1
|
Nardelli D, Gambioli F, De Bartolo MI, Mancinelli R, Biagioni F, Carotti S, Falato E, Leodori G, Puglisi-Allegra S, Vivacqua G, Fornai F. Pain in Parkinson's disease: a neuroanatomy-based approach. Brain Commun 2024; 6:fcae210. [PMID: 39130512 PMCID: PMC11311710 DOI: 10.1093/braincomms/fcae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the deposition of misfolded alpha-synuclein in different regions of the central and peripheral nervous system. Motor impairment represents the signature clinical expression of Parkinson's disease. Nevertheless, non-motor symptoms are invariably present at different stages of the disease and constitute an important therapeutic challenge with a high impact for the patients' quality of life. Among non-motor symptoms, pain is frequently experienced by patients, being present in a range of 24-85% of Parkinson's disease population. Moreover, in more than 5% of patients, pain represents the first clinical manifestation, preceding by decades the exordium of motor symptoms. Pain implies a complex biopsychosocial experience with a downstream complex anatomical network involved in pain perception, modulation, and processing. Interestingly, all the anatomical areas involved in pain network can be affected by a-synuclein pathology, suggesting that pathophysiology of pain in Parkinson's disease encompasses a 'pain spectrum', involving different anatomical and neurochemical substrates. Here the various anatomical sites recruited in pain perception, modulation and processing are discussed, highlighting the consequences of their possible degeneration in course of Parkinson's disease. Starting from peripheral small fibres neuropathy and pathological alterations at the level of the posterior laminae of the spinal cord, we then describe the multifaceted role of noradrenaline and dopamine loss in driving dysregulated pain perception. Finally, we focus on the possible role of the intertwined circuits between amygdala, nucleus accumbens and habenula in determining the psycho-emotional, autonomic and cognitive experience of pain in Parkinson's disease. This narrative review provides the first anatomically driven comprehension of pain in Parkinson's disease, aiming at fostering new insights for personalized clinical diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Domiziana Nardelli
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Francesco Gambioli
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | | | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Roma, Rome 00161, Italy
| | | | - Simone Carotti
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Emma Falato
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Giorgio Leodori
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neuroscience, Sapienza University of Roma, Rome 00185, Italy
| | | | - Giorgio Vivacqua
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Experimental Morphology and Applied Biology, University of Pisa, Pisa 56122, Italy
| |
Collapse
|
2
|
Brooks TG, Lahens NF, Grant GR, Sheline YI, FitzGerald GA, Skarke C. Diurnal rhythms of wrist temperature are associated with future disease risk in the UK Biobank. Nat Commun 2023; 14:5172. [PMID: 37620332 PMCID: PMC10449859 DOI: 10.1038/s41467-023-40977-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Many chronic disease symptomatologies involve desynchronized sleep-wake cycles, indicative of disrupted biorhythms. This can be interrogated using body temperature rhythms, which have circadian as well as sleep-wake behavior/environmental evoked components. Here, we investigated the association of wrist temperature amplitudes with a future onset of disease in the UK Biobank one year after actigraphy. Among 425 disease conditions (range n = 200-6728) compared to controls (range n = 62,107-91,134), a total of 73 (17%) disease phenotypes were significantly associated with decreased amplitudes of wrist temperature (Benjamini-Hochberg FDR q < 0.05) and 26 (6.1%) PheCODEs passed a more stringent significance level (Bonferroni-correction α < 0.05). A two-standard deviation (1.8° Celsius) lower wrist temperature amplitude corresponded to hazard ratios of 1.91 (1.58-2.31 95% CI) for NAFLD, 1.69 (1.53-1.88) for type 2 diabetes, 1.25 (1.14-1.37) for renal failure, 1.23 (1.17-1.3) for hypertension, and 1.22 (1.11-1.33) for pneumonia (phenome-wide atlas available at http://bioinf.itmat.upenn.edu/biorhythm_atlas/ ). This work suggests peripheral thermoregulation as a digital biomarker.
Collapse
Affiliation(s)
- Thomas G Brooks
- Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yvette I Sheline
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carsten Skarke
- Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Suminski AJ, Rajala AZ, Birn RM, Mueller EM, Malone ME, Ness JP, Filla C, Brunner K, McMillan AB, Poore SO, Williams JC, Murali D, Brzeczkowski A, Hurley SA, Dingle AM, Zeng W, Lake WB, Ludwig KA, Populin LC. Vagus nerve stimulation in the non-human primate: implantation methodology, characterization of nerve anatomy, target engagement and experimental applications. Bioelectron Med 2023; 9:9. [PMID: 37118841 PMCID: PMC10148417 DOI: 10.1186/s42234-023-00111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making. METHODS We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks. RESULTS VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs. CONCLUSIONS We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.
Collapse
Affiliation(s)
- Aaron J Suminski
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Abigail Z Rajala
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ellie M Mueller
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Margaret E Malone
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Jared P Ness
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlyn Filla
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Kevin Brunner
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel O Poore
- Division of Plastic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin C Williams
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Dhanabalan Murali
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea Brzeczkowski
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Aaron M Dingle
- Division of Plastic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Weifeng Zeng
- Division of Plastic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendell B Lake
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Kip A Ludwig
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Luis C Populin
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Skarke C, Brooks T, Lahens N, Grant G, Sheline Y, FitzGerald G. Diurnal rhythmicity of wearable device-measured wrist temperature predicts future disease incidence in the UK Biobank. RESEARCH SQUARE 2023:rs.3.rs-2535978. [PMID: 36824952 PMCID: PMC9949244 DOI: 10.21203/rs.3.rs-2535978/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Many chronic disease symptomatologies involve desynchronized sleep-wake cycles, indicative of disrupted biorhythms. This can be interrogated using body temperature rhythms, which are well-established biomarkers for circadian clock function. Here, we investigated the association of wrist temperature amplitudes with a future onset of disease in the UK Biobank one year after actigraphy. Among 425 disease conditions (range n = 200-6,728) compared to controls (range n = 62,107 - 91,134), a total of 73 (36.5%) disease phenotypes were significantly associated with decreased amplitudes of wrist temperature (Benjamini-Hochberg FDR q < 0.05) and 26 (13%) PheCODEs passed a more stringent significance level (Bonferroni-correction α < 0.05). Here, for example, a two-standard deviation (1.8° Celsius) lower wrist temperature amplitude corresponded to hazard ratios of 1.91 (1.58-2.31 95% CI) for NAFLD, 1.69 (1.53-1.88) for type 2 diabetes, 1.25 (1.14-1.37) for renal failure, 1.23 (1.17-1.3) for hypertension, and 1.22 (1.11-1.33) for pneumonia. A comprehensive phenome-wide atlas of the identified mappings has been made available at http://bioinf.itmat.upenn.edu/biorhythm_atlas/. These findings strongly suggest peripheral thermoregulation as a digital biomarker.
Collapse
Affiliation(s)
| | | | | | - Gregory Grant
- Institute of Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania; Department of Genetics, University of Pennsylvania Perelman School of Medicine
| | | | | |
Collapse
|
5
|
Dopamine D2/3 Receptor Availabilities in Striatal and Extrastriatal Regions of the Adult Human Brain: Comparison of Four Methods of Analysis. Neurochem Res 2022; 48:1517-1530. [PMID: 36525123 DOI: 10.1007/s11064-022-03825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
Values of binding potentials (BPND) of dopamine D2/3 receptors differ in different regions of the brain, but we do not know with certainty how much of this difference is due either to different receptor numbers, or to different affinities of tracers to the receptors, or to both. We tested the claim that both striatal and extrastriatal dopamine D2/3 receptor availabilities vary with age in vivo in humans by determining the values of BPND of the specific radioligand [11C]raclopride. We determined values of BPND in striatal and extrastriatal volumes-of-interest (VOI) with the same specific receptor radioligand. We estimated values of BPND in individual voxels of brains of healthy volunteers in vivo, and we obtained regional averages of VOI by dynamic positron emission tomography (PET). We calculated average values of BPND in caudate nucleus and putamen of striatum, and in frontal, occipital, parietal, and temporal cortices of the forebrain, by means of four methods, including the ERLiBiRD (Estimation of Reversible Ligand Binding and Receptor Density) method, the tissue reference methods of Logan and Logan-Ichise, respectively, and the SRTM (Simplified Reference Tissue Method). Voxelwise generation of parametric maps of values of BPND used the multi-linear regression version of SRTM. Age-dependent changes of the binding potential presented with an inverted U-shape with peak binding potentials reached between the ages of 20 and 30. The estimates of BPND declined significantly with age after the peak in both striatal and extrastriatal regions, as determined by all four methods, with the greatest decline observed in posterior (occipital and parietal) cortices (14% per decade) and the lowest decline in caudate nucleus (3% per decade). The sites of the greatest declines are of particular interest because of the clinical implications.
Collapse
|
6
|
Papenberg G, Karalija N, Salami A, Rieckmann A, Andersson M, Axelsson J, Riklund K, Lindenberger U, Lövdén M, Nyberg L, Bäckman L. Balance between Transmitter Availability and Dopamine D2 Receptors in Prefrontal Cortex Influences Memory Functioning. Cereb Cortex 2021; 30:989-1000. [PMID: 31504282 DOI: 10.1093/cercor/bhz142] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Insufficient or excessive dopaminergic tone impairs cognitive performance. We examine whether the balance between transmitter availability and dopamine (DA) D2 receptors (D2DRs) is important for successful memory performance in a large sample of adults (n = 175, 64-68 years). The Catechol-O-Methyltransferase polymorphism served as genetic proxy for endogenous prefrontal DA availability, and D2DRs in dorsolateral prefrontal cortex (dlPFC) were measured with [11C]raclopride-PET. Individuals for whom D2DR status matched DA availability showed higher levels of episodic and working-memory performance than individuals with insufficient or excessive DA availability relative to the number of receptors. A similar pattern restricted to episodic memory was observed for D2DRs in caudate. Functional magnetic resonance imaging data acquired during working-memory performance confirmed the importance of a balanced DA system for load-dependent brain activity in dlPFC. Our data suggest that the inverted-U-shaped function relating DA signaling to cognition is modulated by a dynamic association between DA availability and receptor status.
