1
|
Gebremariam BM, Hailu D, Stoecker BJ, Mulugeta A. Birth prevalence and determinants of neural tube defects among newborns in Ethiopia: A systematic review and meta-analysis. PLoS One 2025; 20:e0315122. [PMID: 39746047 PMCID: PMC11695007 DOI: 10.1371/journal.pone.0315122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are complex multifactorial disorders in the neurulation of the brain and spinal cord that develop in humans between 21 and 28 days of conception. Neonates with NTDs may experience morbidity and mortality, with severe social and economic consequences. Therefore, the aim of this systematic review and meta-analysis is to assess the pooled prevalence and determinants for neural tube defects among newborns in Ethiopia. METHODS The protocol of this study was registered in the International Prospective Register of Systematic Reviews (PROSPERO Number: CRD42023407095). We systematically searched the databases PubMed, Science Direct, Cochrane Library, Google Scholar and Research Gate. Grey literature was searched on Google. Heterogeneity among studies was assessed using the I2 test statistic and the Cochran Q test statistic. A random effects model was used to estimate the birth prevalence of neural tube defects. RESULT Twenty-five articles were included in the meta-analysis to estimate the prevalence and determinants of neural tube defects in Ethiopia. A total of 611,354 newborns were included in the analysis. The pooled birth prevalence of neural tube defects was 83.40 (95% CI: 60.78, 106.02) per 10,000 births. The highest and lowest prevalence rates were 130.9 (95% CI: 113.52, 148.29) in Tigray and 28.60 (95% CI: 18.70, 38.50) per 10,000 births in Amhara regional states. Women's intake of folic acid supplements and planned pregnancy were identified as protective factors for NTDs, while stillbirth history, use of any drugs during pregnancy, exposure to radiation, and pesticides during pregnancy were risk factors for neural tube defects. CONCLUSION The pooled birth prevalence of neural tube defects in Ethiopia was found to be high. Effective prevention interventions, especially focusing on periconceptional folic acid supplementation as well as folate fortification, should be prioritized alongside nutrition education, maternal health care, and environmental safety measures.
Collapse
Affiliation(s)
- Beminet Moges Gebremariam
- School of Public Health, College of Medicine and Health Sciences, Wachemo University, Hossana, Ethiopia
| | - Dejene Hailu
- School of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Barbara J. Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Afework Mulugeta
- Department of Public Health Sciences, College of Medicine and Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
2
|
Rehmani T, Dias AP, Applin BD, Salih M, Tuana BS. SLMAP3 is essential for neurulation through mechanisms involving cytoskeletal elements, ABP, and PCP. Life Sci Alliance 2024; 7:e202302545. [PMID: 39366759 PMCID: PMC11452652 DOI: 10.26508/lsa.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
SLMAP3 is a tail-anchored membrane protein that targets subcellular organelles and is believed to regulate Hippo signaling. The global loss of SLMAP3 causes late embryonic lethality in mice, with some embryos exhibiting neural tube defects such as craniorachischisis. We show here that SLMAP3 -/- embryos display reduced length and increased width of neural plates, signifying arrested convergent extension. The expression of planar cell polarity (PCP) components Dvl2/3 and the activity of the downstream targets ROCK2, cofilin, and JNK1/2 were dysregulated in SLMAP3 -/- E12.5 brains. Furthermore, the cytoskeletal proteins (γ-tubulin, actin, and nestin) and apical components (PKCζ and ZO-1) were mislocalized in neural tubes of SLMAP3 -/- embryos, with a subsequent decrease in colocalization of PCP proteins (Fzd6 and pDvl2). However, no changes in PCP or cytoskeleton proteins were found in cultured neuroepithelial cells depleted of SLMAP3, suggesting an essential requirement for SLMAP3 for these processes in vivo for neurulation. The loss of SLMAP3 had no impact on Hippo signaling in SLMAP3 -/- embryos, brains, and neural tubes. Proteomic analysis revealed SLMAP3 in an interactome with cytoskeletal components, including nestin, tropomyosin 4, intermediate filaments, plectin, the PCP protein SCRIB, and STRIPAK members in embryonic brains. These results reveal a crucial role of SLMAP3 in neural tube development by regulating the cytoskeleton organization and PCP pathway.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ana Paula Dias
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Luckmann MR, Nazari EM. Cellular responses to developmental exposure to pyriproxyfen in chicken model: Contrasting embryos with and without exencephaly. Neurotoxicol Teratol 2024; 106:107395. [PMID: 39307295 DOI: 10.1016/j.ntt.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The insecticide pyriproxyfen (PPF), commonly used in drinking water, has already been described as a potential neurotoxic agent in non-target organisms, particularly during embryonic development. Consequently, exposure to PPF can lead to congenital anomalies in the central nervous system. Therefore, understanding the impact of this insecticide on developing neural cells is a relevant concern that requires attention. Thus, this study aimed to investigate the effects of PPF on the proliferation, differentiation, migration, and cell death of neural cells by comparing embryos that develop exencephaly with normal embryos, after exposure to this insecticide. Chicken embryos, used as a study model, were exposed to concentrations of 0.01 and 10 mg/L PPF on embryonic day E1 and analyzed on embryonic day E10. Exposed embryos received 50 μL of PPF diluted in vehicle solution, and control embryos received exclusively 50 μL of vehicle solution. After exposure, embryos were categorized into control embryos, embryos with exencephaly exposed to PPF, and embryos without exencephaly exposed to PPF. The results showed that although the impact was differentiated in the forebrain and midbrain, both brain vesicles were affected by PPF exposure, and this was observed in embryos with and without exencephaly. The most evident changes observed in embryos with exencephaly were DNA damage accompanied by alterations in cell proliferation, increased apoptosis, and reduced neural differentiation and migration. Embryos without exencephaly showed DNA damage and reduced cell proliferation and migration. These cellular events directly interfered with the density and thickness of neural cell layers. Together, these results suggest that PPF exposure causes cellular damage during neurogenesis, regardless of whether embryos display or do not display external normal morphology. This nuanced understanding provides important insights into the neurotoxicity of PPF and its potential effects on inherent events in neurogenesis.
Collapse
Affiliation(s)
- Maico Roberto Luckmann
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Evelise Maria Nazari
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
4
|
Ma R, Brown J, Careskey M. Perioperative Management of Massive Anterior Encephalocele in a Newborn: A Case Report. A A Pract 2024; 18:e01809. [PMID: 38949227 DOI: 10.1213/xaa.0000000000001809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Anterior encephaloceles are rare neural tube defects posing anesthetic challenges. While anterior encephaloceles can cause airway obstruction at birth, this presentation is very rare and to our knowledge not reported in the literature. This case report describes a 34 weeks +0 days gestation, 2.6 kg, newborn with a massive nasoethmoidal anterior encephalocele creating significant external airway obstruction, necessitating emergent and thoughtful airway management and anesthetic care. Our most important perioperative considerations for this newborn included spontaneous ventilation using awake fiberoptic bronchoscopic intubation with lidocaine airway topicalization, secure endotracheal tube attachment, and avoiding noninvasive positive airway pressure postoperatively to avoid pneumocephalus.
Collapse
Affiliation(s)
- Ricky Ma
- From the John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Jason Brown
- Department of Pediatric Anesthesia, Kapi'olani Medical Center and Hawai'i Pacific Health Medical Group, Honolulu, Hawaii
| | - Matthew Careskey
- Department of Pediatric Anesthesia, Kapi'olani Medical Center and Hawai'i Pacific Health Medical Group, Honolulu, Hawaii
| |
Collapse
|
5
|
Lundin BF, Knight GT, Fedorchak NJ, Krucki K, Iyer N, Maher JE, Izban NR, Roberts A, Cicero MR, Robinson JF, Iskandar BJ, Willett R, Ashton RS. RosetteArray ® Platform for Quantitative High-Throughput Screening of Human Neurodevelopmental Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587605. [PMID: 38798648 PMCID: PMC11118315 DOI: 10.1101/2024.04.01.587605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neural organoids have revolutionized how human neurodevelopmental disorders (NDDs) are studied. Yet, their utility for screening complex NDD etiologies and in drug discovery is limited by a lack of scalable and quantifiable derivation formats. Here, we describe the RosetteArray® platform's ability to be used as an off-the-shelf, 96-well plate assay that standardizes incipient forebrain and spinal cord organoid morphogenesis as micropatterned, 3-D, singularly polarized neural rosette tissues (>9000 per plate). RosetteArrays are seeded from cryopreserved human pluripotent stem cells, cultured over 6-8 days, and immunostained images can be quantified using artificial intelligence-based software. We demonstrate the platform's suitability for screening developmental neurotoxicity and genetic and environmental factors known to cause neural tube defect risk. Given the presence of rosette morphogenesis perturbation in neural organoid models of NDDs and neurodegenerative disorders, the RosetteArray platform could enable quantitative high-throughput screening (qHTS) of human neurodevelopmental risk across regulatory and precision medicine applications.
Collapse
Affiliation(s)
- Brady F. Lundin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705 USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Gavin T. Knight
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| | | | - Kevin Krucki
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| | - Nisha Iyer
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jack E. Maher
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nicholas R. Izban
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Abilene Roberts
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Madeline R. Cicero
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Joshua F. Robinson
- Center of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bermans J. Iskandar
- Department of Neurological Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rebecca Willett
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
- Departments of Statistics and Computer Science, University of Chicago, Chicago, IL 60637, USA
| | - Randolph S. Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| |
Collapse
|
6
|
Lempinen J, Koskimies-Virta E, Kauppala T, Malm H, Gissler M, Kiuru-Kuhlefelt S, Ritvanen A, Leinonen MK. Epidemiology of neural tube defects in Finland: a nationwide register study 1987-2018. Int J Epidemiol 2024; 53:dyae092. [PMID: 38981140 DOI: 10.1093/ije/dyae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/07/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Our aim was to evaluate the prevalence, mortality, regional and sex distribution of neural tube defects (NTDs) in Finland. METHODS Data for this population-based study were collected from 1987 to 2018 from the national health and social welfare registers. RESULTS There were in total 1634 cases of NTDs, of which 511 were live births, 72 pregnancies ended in stillbirth and 1051 were terminations of pregnancy due to fetal anomaly (TOPFA). The total prevalence of NTDs was 8.6 per 10 000 births and it increased slightly annually (OR 1.008; 95% CI: 1.002, 1.013) during the 32-year study period. The birth prevalence of NTDs decreased (OR 0.979; 95% CI: 0.970, 0.987), but the prevalence of TOPFA increased annually (OR 1.024; 95% CI 1.017, 1.031). The perinatal mortality of NTD children was 260.7 per 1000 births and the infant mortality was 184.0 per 1000 live births, whereas these measures in the general population were 4.6 per 1000 births and 3.3 per 1000 live births, respectively. There was no difference in the NTD prevalence between males and females (P-value 0.77). The total prevalence of NTDs varied from 7.1 to 9.4 per 10 000 births in Finland by region. CONCLUSIONS Although the majority of NTDs are preventable with an adequate folic acid supplementation, the total prevalence increased in Finland during the study period when folic acid supplementation was mainly recommended to high-risk families and to women with folic acid deficiency. NTDs remain an important cause of infant morbidity and mortality in Finland.
