1
|
Cai H, He J, Zheng W, Cheng H, Ge X, Bao Y, Wei Y, Zhou Y, Liang X, Chen X, Liu C, Wang F, Yang X. Zinc Mitigates the Combined Neurotoxicity of Binary Metal Mixtures via Mitophagy and Mitochondrial Fusion. Mol Neurobiol 2024:10.1007/s12035-024-04648-w. [PMID: 39673661 DOI: 10.1007/s12035-024-04648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Environmental metal mixtures can cause combined neurotoxicity, but the underlying mechanism remains unclear. Mitochondria are crucial for energy metabolism in the nervous system, and their dysfunction leads to neurodegeneration. Zinc (Zn) is a coenzyme of many mitochondrial enzymes that controls mitochondrial function. This study investigated the role of Zn in the neurotoxicity induced by Mn + Pb and Pb + As mixtures. Zn supplementation improved the survival rate and learning ability of Caenorhabditis elegans following their exposure to mixtures of Mn + Pb and Pb + As by enhancing their mitochondrial morphology, membrane potential, and respiratory chain. Similarly, in HT22 cells, Zn mitigated the decrease in cellular activity and increase in apoptosis induced by the Mn + Pb and Pb + As mixtures by improving mitochondrial morphology and function. Mechanistically, Zn activated the PINK1 and MFN-2/OPA-1 pathways, promoting mitophagy and mitochondrial fusion. However, inhibition of mitophagy reversed the protective effect of Zn, indicating its reliance on mitophagy for neuroprotection. Our study demonstrated that Zn alleviates the combined neurotoxicity of Mn + Pb and Pb + As mixtures by enhancing mitophagy and mitochondrial fusion, suggesting that Zn supplementation is a potential treatment for metal-induced neurotoxicity.
Collapse
Affiliation(s)
- Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Wanting Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanfeng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Pushie MJ, Sylvain NJ, Hou H, Pendleton N, Wang R, Zimmermann L, Pally M, Cayabyab FS, Peeling L, Kelly ME. X-ray fluorescence mapping of brain tissue reveals the profound extent of trace element dysregulation in stroke pathophysiology. Metallomics 2024; 16:mfae054. [PMID: 39547935 PMCID: PMC11631071 DOI: 10.1093/mtomcs/mfae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The brain is a privileged organ with regard to its trace element composition and maintains a robust barrier system to sequester this specialized environment from the rest of the body and the vascular system. Stroke is caused by loss of adequate blood flow to a region of the brain. Without adequate blood flow ischaemic changes begin almost immediately, triggering an ischaemic cascade, characterized by ion dysregulation, loss of function, oxidative damage, cellular degradation, and breakdown of the barrier that helps maintain this environment. Ion dysregulation is a hallmark of stroke pathophysiology and we observe that most elements in the brain are dysregulated after stroke. X-ray fluorescence-based detection of physiological changes in the neurometallome after stroke reveals profound ion dysregulation within the lesion and surrounding tissue. Not only are most elements significantly dysregulated after stroke, but the level of dysregulation cannot be predicted from a cell-level description of dysregulation. X-ray fluorescence imaging reveals that the stroke lesion retains <25% of essential K+ after stroke, but this element is not concomitantly elevated elsewhere in the organ. Moreover, elements like Na+, Ca2+, and Cl- are vastly elevated above levels available in normal brain tissue (>400%, >200%, and >150%, respectively). We hypothesize that weakening of the blood-brain barrier after stroke allows elements to freely diffuse down their concentration gradient so that the stroke lesion is in equilibrium with blood (and the compartments containing brain interstitial fluid and cerebrospinal fluid). The change observed for the neurometallome likely has consequences for the potential to rescue infarcted tissue, but also presents specific targets for treatment.
Collapse
Affiliation(s)
- M Jake Pushie
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nicole J Sylvain
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Huishu Hou
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nicole Pendleton
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Richard Wang
- College of Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Liam Zimmermann
- College of Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Maxwell Pally
- College of Arts & Science, Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Francisco S Cayabyab
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Lissa Peeling
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Michael E Kelly
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
3
|
Dieu Nguyen HQ, Nam MH, Vigh J, Brzezinski J, Duncan L, Park D. Co-delivery of neurotrophic factors and a zinc chelator substantially promotes axon regeneration in the optic nerve crush model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624564. [PMID: 39605527 PMCID: PMC11601601 DOI: 10.1101/2024.11.20.624564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Traumatic optic neuropathies cause the death of retinal ganglion cells (RGCs) and axon degeneration. This is a result of the blockage of neurotrophic factor (NTF) supply from the brain and a vicious cycle of neurotoxicity, possibly mediated by increased levels of retinal Zn 2+ . Ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) are two NTFs that are known to support RGC survival and promote axon regeneration. Dipicolylamine (DPA) has a strong affinity to Zn 2+ and can selectively chelate this ion. To continuously supply NTFs and reduce elevated retinal Zn 2+ , we developed poly(serinol hexamethylene urea)-based sulfonated nanoparticles (S-PSHU NPs), that co-delivers CNTF, BDNF, and DPA. An in vitro release study was performed using the NTF-DPA-loaded S-PSHU NPs, demonstrating a sustained release of CNTF and BDNF for up to 8 weeks, while DPA was released for 4 weeks. In a rat optic nerve crush (ONC) model, DPA-loaded S-PSHU NPs exhibited dose-dependent elimination of retinal Zn 2+ . Similarly, in vitro primary RGC culture demonstrated that the activity of RGCs and axon growth were dependent on the dosage of CNTF and BDNF. In addition, the NTF-DPA-loaded S-PSHU NPs significantly improved RGC survival and axon regeneration following ONC in rats, with the regenerated axons extending to the distal segment of the brain, including the suprachiasmatic nucleus, lateral geniculate nucleus, and superior colliculus.
Collapse
|
4
|
Rao J, Gao H, Sun J, Yu R, Zhao D, Ding Y. A Critical Review of Biodegradable Zinc Alloys toward Clinical Applications. ACS Biomater Sci Eng 2024; 10:5454-5473. [PMID: 39082869 DOI: 10.1021/acsbiomaterials.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Biodegradable zinc (Zn) alloys stand out as promising contenders for biomedical applications due to their favorable mechanical properties and appropriate degradation rates, offering the potential to mitigate the risks and expenses associated with secondary surgeries. While current research predominantly centers on the in vitro examination of Zn alloys, notable disparities often emerge between in vivo and in vitro findings. Consequently, conducting in vivo investigations on Zn alloys holds paramount significance in advancing their clinical application. Different element compositions and processing methods decide the mechanical properties and biological performance of Zn alloys, thus affecting their suitability for specific medical applications. This paper presents a comprehensive overview of recent strides in the development of biodegradable Zn alloys, with a focus on key aspects such as mechanical properties, toxicity, animal experiments, biological properties, and molecular mechanisms. By summarizing these advancements, the paper aims to broaden the scope of research directions and enhance the understanding of the clinical applications of biodegradable Zn alloys.
Collapse
Affiliation(s)
- Jiahui Rao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hairui Gao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Danlei Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
5
|
Padoan F, Piccoli E, Pietrobelli A, Moreno LA, Piacentini G, Pecoraro L. The Role of Zinc in Developed Countries in Pediatric Patients: A 360-Degree View. Biomolecules 2024; 14:718. [PMID: 38927121 PMCID: PMC11201578 DOI: 10.3390/biom14060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc is an important trace element for growth and health at pediatric ages. Zinc is fundamental in inflammatory pathways, oxidative balance, and immune function. Zinc exhibits anti-inflammatory properties by modulating Nuclear Factor-kappa (NF-κB) activity and reducing histamine release from basophils, leukocytes, and mast cells. Furthermore, its antioxidant activity protects against oxidative damage and chronic diseases. Finally, zinc improves the ability to trigger effective immune responses against pathogens by contributing to the maturation of lymphocytes, the production of cytokines, and the regulation of apoptosis. Given these properties, zinc can be considered an adjunctive therapy in treating and preventing respiratory, nephrological, and gastrointestinal diseases, both acute and chronic. This review aims to deepen the role and metabolism of zinc, focusing on the role of supplementation in developed countries in pediatric diseases.
Collapse
Affiliation(s)
- Flavia Padoan
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Elena Piccoli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Angelo Pietrobelli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Luis A. Moreno
- Growth, Exercise, Nutrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, 50001 Zaragoza, Spain
| | - Giorgio Piacentini
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| |
Collapse
|
6
|
Vaidya B, Padhy DS, Joshi HC, Sharma SS, Singh JN. Ion Channels and Metal Ions in Parkinson's Disease: Historical Perspective to the Current Scenario. Methods Mol Biol 2024; 2761:529-557. [PMID: 38427260 DOI: 10.1007/978-1-0716-3662-6_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition linked to the deterioration of motor and cognitive performance. It produces degeneration of the dopaminergic neurons along the nigrostriatal pathway in the central nervous system (CNS), which leads to symptoms such as bradykinesias, tremors, rigidity, and postural instability. There are several medications currently approved for the therapy of PD, but a permanent cure for it remains elusive. With the aging population set to increase, a number of PD cases are expected to shoot up in the coming times. Hence, there is a need to look for new molecular targets that could be investigated both preclinically and clinically for PD treatment. Among these, several ion channels and metal ions are being studied for their effects on PD pathology and the functioning of dopaminergic neurons. Ion channels such as N-methyl-D-aspartate (NMDA), γ-aminobutyric acid A (GABAA), voltage-gated calcium channels, potassium channels, HCN channels, Hv1 proton channels, and voltage-gated sodium channels and metal ions such as mercury, zinc, copper, iron, manganese, calcium, and lead showed prominent involvement in PD. Pharmacological agents have been used to target these ion channels and metal ions to prevent or treat PD. Hence, in the present review, we summarize the pathophysiological events linked to PD with an emphasis on the role of ions and ion channels in PD pathology, and pharmacological agents targeting these ion channels have also been listed.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Dibya S Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Hem C Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| | - Jitendra Narain Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| |
Collapse
|
7
|
Yenkoyan K, Ounanian Z, Mirumyan M, Hayrapetyan L, Zakaryan N, Sahakyan R, Bjørklund G. Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies. Curr Med Chem 2024; 31:1485-1511. [PMID: 37888815 PMCID: PMC11092563 DOI: 10.2174/0109298673252910230920151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zadik Ounanian
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Margarita Mirumyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Liana Hayrapetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Naira Zakaryan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Raisa Sahakyan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
8
|
Fu J, Wang Q, Wang N, Li S, Zhang H, Zhu Y, Guo H, Wang F, He L, Xia S, Cao B. Serum and urinary essential trace elements in association with major depressive disorders: a case-control study. Front Psychiatry 2023; 14:1297411. [PMID: 38106999 PMCID: PMC10722235 DOI: 10.3389/fpsyt.2023.1297411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction The etiology and pathophysiology of major depressive disorders (MDDs) remain unclear. Increasing evidence has demonstrated that essential trace elements (ETEs), such as iodine (I), zinc (Zn), copper (Cu), selenium (Se), cobalt (Co), and molybdenum (Mo), play vital roles in MDDs. Methods In total, 72 patients with MDD and 75 healthy controls (HCs) in the Zhumadian Second People's Hospital, Henan Province, China were recruited in our study. The levels of different ETEs were examined in both serum and urine, using an inductively coupled plasma mass spectrometer (ICP-MS), for both the MDD patients and HCs. Results The serum levels of I, Se, Cu, and Mo were significantly lower in the MDD patients compared to the HCs (p < 0.05), and the urinary levels of I and Zn were significantly higher in the MDD patients compared to the HCs (p < 0.05). The serum concentration of I (Q3: OR = 0.210, Q4: OR = 0.272) was negatively associated with MDD after adjusting for potential confounders, including age, gender, and BMI, and the urinary concentration of I (Q4: OR = 2.952) was positively associated. Conclusions The higher levels of I, Se, Cu, and Mo in serum might be protective against the development of MDD, and the excess I and Zn in urine may be associated with MDD pathogenesis. Future research needs to gain a deeper understanding of the metabolic pathways of ETEs, especially I, Se, Zn, Cu, and Mo, in MDD, and their role in the pathogenesis of depression.
