1
|
Delaporte F, Roger E, Bejaud J, Loyer P, Lagarce F, Savary CC. Internalization and mechanisms of toxicity of lipid nanocapsules in HepG2 and HepaRG hepatoma cells upon acute and chronic exposures. Int J Pharm 2024; 667:124815. [PMID: 39424085 DOI: 10.1016/j.ijpharm.2024.124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Lipid nanocapsules (LNCs) used as nanomedicine have been developed to enhance pharmacokinetics and decrease side effects of drugs, particularly for cancer therapies. After intravenous administration, LNCs possess an important hepatic tropism however, few data exist about their toxicity and even less after repeated exposure. This study aimed to assess the in vitro toxicity and internalization of unloaded LNCs, of 50 and 100 nm size, on HepG2 and HepaRG liver cell lines. Internalization of the 50 nm LNCs was slower compared to the 100 nm LNCs and both LNCs exhibited a higher toxicity on cancerous HepG2 cells compared to differentiated HepaRG cells. LNCs were mainly internalized via caveolin-mediated endocytosis in both cell lines. Upon chronic exposure, the toxicity of LNCs on HepaRG cells increased, although the pathways of internalization remained unchanged. Cell death studies have demonstrated an involvement of ferroptosis, but not of apoptosis. After acute and repeated exposures on HepaRG cells, the 100 nm LNCs showed a good safety profile. Finally, LNCs induced a more significant toxicity associated with faster internalization in the HepG2 cancerous model than in the differentiated HepaRG cells. This provides good evidence for LNCs to potentialize the cytotoxic effects of an active drug on liver cancer cells.
Collapse
Affiliation(s)
- Flavien Delaporte
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; CHU Angers, 4 rue Larrey, 49033 Angers, France.
| | - Emilie Roger
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Jérome Bejaud
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Pascal Loyer
- Inserm, University of Rennes, INRAE, NuMeCan Institute (Nutrition, Metabolisms and Cancer), Rennes, France
| | - Frédéric Lagarce
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; CHU Angers, 4 rue Larrey, 49033 Angers, France
| | - Camille C Savary
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
2
|
Fonseca BDR, das Neves RN, Strothmann AL, Sena-Lopes Â, da Silva CC, Birmann PT, Savegnago L, de Pereira CMP, Borsuk S. Antiparasitic activity of chalcones analogue against Trichomonas vaginalis: biochemical, molecular and in silico aspects. Exp Parasitol 2024; 265:108809. [PMID: 39094997 DOI: 10.1016/j.exppara.2024.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Trichomonas vaginalis is the etiologic agent of trichomoniasis, a worldwide distributed sexually transmitted infection (STI) that affects the genitourinary tract. Even though this disease already has a treatment in the prescription of drugs of the 5-nitroimidazole class, described low treatments adhesion, adverse side effects and cases of resistant isolates demonstrate the need for new formulations. With this in mind, chalcones emerge as a potential alternative to be tested, being compounds widely distributed in nature, easy to chemically synthesize and presenting several biological activities already reported. In this experiment, we evaluated the antiparasitic activity of 10 chalcone at a concentration of 100 μM against ATCC 30236 T. vaginalis isolates, considering negative (live trophozoites), positive (Metronidazole 100 μM) and vehicle (DMSO 0.6%) controls. Compounds 3a, 3c, 3 g and 3i showed promising results, with MICs set at 70 μM, 80 μM, 90 μM and 90 μM, respectively (p < 0,05). Cytotoxicity assays were performed on VERO and HMVII cell lines and revealed low inhibition rates at concentrations bellow 20 μM. To elucidate a possible mechanism of action for these molecules, the DPPH, ABTS and FRAP assays were performed, in which none of the four compounds presented antioxidant activity. Assays to verify ROS and lipid peroxidation in the parasite membrane were performed. None of the tested compounds identified ROS accumulation after incubation with trophozoites. 3 g molecule promoted an increase in MDA production after incubation. Results presented in this paper demonstrate the promising trichomonicidal profile, although further tests are still needed to optimize their performance and better elucidate the mechanisms of action involved.
Collapse
Affiliation(s)
- Bárbara da Rocha Fonseca
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil.
| | - Raquel Nascimento das Neves
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil
| | - Adriane Leites Strothmann
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil
| | - Ângela Sena-Lopes
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil
| | - Caroline Carapina da Silva
- Laboratório de Lipidômica e Bio-orgânica, Grupo de Ciências Químicas Farmacêuticas e de Alimentos, UFPel, Pelotas, RS, 96010-900, Brazil
| | - Paloma Taborda Birmann
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, Brazil
| | - Claudio Martin Pereira de Pereira
- Laboratório de Lipidômica e Bio-orgânica, Grupo de Ciências Químicas Farmacêuticas e de Alimentos, UFPel, Pelotas, RS, 96010-900, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
3
|
Das U, Kapoor DU, Singh S, Prajapati BG. Unveiling the potential of chitosan-coated lipid nanoparticles in drug delivery for management of critical illness: a review. Z NATURFORSCH C 2024; 79:107-124. [PMID: 38721838 DOI: 10.1515/znc-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/20/2024] [Indexed: 07/04/2024]
Abstract
Chitosan (CT), a natural, cationic, chemically stable molecule, biocompatible, biodegradable, nontoxic, polysaccharide derived from the deacetylation of chitin, has very uniquely surfaced as a material of promise for drug delivery and biomedical applications. For the oral, ocular, cutaneous, pulmonary, and nose-to-brain routes, CT-coated nanoparticles (CTCNPs) have numerous advantages, consisting of improved controlled drug release, physicochemical stability, improved cell and tissue interactions, and increased bioavailability and efficacy of the active ingredient. CTCNPs have a broad range of therapeutic properties including anticancer, antiviral, antifungal, anti-inflammatory, antibacterial properties, treating neurological disorders, and other diseases. This has led to substantial research into the many potential uses of CT as a drug delivery vehicle. CT has also been employed in a wide range of biomedical processes, including bone and cartilage tissue regeneration, ocular tissue regeneration, periodontal tissue regeneration, heart tissue regeneration, and wound healing. Additionally, CT has been used in cosmeceutical, bioimaging, immunization, and gene transfer applications. CT exhibits a number of biological activities, which are the basis for its remarkable potential for use as a drug delivery vehicle, and these activities are covered in detail in this article. The alterations applied to CT to obtain the necessary properties have been described.
Collapse
Affiliation(s)
- Ushasi Das
- Department of Pharmaceutical Technology, 30167 Jadavpur University , Jadavpur, Kolkata, West Bengal 700032, India
| | - Devesh U Kapoor
- 78467 Dr. Dayaram Patel Pharmacy College , Bardoli 394601, India
| | - Sudarshan Singh
- Office of Research Administration, 26682 Chiang Mai University , Chiang Mai 50200, Thailand
- Faculty of Pharmacy, 26682 Chiang Mai University , Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, 79233 Ganpat University , Kherva, Gujarat 384012, India
| |
Collapse
|
4
|
Ashkenazi S, Matsanov P, Nassar-Marjiya E, Farah S, Weitz IS. Study of PEG- b-PLA/Eudragit S100 Blends on the Nanoencapsulation of Indigo Carmine Dye and Application in Controlled Release. ACS OMEGA 2024; 9:13382-13390. [PMID: 38524501 PMCID: PMC10956112 DOI: 10.1021/acsomega.3c10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
A nanocapsule shell of poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-b-PLA) mixed with anionic Eudragit S100 (90/10% w/w) was previously used to entrap and define the self-assembly of indigo carmine (IC) within the hydrophilic cavity core. In the present work, binary blends were prepared by solution mixing at different PEG-b-PLA/Eudragit S100 ratios (namely, 100/0, 90/10, 75/25, and 50/50% w/w) to elucidate the role of the capsule shell in tuning the encapsulation of the anionic dye (i.e., IC). The results showed that the higher content of Eudragit S100 in the blend decreases the miscibility of the two polymers due to weak intermolecular interactions between PEG-b-PLA and Eudragit S100. Moreover, with an increase in the amount of Eudragit S100, a higher thermal stability was observed related to the mobility restriction of PEG-b-PLA chains imposed by Eudragit S100. Formulations containing 10 and 25% Eudragit S100 exhibited an optimal interplay of properties between the negative surface charge and the miscibility of the polymer blend. Therefore, the anionic character of the encapsulating agent provides sufficient accumulation of IC molecules in the nanocapsule core, leading to dye aggregates following the self-assembly. At the same time, the blending of the two polymers tunes the IC release properties in the initial stage, achieving slow and controlled release. These findings give important insights into the rational design of polymeric nanosystems containing organic dyes for biomedical applications.
Collapse
Affiliation(s)
- Shaked Ashkenazi
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Pnina Matsanov
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Eid Nassar-Marjiya
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shady Farah
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- The
Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Iris S. Weitz
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| |
Collapse
|
5
|
Pegoraro NS, Gehrcke M, Camponogara C, Fialho MFP, Cruz L, Oliveira SM. The Association of Oleic Acid and Dexamethasone Acetate into Nanocapsules Enables a Reduction in the Effective Corticosteroid Dose in a UVB Radiation-Induced Sunburn Model in Mice. Pharmaceutics 2024; 16:176. [PMID: 38399236 PMCID: PMC10892665 DOI: 10.3390/pharmaceutics16020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Dexamethasone has a high anti-inflammatory efficacy in treating skin inflammation. However, its use is related to the rebound effect, rosacea, purple, and increased blood glucose levels. Nanotechnology approaches have emerged as strategies for drug delivery due to their advantages in improving therapeutic effects. To reduce dexamethasone-related adverse effects and improve the anti-inflammatory efficacy of treatments, we developed nanocarriers containing this corticosteroid and oleic acid. Nanocapsules and nanoemulsion presented dexamethasone content close to the theoretical value and controlled dexamethasone release in an in vitro assay. Gellan gum-based hydrogels were successfully prepared to employ the nanostructured systems. A permeation study employing porcine skin showed that hydrogels containing non-nanoencapsulated dexamethasone (0.025%) plus oleic acid (3%) or oleic acid (3%) plus dexamethasone (0.025%)-loaded nanocapsules provided a higher amount of dexamethasone in the epidermis compared to non-nanoencapsulated dexamethasone (0.5%). Hydrogels containing oleic acid plus dexamethasone-loaded nanocapsules effectively inhibited mice ear edema (with inhibitions of 89.26 ± 3.77% and 85.11 ± 2.88%, respectively) and inflammatory cell infiltration (with inhibitions of 49.58 ± 4.29% and 27.60 ± 11.70%, respectively). Importantly, the dexamethasone dose employed in hydrogels containing the nanocapsules that effectively inhibited ear edema and cell infiltration was 20-fold lower (0.025%) than that of non-nanoencapsulated dexamethasone (0.5%). Additionally, no adverse effects were observed in preliminary toxicity tests. Our study suggests that nanostructured hydrogel containing a reduced effective dose of dexamethasone could be a promising therapeutic alternative to treat inflammatory disorders with reduced or absent adverse effects. Additionally, testing our formulation in a clinical study on patients with skin inflammatory diseases would be very important to validate our study.
