1
|
Arumugam MK, Gopal T, Kalari Kandy RR, Boopathy LK, Perumal SK, Ganesan M, Rasineni K, Donohue TM, Osna NA, Kharbanda KK. Mitochondrial Dysfunction-Associated Mechanisms in the Development of Chronic Liver Diseases. BIOLOGY 2023; 12:1311. [PMID: 37887021 PMCID: PMC10604291 DOI: 10.3390/biology12101311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The liver is a major metabolic organ that performs many essential biological functions such as detoxification and the synthesis of proteins and biochemicals necessary for digestion and growth. Any disruption in normal liver function can lead to the development of more severe liver disorders. Overall, about 3 million Americans have some type of liver disease and 5.5 million people have progressive liver disease or cirrhosis, in which scar tissue replaces the healthy liver tissue. An estimated 20% to 30% of adults have excess fat in their livers, a condition called steatosis. The most common etiologies for steatosis development are (1) high caloric intake that causes non-alcoholic fatty liver disease (NAFLD) and (2) excessive alcohol consumption, which results in alcohol-associated liver disease (ALD). NAFLD is now termed "metabolic-dysfunction-associated steatotic liver disease" (MASLD), which reflects its association with the metabolic syndrome and conditions including diabetes, high blood pressure, high cholesterol and obesity. ALD represents a spectrum of liver injury that ranges from hepatic steatosis to more advanced liver pathologies, including alcoholic hepatitis (AH), alcohol-associated cirrhosis (AC) and acute AH, presenting as acute-on-chronic liver failure. The predominant liver cells, hepatocytes, comprise more than 70% of the total liver mass in human adults and are the basic metabolic cells. Mitochondria are intracellular organelles that are the principal sources of energy in hepatocytes and play a major role in oxidative metabolism and sustaining liver cell energy needs. In addition to regulating cellular energy homeostasis, mitochondria perform other key physiologic and metabolic activities, including ion homeostasis, reactive oxygen species (ROS) generation, redox signaling and participation in cell injury/death. Here, we discuss the main mechanism of mitochondrial dysfunction in chronic liver disease and some treatment strategies available for targeting mitochondria.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | | | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | - Sathish Kumar Perumal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
2
|
Lowered iPLA2γ activity causes increased mitochondrial lipid peroxidation and mitochondrial dysfunction in a rotenone-induced model of Parkinson's disease. Exp Neurol 2018; 300:74-86. [DOI: 10.1016/j.expneurol.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
|
3
|
Rodrigues-Silva E, Siqueira-Santos ES, Ruas JS, Ignarro RS, Figueira TR, Rogério F, Castilho RF. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity. J Neurooncol 2017; 133:519-529. [PMID: 28540666 DOI: 10.1007/s11060-017-2482-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/14/2017] [Indexed: 01/25/2023]
Abstract
High-grade gliomas are aggressive and intensely glycolytic tumors. In the present study, we evaluated the mitochondrial respiratory function of glioma cells (T98G and U-87MG) and fresh human glioblastoma (GBM) tissue. To this end, measurements of oxygen consumption rate (OCR) were performed under various experimental conditions. The OCR of T98G and U-87MG cells was well coupled to ADP phosphorylation based on the ratio of ATP produced per oxygen consumed of ~2.5. In agreement, the basal OCR of GBM tissue was also partially associated with ADP phosphorylation. The basal respiration of intact T98G and U-87MG cells was not limited by the supply of endogenous substrates, as indicated by the increased OCR in response to a protonophore. These cells also displayed a high affinity for oxygen, as evidenced by the values of the partial pressure of oxygen when respiration is half maximal (p 50). In permeabilized glioma cells, ADP-stimulated OCR was only approximately 50% of that obtained in the presence of protonophore, revealing a significant limitation in oxidative phosphorylation (OXPHOS) relative to the activity of the electron transport system (ETS). This characteristic was maintained when the cells were grown under low glucose conditions. Flux control coefficient analyses demonstrated that the impaired OXPHOS was associated with the function of both mitochondrial ATP synthase and the adenine nucleotide translocator, but not the phosphate carrier. Altogether, these data indicate that the availability and metabolism of respiratory substrates and mitochondrial ETS are preserved in T98G and U-87MG glioma cells even though these cells possess a relatively restrained OXPHOS capability.
Collapse
Affiliation(s)
- Erika Rodrigues-Silva
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-887, Brazil
| | - Edilene S Siqueira-Santos
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-887, Brazil
| | - Juliana S Ruas
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-887, Brazil
| | - Raffaela S Ignarro
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tiago R Figueira
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-887, Brazil
| | - Fábio Rogério
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-887, Brazil.
| |
Collapse
|
4
|
de la Vega-Hernández K, Antuch M, Cuesta-Rubio O, Núñez-Figueredo Y, Pardo-Andreu GL. Discerning the antioxidant mechanism of rapanone: A naturally occurring benzoquinone with iron complexing and radical scavenging activities. J Inorg Biochem 2017; 170:134-147. [PMID: 28237732 DOI: 10.1016/j.jinorgbio.2017.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/10/2017] [Accepted: 02/17/2017] [Indexed: 02/01/2023]
Abstract
Oxidative stress resulting from iron and reactive oxygen species (ROS) homeostasis breakdown has been implicated in several diseases. Therefore, molecules capable of binding iron and/or scavenging ROS may be reasonable strategies for protecting cells. Rapanone is a naturally occurring hydroxyl-benzoquinone with a privileged chelating structure. In this work, we addressed the antioxidant properties of rapanone concerning its iron-chelating and scavenging activities, and its protective potential against iron and tert-butyl hydroperoxide-induced damage to mitochondria. Experimental determinations revealed the formation of rapanone-Fe(II)/Fe(III) complexes. Additionally, the electrochemical assays indicated that rapanone oxidized Fe(II) and O2-, thus inhibiting Fenton-Haber-Weiss reactions. Furthermore, rapanone displayed an increased 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability in the presence of Fe(II). The above results explained the capacity of rapanone to provide near-full protection against iron and tert-butyl hydroperoxide induced mitochondrial lipid peroxidation in energized organelles, which fail under non-energized condition. We postulate that rapanone affords protection against iron and reactive oxygen species by means of both iron chelating and iron-stimulated free radical scavenging activity.
Collapse
Affiliation(s)
- Karen de la Vega-Hernández
- Departamento de Farmacia, Instituto de Farmacia y Alimentos, Universidad de La Habana, Ave. 23 # 21425 e/ 214 y 222, La Coronela, La Lisa, CP 13600, La Habana, Cuba
| | - Manuel Antuch
- Departamento de Química-Física, Facultad de Química, Universidad de la Habana, Ave. Zapata y G, Vedado, CP 10400 La Habana, Cuba
| | | | | | - Gilberto L Pardo-Andreu
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Calle 222, No. 2317 entre 23 y 31, La Coronela, La Lisa, CP 13600 La Habana, Cuba.
| |
Collapse
|
5
|
Kullu SS, Das A, Bajpai SK, Garg AK, Yogi RK, Saini M, Sharma AK. Egg production performance, egg yolk antioxidant profile and excreta concentration of corticosterone in golden pheasants (Chrysolophus pictus) fed diets containing different levels of green vegetables. J Anim Physiol Anim Nutr (Berl) 2016; 101:e31-e42. [PMID: 27862403 DOI: 10.1111/jpn.12555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/24/2016] [Indexed: 12/23/2022]
Abstract
In order to study the effect of feeding graded levels of green vegetables on egg production performance and egg yolk antioxidant status, 27 female golden pheasants (GP) were randomly distributed into three groups of nine each in an experiment based on completely randomized design. The diets of the birds in groups T1 , T2 and T3 contained 1.4%, 2.7% and 5.0% of green vegetables respectively. Feeding of experimental diets started on 12th February (day 1) and was continued till 30 June 2012. Average number of eggs laid and egg mass produced by the hens in group T3 was higher (p < 0.004) than those of T1 and T2 . Hen day egg production was lowest (p < 0.001) in group T1 . Roche yolk colour score was highest (p < 0.01) in T3 followed by T2 and was lowest in T1 . Other external and internal egg quality parameters were similar among the groups. Total antioxidant capacity (TAC) of egg yolk was higher (p < 0.04) in group T3 as compared to other two groups. Egg yolk concentration of total carotenoids, β-carotene, total sulfhydryl, protein-bound sulfhydryl and non-protein-bound sulfhydryl was higher (p < 0.05), whereas concentration of malondialdehyde was lower (p < 0.024) in group T3 as compared to other two groups. Excreta concentration of corticosterone was highest (p < 0.012) in T1 , followed by T2 , and was lowest in T3 . Egg yolk concentration of TAC and TSH was positively and that of malondialdehyde was negatively correlated with carotenoids intake. Excreta concentration of corticosterone was negatively correlated with carotenoids intake. It was concluded that incorporation of green vegetables in the diet at 5% on dry matter basis would improve egg production, egg yolk antioxidant status and the ability of the captive GP to combat stress.
Collapse
Affiliation(s)
- S S Kullu
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India.,Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - A Das
- Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - S K Bajpai
- Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - A K Garg
- Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - R K Yogi
- Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - M Saini
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - A K Sharma
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
6
|
Schulman HM, Hermes-Lima M, Wang EM, Ponka P. In vitro antioxidant properties of the iron chelator pyridoxal isonicotinoyl hydrazone and some of its analogs. Redox Rep 2016; 1:373-8. [DOI: 10.1080/13510002.1995.11747014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
7
|
Boussabbeh M, Ben Salem I, Hamdi M, Ben Fradj S, Abid-Essefi S, Bacha H. Diazinon, an organophosphate pesticide, induces oxidative stress and genotoxicity in cells deriving from large intestine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2882-2889. [PMID: 26490884 DOI: 10.1007/s11356-015-5519-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Diazinon (DZ) (O,O-diethyl-O-[2-isopropyl-6-methyl-4-pyrimidinyl]phosphorothioate) is an organophosphate pesticide which is extensively used to control household insects and fruit and vegetable crops. The exposure to this pesticide has been linked to the development of the serious problem in several experimental animals. The contamination of food by DZ may increase its danger to humans. The aim of this study was to investigate the toxic effect of DZ on intestine using an in vitro model (HCT116). Therefore, we evaluated the cell viability, elucidated the generation of free radicals, measured the mitochondrial membrane potential, and valued DNA fragmentation. Our results showed that DZ is cytotoxic to HCT116. It causes oxidative damage through the generation of free radicals and induces lipid peroxidation and DNA fragmentation. We also demonstrated that such effects can be responsible for DZ-induced apoptosis.