Collapse
Affiliation(s)
- Goran Papenberg
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, S-90187 Umeå, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Micael Andersson
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, D-14195 Berlin, Germany and UK-WC1B 5EH London, UK
| | - Martin Lövdén
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden
| |
Collapse
|
7
|
Kilbourn MR. 11C- and 18F-Radiotracers for In Vivo Imaging of the Dopamine System: Past, Present and Future. Biomedicines 2021; 9:108. [PMID: 33499179 PMCID: PMC7912183 DOI: 10.3390/biomedicines9020108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
The applications of positron emission tomography (PET) imaging to study brain biochemistry, and in particular the aspects of dopamine neurotransmission, have grown significantly over the 40 years since the first successful in vivo imaging studies in humans. In vivo PET imaging of dopaminergic functions of the central nervous system (CNS) including dopamine synthesis, vesicular storage, synaptic release and receptor binding, and reuptake processes, are now routinely used for studies in neurology, psychiatry, drug abuse and addiction, and drug development. Underlying these advances in PET imaging has been the development of the unique radiotracers labeled with positron-emitting radionuclides such as carbon-11 and fluorine-18. This review focuses on a selection of the more accepted and utilized PET radiotracers currently available, with a look at their past, present and future.
Collapse
Affiliation(s)
- Michael R Kilbourn
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
8
|
Nishibe H, Tateno A, Sakayori T, Yamamoto M, Kim W, Kakuyama H, Okubo Y. Striatal Dopamine D2 Receptor Occupancy Induced by Daily Application of Blonanserin Transdermal Patches: Phase II Study in Japanese Patients With Schizophrenia. Int J Neuropsychopharmacol 2020; 24:108-117. [PMID: 32936897 PMCID: PMC7883894 DOI: 10.1093/ijnp/pyaa071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Transdermal antipsychotic patch formulations offer potential benefits, including improved adherence. This study investigated the striatal dopamine D2 receptor occupancy with daily blonanserin transdermal patch application. METHODS This open-label, phase II study enrolled 18 Japanese outpatients (20 to <65 years) with schizophrenia (DSM-IV-TR criteria; total Positive and Negative Syndrome Scale score <120 at screening) treated with blonanserin 8-mg or 16-mg tablets. Patients continued tablets for 2-4 weeks at their current dose and were then assigned to once-daily blonanserin patches (10/20/40/60/80 mg daily) for 2-4 weeks based on the oral dose. [11C]raclopride positron emission tomography scanning determined blonanserin striatal dopamine D2 receptor occupancy (primary endpoint). Secondary endpoints included assessment of receptor occupancy by dose, changes in Positive and Negative Syndrome Scale and Clinical Global Impressions-Severity of Illness-Severity scores, patient attitudes towards adherence, and patch adhesiveness. RESULTS Of 18 patients who started the blonanserin tablet treatment period, 14 patients completed treatment. Mean D2 receptor occupancy for blonanserin tablets 8 mg/d (59.2%, n = 5) and 16 mg/d (66.3%, n = 9) was within the values for blonanserin patches: 10 mg/d (33.3%, n = 3), 20 mg/d (29.9%, n = 2), 40 mg/d (61.2%, n = 3), 60 mg/d (59.0%, n = 3), and 80 mg/d (69.9%, n = 3). Occupancy generally increased with increasing blonanserin dose for both formulations with the half maximal receptor occupancy for tablets and patches associated with doses of 6.9 mg/d and 31.9 mg/d, respectively. Diurnal variability in occupancy was lower during transdermal patch treatment than during tablet treatment. Blonanserin transdermal patches were well tolerated with no major safety concerns. CONCLUSIONS Blonanserin patches (40/80 mg/d) have lower diurnal variability in occupancy than blonanserin tablets (8/16 mg/d), and patches at doses of 40 mg/d and 80 mg/d appear to be a suitable alternative for blonanserin tablets at doses of 8 mg/d and 16 mg/d, respectively. Blonanserin patches represent a potential new treatment option for patients with schizophrenia. TRIAL REGISTRY JAPIC Clinical Trials Information registry (www.clinicaltrials.jp; JapicCTI-No: JapicCTI-121914).
Collapse
Affiliation(s)
- Hironori Nishibe
- Clinical Pharmacology Group, Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan,Correspondence: Hironori Nishibe, MS, Sumitomo Dainippon Pharma Co., Ltd., 13-1, Kyobashi 1-chome, Chuo-ku, Tokyo 104–8356, Japan ()
| | - Amane Tateno
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | | | - WooChan Kim
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Hiroyoshi Kakuyama
- Clinical Pharmacology Group, Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
9
|
Tiger M, Svensson J, Liberg B, Saijo T, Schain M, Halldin C, Farde L, Lundberg J. [ 11 C]raclopride positron emission tomography study of dopamine-D 2/3 receptor binding in patients with severe major depressive episodes before and after electroconvulsive therapy and compared to control subjects. Psychiatry Clin Neurosci 2020; 74:263-269. [PMID: 31943514 DOI: 10.1111/pcn.12980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
AIM The aim of the study was to test: (i) if D2 /D3 binding in three functional subsections of striatum is different in patients with severe major depressive episodes than in controls; and (ii) if this difference is normalized after electroconvulsive therapy (ECT). METHODS Nine inpatients were examined with positron emission tomography (PET) and the radioligand [11 C]raclopride before and after an average of 8.4 ECT sessions. Treatment response was assessed using the Montgomery-Åsberg Depression Rating Scale. Nine age- and sex-matched controls were examined twice with PET and [11 C]raclopride. RESULTS [11 C]raclopride binding was significantly lower in all three subsections of striatum in patients compared to controls (Cohen's dz , 1.14-1.68; P = 0.003-0.027). Montgomery-Åsberg Depression Ratings decreased significantly after ECT (P < 0.001; Cohen's dz , 2.9). ECT had no statistically significant effect on [11 C]raclopride binding, although post-ECT binding estimates were more similar to those obtained in controls in all subsections of striatum. CONCLUSION Using PET and [11 C]raclopride, we found support for the notion that severe major depressive episodes are associated with significantly lower dopamine D2 /D3 binding in all three subsections of striatum compared to controls. We noted no significant effect on D2 /D3 binding in the patient group after response to ECT.
Collapse
Affiliation(s)
- Mikael Tiger
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Jonas Svensson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Benny Liberg
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Tomoyuki Saijo
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Martin Schain
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christer Halldin
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lars Farde
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Johan Lundberg
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
10
|
In response to the letter “[11C]raclopride and extrastriatal binding to D2/3 receptors”. Neuroimage 2020; 207:116371. [DOI: 10.1016/j.neuroimage.2019.116371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/16/2019] [Indexed: 11/23/2022] Open
|
11
|
Weidenauer A, Bauer M, Sauerzopf U, Bartova L, Nics L, Pfaff S, Philippe C, Berroterán-Infante N, Pichler V, Meyer BM, Rabl U, Sezen P, Cumming P, Stimpfl T, Sitte HH, Lanzenberger R, Mossaheb N, Zimprich A, Rusjan P, Dorffner G, Mitterhauser M, Hacker M, Pezawas L, Kasper S, Wadsak W, Praschak-Rieder N, Willeit M. On the relationship of first-episode psychosis to the amphetamine-sensitized state: a dopamine D 2/3 receptor agonist radioligand study. Transl Psychiatry 2020; 10:2. [PMID: 32066718 PMCID: PMC7026156 DOI: 10.1038/s41398-019-0681-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is characterized by increased behavioral and neurochemical responses to dopamine-releasing drugs. This prompted the hypothesis of psychosis as a state of "endogenous" sensitization of the dopamine system although the exact basis of dopaminergic disturbances and the possible role of prefrontal cortical regulation have remained uncertain. To show that patients with first-episode psychosis release more dopamine upon amphetamine-stimulation than healthy volunteers, and to reveal for the first time that prospective sensitization induced by repeated amphetamine exposure increases dopamine-release in stimulant-naïve healthy volunteers to levels observed in patients, we collected data on amphetamine-induced dopamine release using the dopamine D2/3 receptor agonist radioligand [11C]-(+)-PHNO and positron emission tomography. Healthy volunteers (n = 28, 14 female) underwent a baseline and then a post-amphetamine scan before and after a mildly sensitizing regimen of repeated oral amphetamine. Unmedicated patients with first-episode psychosis (n = 21; 6 female) underwent a single pair of baseline and then post-amphetamine scans. Furthermore, T1 weighted magnetic resonance imaging of the prefrontal cortex was performed. Patients with first-episode psychosis showed larger release of dopamine compared to healthy volunteers. After sensitization of healthy volunteers their dopamine release was significantly amplified and no longer different from that seen in patients. Healthy volunteers showed a negative correlation between prefrontal cortical volume and dopamine release. There was no such relationship after sensitization or in patients. Our data in patients with untreated first-episode psychosis confirm the "endogenous sensitization" hypothesis and support the notion of impaired prefrontal control of the dopamine system in schizophrenia.