Collapse
Affiliation(s)
- Natháli Schopf Pegoraro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Mailine Gehrcke
- Graduate Program in Pharmaceutical Sciences, Centre of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.G.); (L.C.)
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Centre of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.G.); (L.C.)
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
6
|
Tarannum N, Pooja K, Jakhar S, Mavi A. Nanoparticles assisted intra and transdermic delivery of antifungal ointment: an updated review. DISCOVER NANO 2024; 19:11. [PMID: 38195832 PMCID: PMC10776542 DOI: 10.1186/s11671-023-03932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
This review paper highlights the trans-dermic delivery of nanoparticles (NPs) based antifungal ointments with the help of nanotechnology. It also describes the novel trans-dermal approach utilizing various nanoparticles which enables an efficient delivery to the target site. This current review gives an overview about past research and developments as well as the current nanoparticle-based ointments. This review also presents data regarding types, causes of infection, and different pathogens within their infection site. It also gives information about antifungal ointments with their activity and side effects of antifungal medicines. Additionally, this review also focuses on the future aspects of the topical administration of nanoparticle-based antifungal ointments. These nanoparticles can encapsulate multiple antifungal drugs as a combination therapy targeting different aspects of fungal infection. Nanoparticles can be designed in such a way that they can specifically target fungal cells and do not affect healthy cells. Nanoparticle based antifungal ointments exhibit outstanding potential to treat fungal diseases. As further research and advancements evolve in nanotechnology, we expect more development of nanoparticle-based antifungal formulations shortly. This paper discusses all the past and future applications, recent trends, and developments in the various field and also shows its bright prospective in the upcoming years.
Collapse
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India.
| | - Km Pooja
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Shivani Jakhar
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Anshika Mavi
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| |
Collapse
|
7
|
Valiallahi A, Vazifeh Z, Gatabi ZR, Davoudi M, Gatabi IR. PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices. Curr Med Chem 2024; 31:6371-6392. [PMID: 37612875 DOI: 10.2174/0929867331666230823094737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into leishmania-infected macrophages either using passive targeting or using macrophagerelated receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the in-vivo and in-vitro effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both in-vitro and in-vivo conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.
Collapse
Affiliation(s)
- Alaleh Valiallahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Vazifeh
- Department of Biotechnology, Shahed University, Tehran, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Davoudi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Dos Santos FL, Zilles JC, Machado AU, Marques MS, da Costa BS, Kulkamp Guerreiro IC, Fuentefria AM, Contri RV. Polymeric Nanocapsules Containing Ozonated Oil and Terbinafine Hydrochloride as a Potential Treatment Against Dermatophytes. AAPS PharmSciTech 2023; 24:198. [PMID: 37783861 DOI: 10.1208/s12249-023-02657-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
Terbinafine hydrochloride is a synthetic allylamine whose mechanism of action consists of inhibiting the enzyme squalene epoxidase that participates in the first stage of ergosterol synthesis, interfering with fungal membrane function. Ozonated oils are used for topical application of ozone, producing reactive oxygen species that cause cellular damage in microorganisms, therefore being an alternative treatment for acute and chronic skin infections. This study aimed to develop and characterize Eudragit® RS100 nanocapsules, obtained by interfacial deposition of preformed polymer method, containing 0.5% terbinafine hydrochloride and 5% ozonated sunflower seed oil as a potential treatment against dermatophytes. The polymeric nanocapsules were characterized regarding particle size, zeta potential, pH, drug content, encapsulation efficiency, and stability. The in vitro drug release, in vitro skin permeation, and in vitro antifungal activity were also evaluated. The particle size was around 150 nm with a narrow size distribution, the zeta potential was around + 6 mV, and the pH was 2.2. The drug content was close to 95% with an encapsulation efficiency of 53%. The nanocapsules were capable to control the drug release and the skin permeation. The in vitro susceptibility test showed greater antifungal activity for the developed nanocapsules, against all dermatophyte strains tested, compared to the drug solution. Therefore, the polymeric nanocapsules suspension containing terbinafine hydrochloride and ozonated oil can be considered a potential high-efficacy candidate for the treatment of dermatophytosis, with a possible reduction in the drug dose and frequency of applications. Studies to evaluate safety and efficacy in vivo still need to be performed.
Collapse
Affiliation(s)
- Francielli Lima Dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS, 90610-000, Brazil
| | - Júlia Capp Zilles
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Andressa Urbano Machado
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS, 90610-000, Brazil
| | - Morgana Souza Marques
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Bárbara Souza da Costa
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Irene Clemes Kulkamp Guerreiro
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS, 90610-000, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
- Programa de Pós-Graduação em Farmacologia e Terapêutica - PPGFT, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Alexandre Meneghello Fuentefria
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS, 90610-000, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
- Programa de Pós-Graduação em Farmacologia e Terapêutica - PPGFT, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Renata Vidor Contri
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Azenha, Porto Alegre, RS, 90610-000, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
9
|
Balbinot GS, Leitune VCB, Zatta KC, Benin T, Guterres SS, Collares FM. Controlled drug delivery from metronidazole-containing bioactive endodontic cements. Dent Mater 2023; 39:839-845. [PMID: 37500315 DOI: 10.1016/j.dental.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES This study aims to formulate metronidazole liquid nanocapsules (MTZLNC) and evaluate their effect on the physicochemical and biological properties of calcium silicate-based bioactive endodontic cements, in vitro. METHODS A MTZLNC suspension was formulated by deposition of the preformed polymer and characterized by laser diffraction and high-performance liquid chromatography (HPLC). Calcium silicate (CS) was mixed with a radiopaque agent (calcium tungstate - CaWO4), at 10 wt%, to produce the cement powder. Cements liquids were used with two concentrations of MTZLNC suspension: 0.3 mg/ml and 0.15 mg/ml. Cements prepared with distilled water were used as the control. The radiopacity, setting time, and flow were evaluated following ISO 6876:2012. The compressive strength analysis was conducted according to ISO 9917:2007. pH and mineral deposition were evaluated after immersion in simulated body fluid (SBF). Cell behavior was evaluated by the viability of pre-osteoblastic cells and pulp fibroblasts by SRB and MTT and the antibacterial activity against Enterococcus faecalis was analyzed immediately and after nine months of water storage. RESULTS MTZLNCs were formulated with a median diameter of 148 nm and 83.44 % load efficiency. Increased flow and reduced strength were observed for both MTZLNCs concentrations. The incorporation of MTZLNCs maintained the ability of cements to increase pH media and promote mineral deposition over the samples, without promoting cytotoxicity. A 2 log10 reduction in E. faecalis CFU was observed immediately and after nine months in water storage. CONCLUSION The formulation of MTZLNCs allowed the development of antibacterial calcium silicate-based-cements with suitable physicochemical properties and bioactivity, with a reduction in mechanical strength. The 0.3 mg/ml concentration in cements liquid promoted effective and sustainable antibacterial activity.
Collapse
Affiliation(s)
- Gabriela Souza Balbinot
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vicente Castelo Branco Leitune
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kelly Cristina Zatta
- Cosmetology and Pharmaceutical Nanotechnology Laboratory, School of Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Tainara Benin
- Pharmaceutical Nanotechnology Laboratory, School of Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Silvia Stanisçauski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fabricio Mezzomo Collares
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Ureña NM, de Oliveira CP, Guterres SS, Pohlmann AR, da Costa OTF, Boechat AL. The Anti-Arthritic Activity of Diclofenac Lipid-Core Nanocapsules: Stereological Analysis Showing More Protection of Deep Joint Components. Molecules 2023; 28:5219. [PMID: 37446881 DOI: 10.3390/molecules28135219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Diclofenac is the most prescribed nonsteroidal anti-inflammatory drug worldwide and is used to relieve pain and inflammation in inflammatory arthritis. Diclofenac is associated with serious adverse effects, even in regular-dose regimens. Drug delivery systems can overcome this issue by reducing adverse effects and optimizing their efficacy. This study evaluated the activity of lipid-core nanocapsules loaded with diclofenac (DIC-LNCs) in an experimental model of adjuvant-induced arthritis. The diclofenac nanoformulation was obtained via self-assembly. A stereological analysis approach was applied for the morphological quantification of the volume, density, and cellular profile count of the metatarsophalangeal joints of rats. Proinflammatory cytokines and biochemical profiles were also obtained. Our results showed that the diclofenac nanocapsule DIC-LNCs were able to reduce arthritis compared with the control group and the DIC group. DIC-LNCs efficiently reduced proinflammatory cytokines, C-reactive protein, and xanthine oxidase levels. Additionally, DIC-LNCs reduced the loss of synoviocytes and chondrocytes compared with the DIC (p < 0.05) and control groups (p < 0.05). These data suggest that DIC-LNCs have anti-arthritic activity and preserve joint components, making them promising for clinical use.
Collapse
Affiliation(s)
- Nathalie Marte Ureña
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
| | - Catiúscia Padilha de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Oscar Tadeu Ferreira da Costa
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
- Laboratório de Morfologia Quantitativa, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
| | - Antonio Luiz Boechat
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
- Laboratório de Terapias Inovadoras, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
| |
Collapse
|
11
|
Xin Y, Quan L, Zhang H, Ao Q. Emerging Polymer-Based Nanosystem Strategies in the Delivery of Antifungal Drugs. Pharmaceutics 2023; 15:1866. [PMID: 37514052 PMCID: PMC10386574 DOI: 10.3390/pharmaceutics15071866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Nanosystems-based antifungal agents have emerged as an effective strategy to address issues related to drug resistance, drug release, and toxicity. Among the diverse materials employed for antifungal drug delivery, polymers, including polysaccharides, proteins, and polyesters, have gained significant attention due to their versatility. Considering the complex nature of fungal infections and their varying sites, it is crucial for researchers to carefully select appropriate polymers based on specific scenarios when designing antifungal agent delivery nanosystems. This review provides an overview of the various types of nanoparticles used in antifungal drug delivery systems, with a particular emphasis on the types of polymers used. The review focuses on the application of drug delivery systems and the release behavior of these systems. Furthermore, the review summarizes the critical physical properties and relevant information utilized in antifungal polymer nanomedicine delivery systems and briefly discusses the application prospects of these systems.