Collapse
Affiliation(s)
- Jenny Lempinen
- University of Turku, Turku, Finland
- Finnish Institute for Health and Welfare, Knowledge Brokers, Helsinki, Finland
| | - Eeva Koskimies-Virta
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tuuli Kauppala
- Finnish Institute for Health and Welfare, Knowledge Brokers, Helsinki, Finland
| | - Heli Malm
- Teratology Information Service, Emergency Medicine and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Child Psychiatry, University of Turku, Turku, Finland
| | - Mika Gissler
- Finnish Institute for Health and Welfare, Knowledge Brokers, Helsinki, Finland
- Department of Child Psychiatry, University of Turku, Turku, Finland
- Academic Primary Health Care Centre, Region Stockholm, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Annukka Ritvanen
- Finnish Institute for Health and Welfare, Knowledge Brokers, Helsinki, Finland
| | - Maarit K Leinonen
- Finnish Institute for Health and Welfare, Knowledge Brokers, Helsinki, Finland
- Teratology Information Service, Emergency Medicine and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Wei CF, Mukherjee SK, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Rahman MN, Ziauddin M, Tindula G, Suchanda HS, Gomberg DF, Weisskopf MG, Liang L, Warf BC, Christiani DC, Mazumdar M. Arsenic modifies the effect of folic acid in spina bifida prevention, a large hospital-based case-control study in Bangladesh. Environ Health 2024; 23:51. [PMID: 38831396 PMCID: PMC11145859 DOI: 10.1186/s12940-024-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh. METHODS We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure. RESULTS We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). CONCLUSIONS Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.
Collapse
Affiliation(s)
- Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Md Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | | | - Asifur Rahman
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Md Nafaur Rahman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Md Ziauddin
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Gwen Tindula
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, , 300 Pasteur Drive, CA, 94305, USA
| | - Hafiza Sultana Suchanda
- Pediatric Neurosurgery Research Committee, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Diana F Gomberg
- Department of Neurology, Boston Children's Hospital, BCH3443, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Neurology, Boston Children's Hospital, BCH3443, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Hartigan S, Walsh B. Perioperative management of patients with spina bifida. BJA Educ 2024; 24:203-209. [PMID: 38764443 PMCID: PMC11096439 DOI: 10.1016/j.bjae.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 05/21/2024] Open
Affiliation(s)
- S. Hartigan
- Children's Health Ireland at Temple Street, Dublin, Ireland
| | - B. Walsh
- Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine, University College, Dublin, Ireland
| |
Collapse
|
9
|
Cao R, Su Y, Li J, Ao R, Xu X, Liang Y, Liu Z, Yu Q, Xie J. Exploring research hotspots and future directions in neural tube defects field by bibliometric and bioinformatics analysis. Front Neurosci 2024; 18:1293400. [PMID: 38650623 PMCID: PMC11033379 DOI: 10.3389/fnins.2024.1293400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Background Neural tube defects (NTDs) is the most common birth defect of the central nervous system (CNS) which causes the death of almost 88,000 people every year around the world. Much efforts have been made to investigate the reasons that contribute to NTD and explore new ways to for prevention. We trawl the past decade (2013-2022) published records in order to get a worldwide view about NTDs research field. Methods 7,437 records about NTDs were retrieved from the Web of Science (WOS) database. Tools such as shell scripts, VOSviewer, SCImago Graphica, CiteSpace and PubTator were used for data analysis and visualization. Results Over the past decade, the number of publications has maintained an upward trend, except for 2022. The United States is the country with the highest number of publications and also with the closest collaboration with other countries. Baylor College of Medicine has the closest collaboration with other institutions worldwide and also was the most prolific institution. In the field of NTDs, research focuses on molecular mechanisms such as genes and signaling pathways related to folate metabolism, neurogenic diseases caused by neural tube closure disorders such as myelomeningocele and spina bifida, and prevention and treatment such as folate supplementation and surgical procedures. Most NTDs related genes are related to development, cell projection parts, and molecular binding. These genes are mainly concentrated in cancer, Wnt, MAPK, PI3K-Akt and other signaling pathways. The distribution of NTDs related SNPs on chromosomes 1, 3, 5, 11, 14, and 17 are relatively concentrated, which may be associated with high-risk of NTDs. Conclusion Bibliometric analysis of the literature on NTDs field provided the current status, hotspots and future directions to some extant. Further bioinformatics analysis expanded our understanding of NTDs-related genes function and revealed some important SNP clusters and loci. This study provided some guidance for further studies. More extensive cooperation and further research are needed to overcome the ongoing challenge in pathogenesis, prevention and treatment of NTDs.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
- Translational Medicine Research Centre, Shanxi Medical University, Taiyuan, China
| | - Yanbing Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianting Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiangchao Xu
- Sci-Tech Information and Strategic Research Center of Shanxi Province, Taiyuan, China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Vidaurri de la Cruz H, Valderrama FV, Chambergo RB. Dermatologic Review in Pediatric Vascular Lesions. Oral Maxillofac Surg Clin North Am 2024; 36:49-60. [PMID: 37845106 DOI: 10.1016/j.coms.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Vascular anomalies (VAs) can be present in any organ; however, the skin being the largest one, it is there where many of them are evident; some are visible at birth, others develop throughout life. Pediatric dermatologists are specially trained to distinguish VAs from their mimickers, which require different treatments and may harbor distinct prognoses. We resume the diagnostic and therapeutic tasks of pediatric dermatologist at our vascular anomaly clinics, as well as the differential diagnoses of mimickers of VAs.
Collapse
Affiliation(s)
- Helena Vidaurri de la Cruz
- Department of Pediatrics, Hospital General de México Dr. Eduardo Liceaga, O.D. Health Ministry, Mexico City, Mexico; National Autonomous University of Mexico; Society for Pediatric Dermatology, Latin American Society of Pediatric Dermatology, European Academy of Dermatology and Venereology, International Society of Pediatric Dermatology, Mexican Academy of Pediatrics, Mexican Academy of Dermatology.
| | | | | |
Collapse
|
11
|
Broughan JM, Martin D, Higgins T, Swan G, Cullum A, Kurinczuk JJ, Draper ES, Luyt K, Wellesley DG, Stevens S, Tedstone A, Rankin J. Prevalence of neural tube defects in England prior to the mandatory fortification of non-wholemeal wheat flour with folic acid: a population-based cohort study. Arch Dis Child 2024; 109:106-112. [PMID: 37875332 PMCID: PMC10850651 DOI: 10.1136/archdischild-2023-325856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVES To determine the baseline trends in the total birth prevalence of neural tube defects (NTDs) in England (2000-2019) to enable the impact of folic acid fortification of non-wholemeal wheat flour to be monitored. DESIGN Population-based, observational study using congenital anomaly (CA) registration data for England curated by the National Congenital Anomaly and Rare Disease Registration Service (NCARDRS). SETTING Regions of England with active registration in the time period. PARTICIPANTS Babies that were liveborn or stillborn and pregnancies that resulted in a termination of pregnancy or a late miscarriage (20-23 weeks' gestation) with an NTD. MAIN OUTCOME MEASURES Total birth prevalence of anencephaly, spina bifida and all NTDs in England. Poisson regression analysis was used to evaluate time trends with regional register as a random effect. The progress of national registration across England was assessed. RESULTS There were 4541 NTD pregnancies out of 3 637 842 births in England; 1982 anencephaly and 2127 spina bifida. NTD prevalence was 12.5 (95% CI 12.1 to 12.9) per 10 000 total births. NTD prevalence per 10 000 total births was significantly higher in 2015-2019 (13.6, 95% CI 12.9 to 14.4) compared with 2010-2014 (12.1, 95% CI 11.7 to 12.5). An increasing trend in NTDs overall was detected (incidence rate ratio (IRR) 1.01, 1.00 to 1.02), although further analysis determined this effect was confined to 2015-2019 (compared against 2000-2004, IRR 1.14, 1.04 to 1.24). The birth prevalence of anencephaly reflected this pattern. The prevalence of spina bifida remained relatively stable over time. CONCLUSIONS Baseline NTD prevalence for England has been established. National and standardised CA registration is in place, facilitating the systematic and consistent monitoring of pre-fortification and post-fortification NTD trends and evaluating the impact of fortification on NTD prevalence.
