by the action of drugs, or other noxious stimuli, the aim of our study was to examine the effect of early postnatal administration of MA alone or in combination with enriched environment (EE) and/or stress of separate housing, on the levels of serotonin (5HT) in the hippocampus of male rat pups at three stages of adolescence (postnatal day (PND) 28, 35 and 45). MA (5 mg/kg/ml) was administered subcutaneously (sc) to pups (direct administration), or via mothers' milk between PND1 and PND12 (indirect administration). Controls were exposed saline (SA). Pups were exposed to EE and/or to separation from the weaning till the end of the experiment. RESULTS On PND 28, in sc-treated series, EE significantly increased the muted 5HT in SA pups after separation and restored the pronounced inhibition of 5HT by MA. No beneficial effect of EE was present in pups exposed to combination of MA and separation. 5HT development declined over time; EE, MA and separation had different effects on 5HT relative to adolescence stage. CONCLUSIONS Present study shows that MA along with environment or housing affect 5HT levels, depending on both the age and the method of application (direct or indirect). These findings extend the knowledge on the effects of MA alone and in combination with different housing conditions on the developing brain and highlight the increased sensitivity to MA during the first few months after birth.
Collapse
Affiliation(s)
- Barbora Čechová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Jurčovičová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Petríková
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Šimon Vaculín
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Štěpán Šandera
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
5
|
Čechová B, Mihalčíková L, Vaculin Š, Šandera Š, Šlamberová R. Levels of BDNF and NGF in adolescent rat hippocampus neonatally exposed to methamphetamine along with environmental alterations. Physiol Res 2023; 72:S559-S571. [PMID: 38165760 PMCID: PMC10861250 DOI: 10.33549/physiolres.935216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/07/2023] [Indexed: 02/01/2024] Open
Abstract
Neurotrophins are proteins included in development and functioning of various processed in mammalian organisms. They are important in early development but as well as during adulthood. Brain - derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been previously linked with many psychiatric disorders such as depression and addiction. Since during postnatal development, brain undergoes various functional and anatomical changes, we included preweaning environment enrichment (EE), since enrichment has been linked with improved function and development of the several brain structure such as hippocampus (HP), in which we monitored these changes. On the other hand, social isolation has been linked with depression and anxiety-like behavior, therefore postweaning social isolation has been added to this model as well and animal were exposed to this condition till adolescence. We examined if all these three factors had impact on BDNF and NGF levels during three phases of adolescence - postnatal days (PDs) 28, 35 and 45. Our results show that EE did not increase BDNF levels neither in control or MA exposed animals and these results are similar for both direct and indirect exposure. On the other side, social separation after weaning did reduce BDNF levels in comparison to standard housing animals but this effect was reversed by direct MA exposure. In terms of NGF, EE environment increased its levels only in indirectly exposed controls and MA animals during late adolescence. On the other hand, social separation increased NGF levels in majority of animals.
Collapse
Affiliation(s)
- B Čechová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
6
|
Zhang K, Chen L, Yang J, Liu J, Li J, Liu Y, Li X, Chen L, Hsu C, Zeng J, Xie X, Wang Q. Gut microbiota-derived short-chain fatty acids ameliorate methamphetamine-induced depression- and anxiety-like behaviors in a Sigmar-1 receptor-dependent manner. Acta Pharm Sin B 2023; 13:4801-4822. [PMID: 38045052 PMCID: PMC10692394 DOI: 10.1016/j.apsb.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Methamphetamine (Meth) abuse can cause serious mental disorders, including anxiety and depression. The gut microbiota is a crucial contributor to maintaining host mental health. Here, we aim to investigate if microbiota participate in Meth-induced mental disorders, and the potential mechanisms involved. Here, 15 mg/kg Meth resulted in anxiety- and depression-like behaviors of mice successfully and suppressed the Sigma-1 receptor (SIGMAR1)/BDNF/TRKB pathway in the hippocampus. Meanwhile, Meth impaired gut homeostasis by arousing the Toll-like receptor 4 (TLR4)-related colonic inflammation, disturbing the gut microbiome and reducing the microbiota-derived short-chain fatty acids (SCFAs). Moreover, fecal microbiota from Meth-administrated mice mediated the colonic inflammation and reproduced anxiety- and depression-like behaviors in recipients. Further, SCFAs supplementation optimized Meth-induced microbial dysbiosis, ameliorated colonic inflammation, and repressed anxiety- and depression-like behaviors. Finally, Sigmar1 knockout (Sigmar1-/-) repressed the BDNF/TRKB pathway and produced similar behavioral phenotypes with Meth exposure, and eliminated the anti-anxiety and -depression effects of SCFAs. The activation of SIGMAR1 with fluvoxamine attenuated Meth-induced anxiety- and depression-like behaviors. Our findings indicated that gut microbiota-derived SCFAs could optimize gut homeostasis, and ameliorate Meth-induced mental disorders in a SIGMAR1-dependent manner. This study confirms the crucial role of microbiota in Meth-related mental disorders and provides a potential preemptive therapy.
Collapse
Affiliation(s)
- Kaikai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianzheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiali Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiuwen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Miller EJ, Khoshbouei H. Immunity on ice: The impact of methamphetamine on peripheral immunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:217-250. [PMID: 38467482 DOI: 10.1016/bs.apha.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Methamphetamine (METH) regulation of the dopamine transporter (DAT) and central nervous system (CNS) dopamine transmission have been extensively studied. However, our understanding of how METH influences neuroimmune communication and innate and adaptive immunity is still developing. Recent studies have shed light on the bidirectional communication between the CNS and the peripheral immune system. They have established a link between CNS dopamine levels, dopamine neuronal activity, and peripheral immunity. Akin to dopamine neurons in the CNS, a majority of peripheral immune cells also express DAT, implying that in addition to their effect in the CNS, DAT ligands such as methamphetamine may have a role in modulating peripheral immunity. For example, by directly influencing DAT-expressing peripheral immune cells and thus peripheral immunity, METH can trigger a feed-forward cascade that impacts the bidirectional communication between the CNS and peripheral immune system. In this review, we aim to discuss the current understanding of how METH modulates both innate and adaptive immunity and identify areas where knowledge gaps exist. These gaps will then be considered in guiding future research directions.
Collapse
Affiliation(s)
- Emily J Miller
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
8
|
The Influence of Prenatal Exposure to Methamphetamine on the Development of Dopaminergic Neurons in the Ventral Midbrain. Int J Mol Sci 2023; 24:ijms24065668. [PMID: 36982742 PMCID: PMC10056332 DOI: 10.3390/ijms24065668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Methamphetamine, a highly addictive central nervous system (CNS) stimulant, is used worldwide as an anorexiant and attention enhancer. Methamphetamine use during pregnancy, even at therapeutic doses, may harm fetal development. Here, we examined whether exposure to methamphetamine affects the morphogenesis and diversity of ventral midbrain dopaminergic neurons (VMDNs). The effects of methamphetamine on morphogenesis, viability, the release of mediator chemicals (such as ATP), and the expression of genes involved in neurogenesis were evaluated using VMDNs isolated from the embryos of timed-mated mice on embryonic day 12.5. We demonstrated that methamphetamine (10 µM; equivalent to its therapeutic dose) did not affect the viability and morphogenesis of VMDNs, but it reduced the ATP release negligibly. It significantly downregulated Lmx1a, En1, Pitx3, Th, Chl1, Dat, and Drd1 but did not affect Nurr1 or Bdnf expression. Our results illustrate that methamphetamine could impair VMDN differentiation by altering the expression of important neurogenesis-related genes. Overall, this study suggests that methamphetamine use may impair VMDNs in the fetus if taken during pregnancy. Therefore, it is essential to exercise strict caution for its use in expectant mothers.
Collapse
|
9
|
Chilunda V, Weiselberg J, Martinez-Meza S, Mhamilawa LE, Cheney L, Berman JW. Methamphetamine induces transcriptional changes in cultured HIV-infected mature monocytes that may contribute to HIV neuropathogenesis. Front Immunol 2022; 13:952183. [PMID: 36059515 PMCID: PMC9433802 DOI: 10.3389/fimmu.2022.952183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-associated neurocognitive impairment (HIV-NCI) persists in 15-40% of people with HIV (PWH) despite effective antiretroviral therapy. HIV-NCI significantly impacts quality of life, and there is currently no effective treatment for it. The development of HIV-NCI is complex and is mediated, in part, by the entry of HIV-infected mature monocytes into the central nervous system (CNS). Once in the CNS, these cells release inflammatory mediators that lead to neuroinflammation, and subsequent neuronal damage. Infected monocytes may infect other CNS cells as well as differentiate into macrophages, thus contributing to viral reservoirs and chronic neuroinflammation. Substance use disorders in PWH, including the use of methamphetamine (meth), can exacerbate HIV neuropathogenesis. We characterized the effects of meth on the transcriptional profile of HIV-infected mature monocytes using RNA-sequencing. We found that meth mediated an upregulation of gene transcripts related to viral infection, cell adhesion, cytoskeletal arrangement, and extracellular matrix remodeling. We also identified downregulation of several gene transcripts involved in pathogen recognition, antigen presentation, and oxidative phosphorylation pathways. These transcriptomic changes suggest that meth increases the infiltration of mature monocytes that have a migratory phenotype into the CNS, contributing to dysregulated inflammatory responses and viral reservoir establishment and persistence, both of which contribute to neuronal damage. Overall, our results highlight potential molecules that may be targeted for therapy to limit the effects of meth on HIV neuropathogenesis.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jessica Weiselberg
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Samuel Martinez-Meza
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lwidiko E. Mhamilawa
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Laura Cheney
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
10
|
Lenzi P, Biagioni F, Busceti CL, Lazzeri G, Polzella M, Frati A, Ferrucci M, Fornai F. Alterations of Mitochondrial Structure in Methamphetamine Toxicity. Int J Mol Sci 2022; 23:ijms23168926. [PMID: 36012188 PMCID: PMC9408775 DOI: 10.3390/ijms23168926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/30/2022] Open
Abstract
Recent evidence shows that methamphetamine (METH) produces mitochondrial alterations that contribute to neurotoxicity. Nonetheless, most of these studies focus on mitochondrial activity, whereas mitochondrial morphology remains poorly investigated. In fact, morphological evidence about the fine structure of mitochondria during METH toxicity is not available. Thus, in the present study we analyzed dose-dependent mitochondrial structural alterations during METH exposure. Light and transmission electron microscopy were used, along with ultrastructural stoichiometry of catecholamine cells following various doses of METH. In the first part of the study cell death and cell degeneration were assessed and they were correlated with mitochondrial alterations observed using light microscopy. In the second part of the study, ultrastructural evidence of specific mitochondrial alterations of crests, inner and outer membranes and matrix were quantified, along with in situ alterations of mitochondrial proteins. Neurodegeneration induced by METH correlates significantly with specific mitochondrial damage, which allows definition of a scoring system for mitochondrial integrity. In turn, mitochondrial alterations are concomitant with a decrease in fission/mitophagy protein Fis1 and DRP1 and an increase in Pink1 and Parkin in situ, at the mitochondrial level. These findings provide structural evidence that mitochondria represent both direct and indirect targets of METH-induced toxicity
Collapse
Affiliation(s)
- Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Carla L. Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Maico Polzella
- Aliveda Laboratories, Viale Karol Wojtyla, 19, 56042 Crespina Lorenzana, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Neurosurgery Division, Department of Human Neurosciences, Sapienza University, 00135 Roma, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Correspondence: or ; Tel.: +39-050-2218667
| |
Collapse
|
11
|
Zhang KK, Liu JL, Chen LJ, Li JH, Yang JZ, Xu LL, Chen YK, Zhang QY, Li XW, Liu Y, Zhao D, Xie XL, Wang Q. Gut microbiota mediates methamphetamine-induced hepatic inflammation via the impairment of bile acid homeostasis. Food Chem Toxicol 2022; 166:113208. [PMID: 35688268 DOI: 10.1016/j.fct.2022.113208] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022]
Abstract
Methamphetamine (Meth), an addictive psychostimulant of abuse worldwide, has been a common cause of acute toxic hepatitis in adults. Gut microbiota has emerged as a modulator of host immunity via metabolic pathways. However, the microbial mechanism of Meth-induced hepatic inflammation and effective therapeutic strategies remain unknown. Here, mice were intraperitoneally (i.p.) injected with Meth to induce hepatotoxicity. Cecal microbiome and bile acids (BAs) composition were analyzed after Meth administration. Fecal microbiota transplantation (FMT) technology was utilized to investigate the role of microbiota. Additionally, the protective effects of obeticholic acid (OCA), an agonist of farnesoid X receptor (FXR), were evaluated. Results indicated that Meth administration induced hepatic cholestasis, dysfunction and aroused hepatic inflammation by stimulating the TLR4/MyD88/NF-κB pathway in mice. Meanwhile, Meth disturbed the cecal microbiome and impaired the homeostasis of BAs. Interestingly, FMT from Meth administered mice resulted in serum and hepatic BA accumulation and transferred similar phenotypic changes into the healthy recipient mice. Finally, OCA normalized Meth-induced BA accumulation in both serum and the liver, and effectively protected against Meth-induced hepatic dysfunction and inflammation by suppressing the TLR4/MyD88/NF-κB pathway. This study established the importance of microbial mechanism and its inhibition as a potential therapeutic target to treat Meth-related hepatotoxicity.