Collapse
Affiliation(s)
- Ana Weidenauer
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Martin Bauer
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ulrich Sauerzopf
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lucie Bartova
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sarah Pfaff
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Cecile Philippe
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Neydher Berroterán-Infante
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard M Meyer
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ulrich Rabl
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Patrick Sezen
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Paul Cumming
- School of Psychology and Counseling and IHBI, Queensland University of Technology, Brisbane, Australia
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Stimpfl
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Nilufar Mossaheb
- Department of Psychiatry and Psychotherapy, Division of Social Psychiatry, Medical University of Vienna, Vienna, Austria
| | | | - Pablo Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Georg Dorffner
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Pezawas
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Nicole Praschak-Rieder
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Woodcock EA, Zakiniaeiz Y, Morris ED, Cosgrove KP. Sex and the dopaminergic system: Insights from addiction studies. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:141-165. [PMID: 33008522 PMCID: PMC11267480 DOI: 10.1016/b978-0-444-64123-6.00011-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sex differences are present in psychiatric disorders associated with disrupted dopamine function, and thus, sex differences in dopamine neurobiology may underlie these clinical disparities. In this chapter, we review sex differences in the dopaminergic system with a focus on substance use disorders, especially tobacco smoking, as our exemplar disorder. This chapter is organized into five sections describing sex differences in the dopaminergic system: (1) neurobiology, (2) role of sex hormones, (3) genetic underpinnings, (4) cognitive function, and (5) influence on addiction. In each section, we provide an overview of the topic area, summarize sex differences identified to date, highlight addiction research, especially clinical neuroimaging studies, and suggest avenues for future research.
Collapse
Affiliation(s)
- Eric A Woodcock
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States
| | - Yasmin Zakiniaeiz
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Invicro, LLC, New Haven, CT, United States
| | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States.
| |
Collapse
|
13
|
Selvaggi P, Hawkins PC, Dipasquale O, Rizzo G, Bertolino A, Dukart J, Sambataro F, Pergola G, Williams SC, Turkheimer F, Zelaya F, Veronese M, Mehta MA. Increased cerebral blood flow after single dose of antipsychotics in healthy volunteers depends on dopamine D2 receptor density profiles. Neuroimage 2019; 188:774-784. [DOI: 10.1016/j.neuroimage.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
|
14
|
Karalija N, Papenberg G, Wåhlin A, Johansson J, Andersson M, Axelsson J, Riklund K, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. C957T-mediated Variation in Ligand Affinity Affects the Association between 11C-raclopride Binding Potential and Cognition. J Cogn Neurosci 2019; 31:314-325. [DOI: 10.1162/jocn_a_01354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The dopamine (DA) system plays an important role in cognition. Accordingly, normal variation in DA genes has been found to predict individual differences in cognitive performance. However, little is known of the impact of genetic differences on the link between empirical indicators of the DA system and cognition in humans. The present work used PET with 11C-raclopride to assess DA D2-receptor binding potential (BP) and links to episodic memory, working memory, and perceptual speed in 179 healthy adults aged 64–68 years. Previously, the T-allele of a DA D2-receptor single-nucleotide polymorphism, C957T, was associated with increased apparent affinity of 11C-raclopride, giving rise to higher BP values despite similar receptor density values between allelic groups. Consequently, we hypothesized that 11C-raclopride BP measures inflated by affinity rather than D2-receptor density in T-allele carriers would not be predictive of DA integrity and therefore prevent finding an association between 11C-raclopride BP and cognitive performance. In accordance with previous findings, we show that 11C-raclopride BP was increased in T-homozygotes. Importantly, 11C-raclopride BP was only associated with cognitive performance in groups with low or average ligand affinity (C-allele carriers of C957T, n = 124), but not in the high-affinity group (T-homozygotes, n = 55). The strongest 11C-raclopride BP–cognition associations and the highest level of performance were found in C-homozygotes. These findings show that genetic differences modulate the link between BP and cognition and thus have important implications for the interpretation of DA assessments with PET and 11C-raclopride in multiple disciplines ranging from cognitive neuroscience to psychiatry and neurology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ulman Lindenberger
- Max Planck Institute for Human Development
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research
| | | | | |
Collapse
|
15
|
Nyman M, Eskola O, Kajander J, Jokinen R, Penttinen J, Karjalainen T, Nummenmaa L, Hirvonen J, Burns D, Hargreaves R, Solin O, Hietala J. Brain neurokinin-1 receptor availability in never-medicated patients with major depression - A pilot study. J Affect Disord 2019; 242:188-194. [PMID: 30193189 DOI: 10.1016/j.jad.2018.08.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Neurotransmitter substance P (SP) and its preferred neurokinin-1 receptor (NK1R) have been implicated in the treatment of affective and addiction disorders. Despite promising preclinical data on antidepressant action, the clinical trials of NK1R antagonists in major depression have been disappointing. There are no direct in vivo imaging studies on NK1R characteristics in patients with a major depressive disorder (MDD). METHODS In this cross-sectional case-control study, we recruited nine never-medicated patients with moderate to severe MDD and nine matched healthy controls. NK1R availability (NK1R binding potential, BPND) was measured with in vivo 3-D positron emission tomography and a specific NK1 receptor tracer [18F]SPA-RQ. Clinical symptoms were assessed with the 17-item Hamilton Rating Scale for Depression (HAM-D17). RESULTS NK1R-BPND did not differ statistically significantly between patients with MDD and healthy controls. HAM-D17 total scores (range 21-32) correlated positively with NK1R-BPND in cortical and limbic areas. HAM-D17 subscale score for anxiety symptoms correlated positively with NK1R-BPND in specific brain areas implicated in fear and anxiety. LIMITATIONS Small sample size. Low variability in the clinical HAM-D subscale ratings may affect the observed correlations. CONCLUSIONS Our preliminary results do not support a different baseline expression of NK1Rs in a representative sample of never-medicated patients with MDD during a current moderate/severe depressive episode. The modulatory effect of NK1Rs on affective symptoms is in line with early positive results on antidepressant action of NK1 antagonists. However, the effect is likely to be too weak for treatment of MDD with NK1R antagonists alone in clinical practice.
Collapse
Affiliation(s)
- Mikko Nyman
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Eskola
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Turku, Finland
| | - Jaana Kajander
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland
| | - Riitta Jokinen
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Jukka Penttinen
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | - Jussi Hirvonen
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Donald Burns
- Imaging Research, Merck Research Laboratories, West Point, PA, USA
| | | | - Olof Solin
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
16
|
Li HQ, Xu JY, Gao YY, Jin L. Optimization of maintenance therapy of Risperidone with CYP2D6 genetic polymorphisms through an extended translational framework-based prediction of target occupancies/clinical outcomes. Pharmacol Res 2018; 137:135-147. [PMID: 30281999 DOI: 10.1016/j.phrs.2018.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022]
Abstract
Risperidone, one of the second-generation antipsychotics, can efficiently target dopamine D2 and serotonin 5-HT2A receptors. There actually exists significant implication of CYP2D6 genetic polymorphisms on the metabolic kinetics of risperidone, little is known about the extent of CYP2D6 impacting human D2 and 5-HT2A receptor occupancies as well as the clinical efficacy and efficacy in schizophrenia treatment. Here we assessed the influences of CYP2D6 gene polymorphisms on human target occupancies/clinical outcomes and optimized the maintenance therapy of risperidone. A translational framework, previously developed using in vitro and in vivo information in rats, was used as the basis for integrating the effects of CYP2D6 genetic polymorphisms on target occupancies and clinical outcomes. D2 occupancy as a biomarker was related to Positive and Negative Syndrome Scale (PANSS) response and Simpson-Angus Scale (SAS). The population approach was applied to characterize pharmacokinetic and pharmacodynamic (PK/PD) profiles of risperidone. Non-compartment analysis method was performed to calculate the steady state PK/PD parameters of both risperidone and 9-hydroxyrisperidone. The predictive power of this extended translational framework was determined by comparing the predictions of target occupancies and clinical outcomes with the reported human values of risperidone at clinically suggested dosage of 4.0 mg/day. This extended translational framework was adequately used to predict human target occupancies and clinical outcomes. At the steady state, D2 ROs were 75.8%, 79.3% and 86.0% for CYP2D6 poor metabolizer (PM), intermediate metabolizer (IM) and extensive metabolizer (EM), respectively; 5-HT2A ROs were 96.4%, 97.2% and 98.4% for CYP2D6 PM, IM and EM, respectively; PANSS changes from placebo were -5.3, -7.7 and -11.3 for CYP2D6 PM, IM and EM, respectively; SAS changes from placebo were 0.13, 0.15 and 0.18 for CYP2D6 PM, IM and EM, respectively. The predictions of human D2, 5-HT2A RO, PANSS and SAS changes for risperidone with CYP2D6 genetic polymorphisms were well in line with the reported values in clinic. 5.0, 4.0 and 2.5 mg/day were the equivalent dosages of risperidone for CYP2D6 PM, IM and EM, respectively. The optimized maintenance therapy of risperidone was provided through the Three-Step method and the dosage range was 2.5-5.0 mg/day for three CYP2D6 gene groups in the present study. Taken together, our findings demonstrate that this extended translational framework not only differentiates the effects of CYP2D6 genetic polymorphisms on target occupancies and clinical outcomes, but also constitutes a scientific basis to optimize the maintenance therapy of neuropsychiatric patients in clinic.