Collapse
Affiliation(s)
- Jiyong Fu
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Qinqin Wang
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Na Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| | - Shilong Li
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Hongwei Zhang
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Yuxing Zhu
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Hua Guo
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Fukun Wang
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Lei He
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Shuang Xia
- Zhumadian Second People's Hospital, Zhumadian, Henan, China
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Gonzalez Caldito N. Role of tumor necrosis factor-alpha in the central nervous system: a focus on autoimmune disorders. Front Immunol 2023; 14:1213448. [PMID: 37483590 PMCID: PMC10360935 DOI: 10.3389/fimmu.2023.1213448] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic immune cytokine that belongs to the TNF superfamily of receptor ligands. The cytokine exists as either a transmembrane or a soluble molecule, and targets two distinct receptors, TNF-α receptor 1 (TNFR1) and TNF-α receptor 2 (TNFR2), which activate different signaling cascades and downstream genes. TNF-α cellular responses depend on its molecular form, targeted receptor, and concentration levels. TNF-α plays a multifaceted role in normal physiology that is highly relevant to human health and disease. In the central nervous system (CNS), this cytokine regulates homeostatic functions, such as neurogenesis, myelination, blood-brain barrier permeability and synaptic plasticity. However, it can also potentiate neuronal excitotoxicity and CNS inflammation. The pleiotropism of TNF-α and its various roles in the CNS, whether homeostatic or deleterious, only emphasizes the functional complexity of this cytokine. Anti-TNF-α therapy has demonstrated effectiveness in treating various autoimmune inflammatory diseases and has emerged as a significant treatment option for CNS autoimmune diseases. Nevertheless, it is crucial to recognize that the effects of this therapeutic target are diverse and complex. Contrary to initial expectations, anti-TNF-α therapy has been found to have detrimental effects in multiple sclerosis. This article focuses on describing the various roles, both physiological and pathological, of TNF-α in the CNS. Additionally, it discusses the specific disease processes that are dependent or regulated by TNF-α and the rationale of its use as a therapeutic target.
Collapse
Affiliation(s)
- Natalia Gonzalez Caldito
- Department of Neurology, Northwestern Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Essential Trace Elements Prevent the Impairment in the Retention Memory, Cerebral Cortex, and Cerebellum Damage in Male Rats Exposed to Quaternary Metal Mixture by Up-regulation, of Heme Oxygynase-1 and Down-regulation of Nuclear Factor Erythroid 2-related Factor 2-NOs Signaling Pathways. Neuroscience 2023; 512:70-84. [PMID: 36646412 DOI: 10.1016/j.neuroscience.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
In the present study, we examined adverse effects of metals and metalloids in the Cerebral cortex (CC) and Cerebellum (CE). Group 1 comprised from the controls while other four groups of male Wistar rats were treated with following pattern: Group II (Heavy Metal Mixture HMM only: PbCl2, 20 mg·kg-1; CdCl2, 1.61 mg·kg-1; HgCl2, 0.40 mg·kg-1, and NaAsO3,10 mg·kg-1), Groups III (HMM + ZnCl2); Group IV (HMM + Na2SeO3) and Group V (HMM + ZnCl2 + Na2SeO3) for 60 days per os. HMM promoted oxidative stress in the CC and CE of treated rats compared to controls; moreover, exposure to HMM led to increased activity of the AChE and pro-inflammatory cytokines; also, HMM promoted accumulation of caspase 3 and other transcriptional factors such as Nrf2 and decreased levels of Hmox-1. Essential metals reduced increased bioaccumulation of Pb, Cd, As and Hg in CC and CE caused by HMM exposure. Also, all mentioned adverse effects were diminished by essential metals treatment (Se and Zn). HMM exposed rats had considerably less escape dormancy than controls. Histopathological analysis revealed moderate cell loss at the intermediate (Purkinje cell) and granular layer. Zinc and selenium supplementations could reverse adverse effects of heavy metals at various cellular levels in neurons.
Collapse
|
11
|
Li K, Li A, Mei Y, Zhao J, Zhou Q, Li Y, Yang M, Xu Q. Trace elements and Alzheimer dementia in population-based studies: A bibliometric and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120782. [PMID: 36464120 DOI: 10.1016/j.envpol.2022.120782] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Alterations in the concentrations of trace elements may play a vital role in Alzheimer dementia progression. However, previous research results are inconsistent, and there is still a lack of review on the relationship between all the studied-trace elements and AD from various perspectives of population-based studies. In this study, we systematically reviewed previous population-based studies and identified the altered trace elements in AD patients. We searched the Web of Science Core Collection, PubMed, and Scopus database, and ultimately included 73 articles. A bibliometric analysis was conducted to explore the evolution of the field from an epidemiological perspective. Bibliometric data such as trace elements, biological materials, detection methods, cognitive tests, co-occurrence and co-citation statistics are all analyzed and presented in a quantitative manner. The 73 included studies analyzed 39 trace elements in total. In a further meta-analysis, standardized mean differences (SMDs) of 13 elements were calculated to evaluate their altered in AD patients, including copper, iron, zinc, selenium, manganese, lead, aluminum, cadmium, chromium, arsenic, mercury, cobalt, and manganese. We identified four trace elements-copper (serum), iron (plasma), zinc (hair), and selenium (plasma)-altered in AD patients, with SMDs of 0.37 (95% confidence interval [CI]: 0.10, 0.65), -0.68 (95% CI: -1.34, -0.02), -0.35 (95% CI: -0.62, -0.08), and -0.61 (95% CI: -0.97, -0.25), respectively. Finally, we formed a database of various trace element levels in AD patients and healthy controls. Our study can help future researchers gain a comprehensive understanding of the advancements in the field, and our results provide comprehensive population-based data for future research.
Collapse
Affiliation(s)
- Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
12
|
Li Z, Liu Y, Wei R, Yong VW, Xue M. The Important Role of Zinc in Neurological Diseases. Biomolecules 2022; 13:28. [PMID: 36671413 PMCID: PMC9855948 DOI: 10.3390/biom13010028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Zinc is one of the most abundant metal ions in the central nervous system (CNS), where it plays a crucial role in both physiological and pathological brain functions. Zinc promotes antioxidant effects, neurogenesis, and immune system responses. From neonatal brain development to the preservation and control of adult brain function, zinc is a vital homeostatic component of the CNS. Molecularly, zinc regulates gene expression with transcription factors and activates dozens of enzymes involved in neuronal metabolism. During development and in adulthood, zinc acts as a regulator of synaptic activity and neuronal plasticity at the cellular level. There are several neurological diseases that may be affected by changes in zinc status, and these include stroke, neurodegenerative diseases, traumatic brain injuries, and depression. Accordingly, zinc deficiency may result in declines in cognition and learning and an increase in oxidative stress, while zinc accumulation may lead to neurotoxicity and neuronal cell death. In this review, we explore the mechanisms of brain zinc balance, the role of zinc in neurological diseases, and strategies affecting zinc for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - V. Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| |
Collapse
|
13
|
Hulsbosch LP, Boekhorst MGBM, Gigase FAJ, Broeren MAC, Krabbe JG, Maret W, Pop VJM. The first trimester plasma copper-zinc ratio is independently related to pregnancy-specific psychological distress symptoms throughout pregnancy. Nutrition 2022; 109:111938. [PMID: 36736090 DOI: 10.1016/j.nut.2022.111938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES High plasma copper (Cu) and low zinc (Zn) levels have been associated with depression. However, most studies used low sample sizes and a cross-sectional design, and perinatal data are scarce. We investigated the possible association between pregnancy-specific psychological distress and the plasma CuZn ratio using a prospective design. METHODS Pregnancy-specific distress symptoms were assessed at each trimester by means of the Tilburg Pregnancy Distress Scale, negative affect subscale, in 2036 pregnant women. Cu and Zn were assessed at 12 wk of gestation in plasma samples by inductively coupled plasma mass spectrometry. Growth mixture modeling determined trajectories of women's pregnancy-specific negative affect (P-NA) symptoms, which were entered in a multiple logistic regression analysis as dependent variable and the CuZn ratio as independent variable. RESULTS Two P-NA symptom classes were found: 1) persistently low (n = 1820) and 2) persistently high (n = 216). A higher CuZn ratio was independently associated with persistently high P-NA symptom scores (odds ratio = 1.52; 95% confidence interval, 1.13-2.04) after adjustment for confounders. A sensitivity analysis was performed excluding all women with high P-NA scores at 12 wk (>1 SD above the mean P-NA score). In the 1719 remaining women, a higher CuZn ratio significantly predicted the development of increasing P-NA symptom scores after adjustment for confounders (odds ratio = 1.40; 95% confidence interval, 1.04-1.95). CONCLUSIONS A higher CuZn plasma ratio is an independent determinant of developing pregnancy-specific distress symptoms throughout pregnancy, suggesting that micronutrients could be used as novel biomarkers for psychological distress research of perinatal mood disorders.