Collapse
Affiliation(s)
- Kai-Kai Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Li Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li-Jian Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Hao Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian-Zheng Yang
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, 510515, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, 510515, China
| | - Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, 510515, China
| | - Xiu-Wen Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yi Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Dong Zhao
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, 510515, China.
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University (Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification), Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
12
|
Erives VH, Munzen ME, Zamith-Miranda D, Hernandez H, Manepalli S, Nguyen LN, Hamed MF, Nosanchuk JD, Martinez LR. Methamphetamine Enhances Cryptococcus neoformans Melanization, Antifungal Resistance, and Pathogenesis in a Murine Model of Drug Administration and Systemic Infection. Infect Immun 2022; 90:e0009122. [PMID: 35357221 PMCID: PMC9022586 DOI: 10.1128/iai.00091-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Methamphetamine (METH) is a major public health and safety problem in the United States. Chronic METH abuse is associated with a 2-fold-higher risk of HIV infection and, possibly, additional infections, particularly those that enter through the respiratory tract or skin. Cryptococcus neoformans is an encapsulated opportunistic yeast-like fungus that is a relatively frequent cause of meningoencephalitis in immunocompromised patients, especially in individuals with AIDS. C. neoformans melanizes during mammalian infection in a process that presumably uses host-supplied compounds such as catecholamines. l-3,4-Dihydroxyphenylalanine (l-Dopa) is a natural catecholamine that is frequently used to induce melanization in C. neoformans. l-Dopa-melanized cryptococci manifest resistance to radiation, phagocytosis, detergents, and heavy metals. Using a systemic mouse model of infection and in vitro assays to critically assess the impact of METH on C. neoformans melanization and pathogenesis, we demonstrated that METH-treated mice infected with melanized yeast cells showed increased fungal burdens in the blood and brain, exacerbating mortality. Interestingly, analyses of cultures of METH-exposed cryptococci supplemented with l-Dopa revealed that METH accelerates fungal melanization, an event of adaptation to external stimuli that can be advantageous to the fungus during pathogenesis. Our findings provide novel evidence of the impact of METH abuse on host homeostasis and increased permissiveness to opportunistic microorganisms.
Collapse
Affiliation(s)
- Victor H. Erives
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Melissa E. Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Daniel Zamith-Miranda
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hazael Hernandez
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
- Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Swetha Manepalli
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, USA
| | - Long N. Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mohamed F. Hamed
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Joshua D. Nosanchuk
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Luis R. Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Hazani HM, Naina Mohamed I, Muzaimi M, Mohamed W, Yahaya MF, Teoh SL, Pakri Mohamed RM, Mohamad Isa MF, Abdulrahman SM, Ramadah R, Kamaluddin MR, Kumar J. Goofballing of Opioid and Methamphetamine: The Science Behind the Deadly Cocktail. Front Pharmacol 2022; 13:859563. [PMID: 35462918 PMCID: PMC9021401 DOI: 10.3389/fphar.2022.859563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Globally, millions of people suffer from various substance use disorders (SUD), including mono-and polydrug use of opioids and methamphetamine. Brain regions such as the cingulate cortex, infralimbic cortex, dorsal striatum, nucleus accumbens, basolateral and central amygdala have been shown to play important roles in addiction-related behavioral changes. Clinical and pre-clinical studies have characterized these brain regions and their corresponding neurochemical changes in numerous phases of drug dependence such as acute drug use, intoxication, craving, withdrawal, and relapse. At present, many studies have reported the individual effects of opioids and methamphetamine. However, little is known about their combined effects. Co-use of these drugs produces effects greater than either drug alone, where one decreases the side effects of the other, and the combination produces a prolonged intoxication period or a more desirable intoxication effect. An increasing number of studies have associated polydrug abuse with poorer treatment outcomes, drug-related deaths, and more severe psychopathologies. To date, the pharmacological treatment efficacy for polydrug abuse is vague, and still at the experimental stage. This present review discusses the human and animal behavioral, neuroanatomical, and neurochemical changes underlying both morphine and methamphetamine dependence separately, as well as its combination. This narrative review also delineates the recent advances in the pharmacotherapy of mono- and poly drug-use of opioids and methamphetamine at clinical and preclinical stages.
Collapse
Affiliation(s)
- Hanis Mohammad Hazani
- Department of Physiology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, National University of Malaysia, Cheras, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, National University of Malaysia, Cheras, Malaysia
| | | | | | | | - Ravi Ramadah
- National Anti-Drugs Agency Malaysia, Selangor, Malaysia
| | - Mohammad Rahim Kamaluddin
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, The National University of Malaysia, Bangi, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| |
Collapse
|
14
|
Methamphetamine induces intestinal injury by altering gut microbiota and promoting inflammation in mice. Toxicol Appl Pharmacol 2022; 443:116011. [PMID: 35390362 DOI: 10.1016/j.taap.2022.116011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023]
Abstract
Methamphetamine (METH) is a psychostimulant abused worldwide. Its abuse induces intestinal toxicity. Moreover, the gut microbiota is altered by drugs, which induces intestinal injury. Whether gut microbiota mediates METH-induced intestinal toxicity remains to be validated. In the present study, wild-type and TLR4-/- mice were treated with METH. Gut microbiota was determined using 16S rRNA gene sequencing. Transcriptomics of the intestinal mucosa was performed by RNA-Sequencing. Blood levels of pro-inflammatory cytokines and lipopolysaccharide (LPS), the intestinal barrier, and inflammation were also assessed. METH treatment weakened the intestinal barrier and increased pro-inflammatory cytokines and LPS levels in the blood. Moreover, METH treatment significantly decreased the diversity of probiotics but increased the abundance of pathogenic gut microbiota, contributing to the over-production of LPS and disruption of intestinal barrier. Inflammatory pathways were enriched in the intestinal mucosa of METH-treated mice by KEGG analysis. Consistently, activation of the TLR4 pathway was determined in METH-treated mice, which confirmed intestinal inflammation. However, pretreatment with antibiotics or Tlr4 silencing significantly alleviated METH-induced gut microbiota dysbiosis, LPS over-production, intestinal inflammation, and disruption of the intestinal barrier. These findings suggested that the gut microbiota and LPS-mediated inflammation took an important role in METH-induced intestinal injury. Taken together, these findings suggest that METH-induced intestinal injury is mediated by gut microbiota dysbiosis and LPS-associated inflammation.
Collapse
|
15
|
Wang X, Tong B, Hui R, Hou C, Zhang Z, Zhang L, Xie B, Ni Z, Cong B, Ma C, Wen D. The Role of Hyperthermia in Methamphetamine-Induced Depression-Like Behaviors: Protective Effects of Coral Calcium Hydride. Front Mol Neurosci 2022; 14:808807. [PMID: 35058751 PMCID: PMC8764150 DOI: 10.3389/fnmol.2021.808807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (METH) abuse causes irreversible damage to the central nervous system and leads to psychiatric symptoms including depression. Notably, METH-induced hyperthermia is a crucial factor in the development of these symptoms, as it aggravates METH-induced neurotoxicity. However, the role of hyperthermia in METH-induced depression-like behaviors needs to be clarified. In the present study, we treated mice with different doses of METH under normal (NAT) or high ambient temperatures (HAT). We found that HAT promoted hyperthermia after METH treatment and played a key role in METH-induced depression-like behaviors in mice. Intriguingly, chronic METH exposure (10 mg/kg, 7 or 14 days) or administration of an escalating-dose (2 ∼ 15 mg/kg, 3 days) of METH under NAT failed to induce depression-like behaviors. However, HAT aggravated METH-induced damage of hippocampal synaptic plasticity, reaction to oxidative stress, and neuroinflammation. Molecular hydrogen acts as an antioxidant and anti-inflammatory agent and has been shown to have preventive and therapeutic applicability in a wide range of diseases. Coral calcium hydride (CCH) is a newly identified hydrogen-rich powder which produces hydrogen gas gradually when exposed to water. Herein, we found that CCH pretreatment significantly attenuated METH-induced hyperthermia, and administration of CCH after METH exposure also inhibited METH-induced depression-like behaviors and reduced the hippocampal synaptic plasticity damage. Moreover, CCH effectively reduced the activity of lactate dehydrogenase and decreased malondialdehyde, TNF-α and IL-6 generation in hippocampus. These results suggest that CCH is an efficient hydrogen-rich agent, which has a potential therapeutic applicability in the treatment of METH abusers.