Collapse
Affiliation(s)
- Han Qing Li
- State Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, China.
| | - Jia Yin Xu
- Mongolian Pharmaceutical Preparation Center, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, China
| | - Yuan Yuan Gao
- State Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, China
| | - Liang Jin
- State Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, China
| |
Collapse
|
17
|
Varnäs K, Cselényi Z, Jucaite A, Halldin C, Svenningsson P, Farde L, Varrone A. PET imaging of [ 11C]PBR28 in Parkinson's disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding. Eur J Nucl Med Mol Imaging 2018; 46:367-375. [PMID: 30270409 PMCID: PMC6333720 DOI: 10.1007/s00259-018-4161-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/07/2018] [Indexed: 11/29/2022]
Abstract
Purpose To examine the hypothesis that cerebral binding to the 18 kDa translocator protein (TSPO), a marker of microglia activation, is elevated in Parkinson’s disease (PD), and to assess the relationship between brain TSPO binding and dopaminergic pathology in PD. Methods The radioligand [11C]PBR28 was used for quantitative assessment of brain TSPO in 16 control subjects and 16 PD patients. To analyse the relationship between dopaminergic pathology and brain TSPO binding, PET studies of the dopamine transporter (DAT) were undertaken in PD patients using the DAT radioligand [18F]FE-PE2I. The total distribution volume of [11C]PBR28 was quantified in nigrostriatal regions, limbic cortices and thalamus, and the binding potential of [18F]FE-PE2I was quantified in nigrostriatal regions. Results Based on genotype analysis of the TSPO rs6971 polymorphism, 16 subjects (8 control subjects and 8 PD patients) were identified as high-affinity binders, and the remaining subjects were identified as mixed-affinity binders. A two-way ANOVA showed a strong main effect of TSPO genotype on the cerebral binding of [11C]PBR28, whereas no statistically significant main effect of diagnostic group, or a group by genotype interaction was found for any of the regions analysed. [18F]FE-PE2I PET studies in patients indicated a marked reduction in nigrostriatal binding to DAT. However, no correlations between the binding parameters were found for [11C]PBR28 and [18F]FE-PE2I. Conclusion The findings do not support the hypothesis of elevated cerebral TSPO binding or a relationship between TSPO binding and dopaminergic pathology in PD. Electronic supplementary material The online version of this article (10.1007/s00259-018-4161-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Aurelija Jucaite
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Translational Neuropharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden
| |
Collapse
|
18
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
19
|
Martikainen IK, Hagelberg N, Jääskeläinen SK, Hietala J, Pertovaara A. Dopaminergic and serotonergic mechanisms in the modulation of pain: In vivo studies in human brain. Eur J Pharmacol 2018; 834:337-345. [PMID: 30036531 DOI: 10.1016/j.ejphar.2018.07.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/18/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
Here we review the literature assessing the roles of the brain dopaminergic and serotonergic systems in the modulation of pain as revealed by in vivo human studies using positron emission tomography. In healthy subjects, dopamine D2/D3 receptor availability particularly in the striatum and serotonin 5-HT1A and 5-HT2A receptor availabilities in the cortex predict the subject's response to tonic experimental pain. High availability of dopamine D2/D3 or serotonin 5-HT2A receptors is associated with high pain intensity, whereas high availability of 5-HT1A receptors associates with low pain intensity. Chronic neuropathic pain is associated with high striatal dopamine D2/D3 receptor availability, for which low endogenous dopamine tone is a plausible explanation, although a compensatory increase in striatal dopamine D2/D3 receptor density may also contribute. In contrast, chronic musculoskeletal pain is associated with low baseline availability of striatal dopamine D2/D3 receptors. In healthy subjects, brain serotonin 5-HT1A as well as dopamine D2/D3 receptor availabilities associate with the subject's response criterion rather than the capacity to discriminate painful thermal stimuli suggesting that these neurotransmitter systems act mainly on non-sensory rather than sensory factors of thermally induced pain experience. Additionally, 5-HT1A receptor availability predicts the subject's discriminative ability but not response criterion for non-painful tactile test stimuli, while no such correlation is observed with dopamine D2/D3 receptors. These findings suggest that dopamine acting on striatal dopamine D2/D3 receptors and serotonin acting on cortical 5-HT1A and 5-HT2A receptors contribute to top-down pain regulation in humans.
Collapse
Affiliation(s)
- Ilkka K Martikainen
- Department of Physiology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Medical Imaging Center, Department of Radiology, Tampere University Hospital, 33521 Tampere, Finland
| | - Nora Hagelberg
- Department of Anesthesiology and Intensive Care, Turku University Central Hospital and University of Turku, 20520 Turku, Finland; Turku PET Centre, Turku University Central Hospital and University of Turku, 20520 Turku, Finland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Central Hospital and University of Turku, 20520 Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, Turku University Central Hospital and University of Turku, 20520 Turku, Finland; Department of Psychiatry, Turku University Central Hospital and University of Turku, 20520 Turku, Finland
| | - Antti Pertovaara
- Department of Physiology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
20
|
Farde L, Plavén-Sigray P, Borg J, Cervenka S. Brain neuroreceptor density and personality traits: towards dimensional biomarkers for psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170156. [PMID: 29483342 PMCID: PMC5832682 DOI: 10.1098/rstb.2017.0156] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography has, for 30 years, been used in numerous case-control studies searching for hypothesized differences in the density of neuroreceptor or transporter proteins in psychiatric disorders such as schizophrenia and depression. In most cases, the results have not been conclusive. One reason could be the sizeable interindividual variability in biochemical markers, which in twin studies have shown to emanate from both environmental and genetic factors, leading to low statistical power for the detection of group effects. On the other hand, the same interindividual variability has served as an opportunity for correlative studies on the biological underpinning of behaviour. Using this approach, a series of studies has linked markers for the dopamine and serotonin system to personality traits associated with psychiatric conditions. Based on increasing evidence for the view that many psychopathological states represent extremes of a continuum rather than distinct categories, this research strategy may lead to new biological insights about the vulnerability to and pathophysiology of major psychiatric disorders.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'.
Collapse
Affiliation(s)
- Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
- Precision Medicine and Genomics, AstraZeneca, PET Science Centre, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| |
Collapse
|
21
|
Banks ML, Czoty PW, Negus SS. Utility of Nonhuman Primates in Substance Use Disorders Research. ILAR J 2017; 58:202-215. [PMID: 28531265 PMCID: PMC5886327 DOI: 10.1093/ilar/ilx014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022] Open
Abstract
Substance use disorders (i.e., drug addiction) constitute a global and insidious public health issue. Preclinical biomedical research has been invaluable in elucidating the environmental, biological, and pharmacological determinants of drug abuse and in the process of developing innovative pharmacological and behavioral treatment strategies. For more than 70 years, nonhuman primates have been utilized as research subjects in biomedical research related to drug addiction. There are already several excellent published reviews highlighting species differences in both pharmacodynamics and pharmacokinetics between rodents and nonhuman primates in preclinical substance abuse research. Therefore, the aim of this review is to highlight three advantages of nonhuman primates as preclinical substance abuse research subjects. First, nonhuman primates offer technical advantages in experimental design compared to other laboratory animals that afford unique opportunities to promote preclinical-to-clinical translational research. Second, these technical advantages, coupled with the relatively long lifespan of nonhuman primates, allows for pairing longitudinal drug self-administration studies and noninvasive imaging technologies to elucidate the biological consequences of chronic drug exposure. Lastly, nonhuman primates offer advantages in the patterns of intravenous drug self-administration that have potential theoretical implications for both the neurobiological mechanisms of substance use disorder etiology and in the drug development process of pharmacotherapies for substance use disorders. We conclude with potential future research directions in which nonhuman primates would provide unique and valuable insights into the abuse of and addiction to novel psychoactive substances.
Collapse
Affiliation(s)
- Matthew L Banks
- Matthew L. Banks, PharmD, PhD, is an assistant professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and currently serves as a scientific member of the Institutional Animal Care and Use Committee. Paul W. Czoty, PhD, is an associate professor in the Department of Physiology and Pharmacology in the Wake Forest School of Medicine in Winston-Salem, North Carolina and currently serves as Vice-Chair of the Institutional Animal Care and Use Committee. Sidney S. Negus, PhD, is a professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and has served as both a scientific member and chair of the Institutional Animal Care and Use Committee
| | - Paul W Czoty
- Matthew L. Banks, PharmD, PhD, is an assistant professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and currently serves as a scientific member of the Institutional Animal Care and Use Committee. Paul W. Czoty, PhD, is an associate professor in the Department of Physiology and Pharmacology in the Wake Forest School of Medicine in Winston-Salem, North Carolina and currently serves as Vice-Chair of the Institutional Animal Care and Use Committee. Sidney S. Negus, PhD, is a professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and has served as both a scientific member and chair of the Institutional Animal Care and Use Committee
| | - Sidney S Negus
- Matthew L. Banks, PharmD, PhD, is an assistant professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and currently serves as a scientific member of the Institutional Animal Care and Use Committee. Paul W. Czoty, PhD, is an associate professor in the Department of Physiology and Pharmacology in the Wake Forest School of Medicine in Winston-Salem, North Carolina and currently serves as Vice-Chair of the Institutional Animal Care and Use Committee. Sidney S. Negus, PhD, is a professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and has served as both a scientific member and chair of the Institutional Animal Care and Use Committee
| |
Collapse
|
22
|
Caravaggio F, Ku Chung J, Plitman E, Boileau I, Gerretsen P, Kim J, Iwata Y, Patel R, Chakravarty MM, Remington G, Graff-Guerrero A. The relationship between subcortical brain volume and striatal dopamine D 2/3 receptor availability in healthy humans assessed with [ 11 C]-raclopride and [ 11 C]-(+)-PHNO PET. Hum Brain Mapp 2017; 38:5519-5534. [PMID: 28752565 DOI: 10.1002/hbm.23744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/21/2017] [Accepted: 07/16/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Abnormalities in dopamine (DA) and brain morphology are observed in several neuropsychiatric disorders. However, it is not fully understood how these abnormalities may relate to one another. For such in vivo findings to be used as biomarkers for neuropsychiatric disease, it must be understood how variability in DA relates to brain structure under healthy conditions. We explored how the availability of striatal DA D2/3 receptors (D2/3 R) is related to the volume of subcortical brain structures in a sample of healthy humans. Differences in D2/3 R availability measured with an antagonist radiotracer ([11 C]-raclopride) versus an agonist radiotracer ([11 C]-(+)-PHNO) were examined. METHODS Data from 62 subjects scanned with [11 C]-raclopride (mean age = 38.98 ± 14.45; 23 female) and 68 subjects scanned with [11 C]-(+)-PHNO (mean age = 38.54 ± 14.59; 25 female) were used. Subcortical volumes were extracted from T1-weighted images using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Partial correlations were used controlling for age, gender, and total brain volume. RESULTS For [11 C]-(+)-PHNO, ventral caudate volumes were positively correlated with BPND in the dorsal caudate and globus pallidus (GP). Ventral striatum (VS) volumes were positively correlated with BPND in the VS. With [11 C]-raclopride, BPND in the VS was negatively correlated with subiculum volume of the hippocampus. Moreover, BPND in the GP was negatively correlated with the volume of the lateral posterior nucleus of the thalamus. CONCLUSION Findings are purely exploratory and presented corrected and uncorrected for multiple comparisons. We hope they will help inform the interpretation of future PET studies where concurrent changes in D2/3 R and brain morphology are observed. Hum Brain Mapp 38:5519-5534, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Raihaan Patel
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, H4H 1R3, Canada.,Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - M Mallar Chakravarty
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, H4H 1R3, Canada.,Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| |
Collapse
|
23
|
Borg J, Cervenka S, Kuja-Halkola R, Matheson GJ, Jönsson EG, Lichtenstein P, Henningsson S, Ichimiya T, Larsson H, Stenkrona P, Halldin C, Farde L. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain. Mol Psychiatry 2016; 21:1077-84. [PMID: 26821979 DOI: 10.1038/mp.2015.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/10/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022]
Abstract
The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about the regulation of receptor and transporter density levels. This lack of knowledge obscures interpretation of differences in protein availability reported in psychiatric patients. In this study, we used positron emission tomography (PET) in a twin design to estimate the relative contribution of genetic and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A receptor. Heritability, shared environmental effects and individual-specific non-shared effects were estimated for regional D2/3 and 5-HT1A receptor availability in projection areas. We found a major contribution of genetic factors (0.67) on individual variability in striatal D2/3 receptor binding and a major contribution of environmental factors (pairwise shared and unique individual; 0.70-0.75) on neocortical 5-HT1A receptor binding. Our findings indicate that individual variation in neuroreceptor availability in the adult brain is the end point of a nature-nurture interplay, and call for increased efforts to identify not only the genetic but also the environmental factors that influence neurotransmission in health and disease.