Collapse
Affiliation(s)
- Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Hussein EOS, Suliman GM, Al-Owaimer AN, Al-Baadani HH, Al-Garadi MA, Ba-Awadh HA, Qaid MM, Swelum AA. Effect of water supplementation of Magic oil at different growing periods on growth performance, carcass traits, blood biochemistry, and ileal histomorphology of broiler chickens. Poult Sci 2023; 102:102775. [PMID: 37269792 PMCID: PMC10242640 DOI: 10.1016/j.psj.2023.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023] Open
Abstract
Natural antibiotic substitutes have recently been used as growth promoters and to combat pathogens. Therefore, this study aimed to assess the effects of adding Magic oil (nano-emulsified plant oil) at different growing periods on growth performance, histomorphology of the ileum, carcass traits, and blood biochemistry of broiler chickens. A total of 432-day-old Ross 308 chicks were randomly assigned to 1 of 6 water supplementation treatment groups based on growing periods, with 4 groups of Magic oil programs compared to probiotic (Albovit) as a positive control and nonsupplemented group as a negative control, with 9 replicates each with 8 birds (4♂ and 4♀). The periods of adding Magic oil Magic oil were 35, 20, 23, and 19 d for T1, T2, T3, and T4, respectively. Birds' performance was evaluated during 0 to 4, 4 to 14, 21 to 30, 30 to 35, and overall days old. Carcass parameters, blood chemistry, and ileal histomorphology were examined on d 35. The findings showed that birds in the T4 group of the Magic oil supplementation program (from 1 to 4 and 21 to 35 d of age) consumed 1.82% and 4.20% more food, gained 3.08% and 6.21% more, and converted feed to meat 1.39% and 2.07% more than Albovit and negative control, respectively, during the experiment (1-35). Magic oil particularly T1 (Magic oil is supplemented throughout the growing period) and T4 programs improved intestinal histology compared to the negative control. There were no changes (P > 0.05) between treatments in carcass parameters and blood biochemistry. In conclusion, water supplementation with Magic oil for broilers improves intestinal morphometrics and growth performance similar to or better than probiotic, especially during brooding and overall periods. Further studies are needed to evaluate the effect of adding both nano-emulsified plant oil and probiotics on different parameters.
Collapse
Affiliation(s)
- Elsayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah N Al-Owaimer
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hani H Al-Baadani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maged A Al-Garadi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hani A Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Qaid
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
13
|
Cardoso de Souza Z, Humberto Xavier Júnior F, Oliveira Pinheiro I, de Souza Rebouças J, Oliveira de Abreu B, Roberto Ribeiro Mesquita P, de Medeiros Rodrigues F, Costa Quadros H, Manuel Fernandes Mendes T, Nguewa P, Marques Alegretti S, Paiva Farias L, Rocha Formiga F. Ameliorating the antiparasitic activity of the multifaceted drug ivermectin through a polymer nanocapsule formulation. Int J Pharm 2023; 639:122965. [PMID: 37084836 DOI: 10.1016/j.ijpharm.2023.122965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Ivermectin (IVM) is a potent antiparasitic widely used in human and veterinary medicine. However, the low oral bioavailability of IVM restricts its therapeutic potential in many parasitic infections, highlighting the need for novel formulation approaches. In this study, poly(ε-caprolactone) (PCL) nanocapsules containing IVM were successfully developed using the nanoprecipitation method. Pumpkin seed oil (PSO) was used as an oily core in the developed nanocapsules. Previously, PSO was chemically analyzed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME/GC-MS). The solubility of IVM in PSO was found to be 4,266.5 ± 38.6 μg/mL. In addition, the partition coefficient of IVM in PSO/water presented a logP of 2.44. A number of nanocapsule batches were produced by factorial design resulting in an optimized formulation. Negatively charged nanocapsules measuring around 400 nm demonstrated unimodal size distribution, and presented regular spherical morphology under transmission electron microscopy. High encapsulation efficiency (98-100%) was determined by HPLC. IVM-loaded capsules were found to be stable in nanosuspensions at 4°C and 25°C, with no significant variations in particle size observed over a period of 150 days. Nanoencapsulated IVM (0.3 mM) presented reduced toxicity to J774 macrophages and L929 fibroblasts compared to free IVM. Moreover, IVM-loaded nanocapsules also demonstrated enhanced in vitro anthelmintic activity against Strongyloides venezuelensis in comparison to free IVM. Collectively, the present findings demonstrate the promising potential of PCL-PSO nanocapsules to improve the antiparasitic effects exerted by IVM.
Collapse
Affiliation(s)
- Zilyane Cardoso de Souza
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| | | | - Irapuan Oliveira Pinheiro
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| | | | - Brenda Oliveira de Abreu
- Graduate Program in Health Sciences, University of Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | | | | | - Helenita Costa Quadros
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
| | | | - Paul Nguewa
- University of Navarra, ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), 31009, Pamplona, Spain
| | - Silmara Marques Alegretti
- Departament of Animal Biology, State University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Leonardo Paiva Farias
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
| | - Fabio Rocha Formiga
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil; Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil.
| |
Collapse
|
14
|
Yu B, Lang X, Wang X, Ding L, Han M, Guo Y, Dong Z. Effects of different conformations of polylysine on the anti-tumor efficacy of methotrexate nanoparticles. Biomed Pharmacother 2023; 162:114662. [PMID: 37037095 DOI: 10.1016/j.biopha.2023.114662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
Drug delivery systems require that carrier materials have good biocompatibility, degradability, and constructability. Poly(amino acids), a substance with a distinctive secondary structure, not only have the basic features of the carrier materials but also have several reactive functional groups in the side chain, which can be employed as drug carriers to deliver anticancer drugs. The conformation of isomers of drug carriers has some influence on the preparation, morphology, and efficacy of nanoparticles. In this study, two isomers of polylysine, including ε-polylysine (ε-PL) and α-polylysine (α-PL), were used as drug carriers to entrap methotrexate (MTX) and construct nano-drug delivery systems. ε-PL/MTX nanoparticles with the morphology of helical nanorods presented a small particle size (115.0 nm), and relative high drug loading content (57.8 %). The anticancer effect of ε-PL/MTX nanoparticles was 1.3-fold and 2.6-fold stronger than that of α-PL/MTX nanoparticles in vivo and in vitro, respectively. ε-PL is an ideal drug carrier with potential clinical application prospects.
Collapse
Affiliation(s)
- Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxue Lang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
15
|
PEGylated and functionalized polylactide-based nanocapsules: An overview. Int J Pharm 2023; 636:122760. [PMID: 36858134 DOI: 10.1016/j.ijpharm.2023.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Polymeric nanocapsules (NC) are versatile mixed vesicular nanocarriers, generally containing a lipid core with a polymeric wall. They have been first developed over four decades ago with outstanding applicability in the cosmetic and pharmaceutical fields. Biodegradable polyesters are frequently used in nanocapsule preparation and among them, polylactic acid (PLA) derivatives and copolymers, such as PLGA and amphiphilic block copolymers, are widely used and considered safe for different administration routes. PLA functionalization strategies have been developed to obtain more versatile polymers and to allow the conjugation with bioactive ligands for cell-targeted NC. This review intends to provide steps in the evolution of NC since its first report and the recent literature on PLA-based NC applications. PLA-based polymer synthesis and surface modifications are included, as well as the use of NC as a novel tool for combined treatment, diagnostics, and imaging in one delivery system. Furthermore, the use of NC to carry therapeutic and/or imaging agents for different diseases, mainly cancer, inflammation, and infections is presented and reviewed. Constraints that impair translation to the clinic are discussed to provide safe and reproducible PLA-based nanocapsules on the market. We reviewed the entire period in the literature where the term "nanocapsules" appears for the first time until the present day, selecting original scientific publications and the most relevant patent literature related to PLA-based NC. We presented to readers a historical overview of these Sui generis nanostructures.
Collapse
|
16
|
Mehandole A, Walke N, Mahajan S, Aalhate M, Maji I, Gupta U, Mehra NK, Singh PK. Core-Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems. AAPS PharmSciTech 2023; 24:50. [PMID: 36703085 DOI: 10.1208/s12249-023-02504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Amongst the several nano-drug delivery systems, lipid or polymer-based core-shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core-shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core-shell NC's mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core-shell NCs and applications in the foreseeable future.
Collapse
Affiliation(s)
- Arti Mehandole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Nikita Walke
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
17
|
Nanotechnology-based alternatives for the topical delivery of immunosuppressive agents in psoriasis. Int J Pharm 2023; 631:122535. [PMID: 36566826 PMCID: PMC9876733 DOI: 10.1016/j.ijpharm.2022.122535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Psoriasis is a recurring, immune-mediated dermatological disorder. Many therapeutic agents are available for the treatment of psoriasis, including immunosuppressants and biologic treatments with immunosuppressant action. The employment of nanotechnology allows drug tailoring to achieve dermal targeting, improve efficacy and minimize undesirable effects. Here we discuss the use of the topical route in combination with nano-based drug delivery systems containing immunosuppressants for the management of psoriasis. This review is based on articles selected from 2011 to 2022, using the keywords "Psoriasis" AND "Immunosuppressants" AND "Nano*" in the main databases. Fifty-seven articles were retrieved, although only forty-two matched the inclusion criteria. Nanocarriers such as liposomes, ethosomes, niosomes, solid lipid nanoparticle, nanostructured lipid carriers and microspheres containing immunosuppressive drugs (methotrexate, cyclosporine, tacrolimus, and etanercept) were identified. The main findings of these studies are related to the improved in vitro/ex vivo permeation/penetration and therapeutic efficacy of nanoparticles in vitro and in vivo, compared to the drug in solution. Based on the studies discussed in this review, encapsulation in several types of nanocarriers decreases toxicity, dose, and dose frequency. Furthermore, it enables specific targeting of the active drug, pointing to the possibility of improving topical therapy for psoriasis. In conclusion, nanoformulations represent a novel and promising tool for psoriasis treatment.