Collapse
Affiliation(s)
- Xintao Wang
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Bonan Tong
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Congcong Hou
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Zilu Zhang
- The First Clinical Medical College of Peking University Health Science Center, Peking University, Beijing, China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Zhiyu Ni
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
- *Correspondence: Chunling Ma,
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
- Di Wen,
| |
Collapse
|
16
|
Doi M, Nakama N, Sumi T, Usui N, Shimada S. Prenatal methamphetamine exposure causes dysfunction in glucose metabolism and low birthweight. Front Endocrinol (Lausanne) 2022; 13:1023984. [PMID: 36353228 PMCID: PMC9637823 DOI: 10.3389/fendo.2022.1023984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (METH) is a psychostimulant drug that induces addiction. Previous epidemiological studies have demonstrated that maternal METH abuse during pregnancy causes low birthweight (LBW) in the offspring. As a source of essential nutrients, in particular glucose, the placenta plays a key role in fetal development. LBW leads to health problems such as obesity, diabetes, and neurodevelopmental disorders (NDDs). However, the detailed mechanism underlying offspring's LBW and health hazards caused by METH are not fully understood. Therefore, we investigated the effects of prenatal METH exposure on LBW and fetal-placental relationship by focusing on metabolism. We found dysfunction of insulin production in the pancreas of fetuses exposed to METH. We also found a reduction of the glycogen cells (GCs) storing glycogens in the junctional zone of placenta, all of which suggest abnormal glucose metabolism affects the fetal development. These results suggest that dysfunction in fetal glucose metabolism may cause LBW and future health hazards. Our findings provide novel insights into the cause of LBW via the fetal-placental crosstalk.
Collapse
Affiliation(s)
- Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Nanako Nakama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuya Sumi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- *Correspondence: Noriyoshi Usui,
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
17
|
Synergistic Impairment of the Neurovascular Unit by HIV-1 Infection and Methamphetamine Use: Implications for HIV-1-Associated Neurocognitive Disorders. Viruses 2021; 13:v13091883. [PMID: 34578464 PMCID: PMC8473422 DOI: 10.3390/v13091883] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The neurovascular units (NVU) are the minimal functional units of the blood-brain barrier (BBB), composed of endothelial cells, pericytes, astrocytes, microglia, neurons, and the basement membrane. The BBB serves as an important interface for immune communication between the brain and peripheral circulation. Disruption of the NVU by the human immunodeficiency virus-1 (HIV-1) induces dysfunction of the BBB and triggers inflammatory responses, which can lead to the development of neurocognitive impairments collectively known as HIV-1-associated neurocognitive disorders (HAND). Methamphetamine (METH) use disorder is a frequent comorbidity among individuals infected with HIV-1. METH use may be associated not only with rapid HIV-1 disease progression but also with accelerated onset and increased severity of HAND. However, the molecular mechanisms of METH-induced neuronal injury and cognitive impairment in the context of HIV-1 infection are poorly understood. In this review, we summarize recent progress in the signaling pathways mediating synergistic impairment of the BBB and neuronal injury induced by METH and HIV-1, potentially accelerating the onset or severity of HAND in HIV-1-positive METH abusers. We also discuss potential therapies to limit neuroinflammation and NVU damage in HIV-1-infected METH abusers.
Collapse
|
18
|
Liao LS, Lu S, Yan WT, Wang SC, Guo LM, Yang YD, Huang K, Hu XM, Zhang Q, Yan J, Xiong K. The Role of HSP90α in Methamphetamine/Hyperthermia-Induced Necroptosis in Rat Striatal Neurons. Front Pharmacol 2021; 12:716394. [PMID: 34349659 PMCID: PMC8326403 DOI: 10.3389/fphar.2021.716394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is one of the most widely abused synthetic drugs in the world. The users generally present hyperthermia (HT) and psychiatric symptoms. However, the mechanisms involved in METH/HT-induced neurotoxicity remain elusive. Here, we investigated the role of heat shock protein 90 alpha (HSP90α) in METH/HT (39.5°C)-induced necroptosis in rat striatal neurons and an in vivo rat model. METH treatment increased core body temperature and up-regulated LDH activity and the molecular expression of canonical necroptotic factors in the striatum of rats. METH and HT can induce necroptosis in primary cultures of striatal neurons. The expression of HSP90α increased following METH/HT injuries. The specific inhibitor of HSP90α, geldanamycin (GA), and HSP90α shRNA attenuated the METH/HT-induced upregulation of receptor-interacting protein 3 (RIP3), phosphorylated RIP3, mixed lineage kinase domain-like protein (MLKL), and phosphorylated MLKL. The inhibition of HSP90α protected the primary cultures of striatal neurons from METH/HT-induced necroptosis. In conclusion, HSP90α plays an important role in METH/HT-induced neuronal necroptosis and the HSP90α-RIP3 pathway is a promising therapeutic target for METH/HT-induced neurotoxicity in the striatum.
Collapse
Affiliation(s)
- Lv-shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-min Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-di Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kai Huang
- Department of Human Anatomy and Histoembryolog, School of Basic Medical Sciences, Shaoyang University, Shaoyang, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
19
|
Hernandez-Santini AC, Mitha AN, Chow D, Hamed MF, Gucwa AL, Vaval V, Martinez LR. Methamphetamine facilitates pulmonary and splenic tissue injury and reduces T cell infiltration in C57BL/6 mice after antigenic challenge. Sci Rep 2021; 11:8207. [PMID: 33859291 PMCID: PMC8050260 DOI: 10.1038/s41598-021-87728-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a strong addictive central nervous system stimulant. METH abuse can alter biological processes and immune functions necessary for host defense. The acquisition and transmission of HIV, hepatitis, and other communicable diseases are possible serious infectious consequences of METH use. METH also accumulates extensively in major organs. Despite METH being a major public health and safety problem globally, there are limited studies addressing the impact of this popular recreational psychostimulant on tissue adaptive immune responses after exposure to T cell dependent [ovalbumin (OVA)] and independent [lipopolysaccharide (LPS)] antigens. We hypothesized that METH administration causes pulmonary and splenic tissue alterations and reduces T cell responses to OVA and LPS in vivo, suggesting the increased susceptibility of users to infection. Using a murine model of METH administration, we showed that METH causes tissue injury, apoptosis, and alters helper and cytotoxic T cell recruitment in antigen challenged mice. METH also reduces the expression and distribution of CD3 and CD28 molecules on the surface of human Jurkat T cells. In addition, METH decreases the production of IL-2 in these T-like cells, suggesting a negative impact on T lymphocyte activation and proliferation. Our findings demonstrate the pleotropic effects of METH on cell-mediated immunity. These alterations have notable implications on tissue homeostasis and the capacity of the host to respond to infection.
Collapse
Affiliation(s)
| | - Anum N Mitha
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Daniela Chow
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Mohamed F Hamed
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Room DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA.,Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Azad L Gucwa
- Department of Biology, Farmingdale State College, Farmingdale, NY, USA
| | - Valerie Vaval
- Department of Biomedical Sciences, Long Island University, C. W. Post, Brookville, NY, USA
| | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Room DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Mitha AN, Chow D, Vaval V, Guerrero P, Rivera-Rodriguez DE, Martinez LR. Methamphetamine Compromises the Adaptive B Cell-Mediated Immunity to Antigenic Challenge in C57BL/6 Mice. FRONTIERS IN TOXICOLOGY 2021; 3. [PMID: 34109323 PMCID: PMC8186300 DOI: 10.3389/ftox.2021.629451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a substance of abuse that causes dysregulation of the innate and adaptive immunity in users. B cells are involved in the humoral component of the adaptive immunity by producing and secreting antibodies (Abs). METH modifies Ab production, although limited information on the impact of this psychostimulant on antigen (Ag)-specific humoral immune responses is available. Since T cell-dependent and T cell-independent Ags are involved in the activation of B lymphocytes, we explored the role of METH on humoral immunity to ovalbumin (OVA; T cell-dependent) and bacterial lipopolysaccharide (LPS; T cell-independent) in C57BL/6 mice. We demonstrated that METH extends the infiltration of B cells into pulmonary and splenic tissues 7 days post-Ag challenge. METH impairs Ab responses in the blood of animals challenged with OVA and LPS. Furthermore, METH diminishes the expression and distribution of IgM on B cell surface, suggesting a possible detrimental impact on users' humoral immunity to infection or autoimmunity.
Collapse
Affiliation(s)
- Anum N Mitha
- Department of Biomedical Sciences, Long Island University, Brookville, NY, United States.,Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| | - Daniela Chow
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Valerie Vaval
- Department of Biomedical Sciences, Long Island University, Brookville, NY, United States
| | - Paulina Guerrero
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Luis R Martinez
- Department of Biomedical Sciences, Long Island University, Brookville, NY, United States.,Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States.,Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States.,Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
| |
Collapse
|
21
|
Understanding the Basis of METH Mouth Using a Rodent Model of Methamphetamine Injection, Sugar Consumption, and Streptococcus mutans Infection. mBio 2021; 12:mBio.03534-20. [PMID: 33688011 PMCID: PMC8092307 DOI: 10.1128/mbio.03534-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
“METH mouth” is characterized by severe tooth decay and gum disease, which often causes teeth to break or fall out. METH users are also prone to colonization by cariogenic bacteria such as Streptococcus mutans. “METH mouth” is a common consequence of chronic methamphetamine (METH) use, resulting in tooth decay and painful oral tissue inflammation that can progress to complete tooth loss. METH reduces the amount of saliva in the mouth, promoting bacterial growth, tooth decay, and oral tissue damage. This oral condition is worsened by METH users’ compulsive behavior, including high rates of consumption of sugary drinks, recurrent tooth grinding, and a lack of frequent oral hygiene. Streptococcus mutans is a Gram-positive bacterium found in the oral cavity and associated with caries in humans. Hence, we developed a murine model of METH administration, sugar intake, and S. mutans infection to mimic METH mouth in humans and to investigate the impact of this drug on tooth colonization. We demonstrated that the combination of METH and sucrose stimulates S. mutans tooth adhesion, growth, and biofilm formation in vivo. METH and sucrose increased the expression of S. mutans glycosyltransferases and lactic acid production. Moreover, METH contributes to the low environmental pH and S. mutans sucrose metabolism, providing a plausible mechanism for bacterium-mediated tooth decay. Daily oral rinse treatment with chlorhexidine significantly reduces tooth colonization in METH- and sucrose-treated mice. Furthermore, human saliva inhibits S. mutans colonization and biofilm formation after exposure to either sucrose or the combination of METH and sucrose. These findings suggest that METH might increase the risk of microbial dental disease in users, information that may help in the development of effective public health strategies to deal with this scourge in our society.
Collapse
|
22
|
Petrikova-Hrebickova I, Sevcikova M, Šlamberová R. The Impact of Neonatal Methamphetamine on Spatial Learning and Memory in Adult Female Rats. Front Behav Neurosci 2021; 15:629585. [PMID: 33679341 PMCID: PMC7930212 DOI: 10.3389/fnbeh.2021.629585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
The present study was aimed at evaluating cognitive changes following neonatal methamphetamine exposure in combination with repeated treatment in adulthood of female Wistar rats. Pregnant dams and their pups were used in this study. One half of the offspring were treated indirectly via the breast milk of injected mothers, and the other half of pups were treated directly by methamphetamine injection. In the group with indirect exposure, mothers received methamphetamine (5 mg/ml/kg) or saline (1 ml/kg) between postnatal days (PD) 1-11. In the group with direct exposure, none of the mothers were treated. Instead, progeny were either: (1) treated with injected methamphetamine (5 mg/ml/kg); or (2) served as controls and received sham injections (no saline, just a needle stick) on PD 1-11. Learning ability and memory consolidation were tested on PD 70-90 in the Morris Water Maze (MWM) using three tests: Place Navigation Test, Probe Test, and Memory Recall Test. Adult female progeny were injected daily, after completion of the last trial of MWM tests, with saline or methamphetamine (1 mg/ml/kg). The effects of indirect/direct neonatal methamphetamine exposure combined with acute adult methamphetamine treatment on cognitive functions in female rats were compared. Statistical analyses showed that neonatal drug exposure worsened spatial learning and the ability to remember the position of a hidden platform. The study also demonstrated that direct methamphetamine exposure has a more significant impact on learning and memory than indirect exposure. The acute dose of the drug did not produce any changes in cognitive ability. Analyses of search strategies (thigmotaxis, scanning) used by females during the Place Navigation Test and Memory Recall Test confirmed all these results. Results from the present study suggested extensive deficits in learning skills and memory of female rats that may be linked to the negative impact of neonatal methamphetamine exposure.