Collapse
Affiliation(s)
| | - Danielle Martin
- National Disease Registration Service (NDRS), NHS England, Redditch, UK
| | - Thomas Higgins
- National Disease Registration Service (NDRS), NHS England, Redditch, UK
| | - Gillian Swan
- Office for Health Improvement and Disparities, United Kingdom Department of Health and Social Care, London, UK
| | - Adrienne Cullum
- Office for Health Improvement and Disparities, United Kingdom Department of Health and Social Care, London, UK
| | | | | | - Karen Luyt
- Translational Health Sciences, University of Bristol Medical School, Bristol, UK
| | | | - Sarah Stevens
- National Disease Registration Service (NDRS), NHS England, Redditch, UK
| | - Alison Tedstone
- Office for Health Improvement and Disparities, United Kingdom Department of Health and Social Care, London, UK
| | - Judith Rankin
- National Disease Registration Service (NDRS), NHS England, Redditch, UK
- Institute of Health & Society, Newcastle University, Newcastle, UK
| |
Collapse
|
12
|
Zhang L, Wei X. Stepwise modulation of apical orientational cell adhesions for vertebrate neurulation. Biol Rev Camb Philos Soc 2023; 98:2271-2283. [PMID: 37534608 DOI: 10.1111/brv.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Neurulation transforms the neuroectoderm into the neural tube. This transformation relies on reorganising the configurational relationships between the orientations of intrinsic polarities of neighbouring cells. These orientational intercellular relationships are established, maintained, and modulated by orientational cell adhesions (OCAs). Here, using zebrafish (Danio rerio) neurulation as a major model, we propose a new perspective on how OCAs contribute to the parallel, antiparallel, and opposing intercellular relationships that underlie the neural plate-keel-rod-tube transformation, a stepwise process of cell aggregation followed by cord hollowing. We also discuss how OCAs in neurulation may be regulated by various adhesion molecules, including cadherins, Eph/Ephrins, Claudins, Occludins, Crumbs, Na+ /K+ -ATPase, and integrins. By comparing neurulation among species, we reveal that antiparallel OCAs represent a conserved mechanism for the fusion of the neural tube. Throughout, we highlight some outstanding questions regarding OCAs in neurulation. Answers to these questions will help us understand better the mechanisms of tubulogenesis of many tissues.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Psychology, Dalian Medical University, 9 South LvShun Road, Dalian, 116044, China
| | - Xiangyun Wei
- Departments of Ophthalmology, Developmental Biology, and Microbiology & Molecular Genetics, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
13
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
14
|
Tesfay N, Hailu G, Habtetsion M, Woldeyohannes F. Birth prevalence and risk factors of neural tube defects in Ethiopia: a systematic review and meta-analysis. BMJ Open 2023; 13:e077685. [PMID: 37940152 PMCID: PMC10632862 DOI: 10.1136/bmjopen-2023-077685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE This study aims to estimate the prevalence of neural tube defects (NTDs) and to identify potential risk factors in the Ethiopian context. STUDY DESIGN Systematic review and meta-analysis. STUDY PARTICIPANTS A total of 611 064 participants were included in the review obtained from 42 studies. METHODS PubMed (Medline), Embase and Cochrane Library databases in combination with other potential sources of literature were systematically searched, whereby studies conducted between January 2010 and December 2022 were targeted in the review process. All observational studies were included and heterogeneity between studies was verified using Cochrane Q test statistics and I2 test statistics. Small study effects were checked using Egger's statistical test at a 5% significance level. RESULT The pooled prevalence of all NTDs per 10 000 births in Ethiopia was 71.48 (95% CI 57.80 to 86.58). The between-study heterogeneity was high (I2= 97.49%, p<0.0001). Birth prevalence of spina bifida (33.99 per 10 000) was higher than anencephaly (23.70 per 10 000), and encephalocele (4.22 per 10 000). Unbooked antenatal care (AOR 2.26, 95% CI (1.30 to 3.94)), preconception intake of folic acid (AOR 0.41, 95% CI (0.26 to 0.66)), having chronic medical illness (AOR 2.06, 95% CI (1.42 to 2.99)), drinking alcohol (AOR 2.70, 95% CI (1.89 to 3.85)), smoking cigarette (AOR 2.49, 95% CI (1.51 to 4.11)), chewing khat (AOR 3.30, 95% CI (1.88 to 5.80)), exposure to pesticides (AOR 3.87, 95% CI (2.63 to 5.71)), maternal age ≥35 (AOR 1.90, 95% CI (1.13 to 3.25)), maternal low educational status (AOR 1.60, 95% CI (1.13 to 2.24)), residing in urban areas (AOR 0.75, 95% CI (0.58 to 0.97))and family history of NTDs (AOR 2.51, 95% CI (1.36 to 4.62)) were associated with NTD cases. CONCLUSION The prevalence of NTDs in Ethiopia is seven times as high as in other Western countries where prevention measures are put in place. Heredity, maternal and environmental factors are associated with a high prevalence of NTDs. Mandatory fortification of staple food with folic acid should be taken as a priority intervention to curb the burden of NTDs. To smoothen and overlook the pace of implementation of mass fortification, screening, and monitoring surveillance systems should be in place along with awareness-raising measures. PROSPERO REGISTRATION NUMBER CRD42023413490.
Collapse
Affiliation(s)
- Neamin Tesfay
- Centre of Public Health Emergency Management, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girmay Hailu
- Centre of Public Health Emergency Management, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Medhanye Habtetsion
- Centre of Public Health Emergency Management, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Fistum Woldeyohannes
- Health Financing Program, Clinton Health Access Initiative, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Maniou E, Farah F, Marshall AR, Crane-Smith Z, Krstevski A, Stathopoulou A, Greene NDE, Copp AJ, Galea GL. Caudal Fgfr1 disruption produces localised spinal mis-patterning and a terminal myelocystocele-like phenotype in mice. Development 2023; 150:dev202139. [PMID: 37756583 PMCID: PMC10617625 DOI: 10.1242/dev.202139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Closed spinal dysraphisms are poorly understood malformations classified as neural tube (NT) defects. Several, including terminal myelocystocele, affect the distal spine. We have previously identified a NT closure-initiating point, Closure 5, in the distal spine of mice. Here, we document equivalent morphology of the caudal-most closing posterior neuropore (PNP) in mice and humans. Closure 5 forms in a region of active FGF signalling, and pharmacological FGF receptor blockade impairs its formation in cultured mouse embryos. Conditional genetic deletion of Fgfr1 in caudal embryonic tissues with Cdx2Cre diminishes neuroepithelial proliferation, impairs Closure 5 formation and delays PNP closure. After closure, the distal NT of Fgfr1-disrupted embryos dilates to form a fluid-filled sac overlying ventrally flattened spinal cord. This phenotype resembles terminal myelocystocele. Histological analysis reveals regional and progressive loss of SHH- and FOXA2-positive ventral NT domains, resulting in OLIG2 labelling of the ventral-most NT. The OLIG2 domain is also subsequently lost, eventually producing a NT that is entirely positive for the dorsal marker PAX3. Thus, a terminal myelocystocele-like phenotype can arise after completion of NT closure with localised spinal mis-patterning caused by disruption of FGFR1 signalling.
Collapse
Affiliation(s)
- Eirini Maniou
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Faduma Farah
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Abigail R. Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Zoe Crane-Smith
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrea Krstevski
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Athanasia Stathopoulou
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Nicholas D. E. Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J. Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L. Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
16
|
Diaz Perez KK, Chung S, Head ST, Epstein MP, Hecht JT, Wehby GL, Weinberg SM, Murray JC, Marazita ML, Leslie EJ. Rare variants found in multiplex families with orofacial clefts: Does expanding the phenotype make a difference? Am J Med Genet A 2023; 191:2558-2570. [PMID: 37350193 PMCID: PMC10528230 DOI: 10.1002/ajmg.a.63336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/25/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Exome sequencing (ES) is now a relatively straightforward process to identify causal variants in Mendelian disorders. However, the same is not true for ES in families where the inheritance patterns are less clear, and a complex etiology is suspected. Orofacial clefts (OFCs) are highly heritable birth defects with both Mendelian and complex etiologies. The phenotypic spectrum of OFCs may include overt clefts and several subclinical phenotypes, such as discontinuities in the orbicularis oris muscle (OOM) in the upper lip, velopharyngeal insufficiency (VPI), microform clefts or bifid uvulas. We hypothesize that expanding the OFC phenotype to include these phenotypes can clarify inheritance patterns in multiplex families, making them appear more Mendelian. We performed exome sequencing to find rare, likely causal genetic variants in 31 multiplex OFC families, which included families with multiple individuals with OFCs and individuals with subclinical phenotypes. We identified likely causal variants in COL11A2, IRF6, SHROOM3, SMC3, TBX3, and TP63 in six families. Although we did not find clear evidence supporting the subclinical phenotype hypothesis, our findings support a role for rare variants in the etiology of OFCs.
Collapse
Affiliation(s)
- Kimberly K Diaz Perez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sydney Chung
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, Texas, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, Iowa, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Hakim WS, Aljanabi AS. The Aperta type of neural tube defect: The relevant experience in a local community with the diversity of the presentation. J Med Life 2023; 16:1499-1502. [PMID: 38313183 PMCID: PMC10835562 DOI: 10.25122/jml-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/10/2023] [Indexed: 02/06/2024] Open
Abstract
A series of birth defects known as neural tube defects (NTDs) appear when the neural tube fails to fully or partially close during fetal development. In nations without folic acid supplementation, their incidence ranges from 0.5 to 2 per 1,000 births. The purpose of our study is to estimate the prevalence of NTDs and define the workup for newborn infants with an open neural tube in Al-Qadissiyah, Iraq. This 18-year descriptive retrospective analysis included all babies with NTD diagnoses at the Maternity and Child Teaching Hospital in Al-Qadissiyah Governorate, Iraq. Over the research period, 187 cases of NTDs were evaluated. NTDs presented a male predominance and an incidence rate of 9.4 per 1,000 births, with spina bifida (67.9%), encephalocele (24.02%), and anencephaly (8.02%) being the most prevalent defects. The typical gestational age was 36±5, whereas the typical maternal age was 30±5. It should be noted that 29.9% of women did not take folic acid supplements during the first trimester, while one-third of moms did not benefit from medical supervision during pregnancy. In 65.2% of instances, an antenatal diagnosis was made, and cesarean section was the mode of delivery in 87,8% of cases. Other than that, 64.7% of women lived in low socioeconomic conditions, and 67.9% were from rural areas. The relevance of reinforcing and maximizing folic acid measures throughout the periconceptional phase is emphasized by the fact that NTDs require high intensity and advanced care.
Collapse
Affiliation(s)
- Wissam Saleh Hakim
- Department of Surgery, College of Medicine, University of Al-Qadisiyah, Iraq
| | - Ali Saleh Aljanabi
- Department of Surgery, College of Medicine, University of Al-Qadisiyah, Iraq
| |
Collapse
|
18
|
Jones E, McLaughlin KA. A Novel Perspective on Neuronal Control of Anatomical Patterning, Remodeling, and Maintenance. Int J Mol Sci 2023; 24:13358. [PMID: 37686164 PMCID: PMC10488252 DOI: 10.3390/ijms241713358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
While the nervous system may be best known as the sensory communication center of an organism, recent research has revealed a myriad of multifaceted roles for both the CNS and PNS from early development to adult regeneration and remodeling. These systems work to orchestrate tissue pattern formation during embryonic development and continue shaping pattering through transitional periods such as metamorphosis and growth. During periods of injury or wounding, the nervous system has also been shown to influence remodeling and wound healing. The neuronal mechanisms responsible for these events are largely conserved across species, suggesting this evidence may be important in understanding and resolving many human defects and diseases. By unraveling these diverse roles, this paper highlights the necessity of broadening our perspective on the nervous system beyond its conventional functions. A comprehensive understanding of the complex interactions and contributions of the nervous system throughout development and adulthood has the potential to revolutionize therapeutic strategies and open new avenues for regenerative medicine and tissue engineering. This review highlights an important role for the nervous system during the patterning and maintenance of complex tissues and provides a potential avenue for advancing biomedical applications.