Collapse
|
8
|
Decreased Bioenergetic Health Index in monocytes isolated from the pericardial fluid and blood of post-operative cardiac surgery patients. Biosci Rep 2015; 35:BSR20150161. [PMID: 26181371 PMCID: PMC4613711 DOI: 10.1042/bsr20150161] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Translational bioenergetics requires the measurement of mitochondrial function in clinically relevant samples and the integration of the data in a form that can be applied to personalized medicine. In the present study, we show the application of the measurement of the Bioenergetic Health Index (BHI) to cardiac surgery patients. Monitoring the bioenergetics of leucocytes is now emerging as an important approach in translational research to detect mitochondrial dysfunction in blood or other patient samples. Using the mitochondrial stress test, which involves the sequential addition of mitochondrial inhibitors to adherent leucocytes, we have calculated a single value, the Bioenergetic Health Index (BHI), which represents the mitochondrial function in cells isolated from patients. In the present report, we assess the BHI of monocytes isolated from the post-operative blood and post-operative pericardial fluid (PO-PCF) from patients undergoing cardiac surgery. Analysis of the bioenergetics of monocytes isolated from patients’ PO-PCF revealed a profound decrease in mitochondrial function compared with monocytes isolated from their blood or from healthy controls. Further, patient blood monocytes showed no significant difference in the individual energetic parameters from the mitochondrial stress test but, when integrated into the BHI evaluation, there was a significant decrease in BHI compared with healthy control monocytes. These data support the utility of BHI measurements in integrating the individual parameters from the mitochondrial stress test into a single value. Supporting our previous finding that the PO-PCF is pro-oxidant, we found that exposure of rat cardiomyocytes to PO-PCF caused a significant loss of mitochondrial membrane potential and increased reactive oxygen species (ROS). These findings support the hypothesis that integrated measures of bioenergetic health could have prognostic and diagnostic value in translational bioenergetics.
Collapse
|
9
|
Kinghorn KJ, Castillo-Quan JI, Bartolome F, Angelova PR, Li L, Pope S, Cochemé HM, Khan S, Asghari S, Bhatia KP, Hardy J, Abramov AY, Partridge L. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction. Brain 2015; 138:1801-16. [PMID: 26001724 PMCID: PMC4559908 DOI: 10.1093/brain/awv132] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/31/2022] Open
Abstract
The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in a subgroup of patients with autosomal recessive early-onset dystonia-parkinsonism. Neuropathological examination revealed widespread Lewy body pathology and the accumulation of hyperphosphorylated tau, supporting a link between PLA2G6 mutations and parkinsonian disorders. Here we show that knockout of the Drosophila homologue of the PLA2G6 gene, iPLA2-VIA, results in reduced survival, locomotor deficits and organismal hypersensitivity to oxidative stress. Furthermore, we demonstrate that loss of iPLA2-VIA function leads to a number of mitochondrial abnormalities, including mitochondrial respiratory chain dysfunction, reduced ATP synthesis and abnormal mitochondrial morphology. Moreover, we show that loss of iPLA2-VIA is strongly associated with increased lipid peroxidation levels. We confirmed our findings using cultured fibroblasts taken from two patients with mutations in the PLA2G6 gene. Similar abnormalities were seen including elevated mitochondrial lipid peroxidation and mitochondrial membrane defects, as well as raised levels of cytoplasmic and mitochondrial reactive oxygen species. Finally, we demonstrated that deuterated polyunsaturated fatty acids, which inhibit lipid peroxidation, were able to partially rescue the locomotor abnormalities seen in aged flies lacking iPLA2-VIA gene function, and restore mitochondrial membrane potential in fibroblasts from patients with PLA2G6 mutations. Taken together, our findings demonstrate that loss of normal PLA2G6 gene activity leads to lipid peroxidation, mitochondrial dysfunction and subsequent mitochondrial membrane abnormalities. Furthermore we show that the iPLA2-VIA knockout fly model provides a useful platform for the further study of PLA2G6-associated neurodegeneration.
Collapse
Affiliation(s)
- Kerri J Kinghorn
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Jorge Iván Castillo-Quan
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK 3 Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Str. 9b, D-50931, Cologne, Germany
| | - Fernando Bartolome
- 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Plamena R Angelova
- 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Li Li
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Simon Pope
- 4 Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Helena M Cochemé
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK 3 Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Str. 9b, D-50931, Cologne, Germany
| | - Shabana Khan
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Shabnam Asghari
- 5 Department of Family Medicine, Memorial University, St. John's, NL, Canada
| | - Kailash P Bhatia
- 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - John Hardy
- 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Andrey Y Abramov
- 2 Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Linda Partridge
- 1 Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK 3 Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Str. 9b, D-50931, Cologne, Germany
| |
Collapse
|
10
|
Genaro-Mattos TC, Maurício ÂQ, Rettori D, Alonso A, Hermes-Lima M. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach. PLoS One 2015; 10:e0129963. [PMID: 26098639 PMCID: PMC4476807 DOI: 10.1371/journal.pone.0129963] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects observed in vivo.
Collapse
Affiliation(s)
- Thiago C. Genaro-Mattos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Ângelo Q. Maurício
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Daniel Rettori
- Laboratório de Química e Bioquímica de Espécies Altamente Reativas, Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo–UNIFESP, São Paulo, SP, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marcelo Hermes-Lima
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
- * E-mail:
| |
Collapse
|
11
|
Li R, Kou X, Geng H, Xie J, Tian J, Cai Z, Dong C. Mitochondrial damage: an important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:392-401. [PMID: 25677476 DOI: 10.1016/j.jhazmat.2015.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 05/05/2023]
Abstract
Epidemiological studies suggested that ambient fine particulate matter (PM2.5) exposure was associated with cardiovascular disease. However, the underlying mechanism, especially the mitochondrial damage mechanism, of PM2.5-induced heart acute injury is still unclear. In this study, the alterations of mitochondrial morphology and mitochondrial fission/fusion gene expression, oxidative stress, calcium homeostasis and inflammation in hearts of rats exposed to PM2.5 with different dosages (0.375, 1.5, 6.0 and 24.0mg/kg body weight) were investigated. The results indicated that the PM2.5 exposure induced pathological changes and ultra-structural damage in hearts such as mitochondrial swell and cristae disorder. Furthermore, PM2.5 exposure significantly increased specific mitochondrial fission/fusion gene (Fis1, Mfn1, Mfn2, Drp1 and OPA1) expression in rat hearts. These changes were accompanied by decreases of activities of superoxide dismutase (SOD), Na(+)K(+)-ATPase and Ca(2+)-ATPase and increases of levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) as well as levels of pro-inflammatory mediators including TNF-α, IL-6 and IL-1β in rat hearts. The results implicate that mitochondrial damage, oxidative stress, cellular homeostasis imbalance and inflammation are potentially important mechanisms for the PM2.5-induced heart injury, and may have relations with cardiovascular disease.
Collapse
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Xiaojing Kou
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Hong Geng
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Jingfang Xie
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Jingjing Tian
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Chuan Dong
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China.
| |
Collapse
|
12
|
Li R, Kou X, Geng H, Xie J, Yang Z, Zhang Y, Cai Z, Dong C. Effect of Ambient PM2.5 on Lung Mitochondrial Damage and Fusion/Fission Gene Expression in Rats. Chem Res Toxicol 2015; 28:408-18. [DOI: 10.1021/tx5003723] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Xiaojing Kou
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Hong Geng
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Jingfang Xie
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhenhua Yang
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Yuexia Zhang
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuan Dong
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
13
|
Moraes C, Rebelato HJ, Amaral MEC, Resende TM, Silva EVC, Esquisatto MAM, Catisti R. Effect of maternal protein restriction on liver metabolism in rat offspring. J Physiol Sci 2014; 64:347-55. [PMID: 24994532 PMCID: PMC10717648 DOI: 10.1007/s12576-014-0325-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/05/2014] [Indexed: 02/06/2023]
Abstract
Consequences of gestational protein restriction (GPR) on liver metabolism in rat offspring were investigated. Pregnant dams were divided into groups: normal (NP, 17% casein) or low-protein diet (LP, 6% casein). Livers were collected from 30-day-old offspring (d30) for analysis or isolation of mitochondria. At d30, hepatic and muscle glycogen was increased in LP group. Mitochondrial swelling and oxygen uptake (recorded with a Clark-type electrode) were significantly reduced in NP female and LP pups. Thiobarbituric acid reactive substances production was lower in females (NP or LP), suggesting significant inhibition of lipid peroxidation. Measurement of mitochondrial respiration (states 3 and 4 stimulated by succinate) showed a higher ADP/O ratio in LP pups, particularly females, suggesting higher phosphorylation efficiency. In the 1st month of life, under our experimental conditions, GPR protects liver mitochondria against oxidative stress and females seem to be more resistant or more suitable for survival.
