1
|
Rosay T, Jimenez AG, Sperandio V. Glucuronic acid confers colonization advantage to enteric pathogens. Proc Natl Acad Sci U S A 2024; 121:e2400226121. [PMID: 38502690 PMCID: PMC10990124 DOI: 10.1073/pnas.2400226121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Glucuronidation is a detoxification process to eliminate endo- and xeno-biotics and neurotransmitters from the host circulation. Glucuronosyltransferase binds these compounds to glucuronic acid (GlcA), deactivating them and allowing their elimination through the gastrointestinal (GI) tract. However, the microbiota produces β-glucuronidases that release GlcA and reactivate these compounds. Enteric pathogens such as enterohemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium sense and utilize galacturonic acid (GalA), an isomer of GlcA, to outcompete the microbiota promoting gut colonization. However, the role of GlcA in pathogen colonization has not been explored. Here, we show that treatment of mice with a microbial β-glucuronidase inhibitor (GUSi) decreased C. rodentium's colonization of the GI tract, without modulating bacterial virulence or host inflammation. Metagenomic studies indicated that GUSi did not change the composition of the intestinal microbiota in these animals. GlcA confers an advantage for pathogen expansion through its utilization as a carbon source. Congruently mutants unable to catabolize GlcA depict lower GI colonization compared to wild type and are not sensitive to GUSi. Germfree mice colonized with a commensal E. coli deficient for β-glucuronidase production led to a decrease of C. rodentium tissue colonization, compared to animals monocolonized with an E. coli proficient for production of this enzyme. GlcA is not sensed as a signal and doesn't activate virulence expression but is used as a metabolite. Because pathogens can use GlcA to promote their colonization, inhibitors of microbial β-glucuronidases could be a unique therapeutic against enteric infections without disturbing the host or microbiota physiology.
Collapse
Affiliation(s)
- Thibaut Rosay
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Angel G. Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Vanessa Sperandio
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
2
|
Lu S, Liu M, Liu H, Yang C, Zhu J, Ling Y, Kuang H. Gestational exposure to bisphenol AF causes endocrine disorder of corpus luteum by altering ovarian SIRT-1/Nrf2/NF-kB expressions and macrophage proangiogenic function in mice. Biochem Pharmacol 2024; 220:115954. [PMID: 38043716 DOI: 10.1016/j.bcp.2023.115954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Bisphenol AF (BPAF) is extensively used in industrial production as an emerging substitute for the earlier-used bisphenol A (BPA). Studies have found that BPAF had stronger estrogenic activities than BPA. However, the effects of BPAF on the luteal function of pregnancy and its possible mechanisms are largely unknown. In this study, pregnant mice were orally administered 3.0 and 30 mg/kg/day of BPAF from gestational day (GD) 1 to 8, and samples were collected on GD 8 and GD 19. Results showed that maternal exposure to BPAF impaired embryo implantation and reduced ovarian weight, and interfered with steroid hormone secretion, and decreased the numbers and areas of corpus luteum. BPAF treatment significantly down-regulated expression levels of ovarian Star, Cyp11a, Hsd3b1, and Cyp19a1 mRNA and CYP19a1 and ERα proteins. BPAF also disrupted markers of redox/inflammation key, including silent information regulator of transcript-1 (SIRT-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-ĸB) expressions along with reduced ovarian antioxidant (CAT and SOD) capacity, enhanced oxidant (H2O2 and MDA) and inflammatory factor (Il6 and Tnfa) activities. Furthermore, BPAF exposure inhibited macrophages with a pro-angiogenic phenotype that specifically expressed TIE-2, accompanied by inhibition of angiogenic factors (HIF1a, VEGFA, and Angpt1) and promotion of anti-angiogenic factor Ang-2 to suppress luteal angiogenesis. In addition, BPAF administration also induced luteolysis and apoptosis by up-regulation of COX-2, BAX/BCL-2, and Cleaved-Caspase-3 protein. Collectively, our current data demonstrated that gestational exposure to BPAF caused luteal endocrine disorder by altering ovarian SIRT-1/Nrf2/NF-kB expressions and macrophage proangiogenic function in mice.
Collapse
Affiliation(s)
- Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Mengling Liu
- Nursing School of Jiujiang University, Jiujiang, Jiangxi 332000, PR China.
| | - Hui Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Chuanzhen Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Jun Zhu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Yan Ling
- Department of Obstetrics and Gynecology, Jiangxi Provincial People's Hospital Affiliated Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
3
|
Yang H, You L, Wang Z, Yang L, Wang X, Wu W, Zhi H, Rong G, Sheng Y, Liu X, Liu L. Bile duct ligation elevates 5-HT levels in cerebral cortex of rats partly due to impairment of brain UGT1A6 expression and activity via ammonia accumulation. Redox Biol 2024; 69:103019. [PMID: 38163420 PMCID: PMC10794929 DOI: 10.1016/j.redox.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
Hepatic encephalopathy (HE) is often associated with endogenous serotonin (5-HT) disorders. However, the reason for elevated brain 5-HT levels due to liver failure remains unclear. This study aimed to investigate the mechanism by which liver failure increases brain 5-HT levels and the role in behavioral abnormalities in HE. Using bile duct ligation (BDL) rats as a HE model, we verified the elevated 5-HT levels in the cortex but not in the hippocampus and striatum, and found that this cortical 5-HT overload may be caused by BDL-mediated inhibition of UDP-glucuronosyltransferase 1A6 (UGT1A6) expression and activity in the cortex. The intraventricular injection of the UGT1A6 inhibitor diclofenac into rats demonstrated that the inhibition of brain UGT1A6 activity significantly increased cerebral 5-HT levels and induced HE-like behaviors. Co-immunofluorescence experiments demonstrated that UGT1A6 is primarily expressed in astrocytes. In vitro studies confirmed that NH4Cl activates the ROS-ERK pathway to downregulate UGT1A6 activity and expression in U251 cells, which can be reversed by the oxidative stress antagonist N-acetyl-l-cysteine and the ERK inhibitor U0126. Silencing Hepatocyte Nuclear Factor 4α (HNF4α) suppressed UGT1A6 expression whilst overexpressing HNF4α increased Ugt1a6 promotor activity. Meanwhile, both NH4Cl and the ERK activator TBHQ downregulated HNF4α and UGT1A6 expression. In the cortex of hyperammonemic rats, we also found activation of the ROS-ERK pathway, decreases in HNF4α and UGT1A6 expression, and increases in brain 5-HT content. These results prove that the ammonia-mediated ROS-ERK pathway activation inhibits HNF4α expression to downregulate UGT1A6 expression and activity, thereby increasing cerebral 5-HT content and inducing manic-like HE symptoms. This is the first study to reveal the mechanism of elevated cortical 5-HT concentration in a state of liver failure and elucidate its association with manic-like behaviors in HE.
Collapse
Affiliation(s)
- Hanyu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009, Nanjing, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, 210009, Nanjing, China
| | - Zhongyan Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lu Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xun Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenhan Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Zhi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangmei Rong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Sheng
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaodong Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009, Nanjing, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009, Nanjing, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Zhang X, Li R, Xu H, Wu G, Wu S, Wang H, Wang Y, Wang X. Dissecting the innate immune recognition of morphine and its metabolites by TLR4/MD2: an in silico simulation study. Phys Chem Chem Phys 2023; 25:29656-29663. [PMID: 37882236 DOI: 10.1039/d3cp03715k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD2) has been identified as a non-classical opioid receptor capable of recognizing morphine isomers and activating microglia in a non-enantioselective manner. Additionally, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), the major metabolites of morphine, possess similar chemical structures but exhibit distinct effects on TLR4 signaling. However, the specific mechanisms by which morphine isomers and morphine metabolites are recognized by the innate immune receptor TLR4/MD2 are not well understood. Herein, molecular dynamics simulations were performed to dissect the molecular recognition of TLR4/MD2 with morphine isomers, M3G and M6G. Morphine and its (+)-enantiomer, dextro-morphine ((+)-morphine), were found to have comparable binding free energies as well as similar interaction modes when interacting with (TLR4/MD2)2. Binding with morphine and (+)-morphine caused the motion of the F126 loop towards the inside of the MD2 cavity, which stabilizes (TLR4/MD2)2 with similar dimerization interfaces. The binding free energies of M3G and M6G with (TLR4/MD2)2, while lower than those of morphine isomers, were comparable to each other. However, the binding behaviors of M3G and M6G exhibited contrasting patterns when interacting with (TLR4/MD2)2. The glucuronide group of M3G bound to the gating loop of MD2 and formed strong interactions with TLR4*, which stabilizes the active heterotetrameric complex. In contrast, M6G was situated in cavity A of MD2, where the critical interactions between M6G and the residues of TLR4* were lost, resulting in fluctuation of (TLR4/MD2)2 away from the active conformation. These results indicate that the pivotal interactions at the dimerization interface between MD2 and TLR4* in M6G-bound (TLR4/MD2)2 were considerably weaker than those in M3G-bound (TLR4/MD2)2, which partially explains why M6G fails to activate TLR4 signaling. The discoveries from this study will offer valuable insights for the advancement of next-generation TLR4 small molecule modulators based on opioids.