Collapse
Affiliation(s)
| | - Maria Sevcikova
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
23
|
Activation of proline biosynthesis is critical to maintain glutamate homeostasis during acute methamphetamine exposure. Sci Rep 2021; 11:1422. [PMID: 33446840 PMCID: PMC7809342 DOI: 10.1038/s41598-020-80917-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that causes long-lasting effects in the brain and increases the risk of developing neurodegenerative diseases. The cellular and molecular effects of METH in the brain are functionally linked to alterations in glutamate levels. Despite the well-documented effects of METH on glutamate neurotransmission, the underlying mechanism by which METH alters glutamate levels is not clearly understood. In this study, we report an essential role of proline biosynthesis in maintaining METH-induced glutamate homeostasis. We observed that acute METH exposure resulted in the induction of proline biosynthetic enzymes in both undifferentiated and differentiated neuronal cells. Proline level was also increased in these cells after METH exposure. Surprisingly, METH treatment did not increase glutamate levels nor caused neuronal excitotoxicity. However, METH exposure resulted in a significant upregulation of pyrroline-5-carboxylate synthase (P5CS), the key enzyme that catalyzes synthesis of proline from glutamate. Interestingly, depletion of P5CS by CRISPR/Cas9 resulted in a significant increase in glutamate levels upon METH exposure. METH exposure also increased glutamate levels in P5CS-deficient proline-auxotropic cells. Conversely, restoration of P5CS expression in P5CS-deficient cells abrogated the effect of METH on glutamate levels. Consistent with these findings, P5CS expression was significantly enhanced in the cortical brain region of mice administered with METH and in the slices of cortical brain tissues treated with METH. Collectively, these results uncover a key role of P5CS for the molecular effects of METH and highlight that excess glutamate can be sequestered for proline biosynthesis as a protective mechanism to maintain glutamate homeostasis during drug exposure.
Collapse
|
24
|
Rathitharan G, Truong J, Tong J, McCluskey T, Meyer JH, Mizrahi R, Warsh J, Rusjan P, Kennedy JL, Houle S, Kish SJ, Boileau I. Microglia imaging in methamphetamine use disorder: a positron emission tomography study with the 18 kDa translocator protein radioligand [F-18]FEPPA. Addict Biol 2021; 26:e12876. [PMID: 32017280 DOI: 10.1111/adb.12876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 01/19/2023]
Abstract
Activation of brain microglial cells, microgliosis, has been linked to methamphetamine (MA)-seeking behavior, suggesting that microglia could be a new therapeutic target for MA use disorder. Animal data show marked brain microglial activation following acute high-dose MA, but microglial status in human MA users is uncertain, with one positron emission tomography (PET) investigation reporting massively and globally increased translocator protein 18 kDa (TSPO; [C-11](R)-PK11195) binding, a biomarker for microgliosis, in MA users. Our aim was to measure binding of a second-generation TSPO radioligand, [F-18]FEPPA, in brain of human chronic MA users. Regional total volume of distribution (VT ) of [F-18]FEPPA was estimated with a two-tissue compartment model with arterial plasma input function for 10 regions of interest in 11 actively using MA users and 26 controls. A RM-ANOVA corrected for TSPO rs6971 polymorphism was employed to test significance. There was no main effect of group on [F-18]FEPPA VT (P = .81). No significant correlations between [F-18]FEPPA VT and MA use duration, weekly dosage, blood MA concentrations, regional brain volumes, and self-reported craving were observed. Our preliminary findings, consistent with our earlier postmortem data, do not suggest substantial brain microgliosis in MA use disorder but do not rule out microglia as a therapeutic target in MA addiction. Absence of increased [F-18]FEPPA TSPO binding might be related to insufficient MA dose or blunting of microglial response following repeated MA exposure, as suggested by some animal data.
Collapse
Affiliation(s)
- Gausiha Rathitharan
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Jennifer Truong
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Junchao Tong
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| | - Tina McCluskey
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Jeffrey H. Meyer
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Romina Mizrahi
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Jerry Warsh
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Pablo Rusjan
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - James L. Kennedy
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Sylvain Houle
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| | - Stephen J. Kish
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Isabelle Boileau
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| |
Collapse
|
25
|
Ohene-Nyako M, Persons AL, Napier TC. Hippocampal blood-brain barrier of methamphetamine self-administering HIV-1 transgenic rats. Eur J Neurosci 2021; 53:416-429. [PMID: 32725911 PMCID: PMC9949894 DOI: 10.1111/ejn.14925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Combined antiretroviral therapy for HIV infection reduces plasma viral load and prolongs life. However, the brain is a viral reservoir, and pathologies such as cognitive decline and blood-brain barrier (BBB) disruption persist. Methamphetamine abuse is prevalent among HIV-infected individuals. Methamphetamine and HIV toxic proteins can disrupt the BBB, but it is unclear if there exists a common pathway by which HIV proteins and methamphetamine induce BBB damage. Also unknown are the BBB effects imposed by chronic exposure to HIV proteins in the comorbid context of chronic methamphetamine abuse. To evaluate these scenarios, we trained HIV-1 transgenic (Tg) and non-Tg rats to self-administer methamphetamine using a 21-day paradigm that produced an equivalency dose range at the low end of the amounts self-titrated by humans. Markers of BBB integrity were measured for the hippocampus, a brain region involved in cognitive function. Outcomes revealed that tight junction proteins, claudin-5 and occludin, were reduced in Tg rats independent of methamphetamine, and this co-occurred with increased levels of lipopolysaccharide, albumin (indicating barrier breakdown) and matrix metalloproteinase-9 (MMP-9; indicating barrier matrix disruption); reductions in GFAP (indicating astrocytic dysfunction); and microglial activation (indicating inflammation). Evaluations of markers for two signaling pathways that regulate MMP-9 transcription, NF-κB and ERK/∆FosB revealed an overall genotype effect for NF-κB. Methamphetamine did not alter measurements from Tg rats, but in non-Tg rats, methamphetamine reduced occludin and GFAP, and increased MMP-9 and NF-κB. Study outcomes suggest that BBB dysregulation resulting from chronic exposure to HIV-1 proteins or methamphetamine both involve NF-κB/MMP-9.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Department of Pharmacology, Rush University, Chicago, IL, USA,Department of Physician Assistant Studies, Rush University, Chicago, IL, USA
| | - Amanda L. Persons
- Department of Physician Assistant Studies, Rush University, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, Rush University, Chicago, IL, USA,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - T. Celeste Napier
- Department of Pharmacology, Rush University, Chicago, IL, USA,Department of Physician Assistant Studies, Rush University, Chicago, IL, USA,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| |
Collapse
|
26
|
Abdullah CS, Aishwarya R, Alam S, Morshed M, Remex NS, Nitu S, Kolluru GK, Traylor J, Miriyala S, Panchatcharam M, Hartman B, King J, Bhuiyan MAN, Chandran S, Woolard MD, Yu X, Goeders NE, Dominic P, Arnold CL, Stokes K, Kevil CG, Orr AW, Bhuiyan MS. Methamphetamine induces cardiomyopathy by Sigmar1 inhibition-dependent impairment of mitochondrial dynamics and function. Commun Biol 2020; 3:682. [PMID: 33203971 PMCID: PMC7673131 DOI: 10.1038/s42003-020-01408-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methamphetamine-associated cardiomyopathy is the leading cause of death linked with illicit drug use. Here we show that Sigmar1 is a therapeutic target for methamphetamine-associated cardiomyopathy and defined the molecular mechanisms using autopsy samples of human hearts, and a mouse model of "binge and crash" methamphetamine administration. Sigmar1 expression is significantly decreased in the hearts of human methamphetamine users and those of "binge and crash" methamphetamine-treated mice. The hearts of methamphetamine users also show signs of cardiomyopathy, including cellular injury, fibrosis, and enlargement of the heart. In addition, mice expose to "binge and crash" methamphetamine develop cardiac hypertrophy, fibrotic remodeling, and mitochondrial dysfunction leading to contractile dysfunction. Methamphetamine treatment inhibits Sigmar1, resulting in inactivation of the cAMP response element-binding protein (CREB), decreased expression of mitochondrial fission 1 protein (FIS1), and ultimately alteration of mitochondrial dynamics and function. Therefore, Sigmar1 is a viable therapeutic agent for protection against methamphetamine-associated cardiomyopathy.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Gopi K Kolluru
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Sumitra Miriyala
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Manikandan Panchatcharam
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | | | - Sunitha Chandran
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Paari Dominic
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Connie L Arnold
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Karen Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
27
|
Human Immunodeficiency Virus Type 1 and Methamphetamine-Mediated Mitochondrial Damage and Neuronal Degeneration in Human Neurons. J Virol 2020; 94:JVI.00924-20. [PMID: 32796068 DOI: 10.1128/jvi.00924-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine, a potent psychostimulant, is a highly addictive drug commonly used by persons living with HIV (PLWH), and its use can result in cognitive impairment and memory deficits long after its use is discontinued. Although the mechanism(s) involved with persistent neurological deficits is not fully known, mitochondrial dysfunction is a key component in methamphetamine neuropathology. Specific mitochondrial autophagy (mitophagy) and mitochondrial fusion and fission are protective quality control mechanisms that can be dysregulated in HIV infection, and the use of methamphetamine can further negatively affect these protective cellular mechanisms. Here, we observed that treatment of human primary neurons (HPNs) with methamphetamine and HIV gp120 and Tat increase dynamin-related protein 1 (DRP1)-dependent mitochondrial fragmentation and neuronal degeneration. Methamphetamine and HIV proteins increased microtubule-associated protein 1 light chain 3 beta-II (LC3B-II) lipidation and induced sequestosome 1 (SQSTM1, p62) translocation to damaged mitochondria. Additionally, the combination inhibited autophagic flux, increased reactive oxygen species (ROS) production and mitochondrial damage, and reduced microtubule-associated protein 2 (MAP2) dendrites in human neurons. N-Acetylcysteine (NAC), a strong antioxidant and ROS scavenger, abrogated DRP1-dependent mitochondrial fragmentation and neurite degeneration. Thus, we show that methamphetamine combined with HIV proteins inhibits mitophagy and induces neuronal damage, and NAC reverses these deleterious effects on mitochondrial function.IMPORTANCE Human and animal studies show that HIV infection, combined with the long-term use of psychostimulants, increases neuronal stress and the occurrence of HIV-associated neurocognitive disorders (HAND). On the cellular level, mitochondrial function is critical for neuronal health. In this study, we show that in human primary neurons, the combination of HIV proteins and methamphetamine increases oxidative stress, DRP1-mediated mitochondrial fragmentation, and neuronal injury manifested by a reduction in neuronal network and connectivity. The use of NAC, a potent antioxidant, reversed the neurotoxic effects of HIV and methamphetamine, suggesting a novel approach to ameliorate the effects of HIV- and methamphetamine-associated cognitive deficits.