Collapse
Affiliation(s)
- Camila Moraes
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Hércules J. Rebelato
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Maria Esmeria C. Amaral
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Thais Marangoni Resende
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Eduarda V. C. Silva
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Marcelo A. M. Esquisatto
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Rosana Catisti
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| |
Collapse
|
14
|
Beta-blocker timolol alleviates hyperglycemia-induced cardiac damage via inhibition of endoplasmic reticulum stress. J Bioenerg Biomembr 2014; 46:377-87. [PMID: 25064604 DOI: 10.1007/s10863-014-9568-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/11/2014] [Indexed: 01/08/2023]
Abstract
Current data support that pharmacological modulators of endoplasmic reticulum stress (ERS) have therapeutic potential for diabetic individuals. Therefore, we aimed to examine whether timolol, having free radical-scavenger action, besides being a β-blocker, exerts a cardioprotective effect via inhibition of ERS response in diabetic rats in a comparison with an antioxidant N-acetylcysteine (NAC). Histopathological data showed that either timolol- or NAC-treatment of diabetic rats prevented the changes in mitochondria and nucleus of the cardiac tissue while they enhanced the cellular redox-state in heart as well. The levels of ER-targeted cytoprotective chaperones GRP78 and calnexin, unfolded protein response signaling protein CHO/Gadd153 besides the levels of calpain, BCL-2, phospho-Akt, PUMA, and PML in the hearts from diabetic rats, treated with either timolol or NAC, are found to be similar among these groups, although all these parameters were markedly preserved in the untreated diabetics compared to those of the controls. Taken into consideration how important a balanced-ratio between anti-apoptotic and pro-apoptotic proteins for the maintenance mitochondria/ER function, our results suggest that ERS in diabetic rat heart is mediated by increased oxidative damage, which in turn triggers cardiac dysfunction. Moreover, we also demonstrated that timolol treatment of diabetic rats, similar to NAC treatment, induced a well-controlled redox-state and apoptosis in cardiac myocardium. We, thus for the first time, report that cardioprotective effect of timolol seems to be associated with normalization of ER function due to its antioxidant action in cardiomyocytes even under hyperglycemia.
Collapse
|
15
|
de Camargo RA, da Costa ED, Catisti R. Effect of the oral administration homeopathic Arnica montana on mitochondrial oxidative stress. HOMEOPATHY 2013; 102:49-53. [PMID: 23290879 DOI: 10.1016/j.homp.2012.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 10/22/2012] [Accepted: 11/07/2012] [Indexed: 11/24/2022]
|
16
|
Cardiotoxicity of acetogenins from Persea americana occurs through the mitochondrial permeability transition pore and caspase-dependent apoptosis pathways. J Bioenerg Biomembr 2012; 44:461-71. [DOI: 10.1007/s10863-012-9452-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/30/2012] [Indexed: 11/25/2022]
|
17
|
Gáll J, Skrha J, Buchal R, Sedláčková E, Verébová K, Pláteník J. Induction of the mitochondrial permeability transition (MPT) by micromolar iron: liberation of calcium is more important than NAD(P)H oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1537-49. [PMID: 22634337 DOI: 10.1016/j.bbabio.2012.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 12/18/2022]
Abstract
The mitochondrial permeability transition (MPT) plays an important role in cell death. The MPT is triggered by calcium and promoted by oxidative stress, which is often catalyzed by iron. We investigated the induction of the MPT by physiological concentrations of iron. Isolated rat liver mitochondria were initially stabilized with EDTA and bovine serum albumin and energized by succinate or malate/pyruvate. The MPT was induced by 20μM calcium or ferrous chloride. We measured mitochondrial swelling, the inner membrane potential, NAD(P)H oxidation, iron and calcium in the recording medium. Iron effectively triggered the MPT; this effect differed from non-specific oxidative damage and required some residual EDTA in the recording medium. Evidence in the literature suggested two mechanisms of action for the iron: NAD(P)H oxidation due to loading of the mitochondrial antioxidant defense systems and uptake of iron to the mitochondrial matrix via a calcium uniporter. Both of these events occurred in our experiments but were only marginally involved in the MPT induced by iron. The primary mechanism observed in our experiments was the displacement of adventitious/endogenous calcium from the residual EDTA by iron. Although artificially created, this interplay between iron and calcium can well reflect conditions in vivo and could be considered as an important mechanism of iron toxicity in the cells.
Collapse
Affiliation(s)
- Juraj Gáll
- Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
18
|
The anti-cancer agent nemorosone is a new potent protonophoric mitochondrial uncoupler. Mitochondrion 2010; 11:255-63. [PMID: 21044702 DOI: 10.1016/j.mito.2010.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/01/2010] [Accepted: 10/19/2010] [Indexed: 02/07/2023]
Abstract
Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 μM) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells.
Collapse
|
19
|
Maioli MA, Alves LC, Campanini AL, Lima MC, Dorta DJ, Groppo M, Cavalheiro AJ, Curti C, Mingatto FE. Iron chelating-mediated antioxidant activity of Plectranthus barbatus extract on mitochondria. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.02.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Navarro JA, Ohmann E, Sanchez D, Botella JA, Liebisch G, Moltó MD, Ganfornina MD, Schmitz G, Schneuwly S. Altered lipid metabolism in a Drosophila model of Friedreich's ataxia. Hum Mol Genet 2010; 19:2828-40. [PMID: 20460268 PMCID: PMC7108586 DOI: 10.1093/hmg/ddq183] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/08/2010] [Accepted: 05/01/2010] [Indexed: 12/21/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most common form of autosomal recessive ataxia caused by a deficit in the mitochondrial protein frataxin. Although demyelination is a common symptom in FRDA patients, no multicellular model has yet been developed to study the involvement of glial cells in FRDA. Using the recently established RNAi lines for targeted suppression of frataxin in Drosophila, we were able to study the effects of general versus glial-specific frataxin downregulation. In particular, we wanted to study the interplay between lowered frataxin content, lipid accumulation and peroxidation and the consequences of these effects on the sensitivity to oxidative stress and fly fitness. Interestingly, ubiquitous frataxin reduction leads to an increase in fatty acids catalyzing an enhancement of lipid peroxidation levels, elevating the intracellular toxic potential. Specific loss of frataxin in glial cells triggers a similar phenotype which can be visualized by accumulating lipid droplets in glial cells. This phenotype is associated with a reduced lifespan, an increased sensitivity to oxidative insult, neurodegenerative effects and a serious impairment of locomotor activity. These symptoms fit very well with our observation of an increase in intracellular toxicity by lipid peroxides. Interestingly, co-expression of a Drosophila apolipoprotein D ortholog (glial lazarillo) has a strong protective effect in our frataxin models, mainly by controlling the level of lipid peroxidation. Our results clearly support a strong involvement of glial cells and lipid peroxidation in the generation of FRDA-like symptoms.
Collapse
Affiliation(s)
- Juan A. Navarro
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| | - Elisabeth Ohmann
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| | - Diego Sanchez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, C/Sanz y Forés s/n, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - José A. Botella
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany and
| | - María D. Moltó
- Department of Genetics, Universidad de Valencia, CIBERSAM, 46100 Burjassot, Valencia, Spain
| | - María D. Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, C/Sanz y Forés s/n, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany and
| | - Stephan Schneuwly
- Institute of Zoology, Universitaetsstrasse 31, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
21
|
Uchiyama A, Kim JS, Kon K, Jaeschke H, Ikejima K, Watanabe S, Lemasters JJ. Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 2008; 48:1644-54. [PMID: 18846543 PMCID: PMC2579320 DOI: 10.1002/hep.22498] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Iron overload exacerbates various liver diseases. In hepatocytes, a portion of non-heme iron is sequestered in lysosomes and endosomes. The precise mechanisms by which lysosomal iron participates in hepatocellular injury remain uncertain. Here, our aim was to determine the role of intracellular movement of chelatable iron in oxidative stress-induced killing to cultured hepatocytes from C3Heb mice and Sprague-Dawley rats. Mitochondrial polarization and chelatable iron were visualized by confocal microscopy of tetramethylrhodamine methylester (TMRM) and quenching of calcein, respectively. Cell viability and hydroperoxide formation (a measure of lipid peroxidation) were measured fluorometrically using propidium iodide and chloromethyl dihydrodichlorofluorescein, respectively. After collapse of lysosomal/endosomal acidic pH gradients with bafilomycin (50 nM), an inhibitor of the vacuolar proton-pumping adenosine triphosphatase, cytosolic calcein fluorescence became quenched. Deferoxamine mesylate and starch-deferoxamine (1 mM) prevented bafilomycin-induced calcein quenching, indicating that bafilomycin induced release of chelatable iron from lysosomes/endosomes. Bafilomycin also quenched calcein fluorescence in mitochondria, which was blocked by 20 microM Ru360, an inhibitor of the mitochondrial calcium uniporter, consistent with mitochondrial iron uptake by the uniporter. Bafilomycin alone was not sufficient to induce mitochondrial depolarization and cell killing, but in the presence of low-dose tert-butylhydroperoxide (25 microM), bafilomycin enhanced hydroperoxide generation, leading to mitochondrial depolarization and subsequent cell death. CONCLUSION Taken together, the results are consistent with the conclusion that bafilomycin induces release of chelatable iron from lysosomes/endosomes, which is taken up by mitochondria. Oxidative stress and chelatable iron thus act as two "hits" synergistically promoting toxic radical formation, mitochondrial dysfunction, and cell death. This pathway of intracellular iron translocation is a potential therapeutic target against oxidative stress-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Akira Uchiyama
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA,Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Kazuyoshi Kon
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - John J. Lemasters
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
22
|
Mohammadi-Bardbori A, Ghazi-Khansari M. Alternative electron acceptors: Proposed mechanism of paraquat mitochondrial toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:1-5. [PMID: 21783880 DOI: 10.1016/j.etap.2008.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/14/2008] [Accepted: 02/19/2008] [Indexed: 05/31/2023]
Abstract
Paraquat (PQ) is a relatively safe and effective herbicide used all over the world. PQ is very toxic to all living organisms; and many cases of acute poisoning and death have been reported over the past decade. The main suggested potential mechanism for PQ toxicity is the production of superoxide radicals from the metabolism of the PQ by microsomal enzyme systems, and by inducing mitochondrial toxicity. Mitochondria are considered to be a major source of reactive oxygen species in cells and according to this hypothesis, PQ, through suitable oxidation and reduction processes, is able to participate in the redox system in mitochondria. The potential ability of PQ to accept electrons from complex (I, II, III, IV) leads to rapid reaction with molecular oxygen to yield superoxide anion which can lead to the formation of more toxic reactive oxygen species, e.g., hydroxyl radical, often taken as the main toxicant. Lipid peroxidation due to PQ has been implicated in a number of deleterious effects such as increased membrane rigidity, osmotic fragility, decreased mitochondrial components, reduced mitochondrial survival and lipid fluidity. The biological effect of reactive oxygen species (ROS) is controlled by a wide spectrum of enzymatic and non-enzymatic defense mechanisms such as superoxide dismutas (SOD), catalase (CAT) and glutathione. According to this hypothesis, the chemical cascades lead to the reduction of PQ, which reacts quite rapidly with molecular oxygen to yield superoxide anion. The generation of free radicals and lipid peroxidation are the main factors that lead to mitochondrial damage.