Collapse
Affiliation(s)
- Xiaozheng Zhang
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Ran Li
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Haoran Xu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guicai Wu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Wheeler AM, Orsburn BC, Bumpus NN. Biotransformation of Efavirenz and Proteomic Analysis of Cytochrome P450s and UDP-Glucuronosyltransferases in Mouse, Macaque, and Human Brain-Derived In Vitro Systems. Drug Metab Dispos 2023; 51:521-531. [PMID: 36623884 PMCID: PMC10043944 DOI: 10.1124/dmd.122.001195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Antiretroviral drugs such as efavirenz (EFV) are essential to combat human immunodeficiency virus (HIV) infection in the brain, but little is known about how these drugs are metabolized locally. In this study, the cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT)-dependent metabolism of EFV was probed in brain microsomes from mice, cynomolgus macaques, and humans as well as primary neural cells from C57BL/6N mice. Utilizing ultra high performance liquid chromatography high-resolution mass spectrometry (uHPLC-HRMS), the formation of 8-hydroxyefavirenz (8-OHEFV) from EFV and the glucuronidation of P450-dependent metabolites 8-OHEFV and 8,14-dihydroxyefavirenz (8,14-diOHEFV) were observed in brain microsomes from all three species. The direct glucuronidation of EFV, however, was only detected in cynomolgus macaque brain microsomes. In primary neural cells treated with EFV, microglia were the only cell type to exhibit metabolism, forming 8-OHEFV only. In cells treated with the P450-dependent metabolites of EFV, glucuronidation was detected only in cortical neurons and astrocytes, revealing that certain aspects of EFV metabolism are cell type specific. Untargeted and targeted proteomics experiments were used to identify the P450s and UGTs present in brain microsomes. Eleven P450s and 11 UGTs were detected in human brain microsomes, whereas seven P450s and 14 UGTs were identified in mouse brain microsomes and 15 P450s and four UGTs, respectively, were observed in macaque brain microsomes. This was the first time many of these enzymes have been noted in brain microsomes at the protein level. This study indicates the potential for brain metabolism to contribute to pharmacological and toxicological outcomes of EFV in the brain. SIGNIFICANCE STATEMENT: Metabolism in the brain is understudied, and the persistence of human immunodeficiency virus (HIV) infection in the brain warrants the evaluation of how antiretroviral drugs such as efavirenz are metabolized in the brain. Using brain microsomes, the metabolism of efavirenz by both cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) is established. Additionally, proteomics of brain microsomes characterizes P450s and UGTs in the brain, many of which have not yet been noted in the literature at the protein level.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Wheeler AM, Eberhard CD, Mosher EP, Yuan Y, Wilkins HN, Seneviratne HK, Orsburn BC, Bumpus NN. Achieving a Deeper Understanding of Drug Metabolism and Responses Using Single-Cell Technologies. Drug Metab Dispos 2023; 51:350-359. [PMID: 36627162 PMCID: PMC10029823 DOI: 10.1124/dmd.122.001043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Recent advancements in single-cell technologies have enabled detection of RNA, proteins, metabolites, and xenobiotics in individual cells, and the application of these technologies has the potential to transform pharmacological research. Single-cell data has already resulted in the development of human and model species cell atlases, identifying different cell types within a tissue, further facilitating the characterization of tumor heterogeneity, and providing insight into treatment resistance. Research discussed in this review demonstrates that distinct cell populations express drug metabolizing enzymes to different extents, indicating there may be variability in drug metabolism not only between organs, but within tissue types. Additionally, we put forth the concept that single-cell analyses can be used to expose underlying variability in cellular response to drugs, providing a unique examination of drug efficacy, toxicity, and metabolism. We will outline several of these techniques: single-cell RNA-sequencing and mass cytometry to characterize and distinguish different cell types, single-cell proteomics to quantify drug metabolizing enzymes and characterize cellular responses to drug, capillary electrophoresis-ultrasensitive laser-induced fluorescence detection and single-probe single-cell mass spectrometry for detection of drugs, and others. Emerging single-cell technologies such as these can comprehensively characterize heterogeneity in both cell-type-specific drug metabolism and response to treatment, enhancing progress toward personalized and precision medicine. SIGNIFICANCE STATEMENT: Recent technological advances have enabled the analysis of gene expression and protein levels in single cells. These types of analyses are important to investigating mechanisms that cannot be elucidated on a bulk level, primarily due to the variability of cell populations within biological systems. Here, we summarize cell-type-specific drug metabolism and how pharmacologists can utilize single-cell approaches to obtain a comprehensive understanding of drug metabolism and cellular heterogeneity in response to drugs.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Yuting Yuan
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Hannah N Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Herana Kamal Seneviratne
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| |
Collapse
|
8
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
9
|
Audet-Delage Y, Rouleau M, Villeneuve L, Guillemette C. The Glycosyltransferase Pathway: An Integrated Analysis of the Cell Metabolome. Metabolites 2022; 12:metabo12101006. [PMID: 36295907 PMCID: PMC9609030 DOI: 10.3390/metabo12101006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleotide sugar-dependent glycosyltransferases (UGTs) are critical to the homeostasis of endogenous metabolites and the detoxification of xenobiotics. Their impact on the cell metabolome remains unknown. Cellular metabolic changes resulting from human UGT expression were profiled by untargeted metabolomics. The abundant UGT1A1 and UGT2B7 were studied as UGT prototypes along with their alternative (alt.) splicing-derived isoforms displaying structural differences. Nineteen biochemical routes were modified, beyond known UGT substrates. Significant variations in glycolysis and pyrimidine pathways, and precursors of the co-substrate UDP-glucuronic acid were observed. Bioactive lipids such as arachidonic acid and endocannabinoids were highly enriched by up to 13.3-fold (p < 0.01) in cells expressing the canonical enzymes. Alt. UGT2B7 induced drastic and unique metabolic perturbations, including higher glucose (18-fold) levels and tricarboxylic acid cycle (TCA) cycle metabolites and abrogated the effects of the UGT2B7 canonical enzyme when co-expressed. UGT1A1 proteins promoted the accumulation of branched-chain amino acids (BCAA) and TCA metabolites upstream of the mitochondrial oxoglutarate dehydrogenase complex (OGDC). Alt. UGT1A1 exacerbated these changes, likely through its interaction with the OGDC component oxoglutarate dehydrogenase-like (OGDHL). This study expands the breadth of biochemical pathways associated with UGT expression and establishes extensive connectivity between UGT enzymes, alt. proteins and other metabolic processes.
Collapse
Affiliation(s)
- Yannick Audet-Delage
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Michèle Rouleau
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Lyne Villeneuve
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
- Canada Research Chair in Pharmacogenomics, Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-(418)-654-2296
| |
Collapse
|
10
|
Abstract
Almost 50% of prescription drugs lack age-appropriate dosing guidelines and therefore are used "off-label." Only ~10% drugs prescribed to neonates and infants have been studied for safety or efficacy. Immaturity of drug metabolism in children is often associated with drug toxicity. This chapter summarizes data on the ontogeny of major human metabolizing enzymes involved in oxidation, reduction, hydrolysis, and conjugation of drugs. The ontogeny data of individual drug-metabolizing enzymes are important for accurate prediction of drug pharmacokinetics and toxicity in children. This information is critical for designing clinical studies to appropriately test pharmacological hypotheses and develop safer pediatric drugs, and to replace the long-standing practice of body weight- or surface area-normalized drug dosing. The application of ontogeny data in physiologically based pharmacokinetic model and regulatory submission are discussed.