Collapse
Affiliation(s)
- Lianne P Hulsbosch
- Center of Research in Psychological and Somatic disorders (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands.
| | - Myrthe G B M Boekhorst
- Center of Research in Psychological and Somatic disorders (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands
| | - Frederieke A J Gigase
- Center of Research in Psychological and Somatic disorders (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maarten A C Broeren
- Laboratory for Clinical Chemistry and Haematology, Máxima Medical Center, Veldhoven, the Netherlands
| | - Johannes G Krabbe
- Department of Clinical Chemistry and Laboratory Medicine, Medisch Spectrum Twente, Medlon BV, Enschede, the Netherlands
| | - Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Victor J M Pop
- Center of Research in Psychological and Somatic disorders (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
14
|
Zierold KM, Myers JV, Brock GN, Zhang CH, Sears CG, Sears L. Heavy Metal(loid) Body Burden in Environmentally Exposed Children With and Without Internalizing Behavior Problems. EXPOSURE AND HEALTH 2022; 14:903-914. [PMID: 38894859 PMCID: PMC11185413 DOI: 10.1007/s12403-022-00469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 06/21/2024]
Abstract
The prevalence of internalizing behavior disorders in children is increasing. Reasons for increasing anxiety and depression include several factors with a less studied consideration being the potential neurotoxic effects of environmental exposures. One group at risk for environmental exposures is children living near coal-burning power plants with coal ash storage facilities. Multivariate logistic regression was used to assess the relationship between metal(loid) exposures and internalizing behaviors in children aged 6-14 years. Metal(loid)s in nail samples were determined by Proton-Induced X-ray Emission and internalizing behavior problems were obtained from the parent ratings on the Child Behavior Checklist. Results indicated that concentrations of metal(loid)s in nails differ between children with internalizing behaviors and without internalizing behaviors. Logistic regression models suggested that exposure to zinc and imputed zirconium were associated with internalizing behaviors in children. However, when a sex-metal(loid) interaction term was included, none of the metal(loid)s were associated with internalizing behaviors indicating a role of sex differences in neurotoxicity with zinc and copper showing effects only for males. In all models, greater exposure to traffic was associated with internalizing behaviors. Zinc has previously been shown to increase risk for mental health problems, while zirconium has received less attention. Out findings indicate that environmental exposures of zinc and zirconium deserve further attention in studies of childhood internalizing disorders.
Collapse
Affiliation(s)
- Kristina M. Zierold
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, RPHB 534C, 1720 2nd Ave S, Birmingham, AL 35294‑0022, USA
| | - John V. Myers
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Guy N. Brock
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Charlie H. Zhang
- Department of Geographic & Environmental Sciences, University of Louisville, Louisville, KY, USA
| | - Clara G. Sears
- Department of Environmental Medicine, University of Louisville, Louisville, KY, USA
| | - Lonnie Sears
- Department of Pediatrics, University of Louisville, Louisville, KY, USA
| |
Collapse
|
15
|
Zhang HL, Wang XC, Liu R. Zinc in Regulating Protein Kinases and Phosphatases in Neurodegenerative Diseases. Biomolecules 2022; 12:biom12060785. [PMID: 35740910 PMCID: PMC9220840 DOI: 10.3390/biom12060785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc is essential for human growth and development. As a trace nutrient, zinc plays important roles in numerous signal transduction pathways involved in distinct physiologic or pathologic processes. Protein phosphorylation is a posttranslational modification which regulates protein activity, degradation, and interaction with other molecules. Protein kinases (PKs) and phosphatases (PPs), with their effects of adding phosphate to or removing phosphate from certain substrates, are master regulators in controlling the phosphorylation of proteins. In this review, we summarize the disturbance of zinc homeostasis and role of zinc disturbance in regulating protein kinases and protein phosphatases in neurodegenerative diseases, with the focus of that in Alzheimer’s disease, providing a new perspective for understanding the mechanisms of these neurologic diseases.
Collapse
|
16
|
Mo X, Liu M, Gong J, Mei Y, Chen H, Mo H, Yang X, Li J. PTPRM Is Critical for Synapse Formation Regulated by Zinc Ion. Front Mol Neurosci 2022; 15:822458. [PMID: 35386272 PMCID: PMC8977644 DOI: 10.3389/fnmol.2022.822458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the nervous system, the trace metal ion zinc is required for normal mammalian brain development and physiology. Zinc homeostasis is essential for the control of physiological and pathophysiological brain functions. Synapses, the junctions between neurons, are the center of the brain’s information transmission. Zinc deficiency or excess leads to neurological disorders. However, it is still unclear whether and how zinc ion regulates synapse formation. Here, we investigated the effect of zinc on synapse formation in a cultured neuron system, and found that synapse formation and synaptic transmission were regulated by zinc ions. Finally, we identified that PTPRM is the key gene involved in synapse formation regulated by zinc ions. This study provides a new perspective to understanding the regulation of brain function by zinc ion.
Collapse
Affiliation(s)
- Xiaoqiang Mo
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Mengxue Liu
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, and College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jihong Gong
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, and College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Ying Mei
- Wuhan Institute of Biological Products, Co., Ltd., Wuhan, China
| | - Huidan Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, and College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Huajun Mo
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, and College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
- *Correspondence: Xiaofei Yang Jun Li
| | - Jun Li
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- *Correspondence: Xiaofei Yang Jun Li
| |
Collapse
|
17
|
Shayganfard M. Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives. Biol Trace Elem Res 2022; 200:1032-1059. [PMID: 33904124 DOI: 10.1007/s12011-021-02733-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
The emergence of mental disorders is associated with several risk factors including genetic and environmental susceptibility. A group of nutrients serves an especially important role in a number of essential neurodevelopmental processes through brain areas promoting the high degree of brain metabolism during early life, although almost all nutrients are needed. These include macronutrients and micronutrients (e.g., iron, magnesium, zinc, copper, selenium). Numerous nutritional psychiatry trials have been performed to examine the correlation of many individual nutrients with mental health, such as essential trace elements. The increased accumulation or lack of such components will facilitate an alternative metabolic pathway that can lead to many diseases and conditions of neurodevelopment. Mental functions have biochemical bases, so the impairment of such neurochemical mechanisms due to lack of trace elements can have mental effects. In psychological conditions such as depression, anxiety, schizophrenia, and autism, scientific studies demonstrate the putative role of trace element deficiency. Therefore, given the critical roles played by essential trace elements in the neurodevelopment and mental health, the effect of these elements' intake on the modulation of psychological functioning is reviewed.
Collapse
Affiliation(s)
- Mehran Shayganfard
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
18
|
Alsufiani HM, Alkhanbashi AS, Laswad NAB, Bakhadher KK, Alghamdi SA, Tayeb HO, Tarazi FI. Zinc deficiency and supplementation in autism spectrum disorder and Phelan-McDermid syndrome. J Neurosci Res 2022; 100:970-978. [PMID: 35114017 DOI: 10.1002/jnr.25019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/02/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023]
Abstract
Approximately 1 in 36 children are diagnosed with autism spectrum disorder (ASD). The disorder is four times more common in males than in females. Zinc deficiency and mutations in SHANK2 and SHANK3 (members of a family of excitatory postsynaptic scaffolding proteins) are all risk factors that may contribute to the pathophysiology of the disease. The presence of shankopathies (loss of one copy of the SHANK3 gene) can lead to the development of Phelan-McDermid syndrome (PMDS)-a rare genetic disorder characterized by developmental delay, intellectual disability, poor motor tone, and ASD-like symptoms. We reviewed the relationship between zinc, ASD, and PMDS as well as the effect of zinc supplementation in improving symptoms of ASD and PMDS based on 22 studies published within 6 years (2015-2020). Zinc deficiency (assessed by either dietary intake, blood, hair, or tooth matrix) was shown to be highly prevalent in ASD and PMDS patients as well as in preclinical models of ASD and PMDS. Zinc supplements improved the behavioral deficits in animal models of ASD and PMDS. Clinical trials are still needed to validate the beneficial therapeutic effects of zinc supplements in ASD and PMDS patients.
Collapse
Affiliation(s)
- Hadeil M Alsufiani
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa S Alkhanbashi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah A Bin Laswad
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khulood K Bakhadher
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shareefa A Alghamdi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- Division of Neurology, Department of Internal Medicine, The Neuroscience Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Frank I Tarazi
- Department of Psychiatry and Neuroscience, Harvard Medical School and McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
19
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
20
|
Michalke B, Berthele A, Venkataramani V. Simultaneous Quantification and Speciation of Trace Metals in Paired Serum and CSF Samples by Size Exclusion Chromatography-Inductively Coupled Plasma-Dynamic Reaction Cell-Mass Spectrometry (SEC-DRC-ICP-MS). Int J Mol Sci 2021; 22:8892. [PMID: 34445607 PMCID: PMC8396360 DOI: 10.3390/ijms22168892] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transition metals play a crucial role in brain metabolism: since they exist in different oxidation states they are involved in ROS generation, but they are also co-factors of enzymes in cellular energy metabolism or oxidative defense. METHODS Paired serum and cerebrospinal fluid (CSF) samples were analyzed for iron, zinc, copper and manganese as well as for speciation using SEC-ICP-DRC-MS. Brain extracts from Mn-exposed rats were additionally analyzed with SEC-ICP-DRC-MS. RESULTS The concentration patterns of transition metal size fractions were correlated between serum and CSF: Total element concentrations were significantly lower in CSF. Fe-ferritin was decreased in CSF whereas a LMW Fe fraction was relatively increased. The 400-600 kDa Zn fraction and the Cu-ceruloplasmin fraction were decreased in CSF, by contrast the 40-80 kDa fraction, containing Cu- and Zn-albumin, relatively increased. For manganese, the α-2-macroglobulin fraction showed significantly lower concentration in CSF, whereas the citrate Mn fraction was enriched. Results from the rat brain extracts supported the findings from human paired serum and CSF samples. CONCLUSIONS Transition metals are strictly controlled at neural barriers (NB) of neurologic healthy patients. High molecular weight species are down-concentrated along NB, however, the Mn-citrate fraction seems to be less controlled, which may be problematic under environmental load.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany;
| | - Vivek Venkataramani
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
- Institute of Pathology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| |
Collapse
|
21
|
Peralta FA, Huidobro-Toro JP, Mera-Adasme R. Hybrid QM/MM Simulations Confirm Zn(II) Coordination Sphere That Includes Four Cysteines from the P2 × 4R Head Domain. Int J Mol Sci 2021; 22:ijms22147288. [PMID: 34298909 PMCID: PMC8303255 DOI: 10.3390/ijms22147288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
To ascertain the role of Zn(II) as an allosteric modulator on P2X4R, QM/MM molecular dynamic simulations were performed on the WT and two P2X4R mutants suggested by previous electrophysiological data to affect Zn(II) binding. The Gibbs free energy for the reduction of the putative P2X4R Zn(II) binding site by glutathione was estimated at −22 kcal/mol. Simulations of the WT P2X4R head domain revealed a flexible coordination sphere dominated by an octahedral geometry encompassing C126, N127, C132, C149, C159 and a water molecule. The C132A mutation disrupted the metal binding site, leading to a coordination sphere with a majority of water ligands, and a displacement of the metal ion towards the solvent. The C132A/C159A mutant exhibited a tendency towards WT-like stability by incorporating the R148 backbone to the coordination sphere. Thus, the computational findings agree with previous experimental data showing Zn(II) modulation for the WT and C132A/C159A variants, but not for the C132A mutant. The results provide molecular insights into the nature of the Zn(II) modulation in P2X4R, and the effect of the C132A and C132A/C159A mutations, accounting for an elusive modulation mechanism possibly occurring in other extracellular or membrane protein.