Collapse
Affiliation(s)
- A Mohammadi-Bardbori
- Shiraz University of Medical Sciences, Faculty of Pharmacy, P.O. Box 71345-1583, Shiraz, Iran; Department of Pharmacology, School of Medicine, P. O. Box 13145-784, Medical Sciences/University of Tehran, Tehran, Iran
| | | |
Collapse
|
23
|
Lukivskaya O, Patsenker E, Buko VU. Protective effect of ursodeoxycholic acid on liver mitochondrial function in rats with alloxan-induced diabetes: link with oxidative stress. Life Sci 2007; 80:2397-402. [PMID: 17512017 DOI: 10.1016/j.lfs.2007.02.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 02/17/2007] [Accepted: 02/22/2007] [Indexed: 02/02/2023]
Abstract
We investigated the effects of ursodeoxycholic acid (UDCA) on mitochondrial functions and oxidative stress and evaluated their relationships in the livers of rats with alloxan-induced diabetes. Diabetes was induced in male Wistar rats by a single alloxan injection (150 mg kg(-1) b.w., i.p.). UDCA (40 mg kg(-1) b.w., i.g., 30 days) was administered from the 5th day after the alloxan treatment. Mitochondrial functions were evaluated by oxygen consumption with Clark oxygen electrode using succinate, pyruvate+malate or palmitoyl carnitine as substrates and by determination of succinate dehydrogenase and NADH dehydrogenase activities. Liver mitochondria were used to measure chemiluminiscence enhanced by luminol and lucigenin, reduced liver glutathione and the end-products of lipid peroxidation. The activities of both NADH dehydrogenase and succinate dehydrogenase as well as the respiratory control (RC) value with all the substrates and the ADP/O ratio with pyruvate+malate and succinate as substrates were significantly decreased in diabetic rats. UDCA developed the beneficial effect on the mitochondrial respiration and oxidative phosphorylation parameters in alloxan-treated rats, whereas the activities of mitochondrial enzymes were increased insignificantly after the administration of UDCA. The contents of polar carbonyls and MDA as well as the chemiluminescence with luminol were elevated in liver mitochondria of diabetic rats. The treatment with UDCA normalized all the above parameters measured except the MDA content. UDCA administration prevents mitochondrial dysfunction in rats treated with alloxan and this process is closely connected with inhibition of oxidative stress by this compound.
Collapse
Affiliation(s)
- Oxana Lukivskaya
- Department of Experimental Hepatology, Institute of Biochemistry, National Academy of Sciences, BLK-50, Grodno, Belarus
| | | | | |
Collapse
|
24
|
Izzotti A, Saccà SC, Di Marco B, Penco S, Bassi AM. Antioxidant activity of timolol on endothelial cells and its relevance for glaucoma course. Eye (Lond) 2007; 22:445-53. [PMID: 17293786 DOI: 10.1038/sj.eye.6702737] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE A growing evidence in the scientific literature suggests that oxidative damage plays a pathogenic role in primary open-angle glaucoma. Therefore, it is of interest to test whether drugs effective against glaucoma display antioxidant activity. We test the hypothesis that the classic beta-blocker therapy for glaucoma with timolol involves the activation of antioxidant protective mechanisms towards endothelial cells. METHODS Oxidative stress was induced in cultured human endothelial cells by iron/ascorbate with or without timolol pretreatment. Analysed parameters included cell viability (neutral red uptake and tetrazolium salt tests), lipid peroxidation (thiobarbituric reactive substances), and occurrence of molecular oxidative damage to DNA (8-hydroxy-2'-deoxyguanosine). RESULTS Oxidative stress decreased 1.8-fold cell viability, increased 3.0-fold lipid peroxidation and 64-fold oxidative damage to DNA. In the presence of timolol, oxidative stress did not modify cell viability, whereas lipid peroxidation was increased 1.3-fold, and DNA oxidative damage 3.6-fold only. CONCLUSIONS The obtained results indicate that timolol exerts a direct antioxidant activity protecting human endothelial cells from oxidative stress. These cells employ mechanisms similar to those observed in the vascular endothelium. It is hypothesized that this antioxidant activity is involved in the therapeutic effect of this drug against glaucoma.
Collapse
Affiliation(s)
- A Izzotti
- Department of Health Sciences, University of Genoa, Italy
| | | | | | | | | |
Collapse
|
25
|
Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006; 88:1549-59. [PMID: 17070979 DOI: 10.1016/j.biochi.2006.10.001] [Citation(s) in RCA: 612] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 10/02/2006] [Indexed: 02/02/2023]
Abstract
Cadmium is an important toxic environmental heavy metal. Occupational and environmental pollution with cadmium results mainly from mining, metallurgy industry and manufactures of nickel-cadmium batteries, pigments and plastic stabilizers. Important sources of human intoxication are cigarette smoke as well as food, water and air contaminations. In humans, cadmium exposures have been associated with cancers of the prostate, lungs and testes. Acute exposures are responsible for damage to these organs. Chronic intoxication is associated with obstructive airway disease, emphysema, irreversible renal failure, bone disorders and immuno-suppression. At the cellular level, cadmium affects proliferation, differentiation and causes apoptosis. It has been classified as a carcinogen by the International Agency for Research on Cancer (IARC). However, it is weakly genotoxic. Indirect effects of cadmium provoke generation of reactive oxygen species (ROS) and DNA damage. Cadmium modulates also gene expression and signal transduction, reduces activities of proteins involved in antioxidant defenses. Several studies have shown that it interferes with DNA repair. The present review focuses on the effects of cadmium in mammalian cells with special emphasis on the induction of damage to DNA, membranes and proteins, the inhibition of different types of DNA repair and the induction of apoptosis. Current data and hypotheses on the mechanisms involved in cadmium genotoxicity and carcinogenesis are outlined.
Collapse
Affiliation(s)
- G Bertin
- Institut Curie-UMR 2027 CNRS Génotoxicologie et cycle cellulaire, LCR V28 du CEA, centre universitaire, 91405 Orsay cedex, France
| | | |
Collapse
|
26
|
Almeida AM, Bertoncini CRA, Borecký J, Souza-Pinto NC, Vercesi AE. Mitochondrial DNA damage associated with lipid peroxidation of the mitochondrial membrane induced by Fe2+-citrate. AN ACAD BRAS CIENC 2006; 78:505-14. [PMID: 16936939 DOI: 10.1590/s0001-37652006000300010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Accepted: 11/24/2005] [Indexed: 02/04/2023] Open
Abstract
Iron imbalance/accumulation has been implicated in oxidative injury associated with many degenerative diseases such as hereditary hemochromatosis, beta-thalassemia, and Friedreich's ataxia. Mitochondria are particularly sensitive to iron-induced oxidative stress - high loads of iron cause extensive lipid peroxidation and membrane permeabilization in isolated mitochondria. Here we detected and characterized mitochondrial DNA damage in isolated rat liver mitochondria exposed to a Fe2+-citrate complex, a small molecular weight complex. Intense DNA fragmentation was induced after the incubation of mitochondria with the iron complex. The detection of 3' phosphoglycolate ends at the mtDNA strand breaks by a 32P-postlabeling assay, suggested the involvement of hydroxyl radical in the DNA fragmentation induced by Fe2+-citrate. Increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine also suggested that Fe2+-citrate-induced oxidative stress causes mitochondrial DNA damage. In conclusion, our results show that iron-mediated lipid peroxidation was associated with intense mtDNA damage derived from the direct attack of reactive oxygen species.
Collapse
Affiliation(s)
- Andréa M Almeida
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | |
Collapse
|
27
|
Tang J, Faustman C, Hoagland TA, Mancini RA, Seyfert M, Hunt MC. Interactions between mitochondrial lipid oxidation and oxymyoglobin oxidation and the effects of vitamin E. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:6073-9. [PMID: 16028998 DOI: 10.1021/jf0501037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Off-flavor and discoloration of meat products result from lipid oxidation and myoglobin (Mb) oxidation, respectively, and these two processes appear to be interrelated. The objective of this study was to investigate their potential interaction in mitochondria and the effects of mitochondrial alpha-tocopherol concentrations on lipid oxidation and metmyoglobin (MetMb) formation in vitro. The addition of ascorbic acid and ferric chloride (AA-Fe(3+)) increased ovine and bovine mitochondrial lipid oxidation when compared with their controls (p < 0.05); MetMb formation also increased with increased lipid oxidation relative to controls (p < 0.05). Reactions containing Mb and mitochondria with greater alpha-tocopherol concentrations demonstrated less lipid oxidation and MetMb formation than mitochondria with lower alpha-tocopherol concentrations. Greater mitochondrial alpha-tocopherol concentration was also correlated with increased mitochondrial oxygen consumption in vitro and with a more pronounced effect at pH 7.2 than at pH 5.6. Relative to controls, succinate addition to bovine mitochondria resulted in increased concentrations of ubiquinol 10 and alpha-tocopherol and decreased lipid and Mb oxidation (p < 0.05). Mitochondrial lipid oxidation was closely related to MetMb formation; both processes were inhibited by alpha-tocopherol in a concentration-dependent manner.