Collapse
|
11
|
Silva-Adaya D, Garza-Lombó C, Gonsebatt ME. Xenobiotic transport and metabolism in the human brain. Neurotoxicology 2021; 86:125-138. [PMID: 34371026 DOI: 10.1016/j.neuro.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Organisms have metabolic pathways responsible for eliminating endogenous and exogenous toxicants. Generally, we associate the liver par excellence as the organ in charge of detoxifying the body; however, this process occurs in all tissues, including the brain. Due to the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), the Central Nervous System (CNS) is considered a partially isolated organ, but similar to other organs, the CNS possess xenobiotic transporters and metabolic pathways associated with the elimination of xenobiotic agents. In this review, we describe the different systems related to the detoxification of xenobiotics in the CNS, providing examples in which their association with neurodegenerative processes is suspected. The CNS detoxifying systems include carrier-mediated, active efflux and receptor-mediated transport, and detoxifying systems that include phase I and phase II enzymes, as well as those enzymes in charge of neutralizing compounds such as electrophilic agents, reactive oxygen species (ROS), and free radicals, which are products of the bioactivation of xenobiotics. Moreover, we discuss the differential expression of these systems in different regions of the CNS, showing the different detoxifying needs and the composition of each region in terms of the cell type, neurotransmitter content, and the accumulation of xenobiotics and/or reactive compounds.
Collapse
Affiliation(s)
- Daniela Silva-Adaya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico; Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Carla Garza-Lombó
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB, Indianapolis, IN, 46202, USA
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
12
|
Naji-Talakar S, Sharma S, Martin LA, Barnhart D, Prasad B. Potential implications of DMET ontogeny on the disposition of commonly prescribed drugs in neonatal and pediatric intensive care units. Expert Opin Drug Metab Toxicol 2021; 17:273-289. [PMID: 33256492 PMCID: PMC8346204 DOI: 10.1080/17425255.2021.1858051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Introduction: Pediatric patients, especially neonates and infants, are more susceptible to adverse drug events as compared to adults. In particular, immature small molecule drug metabolism and excretion can result in higher incidences of pediatric toxicity than adults if the pediatric dose is not adjusted.Area covered: We reviewed the top 29 small molecule drugs prescribed in neonatal and pediatric intensive care units and compiled the mechanisms of their metabolism and excretion. The ontogeny of Phase I and II drug metabolizing enzymes and transporters (DMETs), particularly relevant to these drugs, are summarized. The potential effects of DMET ontogeny on the metabolism and excretion of the top pediatric drugs were predicted. The current regulatory requirements and recommendations regarding safe and effective use of drugs in children are discussed. A few representative examples of the use of ontogeny-informed physiologically based pharmacokinetic (PBPK) models are highlighted.Expert opinion: Empirical prediction of pediatric drug dosing based on body weight or body-surface area from the adult parameters can be inaccurate because DMETs are not mature in children and the age-dependent maturation of these proteins is different. Ontogeny-informed-PBPK modeling provides a better alternative to predict the pharmacokinetics of drugs in children.
Collapse
Affiliation(s)
- Siavosh Naji-Talakar
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Sheena Sharma
- Pediatrics and Neonatology, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA, USA
| | - Leslie A. Martin
- Pediatrics and Neonatology, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA, USA
| | - Derek Barnhart
- Pediatrics and Neonatology, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
13
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Grant SM, DeMorrow S. Bile Acid Signaling in Neurodegenerative and Neurological Disorders. Int J Mol Sci 2020; 21:E5982. [PMID: 32825239 PMCID: PMC7503576 DOI: 10.3390/ijms21175982] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Bile acids are commonly known as digestive agents for lipids. The mechanisms of bile acids in the gastrointestinal track during normal physiological conditions as well as hepatic and cholestatic diseases have been well studied. Bile acids additionally serve as ligands for signaling molecules such as nuclear receptor Farnesoid X receptor and membrane-bound receptors, Takeda G-protein-coupled bile acid receptor and sphingosine-1-phosphate receptor 2. Recent studies have shown that bile acid signaling may also have a prevalent role in the central nervous system. Some bile acids, such as tauroursodeoxycholic acid and ursodeoxycholic acid, have shown neuroprotective potential in experimental animal models and clinical studies of many neurological conditions. Alterations in bile acid metabolism have been discovered as potential biomarkers for prognosis tools as well as the expression of various bile acid receptors in multiple neurological ailments. This review explores the findings of recent studies highlighting bile acid-mediated therapies and bile acid-mediated signaling and the roles they play in neurodegenerative and neurological diseases.
Collapse
Affiliation(s)
- Stephanie M. Grant
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Research Division, Central Texas Veterans Healthcare System, Austin, TX 78712, USA
| |
Collapse
|
15
|
Albumin is a secret factor involved in multidirectional interactions among the serotoninergic, immune and endocrine systems that supervises the mechanism of CYP1A and CYP3A regulation in the liver. Pharmacol Ther 2020; 215:107616. [PMID: 32590025 DOI: 10.1016/j.pharmthera.2020.107616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022]
Abstract
This review focuses on albumin, which is involved in multidirectional interactions among the immune, endocrine and serotoninergic systems and supervises the regulation of cytochrome P450 (CYP) isoforms under conditions of both normal liver function and liver insufficiency. Special attention is paid to albumin, thyroid hormones, testosterone and tryptophan hydroxylase in these interactions as well as their potential roles in liver regeneration. The association of these factors with inflammation and the modification of the mechanism of hepatic drug-metabolizing CYP isoform regulation are also presented because changes in the expression of CYP isoforms in the liver may result in subsequent changes to a marker substance used for testing CYP activity, thus providing a simple way to control the liver regeneration process or the dangerous stimulation of hepatocarcinogenesis.
Collapse
|
16
|
Badée J, Fowler S, de Wildt SN, Collier AC, Schmidt S, Parrott N. The Ontogeny of UDP-glucuronosyltransferase Enzymes, Recommendations for Future Profiling Studies and Application Through Physiologically Based Pharmacokinetic Modelling. Clin Pharmacokinet 2020; 58:189-211. [PMID: 29862468 DOI: 10.1007/s40262-018-0681-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Limited understanding of drug pharmacokinetics in children is one of the major challenges in paediatric drug development. This is most critical in neonates and infants owing to rapid changes in physiological functions, especially in the activity of drug-metabolising enzymes. Paediatric physiologically based pharmacokinetic models that integrate ontogeny functions for cytochrome P450 enzymes have aided our understanding of drug exposure in children, including those under the age of 2 years. Paediatric physiologically based pharmacokinetic models have consequently been recognised by the European Medicines Agency and the US Food and Drug Administration as innovative tools in paediatric drug development and regulatory decision making. However, little is currently known about age-related changes in UDP-glucuronosyltransferase-mediated metabolism, which represents the most important conjugation reaction for xenobiotics. Therefore, the objective of the review was to conduct a thorough literature survey to summarise our current understanding of age-related changes in UDP-glucuronosyltransferases as well as associated clinical and experimental sources of variance. Our findings indicate that there are distinct differences in UDP-glucuronosyltransferase expression and activity between isoforms for different age groups. In addition, there is substantial variability between individuals and laboratories reported for human liver microsomes, which results in part from a lack of standardised experimental conditions. Therefore, we provide a number of best practice recommendations for experimental conditions, which ultimately may help improve the quality of data used for quantitative clinical pharmacology approaches, and thus for safe and effective pharmacotherapy in children.
Collapse
Affiliation(s)
- Justine Badée
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, FL, USA
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands.,Intensive Care and Department of Paediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Abby C Collier
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Stephan Schmidt
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, FL, USA
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
17
|
Zabela V, Sampath C, Oufir M, Butterweck V, Hamburger M. Single dose pharmacokinetics of intravenous 3,4-dihydroxyphenylacetic acid and 3-hydroxyphenylacetic acid in rats. Fitoterapia 2020; 142:104526. [PMID: 32097685 DOI: 10.1016/j.fitote.2020.104526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
3,4-Dihydroxyphenylacetic acid (DOPAC) and 3-hydroxyphenylacetic acid (3-HPAA) are intestinal metabolites of the dietary flavonoid quercetin. DOPAC reportedly showed anxiolytic activity after i.p. administration in rats. The fate of these metabolites after consumption, and the pharmacological properties of 3-HPAA in the body are largely unknown. The aim of the current study was to characterize pharmacokinetic properties of DOPAC and 3-HPAA after intravenous bolus application in rats. UHPLC-MS/MS methods for quantification of DOPAC and 3-HPAA levels in lithium heparin Sprague Dawley rat plasma were developed and validated according to international regulatory guidelines. Non-compartmental and compartmental analyses were performed. Pharmacokinetic profiles of DOPAC and 3-HPAA followed a two-compartment body model, with a fast distribution into peripheral tissues (half-lives of 3.27-5.26 min) and rapid elimination from the body (half-lives of 18.4-33.3 min).