Collapse
Affiliation(s)
| | - Kelly A. McLaughlin
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA;
| |
Collapse
|
19
|
Eaves LA, Choi G, Hall E, Sillé FC, Fry RC, Buckley JP, Keil AP. Prenatal Exposure to Toxic Metals and Neural Tube Defects: A Systematic Review of the Epidemiologic Evidence. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:86002. [PMID: 37647124 PMCID: PMC10467818 DOI: 10.1289/ehp11872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Neural tube defects (NTDs) affect > 300,000 pregnancies worldwide annually. Few nongenetic factors, other than folate deficiency, have been identified that may provide intervenable solutions to reduce the burden of NTDs. Prenatal exposure to toxic metals [arsenic (As), cadmium (Cd), mercury (Hg), manganese (Mn) and lead (Pb)] may increase the risk of NTDs. Although a growing epidemiologic literature has examined associations, to our knowledge no systematic review has been conducted to date. OBJECTIVE Through adaptation of the Navigation Guide systematic review methodology, we aimed to answer the question "does exposure to As, Cd, Hg, Mn, or Pb during gestation increase the risk of NTDs?" and to assess challenges to evaluating this question given the current evidence. METHODS We selected available evidence on prenatal As, Cd, Hg, Mn, or Pb exposure and risk of specific NTDs (e.g., spina bifida, anencephaly) or all NTDs via a comprehensive search across MEDLINE, Embase, Web of Science, and TOXLINE databases and applied inclusion/exclusion criteria. We rated the quality and strength of the evidence for each metal. We applied a customized risk of bias protocol and evaluated the sufficiency of evidence of an effect of each metal on NTDs. RESULTS We identified 30 studies that met our criteria. Risk of bias for confounding and selection was high in most studies, but low for missing data. We determined that, although the evidence was limited, the literature supported an association between prenatal exposure to Hg or Mn and increased risk of NTDs. For the remaining metals, the evidence was inadequate to establish or rule out an effect. CONCLUSION The role of gestational As, Cd, or Pb exposure in the etiology of NTDs remains unclear and warrants further investigation in high-quality studies, with a particular focus on controlling confounding, mitigating selection bias, and improving exposure assessment. https://doi.org/10.1289/EHP11872.
Collapse
Affiliation(s)
- Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Giehae Choi
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily Hall
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fenna C.M. Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessie P. Buckley
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Naicker D, Leola K, Mkhaliphi MM, Mpanza MN, Ouma J, Nakwa FL, Velaphi S, Profyris C. Single surgeon case series of myelomeningocele repairs in a developing world setting: Challenges and lessons. World Neurosurg X 2023; 19:100213. [PMID: 37260695 PMCID: PMC10227453 DOI: 10.1016/j.wnsx.2023.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Purpose Neural Tube Defects are the second most common group of birth malformations following congenital heart anomalies, with myelomeningoceles being the most severe manifestation (MMC). They require expedited surgical repair, preferably within 72 h of birth. In low- and middle-income countries (LMIC) where resources are limited, timing to MMC repair is not optimal and leads to undesirable outcomes. The purpose of this study was to determine whether a proactive approach in a setting from a LMIC could achieve repair within 72 h. Methods A concerted effort to expedite repair of all neonates referred with a MMC was undertaken from 01 January 2014 to 1 August 2015. A consensus was reached between neonatologists and neurosurgeons that neonates born or admitted with a MMC are referred immediately to surgeons and that repair will be performed within 72 h of birth. Hospital records of neonates who had MMC repaired during this period were reviewed for infant characteristics and hospital outcomes. Results 24 patients with a MMC were operated upon by the senior author (CP) during the study period. Only 13 of these patients were born at the treating institution and 11 were referred from outside hospitals. Most MMCs were in the lumbosacral region and mean MMC surface area was 19.4 cm2. Mean time to repair for the entire series was 13.6 days. Patients born at the treating institution has a mean time to repair of 10.5 days and patients referred from outside had a mean time to repair of 17.3 days. Series wide, only 21% of neonates were operated upon in less than 72 h. Conclusion Despite a pro-active commitment to repairing MMCs within 72 h for the duration of this series, satisfactory time to repair was not achieved. Late referral, referral from outside hospitals and operating theatre availability were the predominant factors leading to delay in MMC repair. Nevertheless, time to repair in our series was significantly shorter than that reported in MMC repair series based in similar environments. This suggests that even if the gold-standard of a 72-h window cannot be achieved, neonates benefit from much quicker repair when a concerted effort to minimise repair time is employed. This study also highlights the urgent need to address health care constraints in LMIC to improve outcomes for this vulnerable group.
Collapse
Affiliation(s)
- Denver Naicker
- Department of Neurosurgery, Chris Hani Baragwanath Academic Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Keletso Leola
- Department of Neurosurgery, Helen Joseph Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mlamuli Mzamo Mkhaliphi
- Department of Neurosurgery, Helen Joseph Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Morena Nthuse Mpanza
- Department of Neurosurgery, Helen Joseph Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - John Ouma
- Department of Neurosurgery, Chris Hani Baragwanath Academic Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Firdose Lambey Nakwa
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sithembiso Velaphi
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christos Profyris
- Department of Neurosurgery, Helen Joseph Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
21
|
Cheng C, Cong Q, Liu Y, Hu Y, Liang G, Dioneda KMM, Yang Y. Yap controls notochord formation and neural tube patterning by integrating mechanotransduction with FoxA2 and Shh expression. SCIENCE ADVANCES 2023; 9:eadf6927. [PMID: 37315133 PMCID: PMC10266736 DOI: 10.1126/sciadv.adf6927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
Correct notochord and neural tube (NT) formation is crucial to the development of the central nervous system and midline structures. Integrated biochemical and biophysical signaling controls embryonic growth and patterning; however, the underlying mechanisms remain poorly understood. Here, we took the opportunities of marked morphological changes during notochord and NT formation and identified both necessary and sufficient roles of Yap, a key mechanosensor and mechanotransducer, in biochemical signaling activation during formation of notochord and floor plate, the ventral signaling centers that pattern the dorsal-ventral axis of NT and the surrounding tissues. We showed that Yap activation by a gradient of mechanical stress and tissue stiffness in the notochord and ventral NT induces FoxA2 and Shh expression. Hedgehog signaling activation rescued NT patterning defects caused by Yap deficiency, but not notochord formation. Therefore, mechanotransduction via Yap activation acts in feedforward mechanisms to induce FoxA2 expression for notochord formation and activate Shh expression for floor plate induction by synergistically interacting with FoxA2.
Collapse
Affiliation(s)
| | | | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Yizhong Hu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Guoyan Liang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | - Kevin Marc Manquiquis Dioneda
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, 188 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Nakanishi Y, Kunihiro N, Umaba R, Matsusaka Y, Inoue T, Sakamoto H. Limited dorsal myeloschisis associated with intramedullary infantile hemangioma in the conus medullaris: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE22359. [PMID: 37096816 PMCID: PMC10550677 DOI: 10.3171/case22359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/28/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Limited dorsal myeloschisis (LDM) and intramedullary infantile hemangioma rarely coexist in the spinal cord. OBSERVATIONS The authors describe the case of a 3-month-old girl who, despite lacking neurological symptoms or signs, had a cigarette burn-like mark at the lumbosacral area and skin dimpling in the gluteal area. Magnetic resonance imaging showed a low-set conus due to a thickened filum and an abnormal subcutaneous stalk connected to the conus medullaris. In combination with the skin lesions, these findings strongly implied nonsaccular-type LDM. An intramedullary mass in the conus medullaris was also shown on magnetic resonance imaging and was homogenously enhanced with isointensity on T1- and T2-weighted images. We prophylactically untethered the spinal cord and partially removed the intramedullary mass, which had no clear borders, for a safe surgical dissection. Histologically, the intramedullary mass was an infantile hemangioma, and the subcutaneous stalk was a lesion associated with LDM. The patient remained neurologically intact after surgery, and then 2 years later, there was spontaneous regression of the residual tumor. LESSONS Although rare, nonsaccular type LDM may appear concurrently with intramedullary infantile hemangioma at the conus medullaris. The authors present a possible mechanism behind this concurrent presentation in the same area.
Collapse
Affiliation(s)
- Yoko Nakanishi
- Departments of Pediatric Neurosurgery, and
- Department of Neurological Surgery, Wakayama Medical University, Wakayama, Japan
| | | | | | | | - Takeshi Inoue
- Pathology, Osaka City General Hospital, Osaka, Japan; and
| | | |
Collapse
|
23
|
Tsalouchidou PE, Zoellner JP, Kirscht A, Mueller CJ, Nimsky C, Schulze M, Hattingen E, Chatzis G, Freiman TM, Strzelczyk A, Fuest S, Menzler K, Rosenow F, Knake S. Temporal encephaloceles and coexisting epileptogenic lesions. Epilepsia Open 2023; 8:113-124. [PMID: 36408781 PMCID: PMC9977755 DOI: 10.1002/epi4.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE This study was performed to identify coexisting structural lesions in patients with epilepsy and known temporal encephaloceles (TEs). METHODS Forty-seven structural magnetic resonance imaging (MRI) scans of patients with epilepsy and radiologically diagnosed TEs were retrospectively reviewed visually and using an automated postprocessing software, the Morphometric Analysis Program v2018 (MAP18), to depict additional subtle, potentially epileptogenic lesions in the 3D T1-weighted MRI data. All imaging findings were evaluated in the context of clinical and electroencephalographical findings. RESULTS The study population consisted of 47 epilepsy patients (38.3% female, n = 18). The median age at the time of the scan was 40 years (range 12-81 years). Twenty-one out of 47 MRI scans (44.7%) showed coexisting lesions in the initial MRI evaluation; in 38.3% (n = 18) of patients, those lesions were considered probably epileptogenic. After postprocessing, probable epileptogenic lesions were identified in 53.2% (n = 25) of patients. Malformations of cortical development had initially been reported in 17.0% (n = 8) of patients with TEs, which increased to 38.3% (n = 18) after postprocessing. TEs and other epileptogenic lesions were considered equally epileptogenic in 21.3% (n = 10) of the cases in the initial MR reports and 25.5% (n = 12) of the cases after postprocessing. SIGNIFICANCE Temporal encephaloceles are a potential cause of MRI-negative temporal lobe epilepsy. According to our data, TEs can occur with other lesions, suggesting that increased awareness is also required in patients with lesional epilepsy. TEs may not always be epileptogenic; hence, their occurrence with other structural pathologies may influence the presurgical evaluation and surgical approach. Finally, TEs can be associated with malformations of cortical development, which may indicate a common developmental etiology of those lesions.