Collapse
Affiliation(s)
- Jiali Tang
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Ext., Storrs, Connecticut 06269-4040, USA
| | | | | | | | | | | |
Collapse
|
28
|
Pardo Andreu G, Delgado R, Velho J, Inada NM, Curti C, Vercesi AE. Mangifera indica L. extract (Vimang) inhibits Fe2+-citrate-induced lipoperoxidation in isolated rat liver mitochondria. Pharmacol Res 2005; 51:427-35. [PMID: 15749457 DOI: 10.1016/j.phrs.2004.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 11/28/2022]
Abstract
The extract of Mangifera indica L. (Vimang) is able to prevent iron mediated mitochondrial damage by means of oxidation of reduced transition metals required for the production of superoxide and hydroxyl radicals and direct free radical scavenging activity. In this study we report for the first time the iron-complexing ability of Vimang as a primary mechanism for protection of rat liver mitochondria against Fe2+ -citrate-induced lipoperoxidation. Thiobarbituric acid reactive substances (TBARS) and antimycin A-insensitive oxygen consumption were used as quantitative measures of lipoperoxidation. Vimang at 10 microM mangiferin concentration equivalent induced near-full protection against 50 microM Fe2+ -citrate-induced mitochondrial swelling and loss of mitochondrial transmembrane potential (DeltaPsi). The IC50 value for Vimang protection against Fe2+ -citrate-induced mitochondrial TBARS formation (7.89+/-1.19 microM) was around 10 times lower than that for tert-butylhydroperoxide mitochondrial induction of TBARS formation. The extract also inhibited the iron citrate induction of mitochondrial antimycin A-insensitive oxygen consumption, stimulated oxygen consumption due to Fe2+ autoxidation and prevented Fe3+ ascorbate reduction. The extracted polyphenolic compound, mainly mangiferin, could form a complex with Fe2+, accelerating Fe2+ oxidation and the formation of more stable Fe3+ -polyphenol complexes, unable to participate in Fenton-type reactions and lipoperoxidation propagation phase. The strong DPPH radical scavenging activity with an apparent IC50 of 2.45+/-0.08 microM suggests that besides its iron-complexing capacity, Vimang could also protect mitochondria from Fe2+ -citrate lipoperoxidation through direct free radical scavenging ability, mainly lipoperoxyl and alcoxyl radicals, acting as both a chain-breaking and iron-complexing antioxidant. These results are of pharmacological relevance since Vimang could be a potential candidate for antioxidant therapy in diseases related to abnormal intracellular iron distribution or iron overload.
Collapse
Affiliation(s)
- Gilberto Pardo Andreu
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas 13083-970 Campinas, SP, Brasil.
| | | | | | | | | | | |
Collapse
|
29
|
Andreu GP, Delgado R, Velho JA, Curti C, Vercesi AE. Iron complexing activity of mangiferin, a naturally occurring glucosylxanthone, inhibits mitochondrial lipid peroxidation induced by Fe2+-citrate. Eur J Pharmacol 2005; 513:47-55. [PMID: 15878708 DOI: 10.1016/j.ejphar.2005.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 03/02/2005] [Indexed: 11/19/2022]
Abstract
Mangiferin, a naturally occurring glucosylxanthone, has been described as having antidiabetic, antiproliferative, immunomodulatory and antioxidant activities. In this study we report for the first time the iron-complexing ability of mangiferin as a primary mechanism for protection of rat liver mitochondria against Fe(2+)-citrate induced lipid peroxidation. Thiobarbituric acid reactive substances and antimycin A-insensitive oxygen consumption were used as quantitative measures of lipid peroxidation. Mangiferin at 10 microM induced near-full protection against 50 microM Fe(2+)-citrate-induced mitochondrial swelling and loss of mitochondrial transmembrane potential (DeltaPsi). The IC(50) value for mangiferin protection against Fe(2+)-citrate-induced mitochondrial thiobarbituric acid reactive substance formation (9.02+/-1.12 microM) was around 10 times lower than that for tert-butylhydroperoxide mitochondrial induction of thiobarbituric acid reactive substance formation. The xanthone derivative also inhibited the iron citrate induction of mitochondrial antimycin A-insensitive oxygen consumption, stimulated oxygen consumption due to Fe(2+) autoxidation and prevented Fe(3+) ascorbate reduction. Absorption spectra of mangiferin-Fe(2+)/Fe(3+) complexes also suggest the formation of a transient charge transfer complex between Fe(2+) and mangiferin, accelerating Fe(2+) oxidation and the formation of a more stable Fe(3+)-mangiferin complex unable to participate in Fenton-type reaction and lipid peroxidation propagation phase. In conclusion, these results show that in vitro antioxidant activity of mangiferin is related to its iron-chelating properties and not merely due to the scavenging activity of free radicals. These results are of pharmacological relevance since mangiferin and its naturally contained extracts could be potential candidates for chelation therapy in diseases related to abnormal intracellular iron distribution or iron overload.
Collapse
Affiliation(s)
- Gilberto Pardo Andreu
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, SP, Brasil.
| | | | | | | | | |
Collapse
|
30
|
Correa F, García N, García G, Chávez E. Dehydroepiandrosterone as an inducer of mitochondrial permeability transition. J Steroid Biochem Mol Biol 2003; 87:279-84. [PMID: 14698209 DOI: 10.1016/j.jsbmb.2003.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper reports an investigation upon the effect of dehydroepiandrosterone (DHEA) on some mitochondrial membrane functions, such as electron transport, transmembrane electric gradient and calcium permeability. It was found that the hormone induced the efflux of accumulated matrix Ca(2+), inhibited Site I of the respiratory chain, as well as bringing about the collapse of the transmembrane potential, and mitochondrial swelling. Taking into account that cyclosporin A (CSA) inhibited Ca(2+) release and the collapse of the transmembrane potential, it is concluded that the hormone may induce the opening of a non-specific transmembrane pore. The mechanism of pore opening is ascribed to peroxidation of the membrane lipid bilayer. It should be mentioned that estrone, even at the concentration of 200 microM, failed to reproduce the behavior of dehydroepiandrosterone on mitochondrial functions.
Collapse
Affiliation(s)
- Francisco Correa
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano # 1, Tlalpan, Mexico, D.F. 014080, Mexico
| | | | | | | |
Collapse
|
31
|
Gogvadze V, Walter PB, Ames BN. The role of Fe2+-induced lipid peroxidation in the initiation of the mitochondrial permeability transition. Arch Biochem Biophys 2003; 414:255-60. [PMID: 12781777 DOI: 10.1016/s0003-9861(02)00750-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron and iron complexes stimulate lipid peroxidation and formation of malondialdehyde (MDA). We have studied the effects of Fe2+ and ascorbate on mitochondrial permeability transition induced by phosphate and Ca2+. Iron is necessary for detectable MDA formation, but only Ca2+ and phosphate are necessary for the induction of membrane potential loss (Deltapsi) and Ca2+ release. Keeping the iron at a constant concentration and varying the Ca2+ level changed the mitochondrial Ca2+ retention times, but not the amount of MDA formation. The antioxidant butylated hydroxytoluene at low concentrations prevented MDA formation, but not mitochondrial Ca2+ release. Preincubation of mitochondria with Fe2+ decreased Ca2+ retention time in a concentration-dependent manner and facilitated Ca2+-stimulated MDA accumulation. Thus, Ca2+ phosphate-induced mitochondrial permeability transition (MPT) can be separated mechanistically from MDA accumulation. Lipid peroxidation products do not appear to participate in the initial phase of the permeability transition, but sensitize mitochondria toward MPT.
Collapse
Affiliation(s)
- Vladimir Gogvadze
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
32
|
Maciel EN, Vercesi AE, Castilho RF. Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria. J Neurochem 2001; 79:1237-45. [PMID: 11752064 DOI: 10.1046/j.1471-4159.2001.00670.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial permeability transition (PT) is a non-selective inner membrane permeabilization, typically promoted by the accumulation of excessive quantities of Ca(2+) ions in the mitochondrial matrix. This phenomenon may contribute to neuronal cell death under some circumstances, such as following brain trauma and hypoglycemia. In this report, we show that Ca(2+)-induced brain mitochondrial PT was stimulated by Na(+) (10 mM) and totally prevented by the combination of ADP and cyclosporin A. Removal of Ca(2+) from the mitochondrial suspension by EGTA or inhibition of Ca(2+) uptake by ruthenium red partially reverted the dissipation of the membrane potential associated with PT. Ca(2+)-induced brain mitochondrial PT was significantly inhibited by the antioxidant catalase, indicating the participation of reactive oxygen species in this process. An increased detection of reactive oxygen species, measured through dichlorodihydrofluorescein oxidation, was observed after mitochondrial Ca(2+) uptake. Ca(2+)-induced dichlorodihydrofluorescein oxidation was enhanced by Na(+) and prevented by ADP and cyclosporin A, indicating that PT enhances mitochondrial oxidative stress. This could be at least in part a consequence of the extensive depletion in NAD(P)H that accompanied this Ca(2+)-induced mitochondrial PT. NADPH is known to maintain the antioxidant function of the glutathione reductase/peroxidase and thioredoxin reductase/peroxidase systems. In addition, the occurrence of mitochondrial PT was associated with membrane lipid peroxidation. We conclude that PT further increases Ca(2+)-induced oxidative stress in brain mitochondria leading to secondary damage such as lipid peroxidation.