Collapse
Affiliation(s)
- Volha Zabela
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Chethan Sampath
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.
| | - Mouhssin Oufir
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Veronika Butterweck
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
18
|
Hausner EA, Elmore SA, Yang X. Overview of the Components of Cardiac Metabolism. Drug Metab Dispos 2019; 47:673-688. [PMID: 30967471 PMCID: PMC7333657 DOI: 10.1124/dmd.119.086611] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolism in organs other than the liver and kidneys may play a significant role in how a specific organ responds to chemicals. The heart has metabolic capability for energy production and homeostasis. This homeostatic machinery can also process xenobiotics. Cardiac metabolism includes the expression of numerous organic anion transporters, organic cation transporters, organic carnitine (zwitterion) transporters, and ATP-binding cassette transporters. Expression and distribution of the transporters within the heart may vary, depending on the patient’s age, disease, endocrine status, and various other factors. Several cytochrome P450 (P450) enzyme classes have been identified within the heart. The P450 hydroxylases and epoxygenases within the heart produce hydroxyeicosatetraneoic acids and epoxyeicosatrienoic acids, metabolites of arachidonic acid, which are critical in regulating homeostatic processes of the heart. The susceptibility of the cardiac P450 system to induction and inhibition from exogenous materials is an area of expanding knowledge, as are the metabolic processes of glucuronidation and sulfation in the heart. The susceptibility of various transcription factors and signaling pathways of the heart to disruption by xenobiotics is not fully characterized but is an area with implications for disruption of normal postnatal development, as well as modulation of adult cardiac health. There are knowledge gaps in the timelines of physiologic maturation and deterioration of cardiac metabolism. Cross-species characterization of cardiac-specific metabolism is needed for nonclinical work of optimum translational value to predict possible adverse effects, identify sensitive developmental windows for the design and conduct of informative nonclinical and clinical studies, and explore the possibilities of organ-specific therapeutics.
Collapse
Affiliation(s)
- Elizabeth A Hausner
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Susan A Elmore
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Xi Yang
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| |
Collapse
|
19
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
20
|
Chau CMY, Ross CJD, Chau V, Synnes AR, Miller SP, Carleton B, Grunau RE. Morphine biotransformation genes and neonatal clinical factors predicted behaviour problems in very preterm children at 18 months. EBioMedicine 2019; 40:655-662. [PMID: 30709768 PMCID: PMC6413679 DOI: 10.1016/j.ebiom.2019.01.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/18/2023] Open
Abstract
Background Behaviour problems are prevalent among children born very preterm (≤ 32 weeks gestation), and have been associated with morphine exposure. Morphine accumulation in the brain is determined by genetic variations related to morphine biotransformation. The objective of the study was to investigate whether morphine-biotransformation genotypes contribute to individual differences in long-term effects of morphine on behaviour at 18 months corrected age (CA). Methods 198 children born very preterm (24–32 weeks gestation) were followed from birth and seen at 18 months CA. Relationships between child behavior (Internalizing, Externalizing on the Child Behavior Checklist), morphine exposure, neonatal clinical variables, and morphine biotransformation gene variants in ABCB1, UGT1A9, UGT 2B7*2, ABCC2, ABCC3, SLCO1B1, CYP3A4, COMT were examined. Findings Neonatal clinical predictors and genotypes accounted for 39% of the overall variance in behaviour. In children with the minor allele of UGT1A9 rs17863783 (marker of UGT1A6*4, UDP-glucuronosyltransferase), greater morphine exposure (p = ·0011) was associated with more Internalizing behaviour. More Externalizing behaviour was predicted by greater morphine exposure in children with the COMT rs4680 Met/Met genotype (p = ·0006). Interpretation Genetic variations that affect relative accumulation of morphine in the brain, together with neonatal clinical factors, are differentially related to anxiety and depressive symptoms (internalizing) and to acting out (externalizing) behaviours at 18 months CA in children born very preterm. Fund NIH/NICHD HD039783 (REG); CIHR MOP86489 (REG), MOP68898 (SPM), MOP79262 (SPM, REG).
Collapse
Affiliation(s)
- Cecil M Y Chau
- BC Children's Hospital Research Institute, Vancouver, Canada; Pediatrics, University of British Columbia, Vancouver, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, Canada; Pediatrics, University of British Columbia, Vancouver, Canada
| | - Vann Chau
- Neurology, The Hospital for Sick Children, Toronto, Canada; Paediatrics, University of Toronto, Toronto, Canada
| | - Anne R Synnes
- BC Children's Hospital Research Institute, Vancouver, Canada; Pediatrics, University of British Columbia, Vancouver, Canada
| | - Steven P Miller
- Neurology, The Hospital for Sick Children, Toronto, Canada; Paediatrics, University of Toronto, Toronto, Canada
| | - Bruce Carleton
- BC Children's Hospital Research Institute, Vancouver, Canada; Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ruth E Grunau
- BC Children's Hospital Research Institute, Vancouver, Canada; Pediatrics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
21
|
Weinsanto I, Laux-Biehlmann A, Mouheiche J, Maduna T, Delalande F, Chavant V, Gabel F, Darbon P, Charlet A, Poisbeau P, Lamshöft M, Van Dorsselaer A, Cianferani S, Parat MO, Goumon Y. Stable isotope-labelled morphine to study in vivo central and peripheral morphine glucuronidation and brain transport in tolerant mice. Br J Pharmacol 2018; 175:3844-3856. [PMID: 30051501 DOI: 10.1111/bph.14454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic administration of medication can significantly affect metabolic enzymes leading to physiological adaptations. Morphine metabolism in the liver has been extensively studied following acute morphine treatment, but such metabolic processes in the CNS are poorly characterized. Long-term morphine treatment is limited by the development of tolerance, resulting in a decrease of its analgesic effect. Whether or not morphine analgesic tolerance affects in vivo brain morphine metabolism and blood-brain barrier (BBB) permeability remains a major question. Here, we have attempted to characterize the in vivo metabolism and BBB permeability of morphine after long-term treatment, at both central and peripheral levels. EXPERIMENTAL APPROACH Male C57BL/6 mice were injected with morphine or saline solution for eight consecutive days in order to induce morphine analgesic tolerance. On the ninth day, both groups received a final injection of morphine (85%) and d3-morphine (morphine bearing three 2 H; 15%, w/w). Mice were then killed and blood, urine, brain and liver samples were collected. LC-MS/MS was used to quantify morphine, its metabolite morphine-3-glucuronide (M3G) and their respective d3-labelled forms. KEY RESULTS We found no significant differences in morphine CNS uptake and metabolism between control and tolerant mice. Interestingly, d3-morphine metabolism was decreased compared to morphine without any interference with our study. CONCLUSIONS AND IMPLICATIONS Our data suggests that tolerance to the analgesic effects of morphine is not linked to increased glucuronidation to M3G or to altered global BBB permeability of morphine.
Collapse
Affiliation(s)
- Ivan Weinsanto
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Alexis Laux-Biehlmann
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Jinane Mouheiche
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Tando Maduna
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - François Delalande
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Virginie Chavant
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,Mass Spectrometry Platform, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Florian Gabel
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Pascal Darbon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Alexandre Charlet
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Pierrick Poisbeau
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Marc Lamshöft
- Institute of Environmental Research, University of Technology Dortmund, Dortmund, Germany
| | - Alain Van Dorsselaer
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Sarah Cianferani
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Marie-Odile Parat
- School of Pharmacy, University of Queensland, Woolloongabba, Australia.,Outcomes Research Consortium, Cleveland, OH, USA
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,Mass Spectrometry Platform, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
22
|
Kim SY, Jones DR, Kang JY, Yun CH, Miller GP. Regioselectivity significantly impacts microsomal glucuronidation efficiency of R/S-6, 7-, and 8-hydroxywarfarin. Xenobiotica 2018. [PMID: 29543105 DOI: 10.1080/00498254.2018.1451668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Coumadin (R/S-warfarin) metabolism plays a critical role in patient response to anticoagulant therapy. Several cytochrome P450s oxidize warfarin into R/S-6-, 7-, 8-, 10, and 4'-hydroxywarfarin that can undergo subsequent glucuronidation by UDP-glucuronosyltransferases (UGTs); however, current studies on recombinant UGTs cannot be adequately extrapolated to microsomal glucuronidation capacities for the liver. Herein, we estimated the capacity of the average human liver to glucuronidate hydroxywarfarin and identified UGTs responsible for those metabolic reactions through inhibitor phenotyping. There was no observable activity toward R/S-warfarin, R/S-10-hydroxywarfarin or R/S-4'-hydroxywarfarin. The observed metabolic efficiencies (Vmax/Km) toward R/S-6-, 7-, and especially 8-hydroxywarfarin indicated a high glucuronidation capacity to metabolize these compounds. UGTs demonstrated strong regioselectivity toward the hydroxywarfarins. UGT1A6 and UGT1A1 played a major role in R/S-6- and 7-hydroxywarfarin glucuronidation, respectively, whereas UGT1A9 accounted for almost all of the generation of the R/S-8-hydroxywarfarin glucuronide. In summary, these studies expanded insights to glucuronidation of hydroxywarfarins by pooled human liver microsomes, novel roles for UGT1A6 and 1A9, and the overall degree of regioselectivity for the UGT reactions.