Collapse
Affiliation(s)
- J Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - R Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - G J Matheson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - E G Jönsson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, Psychiatry Section, University of Oslo, Oslo, Norway
| | - P Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S Henningsson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark
| | - T Ichimiya
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - H Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - P Stenkrona
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - C Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - L Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,AstraZeneca Translational Science Center at Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Mickey BJ. Genetic variation and the D2 dopamine receptor: implications for the treatment of neuropsychiatric disease. Pharmacogenomics 2016; 17:1207-1210. [DOI: 10.2217/pgs-2016-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Brian J Mickey
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Gluskin BS, Mickey BJ. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies. Transl Psychiatry 2016; 6:e747. [PMID: 26926883 PMCID: PMC4872447 DOI: 10.1038/tp.2016.22] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/22/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
The D2 dopamine receptor mediates neuropsychiatric symptoms and is a target of pharmacotherapy. Inter-individual variation of D2 receptor density is thought to influence disease risk and pharmacological response. Numerous molecular imaging studies have tested whether common genetic variants influence D2 receptor binding potential (BP) in humans, but demonstration of robust effects has been limited by small sample sizes. We performed a systematic search of published human in vivo molecular imaging studies to estimate effect sizes of common genetic variants on striatal D2 receptor BP. We identified 21 studies examining 19 variants in 11 genes. The most commonly studied variant was a single-nucleotide polymorphism in ANKK1 (rs1800497, Glu713Lys, also called 'Taq1A'). Fixed- and random-effects meta-analyses of this variant (5 studies, 194 subjects total) revealed that striatal BP was significantly and robustly lower among carriers of the minor allele (Lys713) relative to major allele homozygotes. The weighted standardized mean difference was -0.57 under the fixed-effect model (95% confidence interval=(-0.87, -0.27), P=0.0002). The normal relationship between rs1800497 and BP was not apparent among subjects with neuropsychiatric diseases. Significant associations with baseline striatal D2 receptor BP have been reported for four DRD2 variants (rs1079597, rs1076560, rs6277 and rs1799732) and a PER2 repeat polymorphism, but none have yet been tested in more than two independent samples. Our findings resolve apparent discrepancies in the literature and establish that rs1800497 robustly influences striatal D2 receptor availability. This genetic variant is likely to contribute to important individual differences in human striatal function, neuropsychiatric disease risk and pharmacological response.
Collapse
Affiliation(s)
- B S Gluskin
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - B J Mickey
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
26
|
Johnson M, Kozielska M, Pilla Reddy V, Vermeulen A, Barton HA, Grimwood S, de Greef R, Groothuis GMM, Danhof M, Proost JH. Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy. Pharm Res 2015; 33:1003-17. [DOI: 10.1007/s11095-015-1846-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/10/2015] [Indexed: 12/01/2022]
|
27
|
Nordeman P, Friis SD, Andersen TL, Audrain H, Larhed M, Skrydstrup T, Antoni G. Rapid and Efficient Conversion of11CO2to11CO through Silacarboxylic Acids: Applications in Pd-Mediated Carbonylations. Chemistry 2015; 21:17601-4. [DOI: 10.1002/chem.201503262] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 11/06/2022]
|
28
|
Bernardi RE, Broccoli L, Spanagel R, Hansson AC. Sex differences in dopamine binding and modafinil conditioned place preference in mice. Drug Alcohol Depend 2015; 155:37-44. [PMID: 26342627 DOI: 10.1016/j.drugalcdep.2015.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Studies in humans and rodents have demonstrated under certain conditions some reinforcing properties of modafinil, a drug being examined clinically for its potential to treat psychostimulant abuse. However, the majority of rodent studies examining the abuse potential of modafinil have used high doses that may not be clinically relevant. In fact, recent work has indicated that doses similar to those administered to humans are not reinforcing in mice. METHODS The current study examined sex differences in the ability of low-dose modafinil (0.75mg/kg, IP) to induce a conditioned place preference in mice, and assessed sex-dependent alterations in dopamine D1, D2 and DAT binding sites in reward-related regions in naïve and modafinil-treated mice. RESULTS Low-dose modafinil failed to induce a conditioned place preference in male mice, while female mice demonstrated a significant modafinil place preference. Several dopamine binding differences were also detected in naïve and modafinil-treated mice, including sex differences in D1 and D2 availability in reward-related regions, and are discussed in relation to sex-dependent differences in the reinforcing effects of modafinil and psychostimulants in general. CONCLUSIONS These findings implicate sex differences in the reinforcing properties of modafinil in mice, and indicate that clinical evaluation of the sex dependence of the reinforcing properties of modafinil in humans is warranted.
Collapse
Affiliation(s)
- Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany.
| | - Laura Broccoli
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| |
Collapse
|
29
|
Nevalainen N, Riklund K, Andersson M, Axelsson J, Ögren M, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition. Brain Res 2015; 1612:83-103. [DOI: 10.1016/j.brainres.2014.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
|
30
|
Testing the role of reward and punishment sensitivity in avoidance behavior: a computational modeling approach. Behav Brain Res 2015; 283:121-38. [PMID: 25639540 PMCID: PMC4351139 DOI: 10.1016/j.bbr.2015.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 01/27/2023]
Abstract
Exaggerated avoidance behavior is a predominant symptom in all anxiety disorders and its degree often parallels the development and persistence of these conditions. Both human and non-human animal studies suggest that individual differences as well as various contextual cues may impact avoidance behavior. Specifically, we have recently shown that female sex and inhibited temperament, two anxiety vulnerability factors, are associated with greater duration and rate of the avoidance behavior, as demonstrated on a computer-based task closely related to common rodent avoidance paradigms. We have also demonstrated that avoidance is attenuated by the administration of explicit visual signals during "non-threat" periods (i.e., safety signals). Here, we use a reinforcement-learning network model to investigate the underlying mechanisms of these empirical findings, with a special focus on distinct reward and punishment sensitivities. Model simulations suggest that sex and inhibited temperament are associated with specific aspects of these sensitivities. Specifically, differences in relative sensitivity to reward and punishment might underlie the longer avoidance duration demonstrated by females, whereas higher sensitivity to punishment might underlie the higher avoidance rate demonstrated by inhibited individuals. Simulations also suggest that safety signals attenuate avoidance behavior by strengthening the competing approach response. Lastly, several predictions generated by the model suggest that extinction-based cognitive-behavioral therapies might benefit from the use of safety signals, especially if given to individuals with high reward sensitivity and during longer safe periods. Overall, this study is the first to suggest cognitive mechanisms underlying the greater avoidance behavior observed in healthy individuals with different anxiety vulnerabilities.
Collapse
|
31
|
(11)C-Labeling of a potent hydroxyethylamine BACE-1 inhibitor and evaluation in vitro and in vivo. Nucl Med Biol 2014; 41:536-43. [PMID: 24857866 DOI: 10.1016/j.nucmedbio.2014.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/13/2014] [Accepted: 03/27/2014] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The enzyme β-secretase 1 (BACE-1) is associated with the catalytic cleavage of amyloid precursor protein (APP) which leads to the production of amyloid-β, an amyloidogenic peptide that forms insoluble fibrils and is linked to neurodegeneration and Alzheimer's disease (AD). A PET-radioligand for the quantification of BACE-1 would be useful for the understanding of AD. In this report, we describe the synthesis and carbon-11 radiolabeling of a potent hydroxyethylamine BACE-1 enzyme inhibitor (BSI-IV) and its evaluation in vitro and in vivo. METHODS (11)[C]-N(1)-((2S,3R)-4-(cyclopropylamino)-3-hydroxy-1-phenylbutan-2-yl)-5-(N-methylmethyl-sulfonamido)-N(3)-((R)-1-phenylethyl)isophthalamide, a β-secretase inhibitor, denoted here as [(11)C]BSI-IV was synthesized through a palladium-mediated aminocarbonylation with an aryl halide precursor (I or Br) and [(11)C]CO. The effect of different palladium/ligand-complexes on radiochemical yield in the carbonylative reaction was investigated. The binding of the labeled compound to BACE-1 enzyme was studied in vitro by frozen section autoradiography from brains of healthy rats. Dynamic small animal PET-CT studies and ex vivo biodistribution were performed in male rats. RESULTS The halide precursors were synthesized in six steps starting from methyl-3-nitrobenzoate with an overall yield of 21-26%. [(11)C]BSI-IV was obtained in 29±12% decay corrected radiochemical yield (n=12) with a specific activity of 790±155GBq/μmol at the end of synthesis with a radiochemical purity of >99%. The preclinical studies showed that [(11)C]BSI-IV has a rapid metabolism in rat with excretion to the small intestines. CONCLUSION (11)[C]BSI-IV was obtained in sufficient amount and purity to enable preclinical investigation. The preclinical studies showed low specific binding in vitro and fast clearance in vivo and a low uptake in the brain. These findings suggests that [(11)C]BSI-IV has limited use as a PET-ligand for the study of BACE-1 or AD.