Collapse
|
18
|
Zhang R, Zhang H, Shi H, Zhang D, Zhang Z, Liu H. Strategic developments in the drug delivery of natural product dihydromyricetin: applications, prospects, and challenges. Drug Deliv 2022; 29:3052-3070. [PMID: 36146939 PMCID: PMC9518266 DOI: 10.1080/10717544.2022.2125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Dihydromyricetin (DHM) is an important natural flavonoid that has attracted much attention because of its various functions such as protecting the cardiovascular system and liver, treating cancer and neurodegenerative diseases, and anti-inflammation effect, etc. Despite its great development potential in pharmacy, DHM has some problems in pharmaceutical applications such as low solubility, permeability, and stability. To settle these issues, extensive research has been carried out on its physicochemical properties and dosage forms to produce all kinds of DHM preparations in the past ten years. In addition, the combined use of DHM with other drugs is a promising strategy to expand the application of DHM. However, although invention patents for DHM preparations have been issued in several countries, the current transformation of DHM research results into market products is insufficient. To date, there is still a lack of deep research into the pharmacokinetics, pharmacodynamics, toxicology, and action mechanism of DHM preparations. Besides, preparations for combined therapy of DHM with other drugs are scarcely reported, which necessitates the development of dosage forms for this application. Apart from medicine, the development of DHM in the food industry is also of great potential. Due to its multiple effects and excellent safety, DHM preparations can be developed for functional drinks and foods. Through this review, we hope to draw more attention to the development potential of DHM and the above challenges and provide valuable references for the research and development of other natural products with a similar structure-activity relationship to this drug.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Houyin Shi
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| |
Collapse
|
19
|
Liu W, Cheng M, Lu Z, Li H, Feng Y, Jin Y, Yang S, Feng J, Tu L. Multi-functional chitosan copolymer modified nanocrystals as oral andrographolide delivery systems for enhanced bioavailability and anti-inflammatory efficacy. Drug Deliv 2022; 29:3432-3442. [PMID: 36447367 PMCID: PMC9718561 DOI: 10.1080/10717544.2022.2149894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Modifying nanocrystals with functional materials have been common strategy to enlarge the enhancing ability on oral absorption via nanocrystals; however, whether the functional materials have played their full enhancing ability in oral absorption is still unknown. In this study, we synthetized a novel chitosan-based copolymer (the copolymer of sodium dodecyl sulfate (SDS), chitosan (CS) and D-α-Tocopherol polyethylene glycol 1000 succinate, SDS-CS-TPGS), and modified nanocrystals with this copolymer, aiming to enhance the oral absorption of polymer andrographolide (ADR). In real-time distribution study, we found the distribution of ADR, SDS, CS and TPGS varies in gastrointestinal tract, while the distribution of ADR and SDS-CS-TPGS was similar, revealing the SDS-CS-TPGS could able to participate in the absorption process of andrographolide timely. To explore the oral absorption enhancing ability of SDS-CS-TPGS, we prepared a series of nanocrystals modified with different materials and explored their pharmacokinetic performances on SD rats. The results showed the nanocrystals modified with SDS-CS-TPGS (S-C-TANs) exhibited the highest bioavailability, which could enhance the AUC0-∞ of ADR from 1.291 mg/L*h to 5.275 mg/L*h (enhanced for about 4.09-folds). The enhanced anti- inflammatory efficacy was also found on ICR mice by employing ear swelling rate, TNF-α, IL-1β and IL-6 and pharmacodynamic index. These results indicated that modified with synthesized copolymer containing different functional stabilizers is an efficient strategy to enlarge the enhancing ability on oral absorption of nanocrystals.
Collapse
Affiliation(s)
- Wan Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Meng Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China,The Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhiyang Lu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Haocheng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shilin Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianfang Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China,School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China,Jianfang Feng National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China,CONTACT Liangxing Tu National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| |
Collapse
|
20
|
Yu B, Wang X, Ding L, Han M, Guo Y. Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System. Pharmaceutics 2022; 14:pharmaceutics14112512. [PMID: 36432704 PMCID: PMC9696163 DOI: 10.3390/pharmaceutics14112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Polypeptide materials have clear secondary structure and biodegradability, which can be further modified and functionalized, so that they can be employed as therapeutic agents in clinical applications. PEGylation of polylysine (PEG-PLL) is a kind of safe and effective nanocarrier that is utilized for gene and drug delivery. However, PEG-PLL needs to be produced through chemical synthesis, which is expensive and difficult to obtain. We hope to simplify the nanocarrier and use hydrophilic natural polylysine (PLL) to develop a high-efficacy delivery system. To evaluate the possibility of PLL as nanocarriers, methotrexate (MTX) is selected as a model drug and PEG-PLL is utilized as control nanocarriers. The experimental results showed that PLL is an ideal polypeptide to prepare MTX-loaded PLL nanoparticles (PLL/MTX NPs). Compared with PEG-PLL as nanocarriers, PLL/MTX NPs showed higher drug-loading content (58.9%) and smaller particle sizes (113.7 nm). Moreover, the shape of PLL/MTX NPs was a unique helical nanorod. The PLL/MTX NPs had good storage stability, media stability, and sustained release effect. Animal research demonstrated that PLL/MTX NPs could improve the anti-tumor activity of MTX, the antitumor efficacy is enhanced 1.9-fold and 1.2-fold compared with MTX injection and PEG-PLL/MTX NPs, respectively. To sum up, natural polymer PLL is an ideal nano drug delivery carrier which has potential clinical applications.
Collapse
Affiliation(s)
- Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Correspondence:
| |
Collapse
|
21
|
Liu W, Cheng M, Yuan F, He J, Feng Y, Jin Y, Feng J, Yang S, Tu L. Enhancing oral bioavailability of andrographolide via sodium dodecyl sulfate and D-α-Tocopherol polyethylene glycol 1000 succinate copolymer modified nanocrystals. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Henrique Marcondes Sari M, Mota Ferreira L, Cruz L. The use of natural gums to produce nano-based hydrogels and films for topical application. Int J Pharm 2022; 626:122166. [PMID: 36075522 DOI: 10.1016/j.ijpharm.2022.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Natural gums are a source of biopolymeric materials with a wide range of applications for multiple purposes. These polysaccharides are extensively explored due to their low toxicity, gelling and thickening properties, and bioadhesive potential, which have sparked interest in researchers given their use in producing pharmaceutic dosage forms compared to synthetic agents. Hence, gums can be used as gelling and film-forming agents, which are suitable platforms for topical drug administration. Additionally, recent studies have demonstrated the possibility of obtaining nanocomposite materials formed by a polymeric matrix of gums associated with nanoscale carriers that have shown superior drug delivery performance and compatibility with multiple administration routes compared to starting components. In this sense, research on topical natural gum-based form preparation containing drug-loaded nanocarriers was detailed and discussed herein. A special focus was devoted to the advantages achieved regarding physicochemical and mechanical features, drug delivery capacity, permeability through topical barriers, and biocompatibility of the hydrogels and polymeric films.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
23
|
Yu B, Shen Y, Zhang X, Ding L, Meng Z, Wang X, Han M, Guo Y, Wang X. Poly(methacrylate citric acid) as a Dual Functional Carrier for Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14091765. [PMID: 36145512 PMCID: PMC9506429 DOI: 10.3390/pharmaceutics14091765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Owing to its pH-sensitive property and chelating Cu2+ effect, poly(methacrylate citric acid) (PCA) can be utilized as a dual functional nanocarrier to construct a nanodelivery system. Negatively charged carboxyl groups can interact with positively charged antineoplastic drugs through electrostatic interaction to form stable drug nanoparticles (NPs). Through drug experimental screening, doxorubicin (DOX) was selected as the model drug, PCA/DOX NPs with a diameter of 84 nm were prepared, and the drug-loading content was 68.3%. PCA/DOX NPs maintained good stability and a sustained release profile. Cell experiments presented that PCA/DOX NPs could inhibit effectively the growth of 4T1 cells; the IC50 value was decreased by approximately 15-fold after incubation for 72 h. The cytotoxicity toward H9C2 was decreased significantly. Moreover, based on its ability to efficiently adsorb copper ions, PCA showed good vascular growth inhibition effect in vitro. Furthermore, animal experiments showed that PCA/DOX NPs presented stronger anticancer effects than DOX; the tumor inhibition rate was increased by 1.5-fold. Myocardial toxicity experiments also confirmed that PCA reduced the cardiotoxicity of DOX. In summary, PCA/DOX NPs show good antitumor efficacy and low toxicity, and have good potential for clinical application.
Collapse
Affiliation(s)
- Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yiping Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xuejie Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zheng Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaotong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Correspondence: (Y.G.); (X.W.)
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Correspondence: (Y.G.); (X.W.)