Collapse
|
28
|
El-Sherbeni AA, Stocco MR, Wadji FB, Tyndale RF. Addressing the instability issue of dopamine during microdialysis: the determination of dopamine, serotonin, methamphetamine and its metabolites in rat brain. J Chromatogr A 2020; 1627:461403. [PMID: 32823108 PMCID: PMC7484461 DOI: 10.1016/j.chroma.2020.461403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/27/2022]
Abstract
Dopamine is a catecholamine neurotransmitter that degrades rapidly in aqueous solutions; hence, its analysis following brain microdialysis is challenging. The aim of the current study was to develop and validate a new microdialysis coupled LC-MS/MS system with improved accuracy, precision, simplicity and turnaround time for dopamine, serotonin, methamphetamine, amphetamine, 4-hydroxymethamphetamine and 4-hydroxyamphetamine analysis in the brain. Dopamine degradation was studied with different stabilizing agents under different storage conditions. The modified microdialysis system was tested in vitro, and was optimized for best probe recovery, assessed by %gain. LC-MS/MS assay was developed and validated for the targeted compounds. Stabilizing agents (ascorbic acid, EDTA and acetic acid) as well as internal and cold standards were added on-line to the dialysate flow. Assay linearity range was 0.01-100 ng/mL, precision and accuracy passed criteria, and LOQ and LLOQ were 0.2 and 1.0 pg, respectively. The new microdialysis coupled LC-MS/MS system was used in Wistar rats striatum after 4 mg/kg subcutaneous methamphetamine. Methamphetamine rapidly distributed to rat striatum reaching an average ~200 ng/mL maximum, ~82.5 min post-dose. Amphetamine, followed by 4-hydroxymethamphetamine, was the most abundant metabolite. Dopamine was released following methamphetamine injection, while serotonin was not altered. In conclusion, we proposed and tested an innovative and simplified solution to improve stability, accuracy and turnover time to monitor unstable molecules, such as dopamine, by microdialysis.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marlaina R Stocco
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fariba Baghai Wadji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
29
|
Vargas AM, Rivera-Rodriguez DE, Martinez LR. Methamphetamine alters the TLR4 signaling pathway, NF-κB activation, and pro-inflammatory cytokine production in LPS-challenged NR-9460 microglia-like cells. Mol Immunol 2020; 121:159-166. [PMID: 32222586 PMCID: PMC8079139 DOI: 10.1016/j.molimm.2020.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 12/30/2022]
Abstract
Methamphetamine (METH) is a major public health and safety problem worldwide. METH is psychostimulant that activates microglia via the toll-like receptor (TLR) 4/MD2 complex, modulating the abundant production of pro-inflammatory cytokines in the central nervous system (CNS). The TLR4/MD2 complex on the surface of microglia recognizes pathogen-associated molecular patterns such as lipopolysaccharide (LPS) resulting in brain tissue inflammation and neuronal damage. Since METH has been associated with microglia-induced neurotoxicity, we hypothesized that METH impairs the expression of TLR4 and activation of NF-κB in NR-9460 microglia-like cells after LPS challenge. We demonstrated that METH decreases the distribution and expression of TLR4 receptors on the surface of microglia-like cells after incubation with endotoxin. Moreover, METH impairs the TLR4/MD2 complex signaling pathways, compromises the activation of NF-κB, and reduces the production of pro-inflammatory mediators in microglia-like cells upon LPS stimulation. Interestingly, microglia-like cells treated with METH and challenged with LPS showed considerable cellular morphological changes including enlarged nuclei and ruffled surface. Our results suggest that METH may have a significant impact on microglial-induced neuroinflammation, neurotoxicity, and the CNS defense against infection. It also highlights the importance of studying the effects of METH on the molecular and cellular components of users' CNS immunity. Finally, animal studies exploring the role of METH on the effectors functions of microglia after antigenic exposure are necessary to understand drug-related inflammation and neural damage in users.
Collapse
Affiliation(s)
- Ana M Vargas
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, TX, United States
| | | | - Luis R Martinez
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, TX, United States; Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
30
|
Chen X, Qiu F, Zhao X, Lu J, Tan X, Xu J, Chen C, Zhang F, Liu C, Qiao D, Wang H. Astrocyte-Derived Lipocalin-2 Is Involved in Mitochondrion-Related Neuronal Apoptosis Induced by Methamphetamine. ACS Chem Neurosci 2020; 11:1102-1116. [PMID: 32186847 DOI: 10.1021/acschemneuro.9b00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methamphetamine (METH) is a widely abused and highly addictive psychoactive stimulant that can induce neuronal apoptosis. Lipocalin-2 (LCN2) is a member of the lipocalin family, and its upregulation is involved in cell death in the adult brain. However, the role of LCN2 in METH-induced neurotoxicity has not been reported. In this study, we found that LCN2 was predominantly expressed in hippocampal astrocytes after METH exposure and that recombinant LCN2 (Re LCN2) can induce neuronal apoptosis in vitro and in vivo. The inhibition of LCN2 and LCN2R, a cell surface receptor for LCN2, reduced METH- and Re LCN2-induced mitochondrion-related neuronal apoptosis in cultures of primary rat neurons and animal models. Our study supports the role of reactive oxygen species (ROS) generation and the PRKR-like ER kinase (PERK)-mediated signaling pathway in the upregulation of astrocyte-derived LCN2 after METH exposure. Additionally, the serum and cerebrospinal fluid (CSF) levels of LCN2 were significantly upregulated after METH exposure. These results indicate that upregulation of astrocyte-derived LCN2 binding to LCN2R is involved in METH-induced mitochondrion-related neuronal apoptosis.
Collapse
Affiliation(s)
- Xuebing Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Qiu
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Xu Zhao
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingtao Xu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fu Zhang
- Key Lab of Forensic Pathology, Guangdong Public Security Department, Guangzhou 510050, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou 510030, China
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| |
Collapse
|
31
|
Lai CC, Fang C, Kuo CY, Wu YW, Lin HH. Activation of mGluR5 and NMDA Receptor Pathways in the Rostral Ventrolateral Medulla as a Central Mechanism for Methamphetamine-Induced Pressor Effect in Rats. Biomolecules 2020; 10:biom10010149. [PMID: 31963318 PMCID: PMC7022376 DOI: 10.3390/biom10010149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Acute hypertension produced by methamphetamine (MA) is well known, mainly by the enhancement of catecholamine release from sympathetic terminals. However, the central pressor mechanism of the blood-brain-barrier-penetrating molecule remains unclear. We used radio-telemetry and femoral artery cannulation to monitor the mean arterial pressure (MAP) in conscious free-moving and urethane-anesthetized rats, respectively. Expression of Fos protein (Fos) and phosphorylation of N-methyl-D-aspartate receptor subunit GluN1 in the rostral ventrolateral medulla (RVLM) were detected using Western blot analysis. ELISA was carried out for detection of protein kinase C (PKC) activity in the RVLM. MA-induced glutamate release in the RVLM was assayed using in vivo microdialysis and HPLC. Systemic or intracerebroventricular (i.c.v.) administration of MA augments the MAP and increases Fos expression, PKC activity, and phosphorylated GluN1-ser 896 (pGluN1-ser 896) in the RVLM. However, direct microinjection of MA into the RVLM did not change the MAP. Unilateral microinjection of a PKC inhibitor or a metabotropic glutamate receptor 5 (mGluR5) antagonist into the RVLM dose-dependently attenuated the i.c.v. MA-induced increase in MAP and pGluN1-ser 896. Our data suggested that MA may give rise to glutamate release in the RVLM further to the activation of mGluR5-PKC pathways, which would serve as a central mechanism for the MA-induced pressor effect.
Collapse
Affiliation(s)
- Chih-Chia Lai
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| | - Chi Fang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.F.); (C.-Y.K.); (Y.-W.W.)
| | - Chung-Yi Kuo
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.F.); (C.-Y.K.); (Y.-W.W.)
| | - Ya-Wen Wu
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.F.); (C.-Y.K.); (Y.-W.W.)
| | - Hsun-Hsun Lin
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.F.); (C.-Y.K.); (Y.-W.W.)
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-3-856-5301 (ext. 2124)
| |
Collapse
|
32
|
Ferdous N, Kudumala S, Sossi S, Carvelli L. Prolonged Amphetamine Treatments Cause Long-Term Decrease of Dopamine Uptake in Cultured Cells. Neurochem Res 2019; 45:1399-1409. [PMID: 31883055 PMCID: PMC7260268 DOI: 10.1007/s11064-019-02938-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 11/24/2022]
Abstract
Amphetamine (AMPH) is a systemic stimulant used to treat a variety of diseases including Attention Deficit Hyperactive Disorder, narcolepsy and obesity. Previous data showed that by binding to catecholamine transporters, AMPH prevents the reuptake of the neurotransmitters dopamine (DA) and norepinephrine (NE). Because AMPH, either used therapeutically at final concentrations of 1–10 µM or abused as recreational drug (50–200 µM), is taken over long periods of time, we investigated the prolonged effects of this drug on the uptake of DA. We found that, in LLC-PK1 cells stably expressing the human DA transporter (hDAT), pretreatments with 1 or 50 µM AMPH caused significant reduction in DA uptake right after the 15-h pretreatment. Remarkably, after 50 but not 1 µM AMPH pretreatment, we observed a significant reduction in DA uptake also after one, two or three cell divisions. To test whether these long-term effects induced by AMPH where conserved in a model comparable to primordial neuronal cells and native neurons, we used the human neuroblastoma cell line SH-SY5Y cells, which were reported to endogenously express both hDAT and the NE transporter. Pretreatments with 50 µM AMPH caused a significant reduction of DA uptake both right after 15 h and 3 cell divisions followed by neuro-differentiation with retinoic acid (RA) for 5 days. Under these same conditions, AMPH did not change the intracellular concentrations of ATP, ROS and cell viability suggesting, therefore, that the reduction in DA uptake was not cause by AMPH-induced toxicity. Interestingly, while 1 µM AMPH did not cause long-term effects in the LLC-PK1 cells, in the SH-SY5Y cells, it decreased the DA uptake after one, two, but not three, cell divisions and 5-day RA differentiation. These data show that besides the well-known acute effects, AMPH can also produce long-term effects in vitro that are maintained during cell division and transmitted to the daughter cells.