Collapse
|
32
|
Striatal and extrastriatal dopamine D2 receptor occupancy by a novel antipsychotic, blonanserin: a PET study with [11C]raclopride and [11C]FLB 457 in schizophrenia. J Clin Psychopharmacol 2013; 33:162-9. [PMID: 23422369 DOI: 10.1097/jcp.0b013e3182825bce] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Blonanserin is a novel antipsychotic with high affinities for dopamine D(2) and 5-HT(2A) receptors, and it was recently approved for the treatment of schizophrenia in Japan and Korea. Although double-blind clinical trials have demonstrated that blonanserin has equal efficacy to risperidone, and with a better profile especially with respect to prolactin elevation, its profile of in vivo receptor binding has not been investigated in patients with schizophrenia. Using positron emission tomography (PET), we measured striatal and extrastriatal dopamine D(2) receptor occupancy by blonanserin in 15 patients with schizophrenia treated with fixed doses of blonanserin (ie, 8, 16, and 24 mg/d) for at least 4 weeks before PET scans, and in 15 healthy volunteers. Two PET scans, 1 with [(11)C]raclopride for the striatum and 1 with [(11)C]FLB 457 for the temporal cortex and pituitary, were performed on the same day. Striatal dopamine D(2) receptor occupancy by blonanserin was 60.8% (3.0%) [mean (SD)] at 8 mg, 73.4% (4.9%) at 16 mg, and 79.7% (2.3%) at 24 mg. The brain/plasma concentration ratio calculated from D(2) receptor occupancy in the temporal cortex and pituitary was 3.38, indicating good blood-brain barrier permeability. This was the first study to show clinical daily dose amounts of blonanserin occupying dopamine D(2) receptors in patients with schizophrenia. The clinical implications obtained in this study were the optimal therapeutic dose range of 12.9 to 22.1 mg/d of blonanserin required for 70% to 80% dopamine D(2) receptor occupancy in the striatum, and the good blood-brain barrier permeability that suggested a relatively lower risk of hyperprolactinemia.
Collapse
|
33
|
Superiority illusion arises from resting-state brain networks modulated by dopamine. Proc Natl Acad Sci U S A 2013; 110:4363-7. [PMID: 23440209 DOI: 10.1073/pnas.1221681110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of individuals evaluate themselves as superior to average. This is a cognitive bias known as the "superiority illusion." This illusion helps us to have hope for the future and is deep-rooted in the process of human evolution. In this study, we examined the default states of neural and molecular systems that generate this illusion, using resting-state functional MRI and PET. Resting-state functional connectivity between the frontal cortex and striatum regulated by inhibitory dopaminergic neurotransmission determines individual levels of the superiority illusion. Our findings help elucidate how this key aspect of the human mind is biologically determined, and identify potential molecular and neural targets for treatment for depressive realism.
Collapse
|
34
|
Earley CJ, Kuwabara H, Wong DF, Gamaldo C, Salas RE, Brašić JR, Ravert HT, Dannals RF, Allen RP. Increased synaptic dopamine in the putamen in restless legs syndrome. Sleep 2013; 36:51-7. [PMID: 23288971 DOI: 10.5665/sleep.2300] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Prior studies using positron emission tomography (PET) or single-photon emission computed tomography techniques have reported inconsistent findings regarding differences between patients with restless legs syndrome (RLS) and control patients in the striatal dopamine-2 receptor (D2R) binding potentials (BP). D2R-BP does reflect receptor-ligand interactions such as receptor affinity (K(d)) and density (β(max)) or neurotransmitter synaptic concentrations. Thus, differences in D2R-BP reflect changes in these primary factors. PET techniques are currently available to estimate D2R β(max) and K(d). DESIGN Separate morning and evening PET scans were performed. The D2R-BP were measured in basal ganglia using [(11)C]raclopride. SETTING Academic medical center. PATIENTS OR PARTICIPANTS Thirty-one patients with primary RLS and 36 age- and sex-matched control patients completed the study. MEASURES AND RESULTS Patients with RLS had lower D2R-BP in putamen and caudate but not the ventral striatum. A subgroups analysis of those RLS patients who had not previously taken dopaminergic medications continued to show a significantly lower D2R-BP in the posterior putamen. D2R-BP did not differ between night and day for either group. D2R β(max) and K(d) did not differ significantly between patients with RLS and control patients but did show a strong and significant increase at night in the ventral striatum. Primary and secondary clinical measures of disease status failed to show any relation to D2R in any brain region. CONCLUSIONS Given the lack of any difference in either β(max) or K(d) and the prior studies supporting an increase in presynaptic dopaminergic activity, the current changes found in D2R-BP likely reflect an increase in synaptic dopamine.
Collapse
|
35
|
Tashkin DP, Rabinoff M, Noble EP, Ritchie TL, Simmons MS, Connett J. Association of dopamine-related gene alleles, smoking behavior and decline in FEV1 in subjects with COPD: findings from the lung health study. COPD 2012; 9:620-8. [PMID: 22958175 DOI: 10.3109/15412555.2012.712167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cigarette smoking is the major risk factor for chronic obstructive pulmonary disease (COPD). Specific dopamine related gene alleles have previously been found to be associated with smoking initiation, maintenance and cessation. We investigated the association between specific dopamine related gene alleles and both change in smoking behavior and lung function change over time in individuals with mild-to-moderate COPD. Subjects included a subset of participants in the Lung Health Study (LHS), a smoking intervention study in smokers with mild to moderate COPD. Smoking status was determined and lung function performed at baseline and annually for 5 years. In post-hoc analyses, we assessed the association of the dopamine receptor (DRD2) TaqI A1(+) allele (A1A1, A1A2 genotypes) and A1(-) allele (A2A2 genotype), and the dopamine transporter (DAT) 9R(+) allele (9R9R and 9R10R genotypes) and 9R(-) allele (10R10R genotype) with both changes in smoking status and lung function in a subset of LHS subjects. No significant associations were noted between variants in these genes and success in smoking cessation. However, in exploratory analyses that did not adjust for multiple comparisons, sustained male (but not female) quitters with the DRD2 A1(-) allele and/or the DAT 9R(+) allele showed an accelerated decline in FEV(1) similar to that of continuing smokers over 5 years after quitting smoking. These preliminary findings suggest that dopamine-related genes may play a role in the progression of COPD, at least in the subset of male ex-smokers whose disease continues to progress despite sustained quitting, and warrants additional confirmatory and mechanistic studies.
Collapse
Affiliation(s)
- Donald P Tashkin
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1690, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Nyberg L, Lövdén M, Riklund K, Lindenberger U, Bäckman L. Memory aging and brain maintenance. Trends Cogn Sci 2012; 16:292-305. [PMID: 22542563 DOI: 10.1016/j.tics.2012.04.005] [Citation(s) in RCA: 700] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
Episodic memory and working memory decline with advancing age. Nevertheless, large-scale population-based studies document well-preserved memory functioning in some older individuals. The influential ‘reserve’ notion holds that individual differences in brain characteristics or in the manner people process tasks allow some individuals to cope better than others with brain pathology and hence show preserved memory performance. Here, we discuss a complementary concept, that of brain maintenance (or relative lack of brain pathology), and argue that it constitutes the primary determinant of successful memory aging. We discuss evidence for brain maintenance at different levels: cellular, neurochemical, gray- and white-matter integrity, and systems-level activation patterns. Various genetic and lifestyle factors support brain maintenance in aging and interventions may be designed to promote maintenance of brain structure and function in late life.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
37
|
A functional neuroimaging study assessing gender differences in the neural mechanisms underlying the ability to resist impulsive desires. Brain Res 2012; 1473:63-77. [PMID: 22814146 DOI: 10.1016/j.brainres.2012.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/20/2012] [Accepted: 07/07/2012] [Indexed: 12/28/2022]
Abstract
There is ample evidence of gender differences in neural processes and behavior. Differences in reward-related behaviors have been linked to either temporary or permanent organizational influences of gonadal hormones on the mesolimbic dopamine system and reward-related activation. Still, little is known about the association between biological gender and the neural underpinnings of the ability to resist reward-related impulses. Here we assessed with functional magnetic resonance imaging which neural processes enable men and women to successfully control their desire for immediate reward when this is required by a higher-order goal (i.e., during a 'desire-reason dilemma'; Diekhof and Gruber, 2010). Thirty-two participants (16 females) were closely matched for age, personality characteristics (e.g., novelty seeking) and behavioral performance in the 'desire-reason task'. On the neural level, men and women showed similarities in the general response of the nucleus accumbens and of the ventral tegmental area to predictors of immediate reward, but they differed in additional brain mechanisms that enabled self-controlled decisions against the preference for immediate reward. Firstly, men exhibited a stronger reduction of activation in the ventral pallidum, putamen, temporal pole and pregenual anterior cingulate cortex during the 'desire-reason dilemma'. Secondly, connectivity analyses revealed a significant change in the direction of the connectivity between anteroventral prefrontal cortex and nucleus accumbens during decisions counteracting the reward-related impulse when comparing men and women. Together, these findings support the view of a sexual dimorphism that manifested in the recruitment of gender-specific neural resources during the successful deployment of self-control.