Collapse
Affiliation(s)
- E N Maciel
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | |
Collapse
|
33
|
Santos NC, Castilho RF, Meinicke AR, Hermes-Lima M. The iron chelator pyridoxal isonicotinoyl hydrazone inhibits mitochondrial lipid peroxidation induced by Fe(II)-citrate. Eur J Pharmacol 2001; 428:37-44. [PMID: 11779035 DOI: 10.1016/s0014-2999(01)01291-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pyridoxal isonicotinoyl hydrazone (PIH) is able to prevent iron-mediated hydroxyl radical formation by means of iron chelation and inhibition of redox cycling of the metal. In this study, we investigated the effect of PIH on Fe(II)-citrate-mediated lipid peroxidation and damage to isolated rat liver mitochondria. Lipid peroxidation was quantified by the production of thiobarbituric acid-reactive substances (TBARS) and by antimycin A-insensitive oxygen consumption. PIH at 300 microM induced full protection against 50 microM Fe(II)-citrate-induced loss of mitochondrial transmembrane potential (deltapsi) and mitochondrial swelling. In addition, PIH prevented the Fe(II)-citrate-dependent formation of TBARS and antimycin A-insensitive oxygen consumption. The antioxidant effectiveness of 100 microM PIH (on TBARS formation and mitochondrial swelling) was greater in the presence of 20 or 50 microM Fe(II)-citrate than in the presence of 100 microM Fe(II)-citrate, suggesting that the mechanism of PIH antioxidant action is linked with its Fe(II) chelating property. Finally, PIH increased the rate of Fe(II) autoxidation by sequestering iron from the Fe(II)-citrate complex, forming a Fe(III)-PIH, complex that does not participate in Fenton-type reactions and lipid peroxidation. These results are of pharmacological relevance since PIH is a potential candidate for chelation therapy in diseases related to abnormal intracellular iron distribution and/or iron overload.
Collapse
Affiliation(s)
- N C Santos
- Oxyradical Research Group, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | | | | | | |
Collapse
|
34
|
Santos DJ, Moreno AJ. Inhibition of heart mitochondrial lipid peroxidation by non-toxic concentrations of carvedilol and its analog BM-910228. Biochem Pharmacol 2001; 61:155-64. [PMID: 11163330 DOI: 10.1016/s0006-2952(00)00522-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carvedilol, a non-selective beta-adrenoreceptor blocker, has been shown to possess a high degree of cardioprotection in experimental models of myocardial damage. Reactive oxygen species have been proposed to be implicated in such situations, and antioxidants have been demonstrated to provide partial protection to the reported damage. The purpose of our study was to investigate the antioxidant effect of carvedilol and its metabolite BM-910228 by measuring the extent of lipid peroxidation in a model of severe oxidative damage induced by ADP/FeSO(4) in isolated rat heart mitochondria. Carvedilol and BM-910228 inhibited the thiobarbituric acid-reactive substance formation and oxygen consumption associated with lipid peroxidation with IC(50) values of 6 and 0.22 microM, respectively. Under the same conditions, the IC(50) values of alpha-tocopheryl succinate and Trolox were 125 and 31 microM, respectively. As expected, the presence of carvedilol and BM-910228 preserved the structural and functional integrity of mitochondria under oxidative stress conditions for the same concentration range shown to inhibit lipid peroxidation, since they prevented the collapse of the mitochondrial membrane potential (DeltaPsi) induced by ADP/FeSO(4) in respiring mitochondria. It should be stressed that neither carvedilol nor BM-910228 induced any toxic effect on mitochondrial function in the concentration range of the compounds that inhibits the peroxidation of mitochondrial membranes. In conclusion, the antioxidant properties of carvedilol may contribute to the cardioprotective effects of the compound, namely through the preservation of mitochondrial functions whose importance in myocardial dysfunction is clearly documented. Additionally, its hydroxylated analog BM-910220, with its notably superior antioxidant activity, may significantly contribute to the therapeutic effects of carvedilol.
Collapse
Affiliation(s)
- D J Santos
- University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | | |
Collapse
|
35
|
Boireau A, Maréchal PM, Meunier M, Dubédat P, Moussaoui S. The anti-oxidant ebselen antagonizes the release of the apoptogenic factor cytochrome c induced by Fe2+/citrate in rat liver mitochondria. Neurosci Lett 2000; 289:95-8. [PMID: 10904128 DOI: 10.1016/s0304-3940(00)01267-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We studied the effects of ebselen (a seleno-organic anti-oxidant), on the release of the apoptogenic factor, cytochrome c, in two different experimental situations damaging mitochondria: (1) Fe(2+)/citrate, known to induce lipid peroxidation consecutively to an oxidative stress; and (2) atractyloside, a ligand of the adenine nucleotide translocator. The effects of ebselen were compared to those of butylated hydroxytoluene (BHT, an inhibitor of lipid peroxidation), and cyclosporine A (CsA, a classical pore antagonist). Ebselen, like BHT, inhibited Fe(2+)/citrate-induced release of cytochrome c, whereas CsA was inactive. On the contrary, neither ebselen nor BHT inhibited atractyloside-induced release of cytochrome c, whereas CsA was potently active. The antioxidant properties of ebselen may protect mitochondria from the consequences of the release of cytochrome c. Thus, it is suggested that the neuroprotective effect of ebselen previously demonstrated in humans and in animals may be due, at least in part, to a mitochondrial protection.
Collapse
Affiliation(s)
- A Boireau
- Département Biologie, Aventis Pharma S.A., Centre de Recherche de Vitry-Alfortville, 13 quai Jules Guesde, 94403, Vitry-sur-Seine Cedex, France.
| | | | | | | | | |
Collapse
|
36
|
Murthy UM, Sun WQ. Protein modification by Amadori and Maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51:1221-8. [PMID: 10937697 DOI: 10.1093/jexbot/51.348.1221] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The non-enzymatic modifications of proteins through Amadori and Maillard reactions play an important role in the loss of seed viability during storage. In the present study, the contribution of sugar hydrolysis and lipid peroxidation to Amadori and Maillard reactions, and to seed deterioration was investigated in mung-bean (Vigna radiata Wilczek). The contents of glucose and lipid peroxidation products in seed axes increased significantly during storage. The accumulation of Amadori products in seed axes was correlated to the lipid peroxidation, whereas the accumulation of Maillard products was closely correlated to sugar hydrolysis. The rate of accumulation of Maillard products was not well correlated to the content of Amadori products in both seed axes and protein/glucose model system, reflecting the complex nature of Amadori and Maillard reactions. The content of Amadori products in seed axes increased during the early stages of seed ageing, whereas the content of Maillard products increased steadily during the entire period of storage. The accumulation of Maillard products in seed axes was associated with the decline of seed vigour. These data suggest that, during seed ageing, sugar hydrolysis and lipid peroxidation are coupled with non-enzymatic protein modification through Amadori and Maillard reactions.
Collapse
Affiliation(s)
- U M Murthy
- Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
37
|
Padma P, Setty OH. Protective effect of Phyllanthus fraternus against carbon tetrachloride-induced mitochondrial dysfunction. Life Sci 1999; 64:2411-7. [PMID: 10374905 DOI: 10.1016/s0024-3205(99)00195-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of carbon tetrachloride administration on liver mitochondrial function and the protective effect of an aqueous extract of Phyllanthus fraternus were studied in rats. The following changes were observed in mitochondria due to the administration of carbon tetrachloride. 1) A decrease in the rate of respiration, respiratory control ratio and P/O ratio using glutamate and malate or succinate as substrates. 2) A decrease in the activities of NADH dehydrogenase (35%), succinate dehydrogenase (76%) and cytochrome c oxidase (51%). The rate of electron transfer through site I, site II and site III was studied independently and found to be significantly decreased. 3) A decrease in the content of cytochrome aa3 (34%). 4) A significant decrease in the levels of phospholipids particularly cardiolipin and a significant increase in the lipid peroxide level was observed. The carbon tetrachloride induced toxicity may be partly due to the lipid peroxidation and partly due to the effect on protein synthesis. Administration of rats with an aqueous extract of P. fraternus prior to carbon tetrachloride administration showed significant protection on the carbon tetrachloride induced mitochondrial dysfunction on all the parameters studied.
Collapse
Affiliation(s)
- P Padma
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, India
| | | |
Collapse
|
38
|
Nigam D, Shukla GS, Agarwal AK. Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney. Toxicol Lett 1999; 106:151-7. [PMID: 10403659 DOI: 10.1016/s0378-4274(99)00059-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The dose-dependent effects of cadmium (Cd) on mitochondria and post-mitochondrial supernatant (PMS) of liver and kidney were investigated in adult male albino rats. Two groups of rats were injected intraperitoneally with 0.1 mg Cd/kg body weight and 1 mg/kg body weight, respectively, for a period of 3 months (5 days/week). This resulted in a significant decrease in total glutathione (GSH) levels, irrespective of the doses, in mitochondrial as well as in PMS fractions of liver and kidney. In contrast, end products of lipid and protein were significantly increased in a dose-dependent manner in subcellular fractions of liver and kidney. These results suggest that the depletion of tissue glutathione levels is not a primary reason of the observed oxidative damage in liver and kidney caused by Cd.
Collapse
Affiliation(s)
- D Nigam
- Predictive Toxicology Research Group, Industrial Toxicology Research Centre, Lucknow, India
| | | | | |
Collapse
|
39
|
Abstract
Up to 2% of the oxygen consumed by the mitochondrial respiratory chain undergoes one electron reduction, typically by the semiquinone form of coenzyme Q, to generate the superoxide radical, and subsequently other reactive oxygen species such as hydrogen peroxide and the hydroxyl radical. Under conditions in which mitochondrial generation of reactive oxygen species is increased (such as in the presence of Ca2+ ions or when the mitochondrial antioxidant defense mechanisms are compromised), these reactive oxygen species may lead to irreversible damage of mitochondrial DNA, membrane lipids and proteins, resulting in mitochondrial dysfunction and ultimately cell death. The nature of this damage and the cellular conditions in which it occurs are discussed in this review article.