Collapse
Affiliation(s)
| | - J. Pablo Huidobro-Toro
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170124, Chile
- Centro Para el Desarrollo de Nanociencia y Nanotecnología, (CEDENNA), Universidad de Santiago de Chile (USACH), Santiago 9170124, Chile
- Correspondence: (J.P.H.-T.); (R.M.-A.)
| | - Raúl Mera-Adasme
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170124, Chile
- Correspondence: (J.P.H.-T.); (R.M.-A.)
| |
Collapse
|
22
|
Jafari F, Mohammadi H, Amani R. The effect of zinc supplementation on brain derived neurotrophic factor: A meta-analysis. J Trace Elem Med Biol 2021; 66:126753. [PMID: 33831797 DOI: 10.1016/j.jtemb.2021.126753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Zinc in one of the most abundant trace minerals in human body which is involved in numerous biological pathways and has variety of roles in the nervous system. It has been assumed that zinc exerts its role in nervous system through increasing brain derived neurotrophic factor (BDNF) concentrations. OBJECTIVES Present meta-analysis was aimed to review the effect of zinc supplementation on serum concentrations of BDNF. METHODS AND MATERIALS Four electronic databases (Pubmed, Scopus, Web of Science, Embase) were searched for identifying studies that examined BDNF levels prior and after zinc supplementation up to May 2020. According to the Cochrane guideline, a meta-analysis was performed to pool the effect size estimate (Hedges' test) of serum BDNF across studies. Risk of publication bias was assessed using a funnel plot and Egger's test. RESULTS Five studies were eligible and 238 participants were included. These studies enrolled subjects with premenstrual syndrome, diabetic retinopathy, major depression disorder, overweight/obese and obese with mild to moderate depressive disorders. Zinc supplementation failed to increase blood BDNF concentrations with effect size of 0.30 (95 % CI: -0.08, 0.67, P = 0.119). Funnel plot did not suggest publication bias. CONCLUSION Zinc supplementation may not significantly increase BDNF levels. However, the small number of included articles and significant heterogeneity between them can increase the risk of a false negative result; therefore, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Fatemeh Jafari
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
23
|
Feng J, Li JZ, Mao XM, Wang Q, Li SP, Wang CY. Real-time detection and imaging of exogenous and endogenous Zn 2+ in the PC12 cell model of depression with a NIR fluorescent probe. Analyst 2021; 146:3971-3976. [PMID: 33997880 DOI: 10.1039/d1an00508a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Depression is closely related to overactivation of N-methyl-d-aspartic acid (NMDA) receptors, and Zn2+ is a vital NMDA receptor modulator involved in the pathophysiological and physiological processes of depression. Therefore, quantitative and real-time detection of Zn2+ is very important for understanding the pathogenesis of depression. In this work, a near-infrared (NIR) fluorescent probe ISO-DPA was designed and synthesized for Zn2+ detection with a large Stokes shift (185 nm), high quantum yield (up to 44%), high sensitivity (LOD = 0.106 μM) and good pH stability. The probe showed rapid response within 10 s, accompanied by a distinct fluorescence change from faint to bright pink with the fluorescence intensity increasing 4.5-fold. Moreover, the sensing mechanism of ISO-DPA towards Zn2+ was supported by MALDI-TOF-MS and Job's plot. The probe ISO-DPA could detect instantaneous variation of exogenous and endogenous Zn2+ in PC12 cells. The bioimaging results reveal the increase of the endogenous Zn2+ concentration in PC12 cells under the oxidative stress induced by glutamate and confirm that overactivation of NMDA receptors results in an increase of the Zn2+ level. All the results proved that ISO-DPA is an excellent probe for detecting Zn2+ in solution and living cells and could help us better understand Zn2+ associated pathogenesis of depression.
Collapse
Affiliation(s)
- Jing Feng
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University & Technology, Shanghai, 200237, P. R. China.
| | - Ji-Zhen Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University & Technology, Shanghai, 200237, P. R. China.
| | - Xi-Mo Mao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University & Technology, Shanghai, 200237, P. R. China.
| | - Qi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University & Technology, Shanghai, 200237, P. R. China.
| | - Su-Ping Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University & Technology, Shanghai, 200237, P. R. China.
| | - Cheng-Yun Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University & Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
24
|
Sarigiannis DA, Papaioannou N, Handakas E, Anesti O, Polanska K, Hanke W, Salifoglou A, Gabriel C, Karakitsios S. Neurodevelopmental exposome: The effect of in utero co-exposure to heavy metals and phthalates on child neurodevelopment. ENVIRONMENTAL RESEARCH 2021; 197:110949. [PMID: 33716031 DOI: 10.1016/j.envres.2021.110949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/27/2020] [Accepted: 02/25/2021] [Indexed: 05/22/2023]
Abstract
In this study, the exposome paradigm has been applied on a mother-child cohort adopting an optimised untargeted metabolomics approach for human urine followed by advanced bioinformatics analysis. Exposome-wide association algorithms were used to draw links between in utero co-exposure to metals and phthalates, metabolic pathways deregulation, and clinically observed phenotypes of neurodevelopmental disorders such as problems in linguistic, motor development and cognitive capacity. Children (n = 148) were tested at the first and second year of their life using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Their mothers had been exposed to metals and phthalates during the pregnancy, according to human biomonitoring results from previously performed studies. Untargeted metabolomics analysis of biobanked urine samples from the mothers was performed using a combination of the high throughput analytical methods liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). Most perturbed metabolic pathways from co-exposure heavy metals and phthalates were pathways related to the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation, indicating the possibility of disruption of mitochondrial respiration. Overproduction of reactive oxygen species (ROS); the presence of glutathione peroxidase 3 (GPx3) during pregnancy and presence of glutathione peroxidase 1 (GPx1) in the umbilical cord were linked to verbal development problems. Another finding of the study is that in real life, adverse outcomes occur as a combination of environmental and social factors, all of them acting synergistically towards the deployment of an observed phenotype. Finally, the two-steps association process (exposure to pathways and pathways to adverse outcomes) was able to (a) provide associations that are not evident by directly associating exposure to outcomes and (b) provides additional insides on the mechanisms of environmental disease.
Collapse
Affiliation(s)
- Denis A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece; School for Advanced Study (IUSS), Science, Technology and Society Department, Environmental Health Engineering, Piazza Della Vittoria 15, Pavia, 27100, Italy.
| | - Nafsika Papaioannou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| | - Evangelos Handakas
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece
| | - Ourania Anesti
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece; School of Medicine, University of Crete, Voutes, Heraklion, 71003, Greece
| | - Kinga Polanska
- Nofer Institute of Occupational Medicine, 91348, Lodz, Poland
| | - Woijcek Hanke
- Nofer Institute of Occupational Medicine, 91348, Lodz, Poland
| | - Athanasios Salifoglou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Inorganic Chemistry Laboratory, University Campus, Thessaloniki, 54124, Greece
| | - Catherine Gabriel
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| | - Spyros Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| |
Collapse
|
25
|
da Silva LEM, de Santana MLP, Costa PRDF, Pereira EM, Nepomuceno CMM, Queiroz VADO, de Oliveira LPM, Machado MEPDC, de Sena EP. Zinc supplementation combined with antidepressant drugs for treatment of patients with depression: a systematic review and meta-analysis. Nutr Rev 2021; 79:1-12. [PMID: 32885249 DOI: 10.1093/nutrit/nuaa039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Zinc is an essential trace mineral required for the function of brain and neural structures. The role of zinc supplementation in the prevention and treatment of depression has been suggested in clinical studies that reported a reduction in depressive symptoms. OBJECTIVE The aim of this review was to determine whether zinc supplementation vs placebo can prevent or improve depressive symptoms in children, adolescents, or adults. DATA SOURCES Five electronic databases were searched, and studies published until September 2019 were included without language restriction. STUDY SELECTION Randomized, controlled, crossover trials that evaluated the effect of zinc supplementation vs a comparator for prevention or improvement of depressive symptoms in children, adolescents, or adults were eligible for inclusion. DATA EXTRACTION Two authors independently performed data extraction and risk-of-bias assessment. RESULTS The initial search identified 12 322 studies, 5 of which were eligible for meta-analysis. The standardized mean difference (SMD) showed an average reduction of 0.36 point (95%CI, -0.67 to -0.04) in the intervention group compared with the placebo group. Forstudies in which the mean age of participants was ≥ 40 years, the SMD was reduced by 0.61 point (95%CI, -1.12 to -0.09) in the intervention group vs the placebo group. The meta-analysis by sample size (< 60 individuals and ≥ 60 individuals) did not show an effect of zinc supplementation in reducing depressive symptoms (SMD -0.28; 95%CI, -0.67 to -0.10; and SMD -0.52; 95%CI, -1.10 to 0.06). CONCLUSION Zinc supplementation may reduce depressive symptoms in individuals treated with antidepressant drugs for clinical depression. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42018081691.
Collapse
Affiliation(s)
| | | | | | - Emile Miranda Pereira
- Graduate Program in Food, Nutrition and Health, Federal University of Bahia, Salvador, Brazil
| | | | | | | | | | - Eduardo Pondé de Sena
- Department of Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
26
|
Fu CX, Dai L, Yuan XY, Xu YJ. Effects of Fish Oil Combined with Selenium and Zinc on Learning and Memory Impairment in Aging Mice and Amyloid Precursor Protein Processing. Biol Trace Elem Res 2021; 199:1855-1863. [PMID: 32666432 DOI: 10.1007/s12011-020-02280-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease is characterized by the aggregation of amyloid-beta (Aβ) peptide into plaques and neurofibrillary tangles. Aβ peptide is generated by the cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretase. The present study was conducted to investigate the effects of fish oil (or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), selenium, and zinc on learning and memory impairment in an aging mouse model and on APP. We performed the Morris water maze and platform recorder tests on male Kunming mice (10/group) grouped as control and D-galactose-induced aging model mice treated with vehicle, fish oil, fish oil + selenium, fish oil + selenium + zinc, and positive control (red ginseng extract). Fish oil + zinc + selenium for 7 weeks significantly improved learning and memory impairments in aging model animals in the Morris water maze and platform recorder tests, as evidenced by shortened incubation periods and number of errors. In vitro analysis of Aβ1-40 content in APP695-transfected CHO cells revealed a decrease after treatment with EPA, DHA, and their combinations with selenium or selenium and zinc. Assaying β- and γ-secretase activities revealed a decrease in PC12 cells and mouse serum as well as a decrease in β-site APP-cleaving enzyme 1 and presenilin 1 protein levels in the PC12 cells and mouse serum. Taken together, our results show that fish oil combined with selenium and zinc inhibited APP processing and alleviated learning and memory impairment in a mouse model of aging.