Collapse
|
38
|
Litwin T, Gromadzka G, Samochowiec J, Grzywacz A, Członkowski A, Członkowska A. Association of dopamine receptor gene polymorphisms with the clinical course of Wilson disease. JIMD Rep 2012; 8:73-80. [PMID: 23430523 DOI: 10.1007/8904_2012_163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/15/2012] [Accepted: 06/11/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Dopamine receptor D2 (DRD2) polymorphisms are proposed to be important factors in the presentation of neuropsychiatric symptoms in many disorders, including decreased striatum levels of dopamine D2 receptors in Wilson disease. The present study investigated the association between DRD2 gene polymorphisms and clinical manifestation of Wilson disease. METHODS Analyzing data from 97 symptomatic Wilson disease patients, we investigated the DRD2 gene polymorphisms rs1800497, rs1799732, and rs12364283. We assessed the polymorphisms impact on the phenotypic presentation of the disease. RESULTS Generally, the DRD2 gene polymorphisms had no impact on the hepatic or neuropsychiatric clinical presentation of Wilson disease. However, rs1799732 deletion allele carriers with neuropsychiatric symptoms had earlier onset of WD symptoms by almost 6 years compared with individuals without this allele (22.5 vs. 28.3 years; P < 0.05). This unfavorable effect of the rs1799732 polymorphism was even more pronounced among adenosine triphosphatase 7B gene (ATP7B) p.H1069Q homozygous patients, in whom carriership of the deletion allele was related to earlier initial neuropsychiatric manifestation by 14 years (18.4 vs. 32.2 years; P < 0.01). CONCLUSIONS Genetic variation of DRD2, specifically the rs1799732 polymorphism, may produce an earlier clinical presentation of Wilson disease neuropsychiatric symptoms and signs that occur in the course of dopaminergic system impairment due to copper accumulation in the brain. We speculate that this effect may be due to the impact of DRD2 polymorphism on dopamine D2 receptor density, but further studies are needed to understand the mechanisms of such phenotypic effects.
Collapse
Affiliation(s)
- T Litwin
- Second Department of Neurology, Institute Psychiatry and Neurology, Sobieskiego 9, 02 957, Warsaw, Poland,
| | | | | | | | | | | |
Collapse
|
39
|
Striatal and extrastriatal dopamine D₂ receptor occupancy by the partial agonist antipsychotic drug aripiprazole in the human brain: a positron emission tomography study with [¹¹C]raclopride and [¹¹C]FLB457. Psychopharmacology (Berl) 2012; 222:165-72. [PMID: 22237854 DOI: 10.1007/s00213-011-2633-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 12/26/2011] [Indexed: 10/14/2022]
Abstract
RATIONALE Second-generation antipsychotics demonstrate clinical efficacy with fewer extrapyramidal side effects compared with first-generation antipsychotics. One of the proposed explanations is the hypothesis of preferential extrastriatal dopamine D₂ receptor occupancy (limbic selectivity) by antipsychotics. In the present study, we focused on aripiprazole, which has a unique pharmacological profile with partial agonism at dopamine D₂ receptors and the minimal risk of extrapyramidal side effects. Previous positron emission tomography (PET) studies using high-affinity radioligands for dopamine D₂ receptors have reported inconsistent results regarding regional differences of dopamine D₂ receptor occupancy by aripiprazole. OBJECTIVE To test the hypothesis of preferential binding to extrastriatal dopamine D₂ receptors by aripiprazole, we investigated its regional dopamine D₂ receptor occupancies in healthy young subjects. MATERIALS AND METHODS Using PET and two radioligands with different affinities for dopamine D₂ receptors, [¹¹C]raclopride and [¹¹C]FLB457, striatal and extrastriatal dopamine D₂ receptor bindings at baseline and after oral administration of 6 mg aripiprazole were measured in 11 male healthy subjects. RESULTS Our data showed that dopamine D₂ receptor occupancies in the striatum measured with [¹¹C]raclopride were 70.1% and 74.1%, with the corresponding values for the extrastriatal regions measured with [¹¹C]FLB457 ranging from 46.6% to 58.4%. CONCLUSIONS In the present study, preferential extrastriatal dopamine D₂ receptor occupancy by aripiprazole was not observed. Our data suggest partial agonism at dopamine D₂ receptors is the most likely explanation for the minimal risk of extrapyramidal side effects in the treatment by aripiprazole.
Collapse
|
40
|
Mignini F, Napolioni V, Codazzo C, Carpi FM, Vitali M, Romeo M, Ceccanti M. DRD2/ANKK1 TaqIA and SLC6A3 VNTR polymorphisms in alcohol dependence: association and gene-gene interaction study in a population of Central Italy. Neurosci Lett 2012; 522:103-7. [PMID: 22698582 DOI: 10.1016/j.neulet.2012.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/23/2012] [Accepted: 06/04/2012] [Indexed: 12/27/2022]
Abstract
Dopamine is a neurotransmitter whose functions are mediated by five receptors expressed in several organs and tissues. Dopaminergic system dysfunctions are involved in the etiology or treatment of several pathological conditions, including drug addiction. Alcohol dependence (AD) is a widespread psychiatric disorder, affecting 5.4% of the general population lifetime. Family and twins studies support the role of a genetic component in AD. Since dopamine neurotransmission has been shown to be involved in drug reward, related genes are plausible candidates for susceptibility to AD. Here, we evaluated both the DRD2/ANKK1 TaqIA (rs1800497) and SLC6A3 40 bp-VNTR SNP and gene-gene interaction analysis in AD patients from a population of Central Italy. The study design was a case-control. In total, 280 alcoholic subjects (213 men and 67 woman) and 280 age- and sex-matched control subjects were recruited for this study. Case subjects met the DSM-IV criteria for AD and they are free from any psychiatric co-morbidities. Controls were subjects who had non-alcohol problem either never drank; those who have smoked at least one pack of cigarettes per day for at least 1 year were excluded. Genotyping was performed by allele-specific PCR and RFLP-PCR. SLC6A3 40 bp 3'UTR-VNTR displays no association with AD. DRD2/ANKK1 TaqIA genotype distribution is significantly associated to AD (O.R.=1.551, p=0.023), with A1* allele displaying an O.R.=1.403 (p=0.029). Gene-gene interaction analysis using three-way contingency table analysis by a log-linear model yielded no significant result. Our study in a population of Central Italy extends and confirms previous results and, for the first time, tested the gene-gene interaction between SLC6A3 and DRD2 in AD.
Collapse
Affiliation(s)
- Fiorenzo Mignini
- School of Pharmacy, Experimental Medicine Unit, University of Camerino, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Changes in dopamine D2-receptor binding are associated to symptom reduction after psychotherapy in social anxiety disorder. Transl Psychiatry 2012; 2:e120. [PMID: 22832965 PMCID: PMC3365259 DOI: 10.1038/tp.2012.40] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The dopamine system has been suggested to play a role in social anxiety disorder (SAD), partly based on molecular imaging studies showing reduced levels of striatal dopaminergic markers in patients compared with control subjects. However, the dopamine system has not been examined in frontal and limbic brain regions proposed to be central in the pathophysiology of SAD. In the present study, we hypothesized that extrastriatal dopamine D2-receptor (D2-R) levels measured using positron emission tomography (PET) would predict symptom reduction after cognitive behavior therapy (CBT). Nine SAD patients were examined using high-resolution PET and the high-affinity D2-R antagonist radioligand [(11)C]FLB 457, before and after 15 weeks of CBT. Symptom levels were assessed using the anxiety subscale of Liebowitz Social Anxiety Scale (LSAS(anx)). At posttreatment, there was a statistically significant reduction of social anxiety symptoms (P<0.005). Using a repeated measures analysis of covariance, significant effects for time and time × LSAS(anx) change on D2-R-binding potential (BP(ND)) were shown (P<0.05). In a subsequent region-by-region analysis, negative correlations between change in D2-R BP(ND) and LSAS(anx) change were found for medial prefrontal cortex and hippocampus (P<0.05). This is the first study to report a direct relationship between symptom change after psychological treatment and a marker of brain neurotransmission. Using an intra-individual comparison design, the study supports a role for the dopamine system in cortical and limbic brain regions in the pathophysiology of SAD.
Collapse
|
42
|
Kuwabara H, McCaul ME, Wand GS, Earley CJ, Allen RP, Weerts EM, Dannals RF, Wong DF. Dissociative changes in the Bmax and KD of dopamine D2/D3 receptors with aging observed in functional subdivisions of the striatum: a revisit with an improved data analysis method. J Nucl Med 2012; 53:805-12. [PMID: 22492734 DOI: 10.2967/jnumed.111.098186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Separate measurements of B(max), the density of available receptors, and K(D), the equilibrium dissociation constant in the human brain, with PET have contributed to our understanding of neuropsychiatric disorders, especially with respect to the dopamine D(2)/D(3) receptor system. However, existing methods have limited applications to the whole striatum, putamen, or caudate nucleus. Improved methods are required to examine B(max) and K(D) in detailed functional striatal subdivisions that are becoming widely used. METHODS In response, a new method (bolus-plus-infusion transformation [BPIT]) was developed. After completion of a validation study for (11)C-raclopride scans involving 81 subjects, age-associated changes in B(max) and K(D) were examined in 47 healthy subjects ranging in age from 18 to 77 y. RESULTS The BPIT method was consistent with established reference tissue methods regarding regional binding potential. BPIT yielded time-consistent estimates of B(max) and K(D) when scan and infusion lengths were set equal in the analysis. In addition, BPIT was shown to be robust against PET measurement errors when compared with a widely accepted transient equilibrium method. Altogether, BPIT was supported as a method for regional binding potential, B(max), and K(D). We demonstrated age-associated declines in B(max) in all 5 functional striatal subdivisions with BPIT when corrected for multiple comparisons. These age-related effects were not consistently attainable with the transient equilibrium method. Irrespective to methods, K(D) remained unchanged with age. CONCLUSION The BPIT approach may be useful for understanding dopamine receptor abnormalities in neuropsychiatric disorders by enabling separate measurements of B(max) and K(D) in functional striatal subdivisions.