Collapse
Affiliation(s)
- A J Kowaltowski
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, SP, Brazil
| | | |
Collapse
|
40
|
Xiong Y, Peterson PL, Verweij BH, Vinas FC, Muizelaar JP, Lee CP. Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E. J Neurotrauma 1998; 15:531-44. [PMID: 9674556 DOI: 10.1089/neu.1998.15.531] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We recently demonstrated that posttraumatic administration of the N-type calcium channel blocker SNX-111 (S) and a novel blood-brain barrier penetrating antioxidant U-101033E (U), significantly alleviated mitochondrial dysfunction induced by traumatic brain injury (TBI) in rats. The present study was designed to determine whether a combination of S and U, which act on different biochemical mechanisms of secondary brain injury, would be more efficacious than either drug alone. Brain mitochondria from injured and uninjured hemispheres were isolated and examined at 12 h post TBI induced by a severe controlled cortical impact injury. S at 1.0 mg/kg significantly increased both State 3 and 4 rates and produced a slight increase in P/O ratio, and there was virtually no change in RCI. U at 1.0 mg/kg did not show any protection. However, the combined treatment of S at 1.0 mg/kg and U at 1.0 mg/kg eliminated the uncoupling effect of S, and restored not only State 3 rates and P/O ratios but also RCI to near sham values. These results provide further evidence that both reactive oxygen species and perturbation of cellular calcium homeostasis participate in the pathogenesis of TBI-induced mitochondrial dysfunction, and support the idea of using combined therapy with lower drug doses.
Collapse
Affiliation(s)
- Y Xiong
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
41
|
Iwase H, Takatori T, Nagao M, Nijima H, Iwadate K, Matsuda Y, Kobayashi M. Formation of keto and hydroxy compounds of linoleic acid in submitochondrial particles of bovine heart. Free Radic Biol Med 1998; 24:1492-503. [PMID: 9641268 DOI: 10.1016/s0891-5849(98)00028-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To observe lipid peroxidation of additive-free submitochondrial particles, we incubated submitochondrial particles in the absence of exogenous irons and t-butyl hydroperoxide. After the incubation, the phospholipids were hydrolyzed by phopholipase A2, and the fatty acid constituents were analyzed by high-performance liquid chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry. Contrary to a commonly accepted theory, lipid peroxidation in the submitochondrial particles did not need the addition of NADH. In the phospholipid constituent fatty acids of the oxidized submitochondrial particles, derivatives of hydroperoxides of linoleic acid such as keto, hydroxy, trihydroxy, and hydroxyepoxy compounds were generated. Lipid peroxidation in the submitochondrial particles was not inhibited by the addition of catalase, superoxide dismutase, hydroxyl radical scavengers, or ethylenediaminetetraacetic acid, but was inhibited by the addition of KCN, antimycin-A, NADH, ubiquinol, deferoxamine mesylate, ascorbic acid, and alpha-tocopherol. The cardiolipin-cytochrome c lipid peroxidation system could mimic the lipid peroxidation of the submitochondrial particles, in terms of linoleic acid products and the inhibitory patterns of radical scavengers and electron transfer chain inhibitors. Thus, lipid peroxidation in the submitochondrial particles seems to be due to phospholipid-hemoprotein lipid peroxidation systems such as the cardiolipin-cytochrome c system.
Collapse
Affiliation(s)
- H Iwase
- Department of Forensic Medicine, Faculty of Medicine, The University of Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Madesh M, Balasubramanian KA. Effect of antimalarial drugs on rat enterocyte mitochondrial phospholipase D activity. Life Sci 1998; 62:177-84. [PMID: 9488115 DOI: 10.1016/s0024-3205(97)01063-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have earlier shown that enterocyte mitochondria contain a phospholipase D (PLD) activity which can be stimulated by oxygen free radicals, divalent cations and polyamines. The functional significance of this enzyme in mitochondria is not known but it can be investigated using selective inhibitors. In the present study, mitochondrial PLD was activated by exposure to oxidants (X+XO or menadione), calcium or polyamines and the effect of antimalarial drugs, chloroquine, amodiaquin and primaquine on PLD activity was studied. Chloroquine and amodiaquine inhibited Ca2+ stimulated PLD activity in dose dependent manner whereas these drugs had no significant effect on PLD activated by oxidants or polyamines. Increasing the calcium concentration relieved the PLD inhibition by these drugs. Primaquine did not have any effect on calcium stimulated PLD activity whereas it slightly activated the enzyme. These results indicate that chloroquine and amodiaquine may bind with calcium making it unavailable for PLD activation.
Collapse
Affiliation(s)
- M Madesh
- Department of Gastrointestinal Sciences, Christian Medical College Hospital, Vellore, India
| | | |
Collapse
|
43
|
Grijalba MT, Andrade PB, Meinicke AR, Castilho RF, Vercesi AE, Schreier S. Inhibition of membrane lipid peroxidation by a radical scavenging mechanism: a novel function for hydroxyl-containing ionophores. Free Radic Res 1998; 28:301-18. [PMID: 9688216 DOI: 10.3109/10715769809069282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present study we show that K+/H+ hydroxyl-containing ionophores lasalocid-A (LAS) and nigericin (NIG) in the nanomolar concentration range, inhibit Fe2+-citrate and 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP)-induced lipid peroxidation in intact rat liver mitochondria and in egg phosphatidylcholine (PC) liposomes containing negatively charged lipids--dicetyl phosphate (DCP) or cardiolipin (CL)--and KCl as the osmotic support. In addition, monensin (MON), a hydroxyl-containing ionophore with higher affinity for Na+ than for K+, promotes a similar effect when NaCl is the osmotic support. The protective effect of the ionophores is not observed when the osmolyte is sucrose. Lipid peroxidation was evidenced by mitochondrial swelling, antimycin A-insensitive O2 consumption, formation of thiobarbituric acid-reactive substances (TBARS), conjugated dienes, and electron paramagnetic resonance (EPR) spectra of an incorporated lipid spin probe. A time-dependent decay of spin label EPR signal is observed as a consequence of lipid peroxidation induced by both inductor systems in liposomes. Nitroxide destruction is inhibited by butylated hydroxytoluene, a known antioxidant, and by the hydroxyl-containing ionophores. In contrast, valinomycin (VAL), which does not possess alcoholic groups, does not display this protective effect. Effective order parameters (Seff), determined from the spectra of an incorporated spin label are larger in the presence of salt and display a small increase upon addition of the ionophores, as a result of the increase of counter ion concentration at the negatively charged bilayer surface. This condition leads to increased formation of the ion-ionophore complex, the membrane binding (uncharged) species. The membrane-incorporated complex is the active species in the lipid peroxidation inhibiting process. Studies in aqueous solution (in the absence of membranes) showed that NIG and LAS, but not VAL, decrease the Fe2+-citrate-induced production of radicals derived from piperazine-based buffers, demonstrating their property as radical scavengers. Both Fe2+-citrate and ABAP promote a much more pronounced decrease of LAS fluorescence in PC/CL liposomes than in dimyristoyl phosphatidylcholine (DMPC, saturated phospholipid)-DCP liposomes, indicating that the ionophore also scavenges lipid peroxyl radicals. A slow decrease of fluorescence is observed in the latter system, for all lipid compositions in sucrose medium, and in the absence of membranes, indicating that the primary radicals stemming from both inductors also attack the ionophore. Altogether, the data lead to the conclusion that the membrane-incorporated cation complexes of NIG, LAS and MON inhibit lipid peroxidation by blocking initiation and propagation reactions in the lipid phase via a free radical scavenging mechanism, very likely due to the presence of alcoholic hydroxyl groups in all three molecules and to the attack of the aromatic moiety of LAS.
Collapse
Affiliation(s)
- M T Grijalba
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Meinicke AR, Bechara EJ, Vercesi AE. Ruthenium red-catalyzed degradation of peroxides can prevent mitochondrial oxidative damage induced by either tert-butyl hydroperoxide or inorganic phosphate. Arch Biochem Biophys 1998; 349:275-80. [PMID: 9448715 DOI: 10.1006/abbi.1997.0450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have recently shown that ruthenium red, a non-competitive inhibitor of the mitochondrial Ca2+ uniporter, can reduce tert-butyl hydroperoxide via a Fenton-type reaction. In respiring mitochondrial preparations containing tert-butyl hydroperoxide, redox cycling of ruthenium red occurs and causes the amplification of methyl radical generation (Meinicke, A. R., Zavan, S. S., Ferreira, A. M. C., Vercesi, A. E., and Bechara, E. J. H. (1996) Arch. Biochem. Biophys. 328, 239-244). In this study we show that ruthenium red can act as an antioxidant preventing mitochondrial damage when the respiratory chain is reduced or when ascorbate is present. Ruthenium red can catalyze the degradation of hydrogen peroxide into H2O and O2. We show here that ruthenium red prevents both accumulation of mitochondrial generated H2O2 and swelling in the presence of the Ca2+ ionophore A23187. Under these conditions the damage induced by Ca2+ ions and either tert-butyl hydroperoxide or inorganic phosphate is promoted by mitochondrial-generated reactive oxygen species. Swelling induced by phenylarsine oxide, a thiol cross-linker, by a mechanism independent of free radicals is not inhibited by ruthenium red. These data provide evidence that the antioxidant behavior of ruthenium red under our conditions is due to its ability to destroy peroxides, which is related to its redox cycling and is prevalent over the Fenton-type reaction.