Collapse
Affiliation(s)
- Chao-Xu Fu
- Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China
| | - Lin Dai
- Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China
| | - Xiu-Yuan Yuan
- Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China
| | - Yan-Ji Xu
- Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China.
| |
Collapse
|
27
|
Hashemzaei M, Fanoudi S, Najari M, Fotouhi M, Belaran M, Alipour NS, Dadrezaei Z, Miri F, Tabrizian K. Effects of Quercetin and Resveratrol on Zinc Chloride- and Sodium Metavanadate-Induced Passive Avoidance Memory Retention Deficits in Male Mice. Prev Nutr Food Sci 2021; 26:67-74. [PMID: 33859961 PMCID: PMC8027046 DOI: 10.3746/pnf.2021.26.1.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022] Open
Abstract
Quercetin and resveratrol are found in a variety of fruits and vegetables and have several biological and pharmacological properties. In this study, the effects of quercetin [50 mg/kg, intraperitoneal (i.p.)] and resveratrol (50 mg/kg, i.p.) on zinc chloride (ZnCl2; 75 mg/kg/d, 2 weeks oral gavage) and sodium metavanadate (SMV; 22.5 mg/kg/d, 2 weeks oral gavage) induced passive avoidance memory retention were investigated in step-through passive avoidance tasks. ZnCl2 was dissolved in saline and SMV was dissolved in drinking water. Mice received ZnCl2 or SMV orally for two weeks and were administered quercetin or resveratrol by i.p. injection on day 14, days 12 and 14, or days 10, 12, and 14. At the end of treatment, animals were trained for one day in a step-through passive avoidance task, then alterations in avoidance memory retention were evaluated after 24, 48, 96, and 168 h. Oral consumption of ZnCl2 and SMV decreased latency time compared with control groups. Both quercetin and resveratrol (50 mg/kg, i.p.) prevented ZnCl2- and SMV-induced avoidance memory retention impairments and did not significantly alter muscle strength, as demonstrated in rotarod tasks. No significant differences were observed between mice who received single, double, or triple doses of quercetin or resveratrol. The results suggest that quercetin and resveratrol may have preventive effects on ZnCl2- and SMV-induced memory impairment in male mice.
Collapse
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Mohadeseh Najari
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Mansoureh Fotouhi
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Maryam Belaran
- Department of Physiology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Najmeh Sadat Alipour
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Zahra Dadrezaei
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Fatemeh Miri
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Kaveh Tabrizian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| |
Collapse
|
28
|
Wang P, Pan R, Weaver J, Jia M, Yang X, Yang T, Liang J, Liu KJ. MicroRNA-30a regulates acute cerebral ischemia-induced blood-brain barrier damage through ZnT4/zinc pathway. J Cereb Blood Flow Metab 2021; 41:641-655. [PMID: 32501158 PMCID: PMC7922758 DOI: 10.1177/0271678x20926787] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanism of early blood-brain barrier (BBB) disruption after stroke has been intensively studied but still not fully understood. Here, we report that microRNA-30a (miR-30a) could mediate BBB damage using both cellular and animal models of ischemic stroke. In the experiments in vitro, inhibition of miR-30a decreased BBB permeability, prevented the degradation of tight junction proteins, and reduced intracellular free zinc in endothelial cells. We found that the zinc transporter ZnT4 was a direct target of negative regulation by miR-30a, and ZnT4/zinc signaling pathway contributed significantly to miR-30a-mediated BBB damage. Consistent with these in vitro findings, treatment with miR-30a inhibitor reduced zinc accumulation, increased the expression of ZnT4, and prevented the loss of tight junction proteins in microvessels of ischemic animals. Furthermore, inhibition of miR-30a, even at 90 min post onset of middle cerebral artery occlusion, prevented BBB damage, reduced infarct volume, and ameliorated neurological deficits. Together, our findings provide novel insights into the mechanisms of cerebral ischemia-induced BBB disruption and indicate miR-30a as a regulator of BBB function that can be an effective therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - John Weaver
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mengjie Jia
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Xue Yang
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Tianhui Yang
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Jia Liang
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Ke J Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
29
|
Schizophrenia-associated SLC39A8 polymorphism is a loss-of-function allele altering glutamate receptor and innate immune signaling. Transl Psychiatry 2021; 11:136. [PMID: 33608496 PMCID: PMC7895948 DOI: 10.1038/s41398-021-01262-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
Schizophrenia is a complex and heterogenous disease that presents with abnormalities in glutamate signaling and altered immune and inflammatory signals. Genome-wide association studies have indicated specific genes and pathways that may contribute to schizophrenia. We assessed the impact of the functional missense variant SLC39A8 (ZIP8)-A391T (ZIP8A391T) on zinc transport, glutamate signaling, and the neuroinflammatory response. The ZIP8A391T mutation resulted in reduced zinc transport into the cell, suggesting a loss in the tight control of zinc in the synaptic cleft. Electrophysiological recordings from perturbed neurons revealed a significant reduction in NMDA- and AMPA-mediated spontaneous EPSCs (sEPSCs) and a reduction in GluN2A and GluA1/2/3 receptor surface expression. All phenotypes were rescued by re-expression of wild-type ZIP8 (ZIP8WT) or application of the membrane-impermeable zinc chelator ZX1. ZIP8 reduction also resulted in decreased BBB integrity, increased IL-6/IL-1β protein expression, and increased NFκB following TNFα stimulation, indicating that ZIP8 loss-of-function may exacerbate immune and inflammatory signals. Together, our findings demonstrate that the A391T missense mutation results in alterations in glutamate and immune function and provide novel therapeutic targets relevant to schizophrenia.
Collapse
|
30
|
Schoonover KE, Farmer CB, Morgan CJ, Sinha V, Odom L, Roberts RC. Abnormalities in the copper transporter CTR1 in postmortem hippocampus in schizophrenia: A subregion and laminar analysis. Schizophr Res 2021; 228:60-73. [PMID: 33434736 PMCID: PMC7987889 DOI: 10.1016/j.schres.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023]
Abstract
Dysbindin-1 modulates copper transport, which is crucial for cellular homeostasis. Several brain regions implicated in schizophrenia exhibit decreased levels of dysbindin-1, which may affect copper homeostasis therein. Our recent study showed decreased levels of dysbindin-1, the copper transporter-1 (CTR1) and copper in the substantia nigra in schizophrenia, providing the first evidence of disrupted copper transport in schizophrenia. In the present study, we hypothesized that there would be lower levels of dysbindin-1 and CTR1 in the hippocampus in schizophrenia versus a comparison group. Using semi-quantitative immunohistochemistry for dysbindin1 and CTR1, we measured the optical density in a layer specific fashion in the hippocampus and entorhinal cortex in ten subjects with schizophrenia and ten comparison subjects. Both regions were richly immunolabeled for CTR1 and dysbindin1 in both groups. In the superficial layers of the entorhinal cortex, CTR1 immunolabeled neuropil and cells showed lower optical density values in patients versus the comparison group. In the molecular layer of the dentate gyrus, patients had higher optical density values of CTR1 versus the comparison group. The density and distribution of dysbindin-1 immunolabeling was similar between groups. These laminar specific alterations of CTR1 in schizophrenia suggest abnormal copper transport in those locations.
Collapse
Affiliation(s)
- Kirsten E. Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham
| | - Charlene B. Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Charity J Morgan
- Department of Biostatistics, University of Alabama at Birmingham
| | - Vidushi Sinha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Laura Odom
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
31
|
Ekram B, Abd El-Hady BM, El-Kady AM, Fouad MT, Sadek ZI, Amr SM, Gabr H, Waly AI, Guirguis OW. Enhanced mesenchymal stem cells growth on antibacterial microgrooved electrospun zinc chloride/polycaprolactone conduits for peripheral nerve regeneration. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911520988305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we have investigated the effect of adding zinc chloride (ZnCl2) on polycaprolactone (PCL) before and after electrospinning. The rheological properties and conductivity of ZnCl2/PCL solutions were measured prior to the electrospinning process. The resultant electrospun mats were characterized by SEM, contact angle, FTIR, XRD, mechanical properties, as well as its antibacterial and stem cell proliferation assessment were tested. It was found that the fibers became finer by increasing the zinc salt content. Moreover, stability increased slightly up to 5% Zn-PCL and also the hydrophilicity has been enhanced by 52%. By adding ZnCl2, the degradation rate and mechanical properties were significantly increased. Also, the resultant mats have shown antibacterial properties against S. aureus than E. coli. From the stem cells proliferation study, it can be observed that by increasing ZnCl2, the stem cells proliferation was significantly increased. Grooved multichannel nerve conduits were successfully fabricated by rolling the electrospun mats produced on corn husks which has shown better cell alignment and attachment. Hence, adding zinc chloride is a facile biocompatible enhancement to polycaprolactone nanofibers to be used in nerve regeneration.