| |
Collapse
|
24
|
Sari MHM, Ferreira LM, Prado VC, Nogueira CW, Cruz L. Nano-based formulations as an approach for providing a novel identity for organoselenium compounds. Eur J Pharm Biopharm 2022; 178:69-81. [PMID: 35932964 DOI: 10.1016/j.ejpb.2022.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
The organoselenium compounds belong to a class of synthetic molecules that displays a remarkable spectrum of promising pharmacological properties. Despite the huge amount of preclinical data that supports a bright outlook for organoselenium compounds, some toxicity issues and physicochemical limitations delay the development of more advanced studies. Currently, several scientific reports demonstrated that the association of nanotechnology has emerged as an alternative to improve solubility and safety issues of these molecules as well as enhance pharmacological properties. Therefore, our main objective was to address studies that reported the development and biological evaluations of nano-based formulations to synthetic organoselenium compounds incorporation by constructing an integrative literature review. The data survey was performed using the Science Direct, PubMed, Web of Science, and SCOPUS online databases, covering studies that were published from January 2011 up to October 2021. In the last decade, there has been an exponential growth in research regarding the incorporation of synthetic organoselenium compounds into distinct nanocarrier systems such as nanocapsules, nanoemulsions, micelles, and others, reinforcing that the association of such molecules and nanotechnology is a promising alliance. The reports investigated many nanosystems containing selenium organic molecules intending oral, intravenous, and cutaneous applications. Besides that, these systems were evaluated in a variety of in vitro techniques and in vivo models, concerning their pharmacological potential, biodistribution profile, and safety. In summary, the findings indicate that the production of nano-based formulations containing organoselenium compounds either improved physicochemical and biological properties or minimize toxicological issues of compounds.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil; Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Luana Mota Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil; Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Vinicius Costa Prado
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
25
|
Alves MSD, Sena-Lopes Â, das Neves RN, Casaril AM, Domingues M, Birmann PT, da Silva ET, de Souza MVN, Savegnago L, Borsuk S. In vitro and in silico trichomonacidal activity of 2,8-bis(trifluoromethyl) quinoline analogs against Trichomonas vaginalis. Parasitol Res 2022; 121:2697-2711. [PMID: 35857093 DOI: 10.1007/s00436-022-07598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022]
Abstract
Trichomoniasis is a great public health burden worldwide and the increase in treatment failures has led to a need for finding alternative molecules to treat this disease. In this study, we present in vitro and in silico analyses of two 2,8-bis(trifluoromethyl) quinolines (QDA-1 and QDA-2) against Trichomonas vaginalis. For in vitro trichomonacidal activity, up to seven different concentrations of these drugs were tested. Molecular docking, biochemical, and cytotoxicity analyses were performed to evaluate the selectivity profile. QDA-1 displayed a significant effect, completely reducing trophozoites viability at 160 µM, with an IC50 of 113.8 µM, while QDA-2 at the highest concentration reduced viability by 76.9%. QDA-1 completely inhibited T. vaginalis growth and increased reactive oxygen species production and lipid peroxidation after 24 h of treatment, but nitric oxide accumulation was not observed. In addition, molecular docking studies showed that QDA-1 has a favorable binding mode in the active site of the T. vaginalis enzymes purine nucleoside phosphorylase, lactate dehydrogenase, triosephosphate isomerase, and thioredoxin reductase. Moreover, QDA-1 presented a level of cytotoxicity by reducing 36.7% of Vero cells' viability at 200 µM with a CC50 of 247.4 µM and a modest selectivity index. In summary, the results revealed that QDA-1 had a significant anti-T. vaginalis activity. Although QDA-1 had detectable cytotoxicity, the concentration needed to eliminate T. vaginalis trophozoites is lower than the CC50 encouraging further studies of this compound as a trichomonacidal agent.
Collapse
Affiliation(s)
- Mirna Samara Dié Alves
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Ângela Sena-Lopes
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Raquel Nascimento das Neves
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Angela Maria Casaril
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Micaela Domingues
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Paloma Taborda Birmann
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Emerson Teixeira da Silva
- Instituto de Tecnologia em Fármacos - Far-Manguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, 21041-250, Brazil
| | - Marcus Vinicius Nora de Souza
- Instituto de Tecnologia em Fármacos - Far-Manguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, 21041-250, Brazil.,Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21945-970, Brazil
| | - Lucielli Savegnago
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
26
|
Fluorescent PLGA Nanocarriers for Pulmonary Administration: Influence of the Surface Charge. Pharmaceutics 2022; 14:pharmaceutics14071447. [PMID: 35890341 PMCID: PMC9322090 DOI: 10.3390/pharmaceutics14071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022] Open
Abstract
Nearly four million yearly deaths can be attributed to respiratory diseases, prompting a huge worldwide health emergency. Additionally, the COVID-19 pandemic’s death toll has surpassed six million, significantly increasing respiratory disease morbidity and mortality rates. Despite recent advances, it is still challenging for many drugs to be homogeneously distributed throughout the lungs, and specifically to reach the lower respiratory tract with an accurate sustained dose and minimal systemic side effects. Engineered nanocarriers can provide increased therapeutic efficacy while lessening potential biochemical adverse reactions. Poly(lactic-co-glycolic acid) (PLGA), a biodegradable polymer, has attracted significant interest as an inhalable drug delivery system. However, the influence of the nanocarrier surface charge and its intratracheal instillation has not been addressed so far. In this study, we fabricated red fluorescent PLGA nanocapsules (NCs)—Cy5/PLGA—with either positive (Cy5/PLGA+) or negative surface charge (Cy5/PLGA-). We report here on their excellent colloidal stability in culture and biological media, and after cryo-storage. Their lack of cytotoxicity in two relevant lung cell types, even for concentrations as high as 10 mg/mL, is also reported. More importantly, differences in the NCs’ cell uptake rates and internalization capacity were identified. The uptake of the anionic system was faster and in much higher amounts—10-fold and 2.5-fold in macrophages and epithelial alveolar cells, respectively. The in vivo study demonstrated that anionic PLGA NCs were retained in all lung lobules after 1 h of being intratracheally instilled, and were found to accumulate in lung macrophages after 24 h, making those nanocarriers especially suitable as a pulmonary immunomodulatory delivery system with a marked translational character.
Collapse
|
27
|
Zhao Y, Lin S, Fang R, Shi Y, Wu W, Zhang W, Chen H. Mechanism of Enhanced Oral Absorption of a Nano-Drug Delivery System Loaded with Trimethyl Chitosan Derivatives. Int J Nanomedicine 2022; 17:3313-3324. [PMID: 35937081 PMCID: PMC9346306 DOI: 10.2147/ijn.s358832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction In the previous study, nanoparticles coated with trimethyl chitosan (TMC) derivatives (PPTT-NPs) could promote the oral bioavailability of panax notoginseng saponins (PNS). Herein, we chose PPTT-NPs as a model drug to study the property and mechanism of intestinal absorption in vitro and in vivo. Methods The stability of PPTT-NPs was evaluated using simulated gastric fluid and simulated intestinal fluid. The uptake and transport of PPTT-NPs were investigated in Caco-2 and Caco-2&HT29 co-culture cells. The biosafety, intestinal permeability, adhesion, and absorption mechanism of PPTT-NPs were investigated using SD rats in vivo. The live imaging and biodistribution of PPTT-NPs were observed by IVIS. Furthermore, the effects on CYP3A4 of PPTT-NPs were investigated using testosterone as the probe substrate. Results The results of the stability assay showed that PPTT-NPs had a strong tolerance to the pH and digestive enzymes in the gastrointestinal environment. In vitro cell experiments showed that the uptake of drugs exhibited a time-dependent. When the ratio of TMC-VB12 and TMC-Cys was 1:3, the uptake capacity of PPTT-NPs was the highest. PPTT-NPs could enhance the paracellular transport of drugs by reversibly opening a tight junction. Animal experiments demonstrated that PPTT-NPs have good biological safety. PPTT-NPs had good adhesion and permeability to small intestinal mucosa. Meanwhile, PPTT-NPs needed energy and various protein to participate in the uptake of drugs. The live imaging of NPs illustrated that PPTT-NPs could prolong the residence time in the intestine. Moreover, TMC-VB12 and TMC-Cys could reduce the metabolism of drugs by inhibiting CYP3A4 to a certain extent. Conclusion The results show that TMC-VB12 and TMC-Cys are effective in the transport of PPTT-NPs. PPTT-NPs can increase the intestinal adhesion of drugs and exert high permeation by intestinal enterocytes which demonstrate significant and efficient potential for oral delivery of the BCS III drugs.
Collapse
Affiliation(s)
- Ying Zhao
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Shiyuan Lin
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Ruiyue Fang
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Yaling Shi
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Wei Wu
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Wei Zhang
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Hui Chen
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Correspondence: Hui Chen; Wei Zhang, College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People’s Republic of China, Email ;
| |
Collapse
|
28
|
Dubey SK, Dey A, Singhvi G, Pandey MM, Singh V, Kesharwani P. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf B Biointerfaces 2022; 214:112440. [PMID: 35344873 DOI: 10.1016/j.colsurfb.2022.112440] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
The cosmetic industry is dynamic and ever-evolving. Especially with the introduction and incorporation of nanotechnology-based approaches into cosmetics for evincing novel formulations that confers aesthetic as well as therapeutic benefits. Nanocosmetics acts via numerous delivery mechanisms which involves lipid nanocarrier systems, polymeric or metallic nanoparticles, nanocapsules, dendrimers, nanosponges,etc. Each of these, have particular characteristic properties, which facilitates increased drug loading, enhanced absorption, better cosmetic efficacy, and many more. This article discusses the different classes of nanotechnology-based cosmetics and the nanomaterials used for their formulation, followed by outlining the categories of nanocosmetics and the scope of their utility pertaining to skin, hair, nail, lip, and/or dental care and protection thereof. This review also highlights and discusses about the key drivers of the cosmetic industry and the impending need of corroborating a healthy regulatory framework, refocusing attention towards consumer needs and trends, inculcating sustainable techniques and tenets of green ecological principles, and lastly making strides in nano-technological advancements which will further propel the growth of the cosmetic industry.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Anuradha Dey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Murali Manohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
29
|
Guo Y, Shen Y, Yu B, Ding L, Meng Z, Wang X, Han M, Dong Z, Wang X. Hydrophilic Poly(glutamic acid)-Based Nanodrug Delivery System: Structural Influence and Antitumor Efficacy. Polymers (Basel) 2022; 14:2242. [PMID: 35683914 PMCID: PMC9182916 DOI: 10.3390/polym14112242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Poly(amino acids) have advanced characteristics, including unique secondary structure, enzyme degradability, good biocompatibility, and stimuli responsibility, and are suitable as drug delivery nanocarriers for tumor therapy. The isoform structure of poly(amino acids) plays an important role in their antitumor efficacy and should be researched in detail. In this study, two kinds of pH-sensitive isoforms, including α-poly(glutamic acid) (α-PGA) and γ-PGA, were selected and used as nanocarriers to prepare a nanodrug delivery system. According to the preparation results, α-PGA can be used as an ideal drug carrier. Selecting doxorubicin (DOX) as the model drug, an α-PGA/DOX nanoparticle (α-PGA/DOX NPs) with a particle size of 110.4 nm was prepared, and the drug-loading content was 66.2%. α-PGA/DOX NPs presented obvious sustained and pH-dependent release characteristics. The IC50 value of α-PGA/DOX NPs was 1.06 ± 0.77 μg mL-1, decreasing by approximately 8.5 fold in vitro against 4T1 cells after incubation for 48 h. Moreover, α-PGA/DOX NPs enhanced antitumor efficacy in vivo, the tumor inhibition rate was 67.4%, increasing 1.5 fold over DOX injection. α-PGA/DOX NPs also reduced the systemic toxicity and cardiotoxicity of DOX. In sum, α-PGA is a biosafe nanodrug delivery carrier with potential clinical application prospects.