Collapse
Affiliation(s)
| | - Johann Philipp Zoellner
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt, Germany
| | - Annika Kirscht
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christina Julia Mueller
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Maximilian Schulze
- Division of Neuroradiology, Philipps University Marburg, Marburg, Germany
| | - Elke Hattingen
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt, Germany.,Department of Neuroradiology, Goethe University, Frankfurt, Germany
| | - Georgios Chatzis
- Department of Cardiology, Angiology and Intensive Care, Philipps University Marburg, Marburg, Germany
| | | | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt, Germany
| | - Sven Fuest
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Katja Menzler
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany.,Core Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Knake
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany.,Core Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| |
Collapse
|
24
|
Wang M, Rücklin M, Poelmann RE, de Mooij CL, Fokkema M, Lamers GEM, de Bakker MAG, Chin E, Bakos LJ, Marone F, Wisse BJ, de Ruiter MC, Cheng S, Nurhidayat L, Vijver MG, Richardson MK. Nanoplastics causes extensive congenital malformations during embryonic development by passively targeting neural crest cells. ENVIRONMENT INTERNATIONAL 2023; 173:107865. [PMID: 36907039 DOI: 10.1016/j.envint.2023.107865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials are widespread in the human environment as pollutants, and are being actively developed for use in human medicine. We have investigated how the size and dose of polystyrene nanoparticles affects malformations in chicken embryos, and have characterized the mechanisms by which they interfere with normal development. We find that nanoplastics can cross the embryonic gut wall. When injected into the vitelline vein, nanoplastics become distributed in the circulation to multiple organs. We find that the exposure of embryos to polystyrene nanoparticles produces malformations that are far more serious and extensive than has been previously reported. These malformations include major congenital heart defects that impair cardiac function. We show that the mechanism of toxicity is the selective binding of polystyrene nanoplastics nanoparticles to neural crest cells, leading to the death and impaired migration of those cells. Consistent with our new model, most of the malformations seen in this study are in organs that depend for their normal development on neural crest cells. These results are a matter of concern given the large and growing burden of nanoplastics in the environment. Our findings suggest that nanoplastics may pose a health risk to the developing embryo.
Collapse
Affiliation(s)
- Meiru Wang
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Martin Rücklin
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Robert E Poelmann
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, The Netherlands
| | - Carmen L de Mooij
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Marjolein Fokkema
- Institute of Psychology, Methodology and Statistics, Pieter de la Court Building, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
| | - Gerda E M Lamers
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Merijn A G de Bakker
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ernest Chin
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Lilla J Bakos
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, Photon Science Department, Forschungsstrasse 111, CH-5232 Villigen, Switzerland
| | - Bert J Wisse
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Marco C de Ruiter
- Department of Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Shixiong Cheng
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Luthfi Nurhidayat
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University (CML), Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Michael K Richardson
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
25
|
Lin CM, Oglesbee M, Knudsen D, Smith TW. Ischemic myelomalacia and closed spinal dysraphism in multiple finishing swine. Vet Pathol 2023; 60:258-266. [PMID: 36524748 DOI: 10.1177/03009858221140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ischemic myelomalacia secondary to fibrocartilaginous emboli (FCE) is an idiopathic disease in humans and animals. On the other hand, congenital spinal cord malformations result from neural tube defects in fetal development (ie, spinal dysraphism), with structural anomalies referred to collectively as myelodysplasia. Spinal dysraphisms are frequently accompanied by skin and vertebral abnormalities because of the embryogenic relationship. In this observational case study, we report the pathologic findings of 13, 18- to 24-weeks-old pigs from a large conventional operation that presented with acute paraparesis. Ischemic myelomalacia secondary to FCE was observed in 5 of 13 examined pigs. Congenital spinal cord malformations located between the caudal thoracic and sacral spinal cord were identified in 7 pigs, with structural abnormalities that ranged from diplomyelia/split cord malformation to segmental spinal dysgenesis (myelodysplasia) to caudal agenesis. Concurrent myelomalacia and congenital spinal cord malformations in the same or different sites were noted in 2 pigs. No spinal lesion was observed in 3 pigs. Although gross vertebral abnormalities were not observed herein, intervertebral instability due to minor defects in the articular facets, as well as other unidentified factors, is suspected to contribute high incidence of FCE. It is likely that these congenital malformations were previously underdiagnosed or are possibly new conditions associated with continuous inbreeding and genetic improvement in the modern swine industry.
Collapse
Affiliation(s)
- Chun-Ming Lin
- South Dakota State University, Brookings, SD
- Charles River Laboratories, Spencerville, OH
| | | | | | - Thomas W Smith
- University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
26
|
Investigation of SAMD1 ablation in mice. Sci Rep 2023; 13:3000. [PMID: 36810619 PMCID: PMC9944271 DOI: 10.1038/s41598-023-29779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
SAM domain-containing protein 1 (SAMD1) has been implicated in atherosclerosis, as well as in chromatin and transcriptional regulation, suggesting a versatile and complex biological function. However, its role at an organismal level is currently unknown. Here, we generated SAMD1-/- and SAMD1+/- mice to explore the role of SAMD1 during mouse embryogenesis. Homozygous loss of SAMD1 was embryonic lethal, with no living animals seen after embryonic day 18.5. At embryonic day 14.5, organs were degrading and/or incompletely developed, and no functional blood vessels were observed, suggesting failed blood vessel maturation. Sparse red blood cells were scattered and pooled, primarily near the embryo surface. Some embryos had malformed heads and brains at embryonic day 15.5. In vitro, SAMD1 absence impaired neuronal differentiation processes. Heterozygous SAMD1 knockout mice underwent normal embryogenesis and were born alive. Postnatal genotyping showed a reduced ability of these mice to thrive, possibly due to altered steroidogenesis. In summary, the characterization of SAMD1 knockout mice suggests a critical role of SAMD1 during developmental processes in multiple organs and tissues.
Collapse
|
27
|
Lin S, Wang C, Li Z, Qiu X. Distinct H3K27me3 and H3K27ac Modifications in Neural Tube Defects Induced by Benzo[a]pyrene. Brain Sci 2023; 13:brainsci13020334. [PMID: 36831877 PMCID: PMC9954656 DOI: 10.3390/brainsci13020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The pathological mechanisms of neural tube defects (NTDs) are not yet fully understood. Although the dysregulation of histone modification in NTDs is recognized, it remains to be fully elucidated on a genome-wide level. We profiled genome-wide H3K27me3 and H3K27ac occupancy by CUT&Tag in neural tissues from ICR mouse embryos with benzo[a]pyrene (BaP)-induced NTDs (250 mg kg-1) at E9.5. Furthermore, we performed RNA sequencing (RNA-seq) to investigate the regulation of histone modifications on gene expressions. Gene ontology and KEGG analysis were conducted to predict pathways involved in the development of NTDs. Our analysis of histone 3 lysine 27 modification in BaP-NTD neural tissues compared to BaP-nonNTD revealed 6045 differentially trimethylated regions and 3104 acetylated regions throughout the genome, respectively. The functional analysis identified a number of pathways uniquely enriched for BaP-NTD embryos, including known neurodevelopment related pathways such as anterior/posterior pattern specification, ephrin receptor signaling pathway, neuron migration and neuron differentiation. RNA-seq identified 423 differentially expressed genes (DEGs) between BaP-NTD and BaP-nonNTD group. The combination analysis of CUT&Tag and RNA-seq found that 55 DEGs were modified by H3K27me3 and 25 by H3K27ac in BaP-NTD, respectively. In the transcriptional regulatory network, transcriptional factors including Srsf1, Ume6, Zbtb7b, and Cad were predicated to be involved in gene expression regulation. In conclusion, our results provide an overview of histone modifications during neural tube closure and demonstrate a key role of genome-wide alterations in H3K27me3 and H3K27ac in NTDs corresponding with changes in transcription profiles.
Collapse
Affiliation(s)
- Shanshan Lin
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chengrui Wang
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhiwen Li
- Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, National Health Commission of the China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Correspondence: (Z.L.); or (X.Q.); Tel.: +86-010-82801760 (Z.L.); Tel./Fax: +86-020-38367160 (X.Q.)
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Women’s Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Disease and Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Correspondence: (Z.L.); or (X.Q.); Tel.: +86-010-82801760 (Z.L.); Tel./Fax: +86-020-38367160 (X.Q.)
| |
Collapse
|
28
|
Perez KKD, Chung S, Head ST, Epstein MP, Hecht JT, Wehby GL, Weinberg SM, Murray JC, Marazita ML, Leslie EJ. Rare variants found in multiplex families with orofacial clefts: Does expanding the phenotype make a difference? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.01.23285340. [PMID: 36798250 PMCID: PMC9934724 DOI: 10.1101/2023.02.01.23285340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Whole-exome sequencing (WES) is now a relatively straightforward process to identify causal variants in Mendelian disorders. However, the same is not true for WES in families where the inheritance patterns are less clear, and a complex etiology is suspected. Orofacial clefts (OFCs) are highly heritable birth defects with both Mendelian and complex etiologies. The phenotypic spectrum of OFCs may include overt clefts and several subclinical phenotypes, such as discontinuities in the orbicularis oris muscle (OOM) in the upper lip, velopharyngeal insufficiency (VPI), microform clefts or bifid uvulas. We hypothesize that expanding the OFC phenotype to include these phenotypes can clarify inheritance patterns in multiplex families, making them appear more Mendelian. We performed whole-exome sequencing to find rare, likely causal genetic variants in 31 multiplex OFC families, which included families with multiple individuals with OFCs and individuals with subclinical phenotypes. We identified likely causal variants in COL11A2, IRF6, KLF4, SHROOM3, SMC3, TP63 , and TBX3 in seven families. Although we did not find clear evidence supporting the subclinical phenotype hypothesis, our findings support a role for rare variants in the etiology of OFCs.
Collapse
Affiliation(s)
- Kimberly K Diaz Perez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sydney Chung
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, TX 77030, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA, 52242, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, 15213, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
29
|
Wang X, Yu J, Wang J. Neural Tube Defects and Folate Deficiency: Is DNA Repair Defective? Int J Mol Sci 2023; 24:ijms24032220. [PMID: 36768542 PMCID: PMC9916799 DOI: 10.3390/ijms24032220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Neural tube defects (NTDs) are complex congenital malformations resulting from failure of neural tube closure during embryogenesis, which is affected by the interaction of genetic and environmental factors. It is well known that folate deficiency increases the incidence of NTDs; however, the underlying mechanism remains unclear. Folate deficiency not only causes DNA hypomethylation, but also blocks the synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP) and increases uracil misincorporation, resulting in genomic instabilities such as base mismatch, DNA breakage, and even chromosome aberration. DNA repair pathways are essential for ensuring normal DNA synthesis, genomic stability and integrity during embryonic neural development. Genomic instability or lack of DNA repair has been implicated in risk of development of NTDs. Here, we reviewed the relationship between folate deficiency, DNA repair pathways and NTDs so as to reveal the role and significance of DNA repair system in the pathogenesis of NTDs and better understand the pathogenesis of NTDs.