Collapse
Affiliation(s)
- Basma Ekram
- Polymers and Pigments Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Abeer M El-Kady
- Glass Research Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed T Fouad
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Zeinab I Sadek
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sherif M Amr
- Orthopaedics and Traumatology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Hala Gabr
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Ahmed I Waly
- Textile Department, National Research Centre, Dokki, Cairo, Egypt
| | - Osiris W Guirguis
- Biophysics Department, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| |
Collapse
|
32
|
Socha K, Klimiuk K, Naliwajko SK, Soroczyńska J, Puścion-Jakubik A, Markiewicz-Żukowska R, Kochanowicz J. Dietary Habits, Selenium, Copper, Zinc and Total Antioxidant Status in Serum in Relation to Cognitive Functions of Patients with Alzheimer's Disease. Nutrients 2021; 13:nu13020287. [PMID: 33498452 PMCID: PMC7909435 DOI: 10.3390/nu13020287] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/17/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress plays a crucial role in the neurodegenerative process and can impair cognitive functions. In the prevention of Alzheimer's disease (AD), an adequate consumption of dietary antioxidants may be a major factor. The objective of the study was to estimate selenium (Se), copper (Cu), zinc (Zn), and total antioxidant status (TAS) in the serum of patients with AD in relation to their cognitive functions and dietary habits. A total of 110 patients (aged 54-93 years) with early or moderate AD, as well as 60 healthy people (aged 52-83 years) were studied. The severity of the disease was assessed using the mini-mental state examination (MMSE) scale. Food-frequency questionnaires were implemented to collect the dietary data. The concentrations of Se, Cu and Zn in the sera were determined by the atomic absorption spectrometry method. TAS was estimated spectrophotometrically using ready-made kits (Randox). Significantly lower concentrations of Se, Zn and TAS, and higher Cu:Zn ratio in the serum of patients with AD, compared to healthy people, were observed. A low correlation between the MMSE score and TAS in the serum of AD patients and significantly higher MMSE values in patients with TAS above the reference range were also noted. In patients with serum Cu concentration above the norm, significantly lower MMSE values were found. Selected dietary habits such as the frequency of consumption of various food products had a significant impact on the concentration of the assessed parameters in the serum of people with AD.
Collapse
Affiliation(s)
- Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (S.K.N.); (J.S.); (A.P.-J.); (R.M.-Ż.)
- Correspondence: ; Tel.: +48-8574-854-68
| | - Katarzyna Klimiuk
- Podlasie Center of Psychogeriatrics, Swobodna 38 Street, 15-756 Białystok, Poland;
| | - Sylwia K. Naliwajko
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (S.K.N.); (J.S.); (A.P.-J.); (R.M.-Ż.)
| | - Jolanta Soroczyńska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (S.K.N.); (J.S.); (A.P.-J.); (R.M.-Ż.)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (S.K.N.); (J.S.); (A.P.-J.); (R.M.-Ż.)
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (S.K.N.); (J.S.); (A.P.-J.); (R.M.-Ż.)
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, M. Skłodowskiej-Curie 24a Street, 15-276 Białystok, Poland;
| |
Collapse
|
33
|
Kumar N, Roopa, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Tesauro M, Bruschi M, Filippini T, D'Alfonso S, Mazzini L, Corrado L, Consonni M, Vinceti M, Fusi P, Urani C. Metal(loid)s role in the pathogenesis of amyotrophic lateral sclerosis: Environmental, epidemiological, and genetic data. ENVIRONMENTAL RESEARCH 2021; 192:110292. [PMID: 33027627 DOI: 10.1016/j.envres.2020.110292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. The etiology is still unknown and the pathogenesis remains unclear. ALS is familial in the 10% of cases with a Mendelian pattern of inheritance. In the remaining sporadic cases, a multifactorial origin is supposed in which several predisposing genes interact with environmental factors. The etiological role of environmental factors, such as pesticides, exposure to electromagnetic fields, and metals has been frequently investigated, with controversial findings. Studies in the past two decades have highlighted possible roles of metals, and ionic homeostasis dysregulation has been proposed as the main trigger to motor-neuron degeneration. This study aims at evaluating the possible role of environmental factors in etiopathogenesis of ALS, with a particular attention on metal contamination, focusing on the industrial Briga area in the province of Novara (Piedmont region, North Italy), characterized by: i) a higher incidence of sporadic ALS (sALS) in comparison with the entire province, and ii) the reported environmental pollution. Environmental data from surface, ground and discharge waters, and from soils were collected and specifically analyzed for metal content. Considering the significance of genetic mechanisms in ALS, a characterization for the main ALS genes has been performed to evaluate the genetic contribution for the sALS patients living in the area of study. The main findings of this study are the demonstration that in the Briga area the most common metal contaminants are Cu, Zn, Cr, Ni (widely used in tip-plating processes), that are above law limits in surface waters, discharge waters, and soil. In addition, other metals and metalloids, such as Cd, Pb, Mn, and As show a severe contamination in the same area. Results of genetic analyses show that sALS patients in the Briga area do not carry recurrent mutations or an excess of mutations in the four main ALS causative genes (SOD1, TARDBP, FUS, C9ORF72) and for ATXN2 CAG repeat locus. This study supports the hypothesis that the higher incidence of sALS in Briga area may be related to environmental metal(loid)s contamination, along with other environmental factors. Further studies, implementing analysis of genetic polymorphisms, as well as investigation with long term follow-up, may yield to key aspects into the etiology of ALS. The interplay between different approaches (environmental, chemical, epidemiological, genetic) of our work provides new insights and methodology to the comprehension of the disease etiology.
Collapse
Affiliation(s)
- Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via C. Pascal, 36, 20133, Milan, Italy.
| | - Maurizio Bruschi
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20133, Milan, Italy
| | - Tommaso Filippini
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, CAAD, UPO University, Via Solaroli, 17, 28100, Novara, Italy
| | - Letizia Mazzini
- ALS Centre Department of Neurology, Maggiore della Carità University Hospital, Corso Mazzini, 18, 28100, Novara, Italy
| | - Lucia Corrado
- Department of Health Sciences, CAAD, UPO University, Via Solaroli, 17, 28100, Novara, Italy
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via C. Pascal, 36, 20133, Milan, Italy
| | - Marco Vinceti
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, 715 Albany Street, MA 02118, USA
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20133, Milan, Italy.
| |
Collapse
|
35
|
Zinc in the Brain: Friend or Foe? Int J Mol Sci 2020; 21:ijms21238941. [PMID: 33255662 PMCID: PMC7728061 DOI: 10.3390/ijms21238941] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc is a trace metal ion in the central nervous system that plays important biological roles, such as in catalysis, structure, and regulation. It contributes to antioxidant function and the proper functioning of the immune system. In view of these characteristics of zinc, it plays an important role in neurophysiology, which leads to cell growth and cell proliferation. However, after brain disease, excessively released and accumulated zinc ions cause neurotoxic damage to postsynaptic neurons. On the other hand, zinc deficiency induces degeneration and cognitive decline disorders, such as increased neuronal death and decreased learning and memory. Given the importance of balance in this context, zinc is a biological component that plays an important physiological role in the central nervous system, but a pathophysiological role in major neurological disorders. In this review, we focus on the multiple roles of zinc in the brain.
Collapse
|
36
|
Jia W, Song Y, Yang L, Kong J, Boczek T, He Z, Wang Y, Zhang X, Hu H, Shao D, Tang H, Xia L, Xu X, Guo F. The changes of serum zinc, copper, and selenium levels in epileptic patients: a systematic review and meta-analysis. Expert Rev Clin Pharmacol 2020; 13:1047-1058. [PMID: 32856976 DOI: 10.1080/17512433.2020.1816821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION It is widely accepted that trace elements have been implicated in various metabolic processes. Valproic acid (VPA) is a remarkably safe and effective antiepileptic drug. There is no consensus option regarding the fluctuations in serum zinc (Zn), copper (Cu), and selenium (Se) in epileptic patients treated with VPA. We applied a meta-analysis to systematically assess the effects of VPA on serum ions in these patients. AREAS COVERED In this study, we performed a meta-analysis of the changes in serum Zn, Cu, and Se levels in human samples of healthy controls, epileptic patients, and patients treated with VPA. Twenty-two published analyzable studies were selected by searching the databases of PubMed, China National Knowledge Infrastructure (CNKI), Google Scholar, Web of Science, EMBASE, WAN FANG and Vip. EXPERT OPINION Serum Se levels in epileptic patients were decreased compared to healthy controls. Serum Zn levels in patients with VPA treatment were significantly lower than those in epileptic patients. The results of this meta-analysis are instructive for the intake of trace elements such as Zn, Cu, and Se in the diet balance of patients with epilepsy treated with VPA. Meanwhile, this study provides a theoretical basis for the combined use of other drugs that affect the intake and absorption of trace elements and VPA.
Collapse
Affiliation(s)
- Wanying Jia
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Yang Song
- School of Humanities and Social Sciences, China Medical University , Shenyang, China
| | - Lei Yang
- Tianjin Customs, Technical Center for Safety of Industrial Products , Tianjin, China
| | - Jingjing Kong
- Department of Gerontology, The First Affiliated Hospital of Dalian Medical University , Dalian, China
| | - Tomasz Boczek
- Department of Ophthalmology, Stanford University School of Medicine , Palo Alto, CA, USA
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University , Shenyang, China
| | - Yuting Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Xiaohong Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Huiyuan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Hong Tang
- School of Public Health, China Medical University , Shenyang, China
| | - Liguang Xia
- Department of Pediatric Surgery, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Xiaoxue Xu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, China
| |
Collapse
|
37
|
Ho HH, Nguyen AT, Chen YC, Chen LY, Dang HP, Tsai MJ, Cheng H, Horng SF, Huang CS, Zan HW, Meng HF. A Cylindrical Ion Sensor Tip with a Diameter of 1.5 mm for Potentially Invasive Medical Application. ACS OMEGA 2020; 5:23021-23027. [PMID: 32954152 PMCID: PMC7495754 DOI: 10.1021/acsomega.0c02725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
A fine cylindrical chemical sensor tip is developed with optical fiber in the core, surrounded by a transparent cylinder of photopolymer Norland Optical Adhesive 61 (NOA 61), and covered by a polymer hydrogel mixed with sensing molecules. The overall diameter is as small as 1.5 mm. pH response is demonstrated using two approaches of sensing materials: (i) absorbing probe Phenol Red mixed with Rhodamine 6G fluorescent dye and (ii) 8-hydroxypyrene-1,3,6-trisulfonic acid fluorescent probe. Both the optical excitation and fluorescence signal collection are through the optical fibers. A time resolution of 10 s is achieved for pH variations. Good linearity is observed in the physiological range from pH 7.0 to pH 8.6 with reversible and reproducible outcomes. For in vitro urea measurement, the sensor tip can distinguish 1, 3, and 5 mM urea solution, which is a crucial range in saliva urea concentration. The miniaturized tip with such simple cylindrical symmetry is designed to detect vital signs during minimally invasive surgeries and can be potentially accompanied with endoscopes to enter human bodies.