Collapse
Affiliation(s)
- Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yiping Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Zheng Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Xiaotong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Y.G.); (Y.S.); (B.Y.); (L.D.); (Z.M.); (X.W.); (M.H.)
| |
Collapse
|
30
|
Cláudia Paiva-Santos A, Gama M, Peixoto D, Sousa-Oliveira I, Ferreira-Faria I, Zeinali M, Abbaspour-Ravasjani S, Mascarenhas-Melo F, Hamishehkar H, Veiga F. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int J Pharm 2022; 618:121656. [DOI: 10.1016/j.ijpharm.2022.121656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/23/2023]
|
31
|
Gouveia DN, Guimarães AG, Oliveira MA, Rabelo TK, Pina LTS, Santos WBR, Almeida IKS, A. Andrade T, Serafini MR, S. Lima B, Araújo AAS, Menezes-Filho JER, Santos-Miranda A, Scotti L, Scotti MT, Coutinho HDM, Quintans JSS, Capasso R, Quintans-Júnior LJ. Nanoencapsulated α-terpineol attenuates neuropathic pain induced by chemotherapy through calcium channel modulation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry-The European and North America Regulation Challenges. Molecules 2022; 27:molecules27051669. [PMID: 35268769 PMCID: PMC8911847 DOI: 10.3390/molecules27051669] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
“Flawless skin is the most universally desired human feature” is an iconic statement by Desmond Morris. Skin indicates one´s health and is so important that it affects a person’s emotional and psychological behavior, these facts having propelled the development of the cosmetics industry. It is estimated that in 2023, this industry will achieve more than 800 billion dollars. This boost is due to the development of new cosmetic formulations based on nanotechnology. Nanocarriers have been able to solve problems related to active ingredients regarding their solubility, poor stability, and release. Even though nanocarriers have evident benefits, they also present some problems related to the high cost, low shelf life, and toxicity. Regulation and legislation are two controversial topics regarding the use of nanotechnology in the field of cosmetics. In this area, the U.S. FDA has taken the lead and recommended several biosafety studies and post-market safety evaluations. The lack of a global definition that identifies nanomaterials as a cosmetic ingredient is a hindrance to the development of global legislation. In the EU, the legislation regarding the biosafety of nanomaterials in cosmetics is stricter. “The cost is not the only important issue, safety and the application of alternative testing methods for toxicity are of crucial importance as well”.
Collapse
|
33
|
Zimmermann ES, Ferreira LM, Denardi LB, Sari MHM, Cervi VF, Nogueira CW, Alves SH, Cruz L. Mucoadhesive gellan gum hydrogel containing diphenyl diselenide-loaded nanocapsules presents improved anti-candida action in a mouse model of vulvovaginal candidiasis. Eur J Pharm Sci 2021; 167:106011. [PMID: 34537375 DOI: 10.1016/j.ejps.2021.106011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
The aim of this study was to evaluate the in vitro antifungal action of a diphenyl diselenide-loaded poly(ε-caprolactone) nanocapsules suspension (NC-1) and incorporate it into a gellan gum hydrogel formulation in order to assess its in vivo efficacy in an animal model of vulvovaginal candidiasis. Nanocapsules suspensions containing the compound (NC-1 ∼ 5 mg/mL) or not (NC-B) were prepared by the interfacial deposition of preformed polymer method. To estimate in vitro antifungal effect, the broth microdilution test was applied. The results showed that NC-1 had equal or lower MIC values when compared to free compound against fifteen Candida strains. Following, the hydrogel was prepared by direct thickening of the nanocapsules suspension by gellan gum addition. The animal model of vulvovaginal candidiasis was induced by infecting female Swiss mice with Candida albicans strains. The animals were topically treated with 20 µL of hydrogels (NC-1 and free compound - 0.1 mg of diphenyl diselenide/once a day for seven days) and then the total fungal burden was assessed after the euthanasia. The results showed that the hydrogels presented pH in the acidic range, compound content close to theoretical value, homogeneous particle distribution with nanometric size, high physicochemical and microbiological stability as well as great bioadhesive property. The nano-based presented superior pharmacological action in comparison to the hydrogel containing non-encapsulated diphenyl diselenide. The results demonstrated that the nanoencapsulation maintained the effective antifungal action of diphenyl diselenide. The nano-based hydrogel formulation may be considered a promising approach against vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Estevan Sonego Zimmermann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Luana Mota Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Laura Bedin Denardi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Marcel Henrique Marcondes Sari
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Verônica Ferrari Cervi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Cristina Wayne Nogueira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), RS, Brasil
| | - Sydney Hartz Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Letícia Cruz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil.
| |
Collapse
|
34
|
Ferrari Cervi V, Parcianello Saccol C, Henrique Marcondes Sari M, Cristóvão Martins C, Saldanha da Rosa L, Dias Ilha B, Zovico Soares F, Luchese C, Antunes Wilhelm E, Cruz L. Pullulan film incorporated with nanocapsules improves pomegranate seed oil anti-inflammatory and antioxidant effects in the treatment of atopic dermatitis in mice. Int J Pharm 2021; 609:121144. [PMID: 34600055 DOI: 10.1016/j.ijpharm.2021.121144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to prepare pullulan films containing pomegranate seeds oil (PSO) based nanocapsules, and evaluate the formulation efficacy in the treatment of atopic dermatitis (AD)-like lesions induced by 2,4-dinitrochlorobenzene (DNCB). The Eudragit RS 100® nanocapsules (PSONC) were prepared by the interfacial precipitation of preformed polymer, whereas the films were produced by the solvent casting method. Pomegranate seed oil nanoemulsions (PSONE) were prepared by the spontaneous emulsification method for comparative reasons. Both nanosystems presented adequate mean diameter (248 ± 16 nm for PSONE and 181 ± 6 nm for PSONC), polydispersity index (below 0.2), zeta potential (-25.63 ± 1.1 mV for PSONE and + 43.13 ± 0.7 mV for PSONC) and pH in the acid range (6.77 ± 0.27 and 5.31 ± 0.17, PSONE and PSONC). By a pre-formulation study, sorbitol (6.5%) and PEG 400 (1.5%) were considered the most suitable plasticizers for developing pullulan films (6%) intending topical application. In general, pullulan films were classified as flexible and hydrophilic, with high occlusive properties, 57.6 ± 0.8%, 64.6 ± 0.8% for vehicle, PSONCF (pullulan film containing PSONC), respectively. All formulations (films and nanocarriers) presented no irritant potential in the chorioallantoic membrane test. In the in vivo model, the treatments with free PSO and PSONCF attenuated the skin injury as well as the mechanical hypernociceptive behavioral induced by DNCB exposure to mice. Importantly, the biochemical analyses provided evidence that only the treatment with PSONCF modulated the inflammatory and the oxidative stress parameters evaluated in this study. In conclusion, these data lead us to believe that PSONC incorporation into a pullulan film matrix improved the biological properties of the PSO in this AD-model.
Collapse
Affiliation(s)
- Verônica Ferrari Cervi
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Carolina Cristóvão Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Bruna Dias Ilha
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Fábio Zovico Soares
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
35
|
Impacts of nano-emulsified vegetable oil on growth, hemato-biochemical markers, oxidative stress, and gut microbiota of New Zealand white and V-line rabbits. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Carvalho MTB, Araújo-Filho HG, Barreto AS, Quintans-Júnior LJ, Quintans JSS, Barreto RSS. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153636. [PMID: 34333340 DOI: 10.1016/j.phymed.2021.153636] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/22/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Flavonoids are a class of compounds with a wide variety of biological functions, being an important source of new products with pharmaceutical potential, including treatment of skin wounds. PURPOSE This review aimed to summarize and evaluate the evidence in the literature in respect of the healing properties of flavonoids on skin wounds in animal models. STUDY DESIGN This is a systematic review following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. METHODS This was carried out through a specialized search of four databases: PubMed, Scopus, Web of Science and Embase. The following keyword combinations were used: "flavonoidal" OR "flavonoid" OR "flavonoidic" OR "flavonoids" AND "wound healing" as well as MeSH terms, Emtree terms and free-text words. RESULTS Fifty-five (55) articles met the established inclusion and exclusion criteria. Flavonoids presented effects in respect of the inflammatory process, angiogenesis, re-epithelialization and oxidative stress. They were shown to be able to act on macrophages, fibroblasts and endothelial cells by mediating the release and expression of TGF-β1, VEGF, Ang, Tie, Smad 2 and 3, and IL-10. Moreover, they were able to reduce the release of inflammatory cytokines, NFκB, ROS and the M1 phenotype. Flavonoids acted by positively regulating MMPs 2, 8, 9 and 13, and the Ras/Raf/MEK/ERK, PI3K/Akt and NO pathways. CONCLUSION Flavonoids are useful tools in the development of therapies to treat skin lesions, and our review provides a scientific basis for future basic and translational research.
Collapse
Affiliation(s)
- Mikaella T B Carvalho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Heitor G Araújo-Filho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil
| | - André S Barreto
- Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory Pharmacology Cardiovascular (LAFAC), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Rosana S S Barreto
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
37
|
Carletto B, Koga AY, Novatski A, Mainardes RM, Lipinski LC, Farago PV. Ursolic acid-loaded lipid-core nanocapsules reduce damage caused by estrogen deficiency in wound healing. Colloids Surf B Biointerfaces 2021; 203:111720. [PMID: 33819820 DOI: 10.1016/j.colsurfb.2021.111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The skin aging process in women is accelerated due to decreases in serum estrogen levels triggered by the menopause process. Hence, poly(L-lactic acid) lipid-core nanocapsules containing ursolic acid (NPLA-UA) were developed using the interfacial deposition of the preformed polymer methodology as a strategy to reduce damages to the healing process caused by hormonal deficiency in ovariectomized rats. The colloidal suspensions of nanocapsules presented adequate size and morphology (254 and 375 nm), negative zeta potential (-31 and -37 mV), high encapsulation efficiency (99.89 %), and amorphous character. The analyses performed in an in vivo healing trial showed that the treatment with NPLA-UA resulted in faster wound retraction with less inflammatory response. In addition, the angiogenic process was stimulated increased synthesis of dermal collagen occurred. Ursolic acid-loaded, lipid-core nanocapsules are suitable for treating skin changes triggered by decreased estrogen in menopause.