Collapse
Affiliation(s)
- So-Young Kim
- a School of Biological Sciences and Technology , Chonnam National University , Gwangju , Republic of Korea
| | - Drew R Jones
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Ji-Yeon Kang
- a School of Biological Sciences and Technology , Chonnam National University , Gwangju , Republic of Korea
| | - Chul-Ho Yun
- a School of Biological Sciences and Technology , Chonnam National University , Gwangju , Republic of Korea
| | - Grover P Miller
- a School of Biological Sciences and Technology , Chonnam National University , Gwangju , Republic of Korea
| |
Collapse
|
23
|
Ohtani N, Suda K, Tsuji E, Tanemura K, Yokota H, Inoue H, Iwano H. Late pregnancy is vulnerable period for exposure to BPA. J Vet Med Sci 2018; 80:536-543. [PMID: 29367495 PMCID: PMC5880839 DOI: 10.1292/jvms.17-0460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bisphenol A (BPA) is among the better-known endocrine disruptors. BPA is used in various food-contacting materials and is easily eluted into food; as a result, we are exposed to BPA on a daily basis. In adults, BPA is
metabolized and eliminated rapidly from the body. However, numerous reports suggest that fetuses and young children are susceptible to BPA. One of the concerning adverse effects of BPA is disruption of behavior,
especially anxiety-like behavior. In order to study the mechanism of influences on offspring, it is important to clarify the most vulnerable gestation period. We hypothesized that offspring in late pregnancy would be
more susceptible to BPA, because late pregnancy is a critical time for functional brain development. In this study, C57BL/6 mouse fetuses were exposed prenatally by oral dosing of pregnant dams, once daily from
gestational day 5.5 to 12.5 (early pregnancy) or 11.5 to 18.5 (late pregnancy), with BPA (0 or 10 mg/kg body weight). Following birth and weaning, the resulting pups were tested using an elevated plus maze at postnatal
week 10. The behavior of the offspring was altered by prenatal BPA exposure during late pregnancy but not during early pregnancy. These results indicated that offspring are more vulnerable to exposure to BPA in late
pregnancy.
Collapse
Affiliation(s)
- Naoko Ohtani
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Koshi Suda
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Erika Tsuji
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Hiroshi Yokota
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Inoue
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
24
|
Asai Y, Sakakibara Y, Nadai M, Katoh M. Effect of carbamazepine on expression of UDP-glucuronosyltransferase 1A6 and 1A7 in rat brain. Drug Metab Pharmacokinet 2017; 32:286-292. [DOI: 10.1016/j.dmpk.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
|
25
|
Szeitz A, Bandiera SM. Analysis and measurement of serotonin. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Affiliation(s)
- András Szeitz
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
| | - Stelvio M. Bandiera
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
26
|
Tsai CY, Poon YY, Chen CH, Chan SHH. Anomalous baroreflex functionality inherent in floxed and Cre-Lox mice: an overlooked physiological phenotype. Am J Physiol Heart Circ Physiol 2017; 313:H700-H707. [PMID: 28778914 DOI: 10.1152/ajpheart.00346.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 11/22/2022]
Abstract
The last two decades have seen the emergence of Cre-Lox recombination as one of the most powerful and versatile technologies for cell-specific genetic engineering of mammalian cells. Understandably, the primary concerns in the practice of Cre-Lox recombination are whether the predicted genome has been correctly modified and the targeted phenotypes expressed. Rarely are the physiological conditions of the animals routinely examined because the general assumption is that they are normal. Based on corroborative results from radiotelemetric recording, power spectral analysis, and magnetic resonance imaging/diffusion tensor imaging in brain-derived neurotrophic factor-floxed mice, the present study revealed that this assumption requires amendment. We found that despite comparable blood pressure and heart rate with C57BL/6 or Cre mice under the conscious state, floxed and Cre-Lox mice exhibited diminished baroreflex-mediated sympathetic vasomotor tone and cardiac vagal baroreflex. We further found that the capacity and plasticity of baroreflex of these two strains of mice under isoflurane anesthesia were retarded, as reflected by reduced connectivity between the nucleus tractus solitarii and rostral ventrolateral medulla or nucleus ambiguus. The identification of anomalous baroreflex functionality inherent in floxed and Cre-Lox mice points to the importance of incorporating physiological phenotypes into studies that engage gene manipulations such as Cre-Lox recombination.NEW & NOTEWORTHY We established that anomalous baroreflex functionality is inherent in floxed and Cre-Lox mice. These two mouse strains exhibited diminished baroreflex-mediated sympathetic vasomotor tone and cardiac vagal baroreflex under the conscious state, retarded capacity and plasticity of baroreflex under isoflurane anesthesia, and reduced connectivity between key nuclei in the baroreflex neural circuits.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; and
| | - Yan-Yuen Poon
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; and.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chang-Han Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; and
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; and
| |
Collapse
|
27
|
Yamamoto Y, Danhof M, de Lange ECM. Microdialysis: the Key to Physiologically Based Model Prediction of Human CNS Target Site Concentrations. AAPS JOURNAL 2017; 19:891-909. [DOI: 10.1208/s12248-017-0050-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 01/03/2023]
|
28
|
Sakakibara Y, Katoh M, Imai K, Kondo Y, Asai Y, Ikushiro SI, Nadai M. Expression of UGT1A subfamily in rat brain. Biopharm Drug Dispos 2017; 37:314-9. [PMID: 27061716 DOI: 10.1002/bdd.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/25/2022]
Abstract
UDP-glucuronosyltransferase (UGT) is an enzyme that catalyses a major phase II reaction in drug metabolism. Glucuronidation occurs mainly in the liver, but UGTs are also expressed in extrahepatic tissues, where they play an important role in local metabolism. UGT1A isoforms catalyse the glucuronidation of several drugs, neurotransmitters and neurosteroids that exert pharmacological and physiological effects on the brain. The aim of the current study was to determine UGT1A mRNA expression levels and glucuronidation activities in different regions of the rat brain (namely the cerebellum, frontal cortex, parietal cortex, piriform cortex, hippocampus, medulla oblongata, olfactory bulb, striatum and thalamus). It was found that all UGT1A isoforms were expressed in all the nine regions, but their expression levels differed between the regions. The difference between the regions of the brain where the mRNA levels were highest and those where they were lowest ranged between 2.1- to 7.8-fold. Glucuronidation activities were measured using the UGT substrates such as mycophenolic acid, p-nitrophenol and umbelliferone. Glucuronidation activity was detected in all nine regions of the brain. Activity levels differed between the regions, and were highest in the cerebellum, medulla oblongata and olfactory bulb. Differences in glucuronidation activity between regions with the highest rates and those with the lowest rates ranged from 5.3- to 10.1-fold. These results will contribute to our current understanding of the physiological and pharmacokinetic roles of drug-metabolizing enzymes in the brain. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Miki Katoh
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kuniyuki Imai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuya Kondo
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Asai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | |
Collapse
|
29
|
Ohtani N, Iwano H, Suda K, Tsuji E, Tanemura K, Inoue H, Yokota H. Adverse effects of maternal exposure to bisphenol F on the anxiety- and depression-like behavior of offspring. J Vet Med Sci 2016; 79:432-439. [PMID: 28025458 PMCID: PMC5326953 DOI: 10.1292/jvms.16-0502] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor, is metabolized and eliminated rapidly from the body in adult animals. However, many authors have reported that perinatal BPA exposure alters development of the brain, reproductive system and behavior in the next generation. Recently, BPA substitutes, especially bisphenol F (BPF), have been used because of concerns about the influence of BPA on children, although the actual effects on the next generation are unknown. In this study, we observed behavioral adverse effects of the offspring of mice exposed to BPA or BPF in fetal period. Female C57BL/6 mice were given oral BPA or BPF (0 or 10 mg/kg body weight) daily from gestational day 11.5 to 18.5. The open field test, the elevated plus maze test and the forced swim test were performed at postnatal week 10. BPF exposure altered offspring behavior significantly, resulting in increases in anxiety and depressive state. The influence of BPF was stronger than that of BPA. We demonstrated novel evidence that BPF influences the behavior of offspring.