Collapse
Affiliation(s)
- Hsin-Hsien Ho
- Institute
of Electronic Engineering, National Tsing
Hua University, Hsinchu 300, Taiwan
| | - Anh-Thi Nguyen
- Institute
of Physics, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yen-Chi Chen
- Department
of Mechanical Engineering, National Chiao
Tung University, Hsinchu 300, Taiwan
| | - Li-Yin Chen
- Department
of Photonics, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Huu-Phuoc Dang
- Institute
of Physics, National Chiao Tung University, Hsinchu 300, Taiwan
| | - May-Jywan Tsai
- Department
of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Henrich Cheng
- Department
of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Sheng-Fu Horng
- Institute
of Electronic Engineering, National Tsing
Hua University, Hsinchu 300, Taiwan
| | - Cheng-Sheng Huang
- Department
of Mechanical Engineering, National Chiao
Tung University, Hsinchu 300, Taiwan
| | - Hsiao-Wen Zan
- Department
of Photonics, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Hsin-Fei Meng
- Institute
of Physics, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
38
|
Ohiomokhare S, Olaolorun F, Ladagu A, Olopade F, Howes MJR, Okello E, Olopade J, Chazot PL. The Pathopharmacological Interplay between Vanadium and Iron in Parkinson's Disease Models. Int J Mol Sci 2020; 21:E6719. [PMID: 32937783 PMCID: PMC7554808 DOI: 10.3390/ijms21186719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) pathology is characterised by distinct types of cellular defects, notably associated with oxidative damage and mitochondria dysfunction, leading to the selective loss of dopaminergic neurons in the brain's substantia nigra pars compacta (SNpc). Exposure to some environmental toxicants and heavy metals has been associated with PD pathogenesis. Raised iron levels have also been consistently observed in the nigrostriatal pathway of PD cases. This study explored, for the first time, the effects of an exogenous environmental heavy metal (vanadium) and its interaction with iron, focusing on the subtoxic effects of these metals on PD-like oxidative stress phenotypes in Catecholaminergic a-differentiated (CAD) cells and PTEN-induced kinase 1 (PINK-1)B9Drosophila melanogaster models of PD. We found that undifferentiated CAD cells were more susceptible to vanadium exposure than differentiated cells, and this susceptibility was modulated by iron. In PINK-1 flies, the exposure to chronic low doses of vanadium exacerbated the existing motor deficits, reduced survival, and increased the production of reactive oxygen species (ROS). Both Aloysia citrodora Paláu, a natural iron chelator, and Deferoxamine Mesylate (DFO), a synthetic iron chelator, significantly protected against the PD-like phenotypes in both models. These results favour the case for iron-chelation therapy as a viable option for the symptomatic treatment of PD.
Collapse
Affiliation(s)
- Samuel Ohiomokhare
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
| | - Francis Olaolorun
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Amany Ladagu
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Funmilayo Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria;
| | - Melanie-Jayne R. Howes
- Natural Capital and Plant Health Department, Royal Botanic Gardens Kew, Surrey TW9 3DS, UK;
| | - Edward Okello
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Tyne and Wear NE1 7RU, UK;
| | - James Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Paul L. Chazot
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
| |
Collapse
|
39
|
Hu Y, Du L, Yang J. A highly sensitive and selective chemosensors for detection of Zn2+ and its application in live cell imaging. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Tsai MJ, Cheng H, Ho HH, Lin PW, Liou DY, Fang TC, Li CW, Kwan K, Chen YC, Huang CS, Horng SF, Hung CH, Zan HW, Meng HF. Hydrogel-based zinc ion sensor on optical fiber with high resolution and application to neural cells. Biosens Bioelectron 2020; 162:112230. [PMID: 32392152 DOI: 10.1016/j.bios.2020.112230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022]
Abstract
Solid-state zinc ion sensor is developed with high enough resolution and reproducibility for the potential application in brain injury monitoring. An optical diffuser is incorporated into the zinc ion sensor based on optical fiber and hydrogel doped with the fluorescent zinc ion probe molecule meso-2,6-Dichlorophenyltripyrrinone (TPN-Cl2). The diffuser transforms the high-peak-intensity excitation light near the fiber end into a broad light with moderate local intensity to reduce the degradation of the probe molecule. Reversible detection can be reached for 1, 2, and 5 μM (10-6 Molar), with slopes 0.3, 0.6, and 0.8 respectively. This is the pathophysiological concentration range after brain injury. The sensor is applied to neuron-glial cultures and macrophage under the stimulation of lipopolysaccharide (LPS), KCl and oxygen/glucose deprivation (OGD) that reflect inflammation, depolarization and ischemia respectively, mimicking events after brain injury. The zinc ion level is raised to 4-5 μM after LPS treatment, and then reduced to <3 μM after the co-treatment with the herbal drug silymarin. The results suggest the conditions of the neural cells under stress can be monitored.
Collapse
Affiliation(s)
- May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Henrich Cheng
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, 11217, Taiwan
| | - Hsin-Hsien Ho
- Institute of Electronic Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Peng-Wei Lin
- Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Dann-Ying Liou
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Teng-Ching Fang
- Institute of Physics, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chao-Wei Li
- Institute of Physics, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Karmeng Kwan
- Institute of Physics, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yen-Chi Chen
- Institute of Mechanical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Cheng-Sheng Huang
- Institute of Mechanical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Sheng-Fu Horng
- Institute of Electronic Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | | | - Hsiao-Wen Zan
- Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan.
| | - Hsin-Fei Meng
- Institute of Physics, National Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
41
|
Liu X, Zhong S, Li Z, Chen J, Wang Y, Lai S, Miao H, Jia Y. Serum copper and zinc levels correlate with biochemical metabolite ratios in the prefrontal cortex and lentiform nucleus of patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109828. [PMID: 31778759 DOI: 10.1016/j.pnpbp.2019.109828] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Previous studies have demonstrated that copper and zinc metabolism are associated with the development of major depressive disorder (MDD). Abnormal copper and zinc levels may be related to neurotransmission and biochemical metabolism in the brains of MDD patients, especially in the prefrontal cortex (PFC) and lentiform nucleus (LN). However, the mechanism of how copper and zinc levels contribute to neural metabolism in MDD patients remains to be deciphered. This study aimed to correlate copper and zinc levels with biochemical metabolite ratios in the PFC and LN of MDD patients. METHOD Twenty-nine MDD patients and thirty-two healthy control (HC) volunteers were enrolled in this study. Proton magnetic resonance spectroscopy (1H-MRS) was used to determine the levels of the N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) in the brain, and specifically in the PFC and LN regions. Serum copper and zinc levels were measured using atomic emission spectrometry (AES). Afterwards, copper and zinc levels were correlated with biochemical metabolite ratios in the PFC and LN regions of the brain. RESULTS Higher serum copper and lower serum zinc levels with higher copper/zinc ratios were observed in MDD patients. NAA/Cr ratios in the PFC of MDD patients were lower compared to HC volunteers. In MDD patients, serum copper levels were negatively correlated with NAA/Cr ratios in the right PFC and right LN, while copper/zinc ratios were negatively correlated with NAA/Cr ratios in the right LN. No significant differences in serum copper and zinc levels with NAA/Cr ratios in the left PFC and left LN were observed in MDD patients. CONCLUSION Our findings suggest that higher serum copper and lower serum zinc levels may contribute to neuronal impairment by affecting neuronal biochemical metabolite ratios in the right PFC and right LN of MDD patients. Abnormal copper and zinc levels may play an important role in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Xuanjun Liu
- Department of Neurology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhinan Li
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510631, China
| | | | - Ying Wang
- Medical Imaging Center of The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | | | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
42
|
Yang DM, Huang CC, Chang YF. Combinatorial roles of mitochondria and cGMP/PKG pathway in the generation of neuronal free Zn2+ under the presence of nitric oxide. J Chin Med Assoc 2020; 83:357-366. [PMID: 32101891 DOI: 10.1097/jcma.0000000000000280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Nitric oxide (NO), which possesses both protective and toxic properties, has been observed to have a complicated biphasic character within various types of tissues, including neuronal cells. NO was also found to cause the increase of another important signaling molecular Zn (termed as NZR). The molecular mechanism of NZR has been extensively investigated, but the source of Zn is present of a major candidate that is yet to be answered. The NO-protein kinase G (PKG) pathway, mitochondria, and metallothioneins (MTs), are all proposed to be the individual source of NZR. However, this hypothesis remains inconclusive. In this study, we examined the function of PKG signaling cascades, the mitochondria storage, and MT-1 during NZR of living PC12 cells. METHODS We applied live-cell imaging in combination with pharmacological inhibitors and activators as well as in vitro Zn assay to dissect the functions of the above candidates in NZR. RESULTS Two mechanisms, namely, mitochondria as the only Zn source and the opening of NO-PKG-dependent mitochondrial ATP-sensitive potassium channels (mKATP) as the key to releasing NO-induced increase in mitochondrial Zn, were proven to be the two critical paths of NZR in neuronal-related cells. CONCLUSION This new finding provides a reasonable explanation to previously existing and contradictory conclusions regarding the function of mitochondria/mKATP and PKG signaling on the molecular mechanism of NZR.
Collapse
Affiliation(s)
- De-Ming Yang
- Basic Research Division, Department of Medical Research, Microscopy Service Laboratory, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Medical Technology and Engineering, National Yang-Ming University, Taipei, Taiwan, ROC
- Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chien-Chang Huang
- Core Facilities for Translational Medicines, National Biotechnology Research Park, Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Yu-Fen Chang
- LumiSTAR Biotechnology, Inc., Taipei, Taiwan, ROC
| |
Collapse
|
43
|
Ishida T, Takechi S. β-Naphthoflavone, an exogenous ligand of aryl hydrocarbon receptor, disrupts zinc homeostasis in human hepatoma HepG2 cells. J Toxicol Sci 2020; 44:711-720. [PMID: 31588062 DOI: 10.2131/jts.44.711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recent studies have demonstrated a relationship between the disruption of zinc homeostasis and the onset of diseases. However, little is known about the factors that disrupt zinc homeostasis. Here, we investigated the effects of β-naphthoflavone, an exogenous ligand of aryl hydrocarbon receptor (AHR), on intracellular zinc levels. Human hepatoma HepG2 cells were treated with β-naphthoflavone for 3 days, and intracellular labile and total zinc levels were assessed through flow cytometry and inductively coupled plasma atom emission spectroscopy, respectively. The mRNA levels of zinc transporters were determined by real-time PCR. Treatment of cells with β-naphthoflavone induced a decrease in intracellular labile zinc in a dose-dependent manner, with significantly decreased levels observed at 1 µM compared with controls. Additionally, intracellular total zinc levels demonstrated a decreasing trend with 10 µM β-naphthoflavone. Zinc pyrithione recovered the decrease in intracellular labile zinc levels induced by β-naphthoflavone, while zinc sulfate had no effect. Moreover, significant decreases in the mRNA levels of zinc transporters ZnT10 and ZIP5 were observed in response to 10 µM β-naphthoflavone. These results demonstrated that β-naphthoflavone has the potential to disrupt zinc homeostasis in hepatocytes. Although the underlying mechanism remains to be determined, suppression of zinc transporter transcription through AHR activation may be involved in the β-naphthoflavone-induced disruption of intracellular zinc levels.