Collapse
|
30
|
Peng S, Wu Y, Zheng Y. High glucose causes developmental abnormalities in neuroepithelial cysts with actin and HK1 distribution changes. Front Cell Dev Biol 2023; 10:1021284. [PMID: 36684439 PMCID: PMC9852901 DOI: 10.3389/fcell.2022.1021284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
It has been reported that the offspring of diabetic pregnant women have an increased risk for neural tube defects. Previous studies in animal models suggested that high glucose induces cell apoptosis and epigenetic changes in the developing neural tube. However, effects on other cellular aspects such as the cell shape changes were not fully investigated. Actin dynamics plays essential roles in cell shape change. Disruption on actin dynamics is known to cause neural tube defects. In the present study, we used a 3D neuroepithelial cyst model and a rosette model, both cultured from human embryonic stem cells, to study the cellular effects caused by high glucose. By using these models, we observed couple of new changes besides increased apoptosis. First, we observed that high glucose disturbed the distribution of pH3 positive cells in the neuroepithelial cysts. Secondly, we found that high glucose exposure caused a relatively smaller actin inner boundary enclosed area, which was unlikely due to osmolarity changes. We further investigated key glucose metabolic enzymes in our models and the results showed that the distribution of hexokinase1 (HK1) was affected by high glucose. We observed that hexokinase1 has an apical-basal polarized distribution and is highest next to actin at the boundaries. hexokinase1 was more diffused and distributed less polarized under high glucose condition. Together, our observations broadened the cellular effects that may be caused by high glucose in the developing neural tube, especially in the secondary neurulation process.
Collapse
Affiliation(s)
- Sisi Peng
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China,Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Wu
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China,Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yufang Zheng
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China,Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China,*Correspondence: Yufang Zheng,
| |
Collapse
|
31
|
Avesani G, Perazzolo A, Elia L, Anghelone AG, Gaudino S, Russo L, Genco E, Di Paola V, Massimi L, De Santis M, Tamburrini G, Manfredi R. Fetal MRI prior to intrauterine surgery of open neural tube defects: What does the radiologist need to know. LA RADIOLOGIA MEDICA 2023; 128:113-124. [PMID: 36525177 DOI: 10.1007/s11547-022-01579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The management of myelomeningocele study trial showed significant prognostic improvement in fetal repair before 26 weeks of gestation. Hence, surgery in utero represents the best treatment option for open-neural tube defects (NTDs). Fetal surgery of open-NTDs has specific inclusion and exclusion criteria, which can be adequately studied with fetal MRI. The main concern: the spine (spinal defects other than Myelomeningocele and Myeloschisis, the level of the lesion higher than T1 or lower than S1 and the degree of kyphosis ≥ 30°), the skull/brain (no cerebellum herniation and Chiari II malformation and the presence of any intracranial abnormality unrelated to open NTDs), the uterus (cervix length less than 2 cm, multiple gestations and placental and uterine abnormalities) and any other fetal abnormality not attributed to spinal defect. In this review, we describe the fundamental role of fetal MRI in supporting therapeutic decisions in pre-surgery intrauterine planning through the accurate and comprehensive description of findings, providing a proposal of a structured report. In addition, we describe how post-surgical MRI is important in investigating the effectiveness of surgery and detecting repairing complications.
Collapse
Affiliation(s)
- Giacomo Avesani
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | | | - Lorenzo Elia
- Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| | - Enza Genco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Valerio Di Paola
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Luca Massimi
- Dipartimento di Scienze dell'invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico "A. Gemelli" IRCCS, Rome, Italy
| | - Marco De Santis
- Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico "A. Gemelli" IRCCS, Rome, Italy
| | - Gianpiero Tamburrini
- Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze dell'invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico "A. Gemelli" IRCCS, Rome, Italy
| | - Riccardo Manfredi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
32
|
Molè MA, Galea GL, Copp AJ. Live-Imaging Analysis of Epithelial Zippering During Mouse Neural Tube Closure. Methods Mol Biol 2023; 2608:147-162. [PMID: 36653707 PMCID: PMC7614165 DOI: 10.1007/978-1-0716-2887-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Zippering is a phenomenon of tissue morphogenesis whereby fusion between opposing epithelia progresses unidirectionally over significant distances, similar to the travel of a zip fastener, to ultimately ensure closure of an opening. A comparable process can be observed during Drosophila dorsal closure and mammalian wound healing, while zippering is employed by numerous organs such as the optic fissure, palatal shelves, tracheoesophageal foregut, and presumptive genitalia to mediate tissue sealing during normal embryonic development. Particularly striking is zippering propagation during neural tube morphogenesis, where the fusion point travels extensively along the embryonic axis to ensure closure of the neural tube. Advances in time-lapse microscopy and culture conditions have opened the opportunity for successful imaging of whole-mouse embryo development over time, providing insights into the precise cellular behavior underlying zippering propagation. Studies in mouse and the ascidian Ciona have revealed the fine-tuned cell shape changes and junction remodeling which occur at the site of zippering during neural tube morphogenesis. Here, we describe a step-by-step method for imaging at single-cell resolution the process of zippering and tissue remodeling which occurs during closure of the spinal neural tube in mouse. We also provide instructions and suggestions for quantitative morphometric analysis of cell behavior during zippering progression. This procedure can be further combined with genetic mutant models (e.g., knockouts), offering the possibility of studying the dynamics of tissue fusion and zippering propagation, which underlie a wide range of open neural tube defects.
Collapse
Affiliation(s)
- Matteo A Molè
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
- Babraham Institute, Cambridge, UK
| | - Gabriel L Galea
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK.
| |
Collapse
|
33
|
Han X, Cao X, Aguiar-Pulido V, Yang W, Karki M, Ramirez PAP, Cabrera RM, Lin YL, Wlodarczyk BJ, Shaw GM, Ross ME, Zhang C, Finnell RH, Lei Y. CIC missense variants contribute to susceptibility for spina bifida. Hum Mutat 2022; 43:2021-2032. [PMID: 36054333 PMCID: PMC9772115 DOI: 10.1002/humu.24460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Neural tube defects (NTDs) are congenital malformations resulting from abnormal embryonic development of the brain, spine, or spinal column. The genetic etiology of human NTDs remains poorly understood despite intensive investigation. CIC, homolog of the Capicua transcription repressor, has been reported to interact with ataxin-1 (ATXN1) and participate in the pathogenesis of spinocerebellar ataxia type 1. Our previous study demonstrated that CIC loss of function (LoF) variants contributed to the cerebral folate deficiency syndrome by downregulating folate receptor 1 (FOLR1) expression. Given the importance of folate transport in neural tube formation, we hypothesized that CIC variants could contribute to increased risk for NTDs by depressing embryonic folate concentrations. In this study, we examined CIC variants from whole-genome sequencing (WGS) data of 140 isolated spina bifida cases and identified eight missense variants of CIC gene. We tested the pathogenicity of the observed variants through multiple in vitro experiments. We determined that CIC variants decreased the FOLR1 protein level and planar cell polarity (PCP) pathway signaling in a human cell line (HeLa). In a murine cell line (NIH3T3), CIC loss of function variants downregulated PCP signaling. Taken together, this study provides evidence supporting CIC as a risk gene for human NTD.
Collapse
Affiliation(s)
- Xiao Han
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Vanessa Aguiar-Pulido
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Computer Science, University of Miami, Coral
Gables, FL 33146, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Paula Andrea Pimienta Ramirez
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - M. Elizabeth Ross
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
- Departments of Molecular and Human Genetics and Medicine,
Baylor College of Medicine, Houston, TX 77031, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| |
Collapse
|
34
|
YAVAŞ Ö, YAVAŞ SE, BAŞAR D, AVCI Z, SARIÇETİN A, YILDIZ ER, ERSOY S, ÖZYİĞİT Ö. Anencephaly, Bifid Tongue, and Cleft Palate in a Pomeranian Dog: GFAP and NeuN Immunoreactivities. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.1141283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Anencephaly is a congenital disease manifesting with the absence of the brain due to the failure of the cranial part of the neural tube to close during the embryonic stage. The disease may be accompanied by other anomalies and usually results in premature death. A stillborn puppy of a 2-year-old female Pomeranian dog is examined in this case. The lack of brain tissue and accompanying abnormal skull formation was noted macroscopically. The eyes were protruding out of their normal position (exophthalmos), and a bifid tongue together with a secondary cleft palate was present. On serial sections stained with Haematoxylin-Eosin, only the medulla spinalis among the central nervous system structures could be inspected microscopically. Immunohistochemistry staining revealed GFAP immunoreactivity in the astrocytic glial cells. NeuN immunoreactivity was detected in the neurons in the medulla spinalis and spinal ganglions. Incomplete retinal layers were observed on the eye sections stained with Haematoxylin-Eosin and NeuN. The case was concluded to be coherent with skull and nervous system congenital malformations rarely observed in dogs. To the best of our knowledge, this represents the first description of a dog with anencephaly, bifid tongue and cleft palate.
Collapse
|
35
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. .,Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
36
|
Sacral Spina Bifida Occulta: A Frequency Analysis of Secular Change. ANTHROPOLOGICAL REVIEW 2022. [DOI: 10.18778/1898-6773.85.2.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substantial relaxation of natural selection beginning around 1900 changed the mutation/selection balance of modern genetic material, producing an increase in variable anatomical structures. While multiple structures have been affected, the temporal increase in variations of the sacrum, specifically, ‘Sacral Spina Bifida Occulta,’ have been reliably demonstrated on a localised scale. Calculation of largescale frequency has been hindered by the localised nature of these publications, the morphological variability of this variation, and potential pathological associations, which have produced divergent classifications, and conflicting reported rates of occurrence. A systematic review of the reported literature was conducted to provide an objective analysis of Sacral Spina Bifida Occulta frequency from 2500 BCE to the present. This review was designed to compensate for observed inconsistencies in reporting and to ascertain, for the first time, the temporal trajectory of this secular trend. A systematic review of Sacral Spina Bifida Occulta literature was conducted through the strict use of clinical meta-analysis criteria. Publications were retrieved from four databases: PubMed, Embase, the Adelaide University Library database, and Google Scholar. Data were separated into three historical groups, (1 = <1900, 2 = 1900 to 1980 and 3 = >1980), and frequency outcomes compared, to determine temporal rates of occurrence.