Collapse
Affiliation(s)
- Naoko Ohtani
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
The impact of serotonergic system dysfunction on the regulation of P4501A isoforms during liver insufficiency and consequences for thyroid hormone homeostasis. Food Chem Toxicol 2016; 97:70-81. [DOI: 10.1016/j.fct.2016.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022]
|
31
|
Sakakibara Y, Katoh M, Kondo Y, Nadai M. Effects of β-Naphthoflavone on Ugt1a6 and Ugt1a7 Expression in Rat Brain. Biol Pharm Bull 2016; 39:78-83. [PMID: 26725430 DOI: 10.1248/bpb.b15-00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uridine 5'-diphosphate-glucuronosyltransferase (UGT) catalyzes a major phase II reaction in a drug-metabolizing enzyme system. Although the UGT1A subfamily is expressed mainly in the liver, it is also expressed in the brain. The purpose of the present study was to elucidate the effect of β-naphthoflavone (BNF), one of the major inducers of drug-metabolizing enzymes, on Ugt1a6 and Ugt1a7 mRNA expression and their glucuronidation in the rat brain. Eight-week-old male Sprague-Dawley rats were treated intraperitoneally with BNF (80 mg/kg), once daily for 7 d. Ugt1a6 and Ugt1a7 mRNA expression increased in the cerebellum and hippocampus (Ugt1a6: 2.1- and 2.3-fold, respectively; Ugt1a7: 1.7- and 2.8-fold, respectively); acetaminophen glucuronidation also increased in the same regions by 4.1- and 2.7-fold, respectively. BNF induced Ugt1a6 and Ugt1a7 mRNA expression and their glucuronidation, and the degree of induction differed among 9 regions. BNF also upregulated CYP1A1, CYP1A2, and CYP1B1 mRNAs in the rat brain. Since the aryl hydrocarbon receptor signaling pathway was activated by BNF, it is indicated that Ugt1a6 and Ugt1a7 were induced via AhR in the rat brain. This study clarified that Ugt1a6 and Ugt1a7 mRNA expression and their enzyme activities were altered by BNF, suggesting that these changes may lead to alteration in the pharmacokinetics of UGT substrate in rat brain.
Collapse
|
32
|
Nightingale S, Chau TTH, Fisher M, Nelson M, Winston A, Else L, Carr DF, Taylor S, Ustianowski A, Back D, Pirmohamed M, Solomon T, Farrar J, Törok ME, Khoo S. Efavirenz and Metabolites in Cerebrospinal Fluid: Relationship with CYP2B6 c.516G→T Genotype and Perturbed Blood-Brain Barrier Due to Tuberculous Meningitis. Antimicrob Agents Chemother 2016; 60:4511-8. [PMID: 27161633 PMCID: PMC4958147 DOI: 10.1128/aac.00280-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023] Open
Abstract
Efavirenz (EFZ) has been associated with neuropsychiatric side effects. Recently, the 8-hydroxy-EFZ (8OH-EFZ) metabolite has been shown to be a potent neurotoxin in vitro, inducing neuronal damage at concentrations of 3.3 ng/ml. EFZ induced similar neuronal damage at concentrations of 31.6 ng/ml. We investigated the effect of genotype and blood-brain barrier integrity on EFZ metabolite concentrations in cerebrospinal fluid (CSF). We measured CSF drug concentrations in subjects from two separate study populations: 47 subjects with tuberculous meningitis (TBM) coinfection in Vietnam receiving 800 mg EFZ with standard antituberculous treatment and 25 subjects from the PARTITION study in the United Kingdom without central nervous system infection receiving 600 mg EFZ. EFZ and metabolite concentrations in CSF and plasma were measured and compared with estimates of effectiveness and neurotoxicity from available published in vitro and in vivo data. The effect of the CYP2B6 c.516G→T genotype (GG genotype, fast EFV metabolizer status; GT genotype, intermediate EFV metabolizer status; TT genotype, slow EFV metabolizer status) was examined. The mean CSF concentrations of EFZ and 8OH-EFZ in the TBM group were 60.3 and 39.3 ng/ml, respectively, and those in the no-TBM group were 15.0 and 5.9 ng/ml, respectively. Plasma EFZ and 8OH-EFZ concentrations were similar between the two groups. CSF EFZ concentrations were above the in vitro toxic concentration in 76% of samples (GG genotype, 61%; GT genotype, 90%; TT genotype, 100%) in the TBM group and 13% of samples (GG genotype, 0%; GT genotype, 18%; TT genotype, 50%) in the no-TBM group. CSF 8OH-EFZ concentrations were above the in vitro toxic concentration in 98% of the TBM group and 87% of the no-TBM group; levels were independent of genotype but correlated with the CSF/plasma albumin ratio. Potentially neurotoxic concentrations of 8OH-EFZ are frequently observed in CSF independently of the CYP2B6 genotype, particularly in those with impaired blood-brain barrier integrity.
Collapse
Affiliation(s)
- Sam Nightingale
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Tran Thi Hong Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Martin Fisher
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Mark Nelson
- St. Stephen's AIDS Research Trust and Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Alan Winston
- St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Laura Else
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel F Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Steven Taylor
- Birmingham Heartlands Hospital, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
| | - Andrew Ustianowski
- North Manchester General Hospital, Pennine Acute Hospitals NHS Trust, Manchester, United Kingdom
| | - David Back
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom Walton Centre for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - M Estée Törok
- University of Cambridge, Department of Medicine, Cambridge, United Kingdom Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge, United Kingdom
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| |
Collapse
|
33
|
Sakakibara Y, Katoh M, Kondo Y, Nadai M. Effects of Phenobarbital on Expression of UDP-Glucuronosyltransferase 1a6 and 1a7 in Rat Brain. ACTA ACUST UNITED AC 2015; 44:370-7. [PMID: 26684499 DOI: 10.1124/dmd.115.067439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/11/2015] [Indexed: 11/22/2022]
Abstract
UDP-glucuronosyltransferase (UGT), a phase II drug-metabolizing enzyme, is expressed in the brain and can catalyze glucuronidation of endogenous and exogenous substrates in the brain. Thus, changes in UGT1A expression could affect homeostasis and drug efficacy. Phenobarbital (PB), a typical inducer of drug-metabolizing enzymes, has been reported to induce oxidative stress and epigenetic changes, which could alter UGT expression in the brain. Here, we aimed to clarify the effects of PB on Ugt1a6 and Ugt1a7 gene expression in rat brains. Sprague-Dawley rats were treated intraperitoneally with PB (80 mg/kg), once daily for 7 days. Ugt1a6 and Ugt1a7 mRNA expression levels were increased in the striatum and thalamus (Ugt1a6, 3.0- and 2.9-fold, respectively; Ugt1a7, 2.6- and 2.6-fold, respectively). Acetaminophen glucuronidation was also increased in the medulla oblongata and thalamus by 1.8- and 1.2-fold, respectively. The induction rates within different brain regions were correlated with Ugt1a6 and Ugt1a7 mRNA expression, and the degree of induction also correlated with that of NF-E2-related factor-2 mRNA. Measurement of oxidative stress markers suggested that PB induced oxidative stress in brain regions in which Ugt1a6 and Ugt1a7 mRNAs were increased. Moreover, histone modifications were altered by PB treatment, resulting in increased histone H3 lysine 4 trimethylation in the striatum and thalamus and decreased histone H3 lysine 9 trimethylation in the thalamus. These results suggested that oxidative stress and histone modifications may promote transcriptional activation of Ugt1a6 and Ugt1a7 genes. In summary, Ugt1a6 and Ugt1a7 mRNA levels were increased by PB treatment, which may alter pharmacokinetics in the brain.