Collapse
Affiliation(s)
- Bruna Carletto
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil.
| | - Adriana Yuriko Koga
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| | - Andressa Novatski
- Department of Physics, State University of Ponta Grossa, Paraná, Brazil
| | | | | | - Paulo Vitor Farago
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| |
Collapse
|
38
|
Oliveira NK, Frank LA, Squizani ED, Reuwsaat JCV, Marques BM, Motta H, Garcia AWA, Kinskovski UP, Barcellos VA, Schrank A, Pohlmann AR, Staats CC, Guterres SS, Vainstein MH, Kmetzsch L. New nanotechnological formulation based on amiodarone-loaded lipid core nanocapsules displays anticryptococcal effect. Eur J Pharm Sci 2021; 162:105816. [PMID: 33757827 DOI: 10.1016/j.ejps.2021.105816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/21/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Cryptococcus neoformans is the etiological agent of cryptococcal meningoencephalitis. The recommended available treatment has low efficiency, with high toxicity and resistance as recurrent problems. In the search of new treatment protocols, the proposal of new pharmacological approaches is considered an innovative strategy, mainly nanotechnological systems considering fungal diseases. The antiarrhythmic drug amiodarone has demonstrated antifungal activity against a range of fungi, including C. neoformans. Here, considering the importance of calcium storage mediated by transporters on cryptococcal virulence, we evaluated the use of the calcium channel blocker amiodarone as an alternative therapy for cryptococcosis. C. neoformans displayed high sensitivity to amiodarone, which was also synergistic with fluconazole. Amiodarone treatment influenced some virulence factors, interrupting the calcium-calcineurin signaling pathway. Experiments with murine cryptococcosis models revealed that amiodarone treatment increased the fungal burden in the lungs, while its combination with fluconazole did not improve treatment compared to fluconazole alone. In addition, we have developed different innovative nanotechnological formulations, one of which combining two drugs with different mechanisms of action. Lipid-core nanocapsules (LNC) loaded with amiodarone (LNCAMD), fluconazole (LNCFLU) and both (LNCAMD+FLU) were produced to achieve a better efficacy in vivo. In an intranasal model of treatment, all the LNC formulations had an antifungal effect. In an intraperitoneal treatment, LNCAMD showed an enhanced anticryptococcal effect compared to the free drug, whereas LNCFLU or LNCAMD+FLU displayed no differences from the free drugs. In this way, nanotechnology using amiodarone formulations could be an effective therapy for cryptococcal infections.
Collapse
Affiliation(s)
| | - Luiza Abrahão Frank
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Eamim Daidrê Squizani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Heryk Motta
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Uriel Perin Kinskovski
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Charley Christian Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sílvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Marilene Henning Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
39
|
Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI JOURNAL 2021; 20:562-584. [PMID: 33883983 PMCID: PMC8056051 DOI: 10.17179/excli2020-3068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Currently, the significance of fungi as human pathogens is not medically concealed in the world. Consequently, suitable recognition and treatment of such infections are of great importance and necessitate the need for comprehensive information in this regard. The introduction of new antifungals and their use today, especially in the last two decades, have revolutionized the treatment of fungal infections. On the other hand, increasing drug resistance in the world has overshadowed such developments. The use of NPs results in the treatment of fungal infections and owing to their specific properties, these particles, unlike the pure antibiotics, can exert a greater inhibitory power although with less concentration compared with conventional drugs. Important reasons that have led to the use of antifungal drugs in delivery systems include reduced drug efficacy, limited penetration through tissue, poor aqueous solubility, decreased bioavailability, and poor drug pharmacokinetics. It is therefore hoped that unfavorable properties of antifungal drugs be mitigated via their incorporation into different types of NPs. This review summarizes the different types of NPs as delivery systems of antifungal as well as their advantages over pure drugs.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Casarini TPA, Frank LA, Benin T, Onzi G, Pohlmann AR, Guterres SS. Innovative hydrogel containing polymeric nanocapsules loaded with phloretin: Enhanced skin penetration and adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111681. [PMID: 33545843 DOI: 10.1016/j.msec.2020.111681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023]
Abstract
Dermatological applications of phloretin are restricted by its poor aqueous solubility. Nanotechnology has been proposed as strategy to increase the apparent drug solubility in aqueous media. This study aimed to develop, characterize, and evaluate the antitumoral effects and safety of polymeric nanocapsules containing phloretin (NCPhl). Further, to incorporate NC-Phl in an innovative semi-solid formulation (HG-NCPhl) to evaluate its performance using porcine skin model. NC-Phl was prepared and the effects in MRC5, HACAT, and SK-mel28 cells were evaluated. Hydrogels were prepared with Lecigel ® and characterized for their nanotechnological properties, adhesion (in vitro washability), and penetration/permeation studies in porcine skin. NC-Phl had a cytotoxic effect against Sk-Mel-28 cells and the population doubling time was increased upon treatment with NC-Phl for longer culture periods; notably when cells were treated for 72 h and then followed for 7 days after the treatment was removed (p < 0.05). HG-NC-Phl was considered adhesive and had a higher capacity to penetrate all skin layers compared with HG-Phl (p < 0.05). The innovative hydrogel HGNC-Phl promoted a drug-reservoir in the stratum corneum and higher penetration of the flavonoid into the epidermis. Therefore, this approach can be considered as a platform to establish versatile dermatological solutions for both cosmeceutics and melanoma therapy.
Collapse
Affiliation(s)
- Talita Pizza Anunciato Casarini
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Luiza Abrahão Frank
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tainara Benin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Giovana Onzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Ben Taleb A, Karakuş S, Tan E, Ilgar M, Kutlu Ö, Gözüaçık D, Kutlu HM, Kilislioğlu A. Antitumor Efficacy of Ceranib-2 with Nano-Formulation of PEG and Rosin Esters. Methods Mol Biol 2021; 2207:199-220. [PMID: 33113138 DOI: 10.1007/978-1-0716-0920-0_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ceranib-2 is a recently discovered, poorly water-soluble potent ceramidase inhibitor, with the ability to suppress cancer cell proliferation and delay tumor growth. However, its poor water solubility and weak cellular bioavailability hinder its use as a therapeutic agent for cancer. PEGylated rosin esters are an excellent platform as a natural polymer for drug delivery applications, especially for controlling drug release due to their degradability, biocompatibility, capability to improve solubility, and pharmacokinetics of potent drugs. In this study, stable aqueous amphiphilic submicron-sized PEG400-rosin ester-ceranib-2 (PREC-2) particles, ranging between 100 and 350 nm in a 1:1 mixture, were successfully synthesized by solvent evaporation mediated by sonication.Conclusion: Stable aqueous PEGylated rosin ester nanocarriers might present a significant solution to improve solubility, pharmacokinetic, and bioavailability of ceranib-2, and hold promises for use as an anticancer adjacent drug after further investigations.
Collapse
Affiliation(s)
- Ali Ben Taleb
- Faculty of Engineering, Department of Bio and Nanotechnology, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Selcan Karakuş
- Faculty of Engineering, Department of Bio and Nanotechnology, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ezgi Tan
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Ilgar
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Özlem Kutlu
- Nanotechnology Research andApplication Center (SUNUM),Sabanci University, Istanbul, Turkey
| | - Devrim Gözüaçık
- Koç University Hospital, School of Medicine and Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Zeytinburnu 34010, Istanbul, Turkey
| | - Hatice Mehtap Kutlu
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - Ayben Kilislioğlu
- Faculty of Engineering, Department of Bio and Nanotechnology, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
42
|
Curcumin-loaded nanocapsules: Influence of surface characteristics on technological parameters and potential antimalarial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111356. [DOI: 10.1016/j.msec.2020.111356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
|
43
|
de Sá Coutinho D, Pires J, Gomes H, Raffin Pohlmann A, Stanisçuaski Guterres S, Rodrigues e Silva PM, Martins MA, Ferrarini SR, Bernardi A. Pequi ( Caryocar brasiliense Cambess)-Loaded Nanoemulsion, Orally Delivered, Modulates Inflammation in LPS-Induced Acute Lung Injury in Mice. Pharmaceutics 2020; 12:pharmaceutics12111075. [PMID: 33187057 PMCID: PMC7696187 DOI: 10.3390/pharmaceutics12111075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Pequi is a Brazilian fruit used in folk medicine for pulmonary diseases treatment, but its oil presents bioavailability limitations. The use of nanocarriers can overcome this limitation. We developed nanoemulsions containing pequi oil (pequi-NE) and evaluated their effects in a lipopolysaccharide (LPS)-induced lung injury model. Free pequi oil or pequi-NE (20 mg/kg) was orally administered to A/J mice 16 and 4 h prior to intranasal LPS exposure, and the analyses were performed 24 h after LPS provocation. The physicochemical results revealed that pequi-NE comprised particles with mean diameter of 174–223 nm, low polydispersity index (0.11 ± 0.01), zeta potential of −7.13 ± 0.08 mV, and pH of 5.83 ± 0.12. In vivo evaluation showed that free pequi oil pretreatment reduced the influx of inflammatory cells into bronchoalveolar fluid (BALF), while pequi-NE completely abolished leukocyte accumulation. Moreover, pequi-NE, but not free pequi oil, reduced myeloperoxidase (MPO), TNF-α, IL-1β, IL-6, MCP-1, and KC levels. Similar anti-inflammatory effects were observed when LPS-exposed animals were pre-treated with the nanoemulsion containing pequi or oleic acid. These results suggest that the use of nanoemulsions as carriers enhances the anti-inflammatory properties of oleic acid-containing pequi oil. Moreover, pequi’s beneficial effect is likely due its high levels of oleic acid.
Collapse
Affiliation(s)
- Diego de Sá Coutinho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Jader Pires
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil;
| | - Hyago Gomes
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil;
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil;
| | | | - Patrícia Machado Rodrigues e Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Marco Aurelio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Stela Regina Ferrarini
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil;
- Correspondence: (S.R.F.); (A.B.)