Collapse
Affiliation(s)
- Nafisa Ferdous
- Department of Biomedical Science, University of North Dakota, Grand Forks, ND, USA
| | - Sirisha Kudumala
- Harriet L. Wilkes Honors College, Florida Atlantic University, FL, Jupiter, USA
| | - Serena Sossi
- Integrated Biology Program, Florida Atlantic University, FL, Boca Raton, USA
| | - Lucia Carvelli
- Brain Institute, Florida Atlantic University, Jupiter, FL, USA. .,Harriet L. Wilkes Honors College, Florida Atlantic University, FL, Jupiter, USA. .,Integrated Biology Program, Florida Atlantic University, FL, Boca Raton, USA.
| |
Collapse
|
33
|
Alvarez-Carbonell D, Ye F, Ramanath N, Garcia-Mesa Y, Knapp PE, Hauser KF, Karn J. Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathog 2019; 15:e1008249. [PMID: 31887215 PMCID: PMC6953890 DOI: 10.1371/journal.ppat.1008249] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/10/2020] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
Despite effective antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are found in nearly one-third of patients. Using a cellular co-culture system including neurons and human microglia infected with HIV (hμglia/HIV), we investigated the hypothesis that HIV-dependent neurological degeneration results from the periodic emergence of HIV from latency within microglial cells in response to neuronal damage or inflammatory signals. When a clonal hμglia/HIV population (HC69) expressing HIV, or HIV infected human primary and iPSC-derived microglial cells, were cultured for a short-term (24 h) with healthy neurons, HIV was silenced. The neuron-dependent induction of latency in HC69 cells was recapitulated using induced pluripotent stem cell (iPSC)-derived GABAergic cortical (iCort) and dopaminergic (iDopaNer), but not motor (iMotorNer), neurons. By contrast, damaged neurons induce HIV expression in latently infected microglial cells. After 48-72 h co-culture, low levels of HIV expression appear to damage neurons, which further enhances HIV expression. There was a marked reduction in intact dendrites staining for microtubule associated protein 2 (MAP2) in the neurons exposed to HIV-expressing microglial cells, indicating extensive dendritic pruning. To model neurotoxicity induced by methamphetamine (METH), we treated cells with nM levels of METH and suboptimal levels of poly (I:C), a TLR3 agonist that mimics the effects of the circulating bacterial rRNA found in HIV infected patients. This combination of agents potently induced HIV expression, with the METH effect mediated by the σ1 receptor (σ1R). In co-cultures of HC69 cells with iCort neurons, the combination of METH and poly(I:C) induced HIV expression and dendritic damage beyond levels seen using either agent alone, Thus, our results demonstrate that the cross-talk between healthy neurons and microglia modulates HIV expression, while HIV expression impairs this intrinsic molecular mechanism resulting in the excessive and uncontrolled stimulation of microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nirmala Ramanath
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Pamela E. Knapp
- Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Kurt F. Hauser
- Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
34
|
Kevil CG, Goeders NE, Woolard MD, Bhuiyan MS, Dominic P, Kolluru GK, Arnold CL, Traylor JG, Orr AW. Methamphetamine Use and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1739-1746. [PMID: 31433698 DOI: 10.1161/atvbaha.119.312461] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While the opioid epidemic has garnered significant attention, the use of methamphetamines is growing worldwide independent of wealth or region. Following overdose and accidents, the leading cause of death in methamphetamine users is cardiovascular disease, because of significant effects of methamphetamine on vasoconstriction, pulmonary hypertension, atherosclerotic plaque formation, cardiac arrhythmias, and cardiomyopathy. In this review, we examine the current literature on methamphetamine-induced changes in cardiovascular health, discuss the potential mechanisms regulating these varied effects, and highlight our deficiencies in understanding how to treat methamphetamine-associated cardiovascular dysfunction.
Collapse
Affiliation(s)
- Christopher G Kevil
- From the Departments of Pathology and Translational Pathobiology (C.G.K., M.S.B., G.K.K., J.G.T., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Cellular and Molecular Physiology (C.G.K., M.S.B., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Cell Biology and Anatomy (C.G.K., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Nicholas E Goeders
- Pharmacology, Toxicology, and Neuroscience (N.E.G.), LSU Health Sciences Center, Shreveport, LA
| | - Matthew D Woolard
- Microbiology and Immunology (M.D.W.), LSU Health Sciences Center, Shreveport, LA
| | - Md Shenuarin Bhuiyan
- From the Departments of Pathology and Translational Pathobiology (C.G.K., M.S.B., G.K.K., J.G.T., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Cellular and Molecular Physiology (C.G.K., M.S.B., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Paari Dominic
- Medicine (P.D., C.L.A.), LSU Health Sciences Center, Shreveport, LA
| | - Gopi K Kolluru
- From the Departments of Pathology and Translational Pathobiology (C.G.K., M.S.B., G.K.K., J.G.T., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Connie L Arnold
- Medicine (P.D., C.L.A.), LSU Health Sciences Center, Shreveport, LA
| | - James G Traylor
- From the Departments of Pathology and Translational Pathobiology (C.G.K., M.S.B., G.K.K., J.G.T., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - A Wayne Orr
- From the Departments of Pathology and Translational Pathobiology (C.G.K., M.S.B., G.K.K., J.G.T., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Cellular and Molecular Physiology (C.G.K., M.S.B., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Cell Biology and Anatomy (C.G.K., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| |
Collapse
|
35
|
Combination of acute intravenous methamphetamine injection and LPS challenge facilitate leukocyte infiltration into the central nervous system of C57BL/6 mice. Int Immunopharmacol 2019; 75:105751. [PMID: 31319359 DOI: 10.1016/j.intimp.2019.105751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH) is a stimulant of the central nervous system (CNS) that causes behavioral changes in users. METH is slowly cleared from brain tissue and its chronic use is neurotoxic. METH also alters the cellular and chemical components of inflammation. However, little is known about the effect of a single intravenous dose of METH followed by bacterial lipopolysaccharide (LPS) injection on cellular infiltration and cytokine release in brain tissue. Using a murine model of acute METH administration and flow cytometry, we found that combination of METH and LPS stimulate the infiltration of macrophages (F4/80+cells) and neutrophils (Ly-6G+cells) into the CNS. Histological sections of the brainstem of METH-treated and LPS-challenged C57BL/6 mice demonstrated considerable leukocyte infiltration relative to untreated, LPS, and METH groups. Moreover, rodents treated with LPS alone or combined with METH showed elevated levels of pro-inflammatory cytokines mRNA in brain tissue. Our observations are important because recognizing neuroinflammatory changes after acute METH administration might help us to understand METH-induced neurotoxicity in users.
Collapse
|
36
|
Identification of cytotoxic markers in methamphetamine treated rat C6 astroglia-like cells. Sci Rep 2019; 9:9412. [PMID: 31253835 PMCID: PMC6599005 DOI: 10.1038/s41598-019-45845-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Methamphetamine (METH) is a powerfully addictive psychostimulant that has a pronounced effect on the central nervous system (CNS). The present study aimed to assess METH toxicity in differentiated C6 astroglia-like cells through biochemical and toxicity markers with acute (1 h) and chronic (48 h) treatments. In the absence of external stimulants, cellular differentiation of neuronal morphology was achieved through reduced serum (2.5%) in the medium. The cells displayed branched neurite-like processes with extensive intercellular connections. Results indicated that acute METH treatment neither altered the cell morphology nor killed the cells, which echoed with lack of consequence on reactive oxygen species (ROS), nitric oxide (NO) or inhibition of any cell cycle phases except induction of cytoplasmic vacuoles. On the other hand, chronic treatment at 1 mM or above destroyed the neurite-like processors and decreased the cell viability that paralleled with increased levels of ROS, lipid peroxidation and lactate, depletion in glutathione (GSH) level and inhibition at G0/G1 phase of cell cycle, leading to apoptosis. Pre-treatment of cells with N-acetyl cysteine (NAC, 2.5 mM for 1 h) followed by METH co-treatment for 48 h rescued the cells completely from toxicity by decreasing ROS through increased GSH. Our results provide evidence that increased ROS and GSH depletion underlie the cytotoxic effects of METH in the cells. Since loss in neurite connections and intracellular changes can lead to psychiatric illnesses in drug users, the evidence that we show in our study suggests that these are also contributing factors for psychiatric-illnesses in METH addicts.
Collapse
|
37
|
Methamphetamine (“crystal meth”) causes induction of DNA damage and chromosomal aberrations in human derived cells. Food Chem Toxicol 2019; 128:1-7. [DOI: 10.1016/j.fct.2019.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/22/2023]
|
38
|
Methamphetamine Impairs IgG1-Mediated Phagocytosis and Killing of Cryptococcus neoformans by J774.16 Macrophage- and NR-9640 Microglia-Like Cells. Infect Immun 2019; 87:IAI.00113-18. [PMID: 30510106 DOI: 10.1128/iai.00113-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/27/2018] [Indexed: 01/14/2023] Open
Abstract
The prevalence of methamphetamine (METH) use is estimated at ∼35 million people worldwide, with over 10 million users in the United States. Chronic METH abuse and dependence predispose the users to participate in risky behaviors that may result in the acquisition of HIV and AIDS-related infections. Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis, an opportunistic infection that has recently been associated with drug users. METH enhances C. neoformans pulmonary infection, facilitating its dissemination and penetration into the central nervous system in mice. C. neoformans is a facultative intracellular microorganism and an excellent model to study host-pathogen interactions. METH compromises phagocyte effector functions, which might have deleterious consequences on infection control. In this study, we investigated the role of METH in phagocytosis and antigen processing by J774.16 macrophage- and NR-9460 microglia-like cells in the presence of a specific IgG1 to C. neoformans capsular polysaccharide. METH inhibits antibody-mediated phagocytosis of cryptococci by macrophages and microglia, likely due to reduced expression of membrane-bound Fcγ receptors. METH interferes with phagocytic cells' phagosomal maturation, resulting in impaired fungal control. Phagocytic cell reduction in nitric oxide production during interactions with cryptococci was associated with decreased levels of tumor necrosis factor alpha (TNF-α) and lowered expression of Fcγ receptors. Importantly, pharmacological levels of METH in human blood and organs are cytotoxic to ∼20% of the phagocytes. Our findings suggest that METH abrogates immune cellular and molecular functions and may be deadly to phagocytic cells, which may result in increased susceptibility of users to acquire infectious diseases.