Collapse
Affiliation(s)
- Yukiko Sakakibara
- Pharmaceutics, Faculty of Pharmacy, Meijo University; 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan
| | - Miki Katoh
- Pharmaceutics, Faculty of Pharmacy, Meijo University; 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan
| | - Yuya Kondo
- Pharmaceutics, Faculty of Pharmacy, Meijo University; 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan
| | - Masayuki Nadai
- Pharmaceutics, Faculty of Pharmacy, Meijo University; 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan
| |
Collapse
|
34
|
Sakakibara Y, Katoh M, Kawayanagi T, Nadai M. Species and tissue differences in serotonin glucuronidation. Xenobiotica 2015; 46:605-611. [PMID: 26526550 DOI: 10.3109/00498254.2015.1101509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. Serotonin is a UGT1A6 substrate that is mainly found in the extrahepatic tissues where some UGT1As are expressed. The aim of the present study was to characterize serotonin glucuronidation in various tissues of humans and rodents. 2. Serotonin glucuronidation in the human liver and kidney fitted to the Michaelis-Menten model, and the Km values were similar to that of recombinant UGT1A6. However, serotonin glucuronidation in the human intestine fitted to the Hill equation, indicating that it is likely catalyzed not only by UGT1A6, but also by another UGT1A isoform. Serotonin glucuronidation in the rat liver, intestine and kidney fitted well to the Michaelis-Menten model and exhibited monophasic kinetics in the kidney, but biphasic kinetics in the liver and intestine. Furthermore, serotonin glucuronidation in the rat brain fitted best to the Hill equation. Serotonin glucuronidation in the mouse tissues fitted to the Michaelis-Menten model and exhibited monophasic kinetics in the liver and intestine microsomes, but biphasic kinetics in the kidney and brain microsomes. 3. In conclusion, we clarified that tissue and species differences exist in serotonin glucuronidation. It is necessary to take these potential differences into account when considering the pharmacodynamics and pharmacokinetics of serotonin.
Collapse
Affiliation(s)
- Yukiko Sakakibara
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Miki Katoh
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Taisho Kawayanagi
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Masayuki Nadai
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| |
Collapse
|
35
|
Abstract
Dopamine sulfate (DA-3- and DA-4-S) have been determined in the human brain, but it is unclear whether they are locally formed in the central nervous system (CNS), or transported into the CNS from peripheral sources. In the current study, permeation of the blood-brain barrier (BBB) by DA-S was studied by injecting 13C6-labelled regioisomers of DA-S (13DA-3-S and 13DA-4-S) and dopamine (DA) subcutaneously (s.c.) in anesthetized rats, then analyzing brain microdialysis and plasma samples by UPLC-MS/MS. The results in the microdialysis samples demonstrated that brain concentrations of 13DA-S regioisomers clearly increased after the s.c. injections. The concentration of DA did not change, indicating the permeation of DA-S through an intact BBB. The analysis of plasma samples, however, showed that DA-S only permeates the BBB to a small extent, as the concentrations in plasma were substantially higher than in the microdialysis samples. The results also showed that the concentrations of DA-3-S were around three times higher than the concentrations of DA-4-S in rat brain, as well as in the plasma samples after the s.c. injections, indicating that DA-3-S and DA-4-S permeate the BBB with similar efficiency. The fate of 13DA-S in brain was followed by monitoring 13C6-labelled DA-S hydrolysis products, i.e. 13DA and its common metabolites; however, no 13C6-labelled products were detected. This suggests that DA-S either permeates through the BBB back to the peripheral circulation or is dissociated or metabolized by unexpected mechanisms.
Collapse
|
36
|
Yabusaki R, Iwano H, Tsushima S, Koike N, Ohtani N, Tanemura K, Inoue H, Yokota H. Weak activity of UDP-glucuronosyltransferase toward Bisphenol analogs in mouse perinatal development. J Vet Med Sci 2015; 77:1479-84. [PMID: 26074487 PMCID: PMC4667667 DOI: 10.1292/jvms.15-0197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bisphenol A (BPA) is a widely used industrial chemical that disrupts endocrine function.
BPA is an endocrine disrupting chemical (EDC) that has been demonstrated to affect
reproductive organ development, brain development, metabolic disease and post-natal
behavior. Accordingly, Bisphenol analogs, Bisphenol F (BPF, bis (4-hydroxyphenyl) methane)
and Bisphenol AF (BPAF, 4,4-hexafluoroisopropylidene) diphenol) are used as replacements
for BPA. BPA is mainly metabolized by UDP-glucuronosyltransferase (UGT), UGT2B1, but this
effective metabolizing system is weak in the fetus. In the present study, we demonstrated
that hepatic UGT activity toward BPAF was very weak, in comparison with BPA and BPF, in
the fetus, pups and dams. Conversely, hepatic UGT activity toward BPF was very weak in the
fetus and newborn pups, and was increased to the same level as BPA post-partum. In
conclusion, BPAF possibly tends to accumulate in the fetus, because of weak metabolism
during the perinatal period, suggesting that the metabolism of individual Bisphenol
analogs requires assessment to properly gauge their risks.
Collapse
Affiliation(s)
- Risa Yabusaki
- Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nicotine regulates the expression of UDP-glucuronosyltransferase (UGT) in humanized UGT1 mouse brain. Drug Metab Pharmacokinet 2015. [PMID: 26210671 DOI: 10.1016/j.dmpk.2015.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UDP-glucuronosyltransferase (UGT) is a family of enzymes that catalyze the glucuronidation of various compounds, and thereby has an important role in metabolism and detoxification of a large number of xenobiotic and endogenous compounds. UGTs are present highly in the liver and small intestine, while several investigations on quantification of UGT mRNA reported that UGTs were also expressed in the brain. However, reported expression patterns of UGT isoforms in human brain were often incongruous with each other. In the present study, therefore, we investigated UGT mRNA expressions in brains of humanized UGT1 (hUGT1) mice. We found that among the human UGT1 members, UGT1A1, 1A3, and 1A6 were expressed in the brain. We further observed that nicotine (3 mg/kg) induced the expression of UGT1A3 mRNA in the brain, but not liver. While it was not statistically significant, the nicotine treatment resulted in an increase in the chenodeoxycholic acid glucuronide-formation activity in the brain microsomes. UGT1A3 is involved in metabolism of various antidepressants and non-steroidal antiinflammatory drugs, which exhibit their pharmacological effects in the brain. Therefore, nicotine-treated hUGT1 mice might be useful to investigate the role of brain UGT1A3 in the regulation of local levels of these drugs and their response.
Collapse
|
38
|
Kutsuno Y, Hirashima R, Sakamoto M, Ushikubo H, Michimae H, Itoh T, Tukey RH, Fujiwara R. Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain. Drug Metab Dispos 2015; 43:1071-6. [PMID: 25953521 DOI: 10.1124/dmd.115.063719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/07/2015] [Indexed: 01/31/2023] Open
Abstract
Although UDP-glucuronosyltransferases (UGTs) are important phase II drug-metabolizing enzymes, they are also involved in the metabolism of endogenous compounds. Certain substrates of UGTs, such as serotonin and estradiol, play important roles in the brain. However, the expression of UGTs in the human brain has not been fully clarified. Recently, humanized UGT1 mice (hUGT1 mice) in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus have been developed. In the present study, the expression pattern of UGT1As in brains from humans and hUGT1 mice was examined. We found that UGT1A1, 1A3, 1A6, and 1A10 were expressed in human brains. The expression pattern of UGT1As in hUGT1 mouse brains was similar to that in human brains. In addition, we examined the expression of UGT1A1 and 1A6 in the cerebellum, olfactory bulbs, midbrain, hippocampus, and cerebral cortex of hUGT1 mice. UGT1A1 in all brain regions and UGT1A6 in the cerebellum and cerebral cortex of 6-month-old hUGT1 mice were expressed at a significantly higher rate than those of 2-week-old hUGT1 mice. A difference in expression levels between brain regions was also observed. Brain microsomes exhibited glucuronidation activities toward estradiol and serotonin, with mean values of 0.13 and 5.17 pmol/min/mg, respectively. In conclusion, UGT1A1 and UGT1A6 might play an important role in function regulation of endogenous compounds in a region- and age-dependent manner. Humanized UGT1 mice might be useful to study the importance of brain UGTs in vivo.
Collapse
Affiliation(s)
- Yuki Kutsuno
- Department of Pharmaceutics (Y.K., R.H., M.S., T.I., R.F.), Department of Molecular Pharmacology (H.U.), and Division of Biostatistics (H.M.), School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Rika Hirashima
- Department of Pharmaceutics (Y.K., R.H., M.S., T.I., R.F.), Department of Molecular Pharmacology (H.U.), and Division of Biostatistics (H.M.), School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Masaya Sakamoto
- Department of Pharmaceutics (Y.K., R.H., M.S., T.I., R.F.), Department of Molecular Pharmacology (H.U.), and Division of Biostatistics (H.M.), School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Hiroko Ushikubo
- Department of Pharmaceutics (Y.K., R.H., M.S., T.I., R.F.), Department of Molecular Pharmacology (H.U.), and Division of Biostatistics (H.M.), School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Hirofumi Michimae
- Department of Pharmaceutics (Y.K., R.H., M.S., T.I., R.F.), Department of Molecular Pharmacology (H.U.), and Division of Biostatistics (H.M.), School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Tomoo Itoh
- Department of Pharmaceutics (Y.K., R.H., M.S., T.I., R.F.), Department of Molecular Pharmacology (H.U.), and Division of Biostatistics (H.M.), School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Robert H Tukey
- Department of Pharmaceutics (Y.K., R.H., M.S., T.I., R.F.), Department of Molecular Pharmacology (H.U.), and Division of Biostatistics (H.M.), School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Ryoichi Fujiwara
- Department of Pharmaceutics (Y.K., R.H., M.S., T.I., R.F.), Department of Molecular Pharmacology (H.U.), and Division of Biostatistics (H.M.), School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| |
Collapse
|
39
|
Ouzzine M, Gulberti S, Ramalanjaona N, Magdalou J, Fournel-Gigleux S. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci 2014; 8:349. [PMID: 25389387 PMCID: PMC4211562 DOI: 10.3389/fncel.2014.00349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-D-glucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds) by the linkage of glucuronic acid from the high energy donor, UDP-α-D-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier (BBB). They are also associated to brain interfaces devoid of BBB, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine (DA) that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed.