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
- Correspondence: (S.R.F.); (A.B.)
| |
Collapse
|
44
|
Ferreira LM, Sari MHM, Cervi VF, Prado VC, Nadal JM, Azambuja JH, da Silveira EF, Nogueira CW, Farago PV, Braganhol E, Cruz L. Design of Pegylated-Nanocapsules to Diphenyl Diselenide Administration: In Vitro Evidence of Hemocompatible and Selective Antiglioma Formulation. AAPS PharmSciTech 2020; 21:307. [PMID: 33151442 DOI: 10.1208/s12249-020-01845-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Diphenyl diselenide [(PhSe)2] is a pleiotropic pharmacological agent, but it has low aqueous solubility. The nanoencapsulation of (PhSe)2 allowed the preparation of an aqueous formulation as well as potentiated its in vitro antitumor effect and the effectiveness in a preclinical model of glioblastoma when administered by the intragastric route. Thus, aiming at maximizing the therapeutic potential of (PhSe)2, the present study designed a pegylated-formulation intending to intravenous administration of the (PhSe)2 as a new approach for glioma therapy. The poly(Ɛ-caprolactone) nanocapsules containing (PhSe)2 were physically coated with polyethyleneglycol (PEG) using the preformed polymer interfacial deposition technique and evaluated through physicochemical, morphological, spectroscopic, and thermal characteristics. Hemocompatibility was determined by the in vitro hemolysis test and cytotoxicity assays were performed in astrocytes and glioma C6 cells (10-100 μM). The pegylated-nanocapsules had an average diameter of 218 ± 25 nm, polydispersity index of 0.164 ± 0.046, zeta potential of - 8.1 ± 1.6 mV, pH 6.0 ± 0.09, (PhSe)2 content of 102.00 ± 3.57%, and encapsulation efficiency around 98%. Besides, the (PhSe)2 pegylated-nanocapsules were spherical, presented absence of chemical interaction among the constituents, and showed higher thermal stability than the non-encapsulated materials. PEG-coated nanocapsules did not cause hemolytic effect while formulations without PEG induced a hemolysis rate above 10%. Moreover, pegylated-nanocapsules had superior in vitro antiglioma effect in comparison to free compound (IC50: 24.10 μM and 74.83 μM, respectively). Therefore, the (PhSe)2-loaded pegylated-nanocapsule suspensions can be considered a hemocompatible formulation for the glioma treatment by the intravenous route.
Collapse
|
45
|
Laffleur F, Keckeis V. Advances in drug delivery systems: Work in progress still needed? Int J Pharm 2020; 590:119912. [DOI: 10.1016/j.ijpharm.2020.119912] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
|
46
|
de Araujo Andrade T, dos Passos Menezes P, de Carvalho YMBG, dos Santos Lima B, de Souza EPBSS, de Souza Araujo AA, Melo MAO, Quintans-Júnior LJ, de Souza Siqueira Quintans J, Guterres SS, Pohlmann AR, Shanmugam S, Frank LA, Serafini MR. (-)-linalool-Loaded Polymeric Nanocapsules Are a Potential Candidate to Fibromyalgia Treatment. AAPS PharmSciTech 2020; 21:184. [PMID: 32632735 DOI: 10.1208/s12249-020-01719-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022] Open
Abstract
Fibromyalgia (FM) is a chronic disease that has as main characteristic generalized musculoskeletal pain, which can cause physical and emotional problems to patients. However, pharmacological therapies show side effects that hamper the adhesion to treatment. Given this, (-)-linalool (LIN), a monoterpene with several therapeutic properties already reported in scientific literature as anti-depressive, antinociceptive, anti-inflammatory, and antihyperalgesic also demonstrated therapeutic potential in the treatment of FM. Nevertheless, physicochemical limitations as high volatilization and poor water-solubility make its use difficult. In this perspective, this present research had performed the incorporation of LIN into polymeric nanocapsules (LIN-NC). Size, morphology, encapsulation efficiency, cytotoxicity, and drug release were performed. The antihyperalgesic effect of LIN-NC was evaluated by a chronic non-inflammatory muscle pain model. The results demonstrated that the polymeric nanocapsules showed particle size of 199.1 ± 0.7 nm with a PDI measurement of 0.13 ± 0.01. The drug content and encapsulation efficiency were 13.78 ± 0.05 mg/mL and 80.98 ± 0.003%, respectively. The formulation did not show cytotoxicity on J774 macrophages. The oral treatment with LIN-NC and free-LIN increased the mechanical withdrawal threshold on all days of treatment in comparison with the control group. In conclusion, LIN-NC is a promising proposal in the development of phytotherapy-based nanoformulations for future clinical applications.
Collapse
|
47
|
Gazzi RP, Frank LA, Onzi G, Pohlmann AR, Guterres SS. New pectin-based hydrogel containing imiquimod-loaded polymeric nanocapsules for melanoma treatment. Drug Deliv Transl Res 2020; 10:1829-1840. [PMID: 32562254 DOI: 10.1007/s13346-020-00805-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We developed a pectin-based hydrogel containing nanocapsules as a new strategy for melanoma treatment. Our first objective was to evaluate the nanoencapsulation effect of imiquimod on melanoma. Imiquimod-loaded polymeric nanocapsules (NCimiq) showed significant time-dependent decrease in cell viability after treatment at 3 μmol L-1 (79% viable cells in 24 h and 55% in 72 h), which was not observed in cells treated with the solution of the drug (IMIQ) (99% viable cells in 24 h and 91% in 72 h). The second objective was to develop the hydrogel containing the drug-loaded nanocapsules (PEC-NCimiq). In vitro release study showed that 63% of imiquimod was released from the pectin-based hydrogel containing the drug (PEC-imiq) after 2 h, while 60% of the drug was released from PEC-NCimiq after 8 h. In the permeation study, 2.5 μg of imiquimod permeated the skin within 8 h after the initial contact of PEC-NCimiq, whereas only 2.1 μg of drug permeated after 12 h of contact when PEC-imiq was assayed. Pectin-based hydrogels enabled the drug penetration in all skin layers, especially the dermis (PEC-NCimiq = 6.8 μg and PEC-imiq = 4.3 μg). In the adhesion study, PEC-NCimiq showed the highest adhesiveness (42% removed from the skin) in comparison to PEC-imiq (71% removed from the skin). In conclusion, the nanoencapsulation provided a higher cytotoxic effect of imiquimod in SK-MEL-28, and the incorporation of the drug-loaded nanocapsules in pectin-based hydrogel showed higher adhesiveness and deeper penetration of the drug into the skin. Graphical abstract.
Collapse
Affiliation(s)
- R P Gazzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - L A Frank
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - G Onzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - A R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de QuímicaOrgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Silvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. .,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752/405 CEP, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
48
|
Laffleur F, Keckeis V. Advances in drug delivery systems: Work in progress still needed? INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100050. [PMID: 32577616 PMCID: PMC7305387 DOI: 10.1016/j.ijpx.2020.100050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 01/10/2023]
Abstract
A new era of science and technology has emerged in pharmaceutical research with focus on developing novel drug delivery systems for oral administration. Conventional dosage forms like tablets and capsules are associated with a low bioavailability, frequent application, side effects and hence patient noncompliance. By developing novel strategies for drug delivery, researchers embraced an alternative to traditional drug delivery systems. Out of those, fast dissolving drug delivery systems are very eminent among pediatrics and geriatrics. Orally disintegrating films are superior over fast dissolving tablets as the latter are assigned with the risk of suffocation. Due to their ability of bypassing the dissolution and the first pass effect after oral administration, self-emulsifying formulations have also become increasingly popular in improving oral bioavailability of hydrophobic drugs. Osmotic devices enable a controlled drug delivery independent upon gastrointestinal conditions using osmosis as driving force. The advances in nanotechnology and the variety of possible materials and formulation factors enable a targeted delivery and triggered release. Vesicular systems can be easily modified as required and provide a controlled and sustained drug delivery to a specific site. This work provides an insight of the novel approaches in drug delivery covering the critical comparison between traditional and novel “advanced-designed” systems.
Collapse
Affiliation(s)
- Flavia Laffleur
- University of Innsbruck, Institute of Pharmacy, Department of Pharmaceutical Technology, Center for Molecular Biosciences Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Valérie Keckeis
- University of Innsbruck, Institute of Pharmacy, Department of Pharmaceutical Technology, Center for Molecular Biosciences Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
49
|
de Gomes MG, Teixeira FEG, de Carvalho FB, Pacheco CO, da Silva Neto MR, Giacomeli R, Ramalho JB, Dos Santos RB, Domingues WB, Campos VF, Haas SE. Curcumin-loaded lipid-core nanocapsules attenuates the immune challenge LPS-induced in rats: Neuroinflammatory and behavioral response in sickness behavior. J Neuroimmunol 2020; 345:577270. [PMID: 32480241 DOI: 10.1016/j.jneuroim.2020.577270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
The purpose of current study was to evaluate the effect of curcumin (CUR) loaded lipid-core nanocapsules (CUR-LNC) treatment on neuroinflammatory and behavioral alterations in a model of sickness behavior induced by lipopolysaccharide (LPS) in rats. Rats were treated with CUR-LNC and CUR daily for 14 days. After the last treatments, sickness behavior was induced with LPS. Sickness behavior LPS-induced was confirmed by behavioral tests, an increase in levels of proinflammatory cytokines, decrease in levels of IL-10, overexpression of IDO-1 and IDO-2. In conclusion, CUR-LNC treatment attenuated the neuroinflammatory and behavioral changes caused in sickness behavior model.
Collapse
Affiliation(s)
- Marcelo Gomes de Gomes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, Campus Uruguaiana, BR 472, Km 7, 97500-970 Uruguaiana, RS, Brazil
| | - Flavia Elizabete Guerra Teixeira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, Campus Uruguaiana, BR 472, Km 7, 97500-970 Uruguaiana, RS, Brazil
| | - Felipe Barbosa de Carvalho
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, Campus Uruguaiana, BR 472, Km 7, 97500-970 Uruguaiana, RS, Brazil
| | - Camila Oliveira Pacheco
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, Campus Uruguaiana, BR 472, Km 7, 97500-970 Uruguaiana, RS, Brazil
| | - Manoel Rodrigues da Silva Neto
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, Campus Uruguaiana, BR 472, Km 7, 97500-970 Uruguaiana, RS, Brazil
| | - Renata Giacomeli
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, Campus Uruguaiana, BR 472, Km 7, 97500-970 Uruguaiana, RS, Brazil
| | - Juliana Bernera Ramalho
- Postgraduate Program in Biochemistry, Federal University of Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Renata Bem Dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, Campus Uruguaiana, BR 472, Km 7, 97500-970 Uruguaiana, RS, Brazil
| | - William Borges Domingues
- Postgraduate Program in Biotechnology, Center for Technological Development, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Postgraduate Program in Biotechnology, Center for Technological Development, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Sandra Elisa Haas
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, Campus Uruguaiana, BR 472, Km 7, 97500-970 Uruguaiana, RS, Brazil.
| |
Collapse
|
50
|
Frank L, Onzi G, Morawski A, Pohlmann A, Guterres S, Contri R. Chitosan as a coating material for nanoparticles intended for biomedical applications. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104459] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|