Collapse
Affiliation(s)
- A R Meinicke
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
45
|
Gadelha FR, Thomson L, Fagian MM, Costa AD, Radi R, Vercesi AE. Ca2+-independent permeabilization of the inner mitochondrial membrane by peroxynitrite is mediated by membrane protein thiol cross-linking and lipid peroxidation. Arch Biochem Biophys 1997; 345:243-50. [PMID: 9308896 DOI: 10.1006/abbi.1997.0259] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peroxynitrite anion, the reaction product of superoxide and nitric oxide, is a potent biological oxidant, which inactivates mammalian heart mitochondrial NADH-coenzyme Q reductase (complex I), succinate dehydrogenase (complex II), and ATPase, without affecting cytochrome c oxidase (complex IV). In this paper, we evaluated the effect of peroxynitrite on mitochondrial membrane integrity and permeability under low calcium concentration. Phosphate buffer was used in most of our experiments since Hepes, Tris, mannitol, and sucrose were found to inhibit the oxidative chemistry of peroxynitrite. Peroxynitrite (0.1-1.0 mM) caused a dose-dependent decrease in the ability of mitochondria to build up a membrane potential when N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate were used as substrate. Elimination of the membrane potential was accompanied by penetration of the osmotic support (KCl/NaCl) into the matrix as judged by the parallel occurrence of mitochondrial swelling. This swelling was partially inhibited by dithiothreitol (DTT) or butylated hydroxytoluene (BHT) and was insensitive to ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, ADP, and cyclosporin A. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized membrane proteins indicated that alterations in membrane permeability were associated with the production of protein aggregates due to membrane protein thiol cross-linking. The protective effect of DTT on both mitochondrial swelling and protein polymerization suggests the involvement of disulfide bonds in the membrane permeabilization process. In addition, the increase in thiobarbituric acid-reactive substances and the partial inhibitory effect of BHT indicate the occurrence of lipid peroxidation. These results support the idea that under our experimental conditions peroxynitrite causes mitochondrial structural and functional alterations by Ca2+-independent mechanisms through lipid peroxidation and protein sulfhydryl oxidation.
Collapse
Affiliation(s)
- F R Gadelha
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Castilho RF, Vicente JA, Kowaltowski AJ, Vercesi AE. 4,6-Dinitro-o-cresol uncouples oxidative phosphorylation and induces membrane permeability transition in rat liver mitochondria. Int J Biochem Cell Biol 1997; 29:1005-11. [PMID: 9375380 DOI: 10.1016/s1357-2725(97)00041-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of the herbicide 4,6-dinitro-o-cresol (DNOC), a structural analogue of the classical protonophore 2,4-dinitrophenol, on the bioenergetics and inner membrane permeability of isolated rat liver mitochondria was studied. We observed that DNOC (10-50 microM) acts as a classical uncoupler of oxidative phosphorylation in rat liver mitochondria, promoting both an increase in succinate-supported mitochondrial respiration in the presence or absence of ADP and a decrease in transmembrane potential. The protonophoric activity of DNOC was evidenced by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium, in the presence of valinomycin. At higher concentrations (> 50 microM), DNOC also induces an inhibition of succinate-supported respiration, and a decrease in the activity of the succinate dehydrogenase can be observed. The addition of uncoupling concentrations of DNOC to Ca(2+)-loaded mitochondria treated with Ruthenium Red results in non-specific membrane permeabilization, as evidenced by mitochondrial swelling in isosmotic sucrose medium. Cyclosporin A, which inhibits mitochondrial permeability transition, prevented DNOC-induced mitochondrial swelling in the presence of Ca2+, which was accompanied by a decrease in mitochondrial membrane protein thiol content, owing to protein thiol oxidation. Catalase partially inhibits mitochondrial swelling and protein thiol oxidation, indicating the participation of mitochondrial-generated reactive oxygen species in this process. It is concluded that DNOC is a potent potent protonophore acting as a classical uncoupler of oxidative phosphorylation in rat liver mitochondria by dissipating the proton electrochemical gradient. Treatment of Ca(2+)-loaded mitochondria with uncoupling concentrations of DNOC results in mitochondrial permeability transition, associated with membrane protein thiol oxidation by reactive oxygen species.
Collapse
Affiliation(s)
- R F Castilho
- Departamento de Patologia Clínica NMCE, Faculdade de Ciĕncias Médicas, Universidade, Estadual de Campinas, SP, Brazil
| | | | | | | |
Collapse
|
47
|
Xiong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma 1997; 14:23-34. [PMID: 9048308 DOI: 10.1089/neu.1997.14.23] [Citation(s) in RCA: 328] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with primary and secondary injury. A thorough understanding of secondary injury will help to develop effective treatments and improve patient outcome. In this study, the GM model of controlled cortical impact injury (CCII) of Lighthall (1988) was used with modification to induce lateral TBI in rats. Forebrain mitochondria isolated from ipsilateral (IH) and contralateral (CH) hemispheres to impact showed a distinct difference. With glutamate + malate as substrates, mitochondria from the IH showed a significant decrease in State 3 respiratory rates, respiratory control indices (RCI), and P/O ratios. This decrease occurred as early as 1 h and persisted for at least 14 days following TBI. The State 3 respiratory rates, RCI, and P/O ratios could be restored to sham values by the addition of EGTA to the assay mixture. A significant amount of Ca2+ was found to be adsorbed to the mitochondria of both the IH and the CH with higher values seen in the IH. The rate of energy-linked Ca2+ transport in the IH was significantly decreased at 6 and 12 h. These data indicate that CCII-induced TBI perturbs cellular Ca2+ homeostasis and results in excessive Ca2+ adsorption to the mitochondrial membrane, which subsequently inhibits the respiratory chain-linked electron transfer and energy transduction.
Collapse
Affiliation(s)
- Y Xiong
- Department of Biochemistry, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
48
|
Pereira C, Ferreira C, Carvalho C, Oliveira C. Contribution of plasma membrane and endoplasmic reticulum Ca(2+)-ATPases to the synaptosomal [Ca2+]i increase during oxidative stress. Brain Res 1996; 713:269-77. [PMID: 8725000 DOI: 10.1016/0006-8993(95)01554-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study we analyzed the effect of ascorbate (0.8 mM)/Fe2+ (2.5 microM)-induced membrane lipid peroxidation on the levels of intracellular free calcium,[Ca2+]i and on the possible mechanisms involved in the perturbation of intracellular calcium homeostasis during oxidative stress. For this purpose, the influence of the ascorbate/iron oxidant system on the plasma membrane and endoplasmic reticulum Ca(2+)-dependent ATPases of brain cortical synaptosomes was studied. In addition, the influence of the peroxidative process on the uptake of calcium (45Ca2+) and on the Na+/Ca2+ exchange activity at the plasma membrane was evaluated. After ascorbate/Fe(2+)-induced membrane lipid peroxidation of the order of 18.05 +/- 4.20 nmol TBARS/mg protein, an increase in [Ca2+]i occurred, under basal or depolarizing conditions (30 mM KCl), which was dependent on the extracellular calcium concentration. Thus, for 1 and 3 mM extracellular calcium concentration, an increase of the resting [Ca2+]i values of 19.8% and 33.7% was observed, while after the K(+)-depolarization the enhancement of the [Ca2+]i was 18.4% and 29.5%, respectively. The Na+/Ca2+ exchange activity and the time-dependent influx of 45Ca2+ observed in basal conditions and after the 30 mM K(+)-depolarization, were not affected under the peroxidative conditions. The Ca(2+)-dependent ATPase activity of the synaptosomal plasma membrane was significantly depressed following peroxidation of membrane lipids, decreasing the V(max) by 48.1%, without significant changes in the affinity of the enzyme for calcium (K(m) for Ca2+ was 0.54 +/- 0.04 microM in control conditions and 0.56 +/- 0.034 microM in peroxidized conditions). The Ca(2+)-ATPase activity of the endoplasmic reticulum was also affected during ascorbate/iron-induced oxidative stress; thus, an inhibition of 45.2% was observed 5 min after adding ATP. These data suggest that the increase in synaptosomal [Ca2+]i due to oxidative stress may result from the inhibition of the plasma membrane and the endoplasmic reticulum membrane Ca(2+)-ATPase activities, probably as a result of the alteration of the lipid environment required for the maximal activity of these membrane enzymes. The consequent increase in [Ca2+]i may be responsible for the injury of the nervous tissue observed during several pathological conditions in which free radical generation seems to be involved.
Collapse
Affiliation(s)
- C Pereira
- Department of Zoology, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
49
|
Slyshenkov VS, Moiseenok AG, Wojtczak L. Noxious effects of oxygen reactive species on energy-coupling processes in Ehrlich ascites tumor mitochondria and the protection by pantothenic acid. Free Radic Biol Med 1996; 20:793-800. [PMID: 8728026 DOI: 10.1016/0891-5849(95)02210-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Irradiation of Ehrlich ascites tumor cells with ultraviolet light or exposure to the Fenton reaction results in lesions in the mitochondrial energy-coupling system. Formation of the membrane potential and its utilization for ATP synthesis are more affected than the respiratory chain. Preincubation of the cells with pantothenic acid or its derivatives which can serve as precursors of CoA largely protects against the damage of mitochondrial energetics by oxygen reactive species formed by UV light or the Fenton reaction. Incubation of Ehrlich ascites tumor cells with pantothenic acid increases their content of glutathione (most of which is present in the reduced form) by 40%. It is concluded that the protective effect of precursors of CoA against lesions of the mitochondrial energy-coupling system by oxygen reactive species is mainly due to removal of free radicals and peroxides by glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase.
Collapse
Affiliation(s)
- V S Slyshenkov
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
50
|
Castilho RF, Pereira RS, Vercesi AE. Protective effect of safranine on the mitochondrial damage induced by Fe(II)citrate: comparative study with trifluoperazine. Eur J Drug Metab Pharmacokinet 1996; 21:17-21. [PMID: 8839673 DOI: 10.1007/bf03190273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we show that safranine at the concentrations usually employed as a probe of mitochondrial membrane potential significantly protects against the oxidative damage of mitochondria induced by Fe(II)citrate. The effect of safranine was illustrated by experiments showing that this dye strongly inhibits both production of thiobarbituric acid-reactive substances and membrane potential decrease when energized mitochondria were exposed to Fe(II)citrate in the presence of Ca2+ ions. Similar results were obtained with the lipophylic compound trifluoperazine. It is proposed that, like trifluoperazine, safranine decreases the rate of lipid peroxidation due to its insertion in the membrane altering the physical state of the lipid phase.
Collapse
Affiliation(s)
- R F Castilho
- Departamento de Bioquímica, IB, UNICAMP, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|