A total of 39/409 publications were included in the final analysis, representing data for 16,167 sacra, spanning a period of 4,500 years. Statistically significant results were obtained, with total open S1 frequency increasing from 2.34%, (79 to 1900CE), to 4.80%, (1900 to 1980CE) and to 5.43% (>1980CE). These increases were significant at p<0.0001, with Chi-squared analysis. A clear secular increase in the global frequency of Sacral Spina Bifida Occulta has been demonstrated from 1900 to the present. This research provides a novel and adaptable framework for the future assessment of variation distribution, with important implications for the fields of biological anthropology and bioarchaeology.
Collapse
|
37
|
Congenital Brain Malformations: An Integrated Diagnostic Approach. Semin Pediatr Neurol 2022; 42:100973. [PMID: 35868725 DOI: 10.1016/j.spen.2022.100973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
Congenital brain malformations are abnormalities present at birth that can result from developmental disruptions at various embryonic or fetal stages. The clinical presentation is nonspecific and can include developmental delay, hypotonia, and/or epilepsy. An informed combination of imaging and genetic testing enables early and accurate diagnosis and management planning. In this article, we provide a streamlined approach to radiologic phenotyping and genetic evaluation of brain malformations. We will review the clinical workflow for brain imaging and genetic testing with up-to-date ontologies and literature references. The organization of this article introduces a streamlined approach for imaging-based etiologic classification into malformative, destructive, and migrational abnormalities. Specific radiologic ontologies are then discussed in detail, with correlation of key neuroimaging features to embryology and molecular pathogenesis.
Collapse
|
38
|
Oria M, Pathak B, Li Z, Bakri K, Gouwens K, Varela MF, Lampe K, Murphy KP, Lin CY, Peiro JL. Premature Neural Progenitor Cell Differentiation Into Astrocytes in Retinoic Acid-Induced Spina Bifida Rat Model. Front Mol Neurosci 2022; 15:888351. [PMID: 35782393 PMCID: PMC9249056 DOI: 10.3389/fnmol.2022.888351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023] Open
Abstract
During embryonic spinal cord development, neural progenitor cells (NPCs) generate three major cell lines: neurons, oligodendrocytes, and astrocytes at precise times and locations within the spinal cord. Recent studies demonstrate early astrogenesis in animal models of spina bifida, which may play a role in neuronal dysfunction associated with this condition. However, to date, the pathophysiological mechanisms related to this early astrocytic response in spina bifida are poorly understood. This study aimed to characterize the development of early astrogliosis over time from Pax6+, Olig2+, or Nkx2.2+ NPCs using a retinoic acid-induced spina bifida rat model. At three gestational ages (E15, E17, and E20), spinal cords from fetuses with retinoic acid-induced spina bifida, their healthy sibling controls, or fetuses treated with the vehicle control were analyzed. Results indicated that premature astrogliosis and astrocytic activation were associated with an altered presence of Pax6+, Olig2+, and Nkx2.2+ NPCs in the lesion compared to the controls. Finally, this response correlated with an elevation in genes involved in the Notch-BMP signaling pathway. Taken together, changes in NPC patterning factor expression with Notch-BMP signaling upregulation may be responsible for the altered astrogenesis patterns observed in the spinal cord in a retinoic acid-induced spina bifida model.
Collapse
Affiliation(s)
- Marc Oria
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States,*Correspondence: Marc Oria,
| | - Bedika Pathak
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Zhen Li
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kenan Bakri
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kara Gouwens
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Maria Florencia Varela
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States
| | - Kendall P. Murphy
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States,Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Chia-Ying Lin
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jose L. Peiro
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
39
|
Zhou Y, Crider KS, Yeung LF, Rose CE, Li Z, Berry RJ, Li S, Moore CA. Periconceptional folic acid use prevents both rare and common neural tube defects in China. Birth Defects Res 2022; 114:184-196. [PMID: 35098705 PMCID: PMC11091954 DOI: 10.1002/bdr2.1983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neural tube defects (NTDs) encompass a variety of distinct types. We assessed if the preventive effect of folic acid (FA) varied by NTD type and infant sex. METHODS We examined all pregnancies with NTD status confirmation from a pregnancy-monitoring system in selected locations in northern and southern regions of China between 1993 and 1996. Women who took 400 μg of FA daily during 42 days after last menstrual period were considered FA users. We analyzed NTD prevalence by FA use status, NTD type, geographic region, and infant sex. RESULTS Among 626,042 pregnancies, 700 were affected by an NTD. Among FA nonusers, 65 pregnancies (8.8 per 10,000) in the north and 51 pregnancies (1.2 per 10,000) in the south were affected by one of the two rare NTDs, that is, craniorachischisis, iniencephaly. FA use prevented occurrence of these two rare NTDs and reduced the prevalence of spina bifida (SB) by 78% (from 17.9 to 3.9 per 10,000) in the north and 51% (from 2.4 to 1.2 per 10,000) in the south. Among FA users, SB prevalence, including SB with high lesion level, was significantly reduced in both geographic regions. FA use reduced prevalence of anencephaly and encephalocele by 85% and 50%, respectively in the north, while it did not reduce the prevalence of these two NTDs in the south. There was a greater reduction in NTD prevalence in female than in male infants and fetuses. CONCLUSIONS This is the first study to show that FA prevents the entire spectrum of NTD types.
Collapse
Affiliation(s)
- Ying Zhou
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Krista S. Crider
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lorraine F. Yeung
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Charles E. Rose
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhu Li
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, China
| | - Robert J. Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Song Li
- Peking University Third Hospital, Beijing, China
| | - Cynthia A. Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
40
|
|
41
|
Pisani S, Genta I, Modena T, Dorati R, Benazzo M, Conti B. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers. Int J Mol Sci 2022; 23:1290. [PMID: 35163218 PMCID: PMC8835830 DOI: 10.3390/ijms23031290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/28/2022] Open
Abstract
Shape-Memory Polymers (SMPs) are considered a kind of smart material able to modify size, shape, stiffness and strain in response to different external (heat, electric and magnetic field, water or light) stimuli including the physiologic ones such as pH, body temperature and ions concentration. The ability of SMPs is to memorize their original shape before triggered exposure and after deformation, in the absence of the stimulus, and to recover their original shape without any help. SMPs nanofibers (SMPNs) have been increasingly investigated for biomedical applications due to nanofiber's favorable properties such as high surface area per volume unit, high porosity, small diameter, low density, desirable fiber orientation and nanoarchitecture mimicking native Extra Cellular Matrix (ECM). This review focuses on the main properties of SMPs, their classification and shape-memory effects. Moreover, advantages in the use of SMPNs and different biomedical application fields are reported and discussed.
Collapse
Affiliation(s)
- Silvia Pisani
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy or (S.P.); (M.B.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Marco Benazzo
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy or (S.P.); (M.B.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| |
Collapse
|
42
|
Murphy KP, Pathak B, Peiro JL, Oria M. Time Course Transcriptome Analysis of Spina Bifida Progression in Fetal Rats. Brain Sci 2021; 11:brainsci11121593. [PMID: 34942894 PMCID: PMC8699677 DOI: 10.3390/brainsci11121593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
A better understanding of the transcriptomic modifications that occur in spina bifida may lead to identify mechanisms involved in the progression of spina bifida in utero and the development of new therapeutic strategies that aid in spinal cord regeneration after surgical interventions. In this study, RNA-sequencing was used to identify differentially expressed genes in fetal spinal cords from rats with retinoic acid-induced spina bifida at E15, E17, and E20. Gene ontology, KEGG, and protein–protein interaction analysis were conducted to predict pathways involved in the evolution of the disease. Approximately 3000, 1000 and 300 genes were differentially expressed compared to the control groups at E15, E17 and E20, respectively. Overall, the results suggest common alterations in certain pathways between gestational time points, such as upregulation in p53 and sonic hedgehog signaling at E15 and E17 and downregulation in the myelin sheath at E17 and E20. However, there were other modifications specific to gestational time points, including skeletal muscle development at E15, downregulated glucose metabolism at E17, and upregulated inflammation at E20. In conclusion, this work provides evidence that gestational age during spina bifida repair may be a significant variable to consider during the development of new regenerative therapeutics approaches.
Collapse
Affiliation(s)
- Kendall P. Murphy
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH 45267, USA;
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital and Medical Center, Cincinnati, OH 45229, USA; (B.P.); (J.L.P.)
| | - Bedika Pathak
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital and Medical Center, Cincinnati, OH 45229, USA; (B.P.); (J.L.P.)
| | - Jose L. Peiro
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital and Medical Center, Cincinnati, OH 45229, USA; (B.P.); (J.L.P.)
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Marc Oria
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital and Medical Center, Cincinnati, OH 45229, USA; (B.P.); (J.L.P.)
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +513-636-3494
| |
Collapse
|
43
|
Petzold J, Gentleman E. Intrinsic Mechanical Cues and Their Impact on Stem Cells and Embryogenesis. Front Cell Dev Biol 2021; 9:761871. [PMID: 34820380 PMCID: PMC8606660 DOI: 10.3389/fcell.2021.761871] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Although understanding how soluble cues direct cellular processes revolutionised the study of cell biology in the second half of the 20th century, over the last two decades, new insights into how mechanical cues similarly impact cell fate decisions has gained momentum. During development, extrinsic cues such as fluid flow, shear stress and compressive forces are essential for normal embryogenesis to proceed. Indeed, both adult and embryonic stem cells can respond to applied forces, but they can also detect intrinsic mechanical cues from their surrounding environment, such as the stiffness of the extracellular matrix, which impacts differentiation and morphogenesis. Cells can detect changes in their mechanical environment using cell surface receptors such as integrins and focal adhesions. Moreover, dynamic rearrangements of the cytoskeleton have been identified as a key means by which forces are transmitted from the extracellular matrix to the cell and vice versa. Although we have some understanding of the downstream mechanisms whereby mechanical cues are translated into changes in cell behaviour, many of the signalling pathways remain to be defined. This review discusses the importance of intrinsic mechanical cues on adult cell fate decisions, the emerging roles of cell surface mechano-sensors and the cytoskeleton in enabling cells to sense its microenvironment, and the role of intracellular signalling in translating mechanical cues into transcriptional outputs. In addition, the contribution of mechanical cues to fundamental processes during embryogenesis such as apical constriction and convergent extension is discussed. The continued development of tools to measure the biomechanical properties of soft tissues in vivo is likely to uncover currently underestimated contributions of these cues to adult stem cell fate decisions and embryogenesis, and may inform on regenerative strategies for tissue repair.