Collapse
|
39
|
Dave S, Chen L, Yu C, Seaton M, Khodr CE, Al-Harthi L, Hu XT. Methamphetamine decreases K + channel function in human fetal astrocytes by activating the trace amine-associated receptor type-1. J Neurochem 2018; 148:29-45. [PMID: 30295919 DOI: 10.1111/jnc.14606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Methamphetamine (Meth) is a potent and commonly abused psychostimulant. Meth alters neuron and astrocyte activity; yet the underlying mechanism(s) is not fully understood. Here we assessed the impact of acute Meth on human fetal astrocytes (HFAs) using whole-cell patch-clamping. We found that HFAs displayed a large voltage-gated K+ efflux (IKv ) through Kv /Kv -like channels during membrane depolarization, and a smaller K+ influx (Ikir ) via inward-rectifying Kir /Kir -like channels during membrane hyperpolarization. Meth at a 'recreational' (20 μM) or toxic/fatal (100 μM) concentration depolarized resting membrane potential (RMP) and suppressed IKv/Kv-like . These changes were associated with a decreased time constant (Ƭ), and mimicked by blocking the two-pore domain K+ (K2P )/K2P -like and Kv /Kv -like channels, respectively. Meth also diminished IKir/Kir-like , but only at toxic/fatal levels. Given that Meth is a potent agonist for the trace amine-associated receptor type-1 (TAAR1), and TAAR1-coupled cAMP/cAMP-activated protein kinase (PKA) cascade, we further evaluated whether the Meth impact on K+ efflux was mediated by this pathway. We found that antagonizing TAAR1 with N-(3-Ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl)benzamide (EPPTB) reversed Meth-induced suppression of IKv/Kv-like ; and inhibiting PKA activity by H89 abolished Meth effects on suppressing IKv/Kv-like . Antagonizing TAAR1 might also attenuate Meth-induced RMP depolarization. Voltage-gated Ca2+ currents were not detected in HFAs. These novel findings demonstrate that Meth suppresses IKv/Kv-like by facilitating the TAAR1/Gs /cAMP/PKA cascade and altering the kinetics of Kv /Kv -like channel gating, but reduces K2P /K2P -like channel activity through other pathway(s), in HFAs. Given that Meth-induced decrease in astrocytic K+ efflux through K2P /K2P -like and Kv /Kv -like channels reduces extracellular K+ levels, such reduction could consequently contribute to a decreased excitability of surrounding neurons. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonya Dave
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Lihua Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Chunjiang Yu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Melanie Seaton
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Christina E Khodr
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
40
|
Xie XL, Zhou WT, Zhang KK, Chen LJ, Wang Q. METH-Induced Neurotoxicity Is Alleviated by Lactulose Pretreatment Through Suppressing Oxidative Stress and Neuroinflammation in Rat Striatum. Front Neurosci 2018; 12:802. [PMID: 30450033 PMCID: PMC6224488 DOI: 10.3389/fnins.2018.00802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
Abuse of methamphetamine (METH) results in neurological and psychiatric abnormalities. Lactulose is a poorly absorbed derivative of lactose and can effectively alleviate METH-induced neurotoxicity in rats. The present study was designed to investigate the effects of lactulose on METH-induced neurotoxicity. Rats received METH (15 mg/kg, 8 intraperitoneal injections, 12-h interval) or saline and received lactulose (5.3 g/kg, oral gavage, 12-h interval) or vehicle 2 days prior to the METH administration. Reactive oxygen species (ROS) and malondialdehyde (MDA) were measured. Protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6), nuclear factor κB (NFκB), interleukin (IL)-1β, IL-6, TNF-α, cleaved caspase 3, and poly(ADP-ribose) polymerase-1 (PARP-1) were determined by western blotting. mRNA expressions of nuclear factor erythroid 2-relatted factor-2 (Nrf2), p62, and heme oxygenase-1 (HO-1) were assessed by RT-qPCR. The lactulose pretreatment decreased METH-induced cytoplasmic damage in rat livers according to histopathological observation. Compared to the control group, overproduction of ROS and MDA were observed in rat striatums in the METH alone-treated group, while the lactulose pretreatment significantly attenuated the METH-induced up-regulation of oxidative stress. The lactulose pretreatment significantly repressed over-expressions of proteins of TLR4, MyD88, TRAF6, NFκB, IL-1β, IL-6, TNF-α, cleaved caspase 3, PARP-1. The lactulose pretreatment increased mRNA expressions of Nrf2, p62, and HO-1. These findings suggest that lactulose pretreatment can alleviate METH-induced neurotoxicity through suppressing neuroinflammation and oxidative stress, which might be attributed to the activation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
mTOR Modulates Methamphetamine-Induced Toxicity through Cell Clearing Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6124745. [PMID: 30647813 PMCID: PMC6311854 DOI: 10.1155/2018/6124745] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/31/2018] [Indexed: 11/17/2022]
Abstract
Methamphetamine (METH) is abused worldwide, and it represents a threat for public health. METH exposure induces a variety of detrimental effects. In fact, METH produces a number of oxidative species, which lead to lipid peroxidation, protein misfolding, and nuclear damage. Cell clearing pathways such as ubiquitin-proteasome (UP) and autophagy (ATG) are involved in METH-induced oxidative damage. Although these pathways were traditionally considered to operate as separate metabolic systems, recent studies demonstrate their interconnection at the functional and biochemical level. Very recently, the convergence between UP and ATG was evidenced within a single organelle named autophagoproteasome (APP), which is suppressed by mTOR activation. In the present research study, the occurrence of APP during METH toxicity was analyzed. In fact, coimmunoprecipitation indicates a binding between LC3 and P20S particles, which also recruit p62 and alpha-synuclein. The amount of METH-induced toxicity correlates with APP levels. Specific markers for ATG and UP, such as LC3 and P20S in the cytosol, and within METH-induced vacuoles, were measured at different doses and time intervals following METH administration either alone or combined with mTOR modulators. Western blotting, coimmunoprecipitation, light microscopy, confocal microscopy, plain transmission electron microscopy, and immunogold staining were used to document the effects of mTOR modulation on METH toxicity and the merging of UP with ATG markers within APPs. METH-induced cell death is prevented by mTOR inhibition, while it is worsened by mTOR activation, which correlates with the amount of autophagoproteasomes. The present data, which apply to METH toxicity, are also relevant to provide a novel insight into cell clearing pathways to counteract several kinds of oxidative damage.
Collapse
|
42
|
Garton DR, Ross SG, Maldonado-Hernández R, Quick M, Lasalde-Dominicci JA, Lizardi-Ortiz JE. Amphetamine enantiomers inhibit homomeric α7 nicotinic receptor through a competitive mechanism and within the intoxication levels in humans. Neuropharmacology 2018; 144:172-183. [PMID: 30359640 DOI: 10.1016/j.neuropharm.2018.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/10/2018] [Accepted: 10/21/2018] [Indexed: 11/28/2022]
Abstract
Amphetamine-type stimulants (ATS) are the second most consumed illicit drug worldwide and lack good treatments for associated substance use disorders, lagging behind other addictive drugs. For this reason, a deeper understanding of the pharmacodynamics of ATS is required. The present study seeks to determine amphetamine (AMPH) enantiomers' effects on the homomeric α7 nicotinic acetylcholine receptor (α7 nAChR). Here we have shown that AMPH enantiomers bind to the α7 nAChR and competitively inhibit acetylcholine responses. Our in silico docking analysis suggests that AMPH binds close to the β7 strand of the B-loop of a chimera comprising of the human α7 nAChR and the acetylcholine binding protein from Lymnaea stagnalis. This may inhibit the required movement of the C-loop for channel opening, due to steric hindrance, providing a structural mechanism for its antagonist effect. Finally, we have shown that, in α7 nAChR full knockout mice, the behavioral response to D-AMPH is attenuated, providing direct evidence for the role of α7 nAChRs on the physiological response to D-AMPH. Importantly, D-AMPH exerts these effects at concentrations predicted to be pharmacologically relevant for chronic methamphetamine users and during binges. In conclusion, our data present new findings that implicate the α7 nAChR on the pharmacodynamics of ATS, which may be important for behavioral responses to these drugs, indicating a potential role for α7 nAChRs in ATS substance-use disorders.
Collapse
Affiliation(s)
- Daniel R Garton
- Columbia College of Columbia University, New York, NY, 10027, USA
| | - Sharmaine G Ross
- Department of Biobehavioral Sciences, Teachers College Columbia University, New York, NY, 10027, USA
| | | | - Matthias Quick
- Department of Psychiatry, Molecular Therapeutics Division, Columbia University Medical Center, New York, NY, 10032, USA
| | - José A Lasalde-Dominicci
- Departments of Biology and Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA; Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, 00927, USA
| | - José E Lizardi-Ortiz
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, 00927, USA; Departments of Neurology and Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
43
|
Methamphetamine toxicity-induced calcineurin activation, nuclear translocation of nuclear factor of activated T-cells and elevation of cyclooxygenase 2 levels are averted by calpastatin overexpression in neuroblastoma SH-SY5Y cells. Neurotoxicology 2018; 67:287-295. [DOI: 10.1016/j.neuro.2018.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/17/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022]
|
44
|
Zwartsen A, Hondebrink L, Westerink RH. Neurotoxicity screening of new psychoactive substances (NPS): Effects on neuronal activity in rat cortical cultures using microelectrode arrays (MEA). Neurotoxicology 2018; 66:87-97. [PMID: 29572046 DOI: 10.1016/j.neuro.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
While the prevalence and the use of new psychoactive substances (NPS) is steadily increasing, data on pharmacological, toxicological and clinical effects is limited. Considering the large number of NPS available, there is a clear need for efficient in vitro screening techniques that capture multiple mechanisms of action. Neuronal cultures grown on multi-well microelectrode arrays (mwMEAs) have previously proven suitable for neurotoxicity screening of chemicals, pharmaceuticals and (illicit) drugs. We therefore used rat primary cortical cultures grown on mwMEA plates to investigate the effects of eight NPS (PMMA, α-PVP, methylone, MDPV, 2C-B, 25B-NBOMe, BZP and TFMPP) and two 'classic' illicit drugs (cocaine, methamphetamine) on spontaneous neuronal activity. All tested drugs rapidly and concentration-dependently decreased the weighted mean firing rate (wMFR) and the weighted mean burst rate (wMBR) during a 30 min acute exposure. Of the 'classic' drugs, cocaine most potently inhibited the wMFR (IC50 9.8 μM), whereas methamphetamine and the structurally-related NPS PMMA were much less potent (IC50 100 μM and IC50 112 μM, respectively). Of the cathinones, MDPV and α-PVP showed comparable IC50 values (29 μM and 21 μM, respectively), although methylone was 10-fold less potent (IC50 235 μM). Comparable 10-fold differences in potency were also observed between the hallucinogenic phenethylamines 2C-B (IC50 27 μM) and 25B-NBOMe (IC50 2.4 μM), and between the piperazine derivatives BZP (IC50 161 μM) and TFMPP (IC50 19 μM). All drugs also inhibited the wMBR and concentration-response curves for wMBR and wMFR were comparable. For most drugs, IC50 values are close to the estimated human brain concentrations following recreational doses of these drugs, highlighting the importance of this efficient in vitro screening approach for classification and prioritization of emerging NPS. Moreover, the wide range of IC50 values observed for these and previously tested drugs of abuse, both within and between different classes of NPS, indicates that additional investigation of structure-activity relationships could aid future risk assessment of emerging NPS.