Collapse
Affiliation(s)
- Hiroto Kuwabara
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Goodwin RJA, Iverson SL, Andren PE. The significance of ambient-temperature on pharmaceutical and endogenous compound abundance and distribution in tissues sections when analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:494-8. [PMID: 22302488 DOI: 10.1002/rcm.6125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RATIONALE Mass spectrometry imaging has proven to be a complementary assay to the traditional labeled-compound studies employed in drug research and development. However, there has been limited examination of the technical limitations of the technique with respect to small molecule stability in samples. METHODS Raclopride dosed rat brain tissue sections (single dose i.v. 2 mg/kg) were allowed to warm to room temperature for 0 to 5 min prior to either a solvent-based wet matrix-assisted laser desorption/ionization (MALDI) matrix or a solvent-free dry MALDI matrix being applied. Subsequent MS imaging analysis was at a spatial resolution of 200 µm, performed using a MALDI TOF/TOF (Ultraflex II, Bruker Daltonics). RESULTS MALDI-MS has been used to monitor the time-dependent appearance and loss of small molecule abundance in tissue sections brought rapidly to room temperature for short periods of time. The abundances of a range of markers were seen to vary across the time course, both increasing and decreasing. The intensity of some markers changed significantly within 1 min. Importantly, the abundance of raclopride was seen to decrease over the 5-min time period examined. CONCLUSIONS The results strongly indicate that considerable care is required to allow comparison of both pharmaceutical and endogenous compounds between MALDI-MSI experiments and also has implications for the standard practice of thaw-mounting multiple tissue sections onto MALDI-MS targets during MSI experiments.
Collapse
Affiliation(s)
- Richard J A Goodwin
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
44
|
Andersen ML, Sawyer EK, Howell LL. Contributions of neuroimaging to understanding sex differences in cocaine abuse. Exp Clin Psychopharmacol 2012; 20:2-15. [PMID: 21875225 PMCID: PMC3269558 DOI: 10.1037/a0025219] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A consistent observation in drug abuse research is that males and females show differences in their response to drugs of abuse. In order to understand the neurobiology underlying cocaine abuse and effective treatments, it is important to consider the role of sex differences. Sex hormones have been investigated in both behavioral and molecular studies, but further evidence addressing drug abuse and dependence in both sexes would expand our knowledge of sex differences in response to drugs of abuse. Neuroimaging is a powerful tool that can offer insight into the biological bases of these differences and meet the challenges of directly examining drug-induced changes in brain function. As such, neuroimaging has drawn much interest in recent years. Specifically, positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI) technology have emerged as effective noninvasive approaches for human and animal models. Studies have revealed sex-specific changes in patterns of brain activity in response to acute cocaine injection and after prolonged cocaine use. SPECT and PET studies have demonstrated changes in the dopamine transporter but are less clear on other components of the dopaminergic system. This review highlights contributions of neuroimaging toward understanding the role of sex differences in the drug abuse field, specifically regarding cocaine, and identifies relevant questions that neuroimaging can effectively address.
Collapse
Affiliation(s)
- ML Andersen
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - EK Sawyer
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - LL Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA,Corresponding Author: Leonard L. Howell, PhD, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, Atlanta, GA 30329, P: 404-727-7786, F: 404-727-1266,
| |
Collapse
|
45
|
Goodwin RJA, Mackay CL, Nilsson A, Harrison DJ, Farde L, Andren PE, Iverson SL. Qualitative and quantitative MALDI imaging of the positron emission tomography ligands raclopride (a D2 dopamine antagonist) and SCH 23390 (a D1 dopamine antagonist) in rat brain tissue sections using a solvent-free dry matrix application method. Anal Chem 2011; 83:9694-701. [PMID: 22077717 DOI: 10.1021/ac202630t] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The distributions of positron emission tomography (PET) ligands in rat brain tissue sections were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). The detection of the PET ligands was possible following the use of a solvent-free dry MALDI matrix application method employing finely ground dry α-cyano-4-hydroxycinnamic acid (CHCA). The D2 dopamine receptor antagonist 3,5-dichloro-N-{[(2S)-1-ethylpyrrolidin-2-yl]methyl}-2-hydroxy-6-methoxybenzamide (raclopride) and the D1 dopamine receptor antagonist 7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol (SCH 23390) were both detected at decreasing abundance at increasing period postdosing. Confirmation of the compound identifications and distributions was achieved by a combination of mass-to-charge ratio accurate mass, isotope distribution, and MS/MS fragmentation imaging directly from tissue sections (performed using MALDI TOF/TOF, MALDI q-TOF, and 12T MALDI-FT-ICR mass spectrometers). Quantitative data was obtained by comparing signal abundances from tissues to those obtained from quantitation control spots of the target compound applied to adjacent vehicle control tissue sections (analyzed during the same experiment). Following a single intravenous dose of raclopride (7.5 mg/kg), an average tissue concentration of approximately 60 nM was detected compared to 15 nM when the drug was dosed at 2 mg/kg, indicating a linear response between dose and detected abundance. SCH 23390 was established to have an average tissue concentration of approximately 15 μM following a single intravenous dose at 5 mg/kg. Both target compounds were also detected in kidney tissue sections when employing the same MSI methodology. This study illustrates that a MSI may well be readily applied to PET ligand research development when using a solvent-free dry matrix coating.
Collapse
|
46
|
Madsen K, Marner L, Haahr M, Gillings N, Knudsen GM. Mass dose effects and in vivo affinity in brain PET receptor studies — a study of cerebral 5-HT4 receptor binding with [11C]SB207145. Nucl Med Biol 2011; 38:1085-91. [DOI: 10.1016/j.nucmedbio.2011.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 04/28/2011] [Indexed: 01/24/2023]
|
47
|
Comparison of D₂ dopamine receptor occupancy after oral administration of quetiapine fumarate immediate-release and extended-release formulations in healthy subjects. Int J Neuropsychopharmacol 2011; 14:1357-66. [PMID: 21477416 PMCID: PMC3198174 DOI: 10.1017/s1461145711000514] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Quetiapine is an established drug for treatment of schizophrenia, bipolar disorder, and major depressive disorder. While initially manufactured as an immediate-release (IR) formulation, an extended-release (XR) formulation has recently been introduced. Pharmacokinetic studies show that quetiapine XR provides a lower peak and more stable plasma concentration than the IR formulation. This study investigated if the pharmacokinetic differences translate into different time curves for central D₂ dopamine receptor occupancy. Eleven control subjects were examined with positron emission tomography (PET) and the radioligand [11C]raclopride. Eight subjects underwent all of the scheduled PET measurements. After baseline examination, quetiapine XR was administered once-daily for 8 d titrated to 300 mg/d on days 5-8, followed by 300 mg/d quetiapine IR on days 9-12. PET measurements were repeated after the last doses of quetiapine XR and IR at predicted times of peak and trough plasma concentrations. Striatal D₂ receptor occupancy was calculated using the simplified reference tissue model. Peak D₂ receptor occupancy was significantly higher with quetiapine IR than XR in all subjects (50 ± 4% and 32 ± 11%, respectively), consistent with lower peak plasma concentrations for the XR formulation. Trough D₂ receptor occupancy was similarly low for both formulations (IR 7 ± 7%, XR 8 ± 6%). The lower peak receptor occupancy associated with quetiapine XR may explain observed pharmacodynamic differences between the formulations. Assuming that our findings in control subjects are valid for patients with schizophrenia, the study supports the view that quetiapine, like the prototype atypical antipsychotic clozapine, may show antipsychotic effect at lower D₂ receptor occupancy than typical antipsychotics.
Collapse
|
48
|
Relation between presynaptic and postsynaptic dopaminergic functions measured by positron emission tomography: implication of dopaminergic tone. J Neurosci 2011; 31:7886-90. [PMID: 21613502 DOI: 10.1523/jneurosci.6024-10.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Both presynaptic and postsynaptic dopaminergic functions can be estimated by positron emission tomography (PET). While both presynaptic and postsynaptic dopaminergic functions would be regulated by corresponding genes and related to personality traits, the relation between presynaptic and postsynaptic functions in terms of interindividual variation has hardly been investigated. In the present study, both striatal dopamine D(2) receptor binding and endogenous dopamine synthesis rate were measured in the same healthy subjects using PET with [(11)C]raclopride and l-[β-(11)C]DOPA, respectively, and these two parameters were compared. Two PET studies with [(11)C]raclopride and l-[β-(11)C]DOPA were performed sequentially at rest condition on 14 healthy men. For [(11)C]raclopride PET, the binding potential was calculated by the reference tissue model method. For l-[β-(11)C]DOPA PET, the endogenous dopamine synthesis rate was estimated by graphical analysis. A significant negative correlation was observed between the binding potential of dopamine D(2) receptors and endogenous dopamine synthesis rate (r = -0.66, p < 0.05). Although the interindividual variation of binding potential of [(11)C]raclopride would be due to both the interindividual difference in the receptor density and that in the concentration of endogenous dopamine in the synaptic cleft, the negative correlation between parameters for both presynaptic and postsynaptic functions might indicate a compensative relation between the two functions.
Collapse
|
49
|
Fischer K, Sossi V, Schmid A, Thunemann M, Maier FC, Judenhofer MS, Mannheim JG, Reischl G, Pichler BJ. Noninvasive Nuclear Imaging Enables the In Vivo Quantification of Striatal Dopamine Receptor Expression and Raclopride Affinity in Mice. J Nucl Med 2011; 52:1133-41. [DOI: 10.2967/jnumed.110.086942] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Cumming P. Absolute abundances and affinity states of dopamine receptors in mammalian brain: A review. Synapse 2011; 65:892-909. [DOI: 10.1002/syn.20916] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/14/2011] [Indexed: 12/14/2022]
|