Collapse
|
44
|
Zinc Transporter-3 Knockout Mice Demonstrate Age-Dependent Alterations in the Metalloproteome. Int J Mol Sci 2020; 21:ijms21030839. [PMID: 32012946 PMCID: PMC7037208 DOI: 10.3390/ijms21030839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/17/2022] Open
Abstract
Metals are critical cellular elements that are involved in a variety of cellular processes, with recent literature demonstrating that zinc, and the synaptic zinc transporter (ZnT3), are specifically involved in learning and memory and may also be key players in age-related neurodegenerative disorders such as Alzheimer's disease. Whilst the cellular content and location of metals is critical, recent data has demonstrated that the metalation state of proteins is a determinant of protein function and potential toxicity. As we have previously reported that ZnT3 knockout (KO) mice have deficits in total zinc levels at both 3 and 6 months of age, we were interested in whether there might be changes in the metalloproteomic profile in these animals. To do this, we utilised size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS) and examined hippocampal homogenates from ZnT3 KO and age-matched wild-type mice at 3, 6 and 18 months of age. Our data suggest that there are alterations in specific metal binding proteins, for zinc, copper and iron all being modulated in the ZnT3 KO mice compared to wild-type (WT). These data suggest that ZnT3 KO mice may have impairments in the levels or localisation of multiple transition metals, and that copper- and iron-dependent cellular pathways may also be impacted in these mice.
Collapse
|
45
|
Blakemore LJ, Trombley PQ. Zinc Modulates Olfactory Bulb Kainate Receptors. Neuroscience 2020; 428:252-268. [PMID: 31874243 PMCID: PMC7193548 DOI: 10.1016/j.neuroscience.2019.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Kainate receptors (KARs) are glutamate receptors with ionotropic and metabotropic activity composed of the GluK1-GluK5 subunits. We previously reported that KARs modulate excitatory and inhibitory transmission in the olfactory bulb (OB). Zinc, which is highly concentrated in the OB, also appears to modulate OB synaptic transmission via actions at other ionotropic glutamate receptors (i.e., AMPA, NMDA). However, few reports of effects of zinc on recombinant and/or native KARs exist and none have involved the OB. In the present study, we investigated the effects of exogenously applied zinc on OB KARs expressed by mitral/tufted (M/T) cells. We found that 100 µM zinc inhibits currents evoked by various combinations of KAR agonists (kainate or SYM 2081) and the AMPA receptor antagonist SYM 2206. The greatest degree of zinc-mediated inhibition was observed with coapplication of zinc with the GluK1- and GluK2-preferring agonist SYM 2081 plus SYM 2206. This finding is consistent with prior reports of zinc's inhibitory effects on some recombinant (homomeric GluK1 and GluK2 and heteromeric GluK2/GluK4 and GluK2/GluK5) KARs, although potentiation of other (GluK3, GluK2/3) KARs has also been described. It is also of potential importance given our previously reported molecular data suggesting that OB neurons express relatively high levels of GluK1 and GluK2. Our present findings suggest that a physiologically relevant concentration of zinc modulates KARs expressed by M/T cells. As M/T cells are targets of zinc-containing olfactory sensory neurons, synaptically released zinc may influence odor information-encoding synaptic circuits in the OB via actions at KARs.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA; Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA; Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
46
|
Link R, Veiksina S, Tahk MJ, Laasfeld T, Paiste P, Kopanchuk S, Rinken A. The constitutive activity of melanocortin-4 receptors in cAMP pathway is allosterically modulated by zinc and copper ions. J Neurochem 2019; 153:346-361. [PMID: 31792980 DOI: 10.1111/jnc.14933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/06/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023]
Abstract
Melanocortin-4 receptors (MC4 R) are unique among G-protein-coupled receptors (GPCRs) as they have endogenous ligands that can exhibit inverse agonistic properties in the case of elevated basal activity. It is known that the constitutive activity of GPCRs strongly affects the ligand-dependent physiological responses, but little is known about these regulatory mechanisms. Since several metal ions have been shown to be important modulators of the signal transduction of GPCRs, we hypothesized that metal ions regulate the basal activity of MC4 Rs. Implementation of a fluorescence anisotropy assay and novel redshifted fluorescent peptides enabled kinetic characterization of ligand binding to MC4 R expressed on budded baculoviruses. We show that Ca2+ is required for high-affinity ligand binding, but Zn2+ and Cu2+ in the presence of Ca2+ behave as negative allosteric modulators of ligand binding to MC4 R. FRET-based cAMP biosensor was used to measure the activation of MC4 R stably expressed in CHO-K1 cells. At low micromolar concentrations, Zn2+ caused MC4 R-dependent activation of the cAMP pathway, whereas Cu2+ reduced the activity of MC4 R even below the basal level. These findings indicate that at physiologically relevant concentrations can Zn2+ and Cu2+ function as MC4 R agonists or inverse agonists, respectively. This means that depending on the level of constitutive activity induced by Zn2+ ions, the pharmacological effect of orthosteric ligands of MC4 R can be switched from a partial to an inverse agonist. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Science badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Reet Link
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Santa Veiksina
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Päärn Paiste
- Department of Geology, University of Tartu, Tartu, Estonia
| | | | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
47
|
Xu Y, Xiao G, Liu L, Lang M. Zinc transporters in Alzheimer's disease. Mol Brain 2019; 12:106. [PMID: 31818314 PMCID: PMC6902570 DOI: 10.1186/s13041-019-0528-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/26/2019] [Indexed: 01/29/2023] Open
Abstract
Alzheimer’s disease (AD) is the most devastating neurodegenerative disorder. Due to the increase in population and longevity, incidence will triple by the middle of the twenty-first century. So far, no treatment has prevented or reversed the disease. More than 20 years of multidisciplinary studies have shown that brain zinc dyshomeostasis may play a critical role in AD progression, which provides encouraging clues for metal-targeted therapies in the treatment of AD. Unfortunately, the pilot clinical application of zinc chelator and/or ionophore strategy, such as the use of quinoline-based compounds, namely clioquinol and PBT2, has not yet been successful. The emerging findings revealed a list of key zinc transporters whose mRNA or protein levels were abnormally altered at different stages of AD brains. Furthermore, specifically modulating the expression of some of the zinc transporters in the central nervous system through genetic methods slowed down or prevented AD progression in animal models, resulting in significantly improved cognitive performance, movement, and prolonged lifespan. Although the underlying molecular mechanisms are not yet fully understood, it shed new light on the treatment or prevention of the disease. This review considers recent advances regarding AD, zinc and zinc transporters, recapitulating their relationships in extending our current understanding of the disease amelioration effects of zinc transport proteins as potential therapeutic targets to cure AD, and it may also provide new insights to identify novel therapeutic strategies for ageing and other neurodegenerative diseases, such as Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Yingshuo Xu
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China. .,College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
48
|
Zinc causes the death of hypoxic astrocytes by inducing ROS production through mitochondria dysfunction. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-00098-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
Cerebral ischemia triggers a cascade of events that contribute to ischemic brain damages. Zinc release and accumulation has been shown to lead to brain cell death following cerebral ischemia. However, the mechanism underlying remains to be elucidated. Our recently published work showed that suppression of mitochondrial-derived reactive oxygen species (ROS) production significantly reduced ischemic stroke related brain damage within 6 h. Herein, we investigated the relationship between zinc accumulation and mitochondrial-derived ROS production in astrocytes after 3-h hypoxia. We found that inhibition of mitochondrial-derived ROS significantly decreased total amount of ROS generation and cell death in primary astrocytes during hypoxia when zinc was overload. In contrast, the inhibition of NADPH oxidase-derived ROS had less of an effect. Our results also showed that zinc and mitochondria were colocalized in hypoxic astrocytes. Moreover, extracellular zinc addition caused zinc accumulation in the mitochondria and decreased mitochondrial membrane potential, leading to mitochondria dysfunction. These findings provide a novel mechanism that zinc accumulation contributes to hypoxia-induced astrocytes death by disrupting mitochondria function, following cerebral ischemia.
Collapse
|
49
|
Jian X, Chen J, Li Z, Song Z, Zhou J, Xu W, Liu Y, Shen J, Wang Y, Yi Q, Shi Y. SLC39A8 is a risk factor for schizophrenia in Uygur Chinese: a case-control study. BMC Psychiatry 2019; 19:293. [PMID: 31533672 PMCID: PMC6751796 DOI: 10.1186/s12888-019-2240-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Schizophrenia is a severe mental disease with high morbidity and heritability. The SLC39A8 gene is located in 4q24 and encodes a protein that transports many metal ions. Multiple previous studies found that one of the most pleiotropic single nucleotide polymorphisms (SNPs) in SLC39A8, rs13107325, is associated with schizophrenia in the European population. However, the polymorphism of this locus is rare in other populations. In China, the Han Chinese and the Uygur Chinese are two ethnic populations that originate from different races. METHODS A case-control study was conducted with 983 schizophrenia cases and 1230 healthy controls of the Chinese Uygur population. To validate the most promising SNP, meta-analyses were conducted with the Han Chinese and the European PGC2 data sets reported previously. RESULTS A susceptible locus, rs10014145 (pallele = 0.014, pallele = 0.098 after correction; pgenotype = 0.004, pgenotype = 0.032 after correction) was identified in case-control study of the Chinese Uygur population. Further, the association between rs10014145 and schizophrenia was supported by a meta-analysis of Han and Uygur Chinese samples (pooled OR [95% CI] =1.10 [1.03-1.17], Z = 2.73, p = 0.006). The association between rs10014145 and schizophrenia was not significant in a meta-analysis of combined Chinese and European samples (pooled OR [95% CI] =1.07 [1.00-1.14], Z = 1.88, and p = 0.06). In addition, the "CCAC" haplotype of rs4698844-rs233814-rs13114343-rs151394 was significantly associated with schizophrenia in Uygur Chinese (P = 0.003, corrected p = 0.012). CONCLUSIONS The results of this study support that SLC39A8 is a susceptible gene for schizophrenia in the populations of Han Chinese and Uygur Chinese in China, further studies are suggested to validate the association.
Collapse
Affiliation(s)
- Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Wei Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yahui Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Qizhong Yi
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Shanghai key laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China.
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong, 266003, People's Republic of China.
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Shanghai Changning Mental Health Center, Shanghai, 200030, People's Republic of China.
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People's Republic of China.
| |
Collapse
|
50
|
Association of Total Zinc Intake with Myopia in U.S. Children and Adolescents. Optom Vis Sci 2019; 96:647-654. [DOI: 10.1097/opx.0000000000001418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|