Collapse
Affiliation(s)
- Anne Zwartsen
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laura Hondebrink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remco Hs Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Xie XL, He JT, Wang ZT, Xiao HQ, Zhou WT, Du SH, Xue Y, Wang Q. Lactulose attenuates METH-induced neurotoxicity by alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum. Toxicol Lett 2018; 289:107-113. [PMID: 29550550 DOI: 10.1016/j.toxlet.2018.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/25/2022]
Abstract
Methamphetamine (METH) is a widely abused psychostimulant. Lactulose is a non-absorbable sugar, which effectively decreases METH-induced neurotoxicity in rat. However, the exact mechanisms need further investigation. In this study, 5-week-old male Sprague Dawley rats received METH (15 mg/kg, 8 intraperitoneal injections, 12-h interval) or saline and received lactulose (5.3 g/kg, oral gavage, 12-h interval) or vehicle 2 days prior to the METH administration. Compared to the control group, in the METH alone group, cytoplasmic vacuolar degeneration in hepatocytes, higher levels of alanine transaminase, aspartate transaminase and ammonia, overproduction of reactive oxygen species (ROS) and increase of superoxide dismutase activity in the blood were observed. Moreover, in rat striatum, expressions of nuclear factor erythroid 2-relatted factor-2 (Nrf2) and heme oxygenase-1 were suppressed in the nucleus, although over-expression of Nrf2 were observed in cytoplasm. Over-expressions of BECN1 and LC3-II indicated initiation of autophagy, while overproduction of p62 might suggest deficient autophagic vesicle turnover and impaired autophagy. Furthermore, accumulation of p62 cloud interact with Keap1 and then aggravate cytoplasmic accumulation of Nrf2. Consistently, over-expressions of cleaved caspase 3 and poly(ADP-ribose) polymerase-1 suggested the activation of apoptosis. The pretreatment with lactulose significantly decreased rat hepatic injury, suppressed hyperammonemia and ROS generation, alleviated the impaired autophagy in striatum, rescued the antioxidant system and repressed apoptosis. Taken together, with decreased blood ammonia, lactulose pretreatment reduced METH-induced neurotoxicity through alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum.
Collapse
Affiliation(s)
- Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Jie-Tao He
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Zheng-Tao Wang
- The 2013 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Huan-Qin Xiao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, 510000 Guangzhou, China
| | - Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Si-Hao Du
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ye Xue
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
46
|
Inflammasome Activation by Methamphetamine Potentiates Lipopolysaccharide Stimulation of IL-1β Production in Microglia. J Neuroimmune Pharmacol 2018; 13:237-253. [PMID: 29492824 DOI: 10.1007/s11481-018-9780-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023]
Abstract
Methamphetamine (Meth) is an addictive psychostimulant abused worldwide. Ample evidence indicate that chronic abuse of Meth induces neurotoxicity via microglia-associated neuroinflammation and the activated microglia present in both Meth-administered animals and human abusers. The development of anti-neuroinflammation as a therapeutic strategy against Meth dependence promotes research to identify inflammatory pathways that are specifically tied to Meth-induced neurotoxicity. Currently, the exact mechanisms for Meth-induced microglia activation are largely unknown. NLRP3 is a well-studied cytosolic pattern recognition receptor (PRR), which promotes the assembly of the inflammasome in response to the danger-associated molecular patterns (DAMPs). It is our hypothesis that Meth activates NLRP3 inflammasome in microglia and promotes the processing and release of interleukin (IL)-1β, resulting in neurotoxic activity. To test this hypothesis, we studied the effects of Meth on IL-1β maturation and release from rat cortical microglial cultures. Incubation of microglia with physiologically relevant concentrations of Meth after lipopolysaccharide (LPS) priming produced an enhancement on IL-1β maturation and release. Meth treatment potentiated aggregation of inflammasome adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), induced activation of the IL-1β converting enzyme caspase-1 and produced lysosomal and mitochondrial impairment. Blockade of capase-1 activity, lysosomal cathepsin B activity or mitochondrial ROS production by their specific inhibitors reversed the effects of Meth, demonstrating an involvement of inflammasome in Meth-induced microglia activation. Taken together, our results suggest that Meth triggers microglial inflammasome activation in a manner dependent on both mitochondrial and lysosomal danger-signaling pathways.
Collapse
|
47
|
Shah A, Kumar A. Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1α and PERK pathways. Oncotarget 2018; 7:46100-46119. [PMID: 27323860 PMCID: PMC5216784 DOI: 10.18632/oncotarget.10025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (MA), a psychostimulant drug has been associated with a variety of neurotoxic effects which are thought to be mediated by induction of pro-inflammatory cytokines/chemokines, oxidative stress and damage to blood-brain-barrier. Conversely, the ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases. However, its involvement in MA-mediated neurodegenerative effects remains largely unexplored. The present study was undertaken to assess the effect of MA on ER stress and its possible involvement in apoptosis. For this purpose, SVGA astrocytes were treated with MA, which induced the expressions of BiP and CHOP at both, mRNA and protein levels. This phenomenon was also confirmed in HFA and various regions of mouse brain. Assessment of IRE1α, ATF6 and PERK pathways further elucidated the mechanistic details underlying MA-mediated ER stress. Knockdown of various intermediate molecules in ER stress pathways using siRNA demonstrated reduction in MA-mediated CHOP. Finally, MA-mediated apoptosis was demonstrated via MTT assay and TUNEL staining. The involvement of ER stress in the apoptosis was demonstrated with the help of MTT and TUNEL assays in the presence of siRNA against various ER stress proteins. The apoptosis also involved activation of caspase-3 and caspase-9, which was reversed by knockdown with various siRNAs. Altogether, this is the first report demonstrating mechanistic details responsible for MA-mediated ER stress and its role in apoptosis. This study provides a novel group of targets that can be explored in future for management of MA-mediated cell death and MA-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
48
|
Skowronska M, McDonald M, Velichkovska M, Leda AR, Park M, Toborek M. Methamphetamine increases HIV infectivity in neural progenitor cells. J Biol Chem 2018; 293:296-311. [PMID: 29158267 PMCID: PMC5766929 DOI: 10.1074/jbc.ra117.000795] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Indexed: 01/01/2023] Open
Abstract
HIV-1 infection and methamphetamine (METH) abuse frequently occur simultaneously and may have synergistic pathological effects. Although HIV-positive/active METH users have been shown to have higher HIV viral loads and experience more severe neurological complications than non-users, the direct impact of METH on HIV infection and its link to the development of neurocognitive alternations are still poorly understood. In the present study, we hypothesized that METH impacts HIV infection of neural progenitor cells (NPCs) by a mechanism encompassing NFκB/SP1-mediated HIV LTR activation. Mouse and human NPCs were infected with EcoHIV (modified HIV virus infectious to mice) and HIV, respectively, in the presence or absence of METH (50 or 100 μm). Pretreatment with METH, but not simultaneous exposure, significantly increased HIV production in both mouse and human NPCs. To determine the mechanisms underlying these effects, cells were transfected with different variants of HIV LTR promoters and then exposed to METH. METH treatment induced transcriptional activity of the HIV LTR promotor, an effect that required both NFκB and SP1 signaling. Pretreatment with METH also decreased neuronal differentiation of HIV-infected NPCs in both in vitro and in vivo settings. Importantly, NPC-derived daughter cells appeared to be latently infected with HIV. This study indicates that METH increases HIV infectivity of NPCs, through the NFκB/SP1-dependent activation of the HIV LTR and with the subsequent alterations of NPC neurogenesis. Such events may underlie METH- exacerbated neurocognitive dysfunction in HIV-infected patients.
Collapse
Affiliation(s)
- Marta Skowronska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136.
| | - Marisa McDonald
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Martina Velichkovska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Ana Rachel Leda
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136; Jerzy Kukuczka Academy of Physical Education, 40-001 Katowice, Poland.
| |
Collapse
|
49
|
Effects of HIV-1 Tat and Methamphetamine on Blood-Brain Barrier Integrity and Function In Vitro. Antimicrob Agents Chemother 2017; 61:AAC.01307-17. [PMID: 28893794 DOI: 10.1128/aac.01307-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency (HIV) infection results in neurocognitive deficits in about one half of infected individuals. Despite systemic effectiveness, restricted antiretroviral penetration across the blood-brain barrier (BBB) is a major limitation in fighting central nervous system (CNS)-localized infection. Drug abuse exacerbates HIV-induced cognitive and pathological CNS changes. This study's purpose was to investigate the effects of the HIV-1 protein Tat and methamphetamine on factors affecting drug penetration across an in vitro BBB model. Factors affecting paracellular and transcellular flux in the presence of Tat and methamphetamine were examined. Transendothelial electrical resistance, ZO-1 expression, and lucifer yellow (a paracellular tracer) flux were aspects of paracellular processes that were examined. Additionally, effects on P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP-1) mRNA (via quantitative PCR [qPCR]) and protein (via immunoblotting) expression were measured; Pgp and MRP-1 are drug efflux proteins. Transporter function was examined after exposure of Tat with or without methamphetamine using the P-gp substrate rhodamine 123 and also using the dual P-gp/MRP-1 substrate and protease inhibitor atazanavir. Tat and methamphetamine elicit complex changes affecting transcellular and paracellular transport processes. Neither Tat nor methamphetamine significantly altered P-gp expression. However, Tat plus methamphetamine exposure significantly increased rhodamine 123 accumulation within brain endothelial cells, suggesting that treatment inhibited or impaired P-gp function. Intracellular accumulation of atazanavir was not significantly altered after Tat or methamphetamine exposure. Atazanavir accumulation was, however, significantly increased by simultaneous inhibition of P-gp and MRP. Collectively, our investigations indicate that Tat and methamphetamine alter aspects of BBB integrity without affecting net flux of paracellular compounds. Tat and methamphetamine may also affect several aspects of transcellular transport.
Collapse
|
50
|
Hrebíčková I, Ševčíková M, Macúchová E, Šlamberová R. How methamphetamine exposure during different neurodevelopmental stages affects social behavior of adult rats? Physiol Behav 2017; 179:391-400. [PMID: 28694157 DOI: 10.1016/j.physbeh.2017.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/16/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
Social behavior involves complex of different forms of interactions between individuals that is essential for healthy mental and physical development throughout lifespan. Psychostimulants, including methamphetamine (MA), have neurotoxic effect, especially, if they are targeting CNS during its critical periods of development. The present study was aimed on evaluation of changes in social interactions (SI) following scheduled prenatal/neonatal MA treatment in combination with acute application in adulthood. Eight groups of male and eight groups of female rats were tested in adulthood: rats, whose mothers were exposed to MA (5mg/ml/kg) or saline (SA, 1ml/kg) during the first half of gestation (ED 1-11), the second half of gestation (ED 12-22) and neonatal period (PD 1-11). To do this, we compared indirect neonatal applications via the exposed dams with group of rat pups that received MA or SA directly through injections. In adulthood, half animals from each group were injected with MA (1mg/kg), second half with saline 45min prior to the Social Interaction Test. Females and males were observed for social and nonsocial activities of two unfamiliar individuals of the same sex and treatment in a familiar Open field arena. The present study demonstrated that prenatal/neonatal MA exposure leads to decrease the time spent in genital investigation, following and nonsocial activity. Acute dose of MA leads to a decrease in all SI patterns and to an increase in nonsocial activities relative to acute SA. Females were more active than males. Animals exposed to prenatal/neonatal treatment during the second half of gestation (ED 12-22) and throughout lactation period (PD 1-11 indirect/direct) had fewer SI and greater exploratory behavior than animals exposed during the first half of gestation (ED 1-11).
Collapse
Affiliation(s)
- Ivana Hrebíčková
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Prague, Czech Republic
| | - Mária Ševčíková
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Prague, Czech Republic
| | - Eva Macúchová
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Prague, Czech Republic
| | - Romana Šlamberová
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Prague, Czech Republic.
| |
Collapse
|