Collapse
Affiliation(s)
- Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
44
|
Zhu H, Wang L, Ren A. [Research progress on the etiology and pathogenesis of spina bifida]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1368-1373. [PMID: 34779160 DOI: 10.7507/1002-1892.202106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress on etiology and pathogenesis of spina bifida. Methods By consulting relevant domestic and foreign research literature on spina bifida, the classification, epidemic trend, pathogenesis, etiology, prevention and treatment of it were analyzed and summarized. Results Spina bifida, a common phenotype of neural tube defects, is classified based on the degree and pattern of malformation associated with neuroectodermal involvement and is due to the disturbance of neural tube closure 28 days before embryonic development. The prevalence of spina bifida varies greatly among different ethnic groups and regions, and its etiology is complex. Currently, some spina bifida patients can be prevented by folic acid supplements, and with the improvement of treatment technology, the short-term and long-term survival rate of children with spina bifida has improved. Conclusion The research on the pathogenesis of spina bifida will be based on the refined individual information on exposure, genetics, and complex phenotype, and will provide a theoretical basis for improving prevention and treatment strategies through multidisciplinary cooperation.
Collapse
Affiliation(s)
- Haiyan Zhu
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| | - Linlin Wang
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| | - Aiguo Ren
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| |
Collapse
|
45
|
Imbard A, Schwendimann L, Lebon S, Gressens P, Blom HJ, Benoist JF. Liver and brain differential expression of one-carbon metabolism genes during ontogenesis. Sci Rep 2021; 11:21132. [PMID: 34702858 PMCID: PMC8548596 DOI: 10.1038/s41598-021-00311-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
One-carbon metabolism (1C metabolism) is of paramount importance for cell metabolism and mammalian development. It is involved in the synthesis or modification of a wide variety of compounds such as proteins, lipids, purines, nucleic acids and neurotransmitters. We describe here the evolution of expression of genes related to 1C metabolism during liver and brain ontogeny in mouse. The level of expression of 30 genes involved in 1C metabolism was quantified by RT-qPCR in liver and brain tissues of OF1 mice at E9, E11, E13, E15, E17, P0, P3, P5, P10, P15 developmental stages and in adults. In the liver, hierarchical clustering of the gene expression patterns revealed five distinct clades of genes with a first bifurcating hierarchy distinguishing two main developmental stages before and after E15. In the brain most of the 1C metabolism genes are expressed but at a lower levels. The gene expression of enzymes involved in 1C metabolism show dramatic changes during development that are tissue specific. mRNA expression patterns of all major genes involved in 1C metabolism in liver and brain provide clues about the methylation demand and methylation pathways during embryonic development.
Collapse
Affiliation(s)
- Apolline Imbard
- Biochemistry Hormonology Laboratory, Robert-Debré University Hospital, APHP, 48 bd Serurier, 75019, Paris, France.,LIPSYS2, Faculty of Pharmacy, Paris Saclay University, Chatenay-Malabry, France
| | | | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France.,Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Henk J Blom
- Metabolic Unit, Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Jean-François Benoist
- Biochemistry Hormonology Laboratory, Robert-Debré University Hospital, APHP, 48 bd Serurier, 75019, Paris, France. .,LIPSYS2, Faculty of Pharmacy, Paris Saclay University, Chatenay-Malabry, France.
| |
Collapse
|
46
|
Mechanics of neural tube morphogenesis. Semin Cell Dev Biol 2021; 130:56-69. [PMID: 34561169 DOI: 10.1016/j.semcdb.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
The neural tube is an important model system of morphogenesis representing the developmental module of out-of-plane epithelial deformation. As the embryonic precursor of the central nervous system, the neural tube also holds keys to many defects and diseases. Recent advances begin to reveal how genetic, cellular and environmental mechanisms work in concert to ensure correct neural tube shape. A physical model is emerging where these factors converge at the regulation of the mechanical forces and properties within and around the tissue that drive tube formation towards completion. Here we review the dynamics and mechanics of neural tube morphogenesis and discuss the underlying cellular behaviours from the viewpoint of tissue mechanics. We will also highlight some of the conceptual and technical next steps.
Collapse
|
47
|
Kunpalin Y, Deprest J, Papastefanou I, Bredaki E, Sacco A, Russo F, Richter J, Jansen K, Ourselin S, De Coppi P, David AL, Ushakov F, De Catte L. Incidence and patterns of abnormal corpus callosum in fetuses with isolated spina bifida aperta. Prenat Diagn 2021; 41:957-964. [PMID: 33834531 PMCID: PMC7613455 DOI: 10.1002/pd.5945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the incidence and characterise corpus callosum (CC) abnormalities in fetuses with spina bifida aperta (SBA) between 18 and 26 weeks of gestation. METHODS This was a retrospective study on fetuses with isolated SBA and who were assessed for fetal surgery. Digitally stored ultrasound images of the brain were reviewed for the presence/absence of the CC, and the length and diameter of its constituent parts (rostrum, genu, body and splenium). We used regression analysis to determine the relationship between CC abnormalities and gestational age, head circumference, ventricle size, lesion level and lesion type. RESULTS Nearly three-quarters of fetuses with isolated SBA had an abnormal CC (71.7%, 76/106). Partial agenesis was most common in the splenium (18.9%, 20/106) and the rostrum (13.2%, 14/106). The most common abnormal pattern was of a short CC with normal diameter throughout. Of note, 20.8% (22/106) had a hypoplastic genu and 28.3% (30/106) had a thick body part. Larger lateral ventricle size was associated with partial agenesis of the CC (odds ratio [OR]: 0.14, p < 0.001) and inversely associated with a shorter CC (OR: 2.60, p < 0.01). CONCLUSION An abnormal CC is common in fetuses with isolated SBA who are referred for fetal surgery.
Collapse
Affiliation(s)
- Yada Kunpalin
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | | | - Emma Bredaki
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Adalina Sacco
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Francesca Russo
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Jute Richter
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Paolo De Coppi
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
- Great Ormond Street Institute of Child's Health, University College London, London, UK
| | - Anna L. David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Fred Ushakov
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Luc De Catte
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Lesko AC, Keller R, Chen P, Sutherland A. Scribble mutation disrupts convergent extension and apical constriction during mammalian neural tube closure. Dev Biol 2021; 478:59-75. [PMID: 34029538 DOI: 10.1016/j.ydbio.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 10/24/2022]
Abstract
Morphogenesis of the vertebrate neural tube occurs by elongation and bending of the neural plate, tissue shape changes that are driven at the cellular level by polarized cell intercalation and cell shape changes, notably apical constriction and cell wedging. Coordinated cell intercalation, apical constriction, and wedging undoubtedly require complex underlying cytoskeletal dynamics and remodeling of adhesions. Mutations of the gene encoding Scribble result in neural tube defects in mice, however the cellular and molecular mechanisms by which Scrib regulates neural cell behavior remain unknown. Analysis of Scribble mutants revealed defects in neural tissue shape changes, and live cell imaging of mouse embryos showed that the Scrib mutation results in defects in polarized cell intercalation, particularly in rosette resolution, and failure of both cell apical constriction and cell wedging. Scrib mutant embryos displayed aberrant expression of the junctional proteins ZO-1, Par3, Par6, E- and N-cadherins, and the cytoskeletal proteins actin and myosin. These findings show that Scribble has a central role in organizing the molecular complexes regulating the morphomechanical neural cell behaviors underlying vertebrate neurulation, and they advance our understanding of the molecular mechanisms involved in mammalian neural tube closure.
Collapse
Affiliation(s)
- Alyssa C Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Ping Chen
- Otogenetics Corporation, Atlanta, GA, 30360, USA
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| |
Collapse
|
49
|
Cyclin M2 (CNNM2) knockout mice show mild hypomagnesaemia and developmental defects. Sci Rep 2021; 11:8217. [PMID: 33859252 PMCID: PMC8050252 DOI: 10.1038/s41598-021-87548-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
Patients with mutations in Cyclin M2 (CNNM2) suffer from hypomagnesaemia, seizures, and intellectual disability. Although the molecular function of CNNM2 is under debate, the protein is considered essential for renal Mg2+ reabsorption. Here, we used a Cnnm2 knock out mouse model, generated by CRISPR/Cas9 technology, to assess the role of CNNM2 in Mg2+ homeostasis. Breeding Cnnm2+/- mice resulted in a Mendelian distribution at embryonic day 18. Nevertheless, only four Cnnm2-/- pups were born alive. The Cnnm2-/- pups had a significantly lower serum Mg2+ concentration compared to wildtype littermates. Subsequently, adult Cnnm2+/- mice were fed with low, control, or high Mg2+ diets for two weeks. Adult Cnnm2+/- mice showed mild hypomagnesaemia compared to Cnnm2+/+ mice and increased serum Ca2+ levels, independent of dietary Mg2+ intake. Faecal analysis displayed increased Mg2+ and Ca2+ excretion in the Cnnm2+/- mice. Transcriptional profiling of Trpm6, Trpm7, and Slc41a1 in kidneys and colon did not reveal effects based on genotype. Microcomputed tomography analysis of the femurs demonstrated equal bone morphology and density. In conclusion, CNNM2 is vital for embryonic development and Mg2+ homeostasis. Our data suggest a previously undescribed role of CNNM2 in the intestine, which may contribute to the Mg2+ deficiency in mice and patients.
Collapse
|
50
|
Pregnancy-Related Extracellular Vesicles Revisited. Int J Mol Sci 2021; 22:ijms22083904. [PMID: 33918880 PMCID: PMC8068855 DOI: 10.3390/ijms22083904] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 μm in diameter that are discharged and taken in by many different types of cells. Depending on the nature and quantity of their content—which generally includes proteins, lipids as well as microRNAs (miRNAs), messenger-RNA (mRNA), and DNA—these particles can bring about functional modifications in the receiving cells. During pregnancy, placenta and/or fetal-derived EVs have recently been isolated, eliciting interest in discovering their clinical significance. To date, various studies have associated variations in the circulating levels of maternal and fetal EVs and their contents, with complications including gestational diabetes and preeclampsia, ultimately leading to adverse pregnancy outcomes. Furthermore, EVs have also been identified as messengers and important players in viral infections during pregnancy, as well as in various congenital malformations. Their presence can be detected in the maternal blood from the first trimester and their level increases towards term, thus acting as liquid biopsies that give invaluable insight into the status of the feto-placental unit. However, their exact roles in the metabolic and vascular adaptations associated with physiological and pathological pregnancy is still under investigation. Analyzing peer-reviewed journal articles available in online databases, the purpose of this review is to synthesize current knowledge regarding the utility of quantification of pregnancy related EVs in general and placental EVs in particular as non-invasive evidence of placental dysfunction and adverse pregnancy outcomes, and to develop the current understanding of these particles and their applicability in clinical practice.
Collapse
|