Collapse
Affiliation(s)
- Mohamed Ouzzine
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Sandrine Gulberti
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Nick Ramalanjaona
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Jacques Magdalou
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Sylvie Fournel-Gigleux
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| |
Collapse
|
40
|
Hu DG, Meech R, McKinnon RA, Mackenzie PI. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 2014; 46:421-58. [PMID: 25336387 DOI: 10.3109/03602532.2014.973037] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3-1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre , Bedford Park, SA , Australia
| | | | | | | |
Collapse
|
41
|
Knych HK, Steffey EP, McKemie DS. Preliminary pharmacokinetics of morphine and its major metabolites following intravenous administration of four doses to horses. J Vet Pharmacol Ther 2014; 37:374-81. [DOI: 10.1111/jvp.12098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/14/2013] [Indexed: 11/26/2022]
Affiliation(s)
- H. K. Knych
- K.L. Maddy Equine Analytical Chemistry Laboratory; School of Veterinary Medicine; University of California; Davis CA USA
- Department of Veterinary Molecular Biosciences; School of Veterinary Medicine; University of California; Davis CA USA
| | - E. P. Steffey
- K.L. Maddy Equine Analytical Chemistry Laboratory; School of Veterinary Medicine; University of California; Davis CA USA
- Department of Veterinary Surgery and Radiology; School of Veterinary Medicine; University of California; Davis CA USA
| | - D. S. McKemie
- K.L. Maddy Equine Analytical Chemistry Laboratory; School of Veterinary Medicine; University of California; Davis CA USA
| |
Collapse
|
42
|
Li M, Yang Y, Yang Y, Yin J, Zhang J, Feng Y, Shao B. Biotransformation of bisphenol AF to its major glucuronide metabolite reduces estrogenic activity. PLoS One 2013; 8:e83170. [PMID: 24349450 PMCID: PMC3862725 DOI: 10.1371/journal.pone.0083170] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings.
Collapse
Affiliation(s)
- Ming Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
- School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | - Yi Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
- School of Public Health and Family Medicine, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
43
|
Stingl JC, Bartels H, Viviani R, Lehmann ML, Brockmöller J. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther 2013; 141:92-116. [PMID: 24076267 DOI: 10.1016/j.pharmthera.2013.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/01/2023]
Abstract
UDP-glucuronosyltransferases (UGT) catalyze the biotransformation of many endobiotics and xenobiotics, and are coded by polymorphic genes. However, knowledge about the effects of these polymorphisms is rarely used for the individualization of drug therapy. Here, we present a quantitative systematic review of clinical studies on the impact of UGT variants on drug metabolism to clarify the potential for genotype-adjusted therapy recommendations. Data on UGT polymorphisms and dose-related pharmacokinetic parameters in man were retrieved by a systematic search in public databases. Mean estimates of pharmacokinetic parameters were extracted for each group of carriers of UGT variants to assess their effect size. Pooled estimates and relative confidence bounds were computed with a random-effects meta-analytic approach whenever multiple studies on the same variant, ethnic group, and substrate were available. Information was retrieved on 30 polymorphic metabolic pathways involving 10 UGT enzymes. For irinotecan and mycophenolic acid a wealth of data was available for assessing the impact of genetic polymorphisms on pharmacokinetics under different dosages, between ethnicities, under comedication, and under toxicity. Evidence for effects of potential clinical relevance exists for 19 drugs, but the data are not sufficient to assess effect size with the precision required to issue dose recommendations. In conclusion, compared to other drug metabolizing enzymes much less systematic research has been conducted on the polymorphisms of UGT enzymes. However, there is evidence of the existence of large monogenetic functional polymorphisms affecting pharmacokinetics and suggesting a potential use of UGT polymorphisms for the individualization of drug therapy.
Collapse
Affiliation(s)
- J C Stingl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany; Translational Pharmacology, University of Bonn Medical Faculty, Germany.
| | - H Bartels
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Germany
| | - R Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Germany
| | - M L Lehmann
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - J Brockmöller
- Institute of Clinical Pharmacology, University of Göttingen, Germany
| |
Collapse
|
44
|
Sun Z, Shi S, Li H, Shu XH, Chen XY, Kong QY, Liu J. Evaluation of resveratrol sensitivities and metabolic patterns in human and rat glioblastoma cells. Cancer Chemother Pharmacol 2013; 72:965-73. [PMID: 23989725 DOI: 10.1007/s00280-013-2274-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/15/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE To further elucidate the correlation of resveratrol sensitivities with biotransformation activities of human and rat glioblastoma cells for personalized anti-glioblastoma therapy. METHODS Resveratrol sensitivity of human U251 and rat RG2 and C6 glioblastoma cells was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide/MTT, flow cytometry, and TUNEL assays. The metabolic patterns of those cell lines were analyzed by high-performance liquid chromatography/HPLC coupled with tandem mass spectrum/MS/MS, and high-resolution mass spectrometry/HRMS. Immunocytochemical staining and Western blotting were employed to check resveratrol metabolic enzyme expression. RESULTS Both rat RG2 and C6 and human U251 glioblastoma cells are sensitive to 100 μM resveratrol in terms of growth arrest and increased apoptotic fraction. The main resveratrol metabolite in U251 cells is monosulfate biotransformed by sulfotransferases/SULTs and in RG2 and C6 cells is monoglucuronide generated by UDP-glucuronosyltransferase/UGT. Both metabolites show lesser therapeutic efficacy. Although brain-associated UGTs (UGT1A6, 2B7, and 8) and SULTs (SULT1A1, 1C2, and 4A1) are expressed in rat and human glioma cells, the overall level of UGTs is predominant in the rat and SULTs in human glioblastoma cells. In similar to SULT expression pattern, UGT1A6, 2B7, and 8 are frequently downregulated (84.6 %, 82/97; 90.7 %, 88/97; 80.4 %, 78/97) in human glioblastoma tissues. CONCLUSION Our results suggest (1) the decreased resveratrol biotransforming activity in rat and human resveratrol-sensitive glioblastoma cells; (2) the discrepant resveratrol metabolic patterns between human and rat glioblastoma cells; (3) the more powerful anti-glioblastoma efficacy of trans-resveratrol rather than resveratrol monoglucuronide or monosulfate; and (4) the value of RG2 and C6 cells in establishing resveratrol-based rat in vivo therapeutic model.
Collapse
Affiliation(s)
- Zheng Sun
- Liaoning Laboratory of Cancer Genomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Togna AR, Antonilli L, Dovizio M, Salemme A, De Carolis L, Togna GI, Patrignani P, Nencini P. In vitro morphine metabolism by rat microglia. Neuropharmacology 2013; 75:391-8. [PMID: 23988259 DOI: 10.1016/j.neuropharm.2013.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/07/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
Morphine is mainly transformed to morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) in the liver. Glucuronidation is also performed by rat brain homogenates and UDP-glucuronosyltransferases (UGTs) are present in the brain. Here we investigated the possibility that microglia transforms morphine into its metabolites M3G and M6G. Primary cultures of neonatal rat microglia were incubated for different intervals of time in basal conditions or with different concentrations of morphine. The following measures were performed on these cultures and/or in the medium: (i) morphine as well as M3G and M6G concentrations; (ii) levels of mRNA coding for UGT1A1, UGT1A6, UGT1A7, and UGT2B1 as well as their protein levels; (iii) released prostaglandin (PG)E2 and nitrite concentrations. Results show that in basal conditions morphine and M3G are produced by microglia; accordingly, these cells expressed UGT1A1, UGT1A6 and UGT1A7, but not UGT2B1. When cultures were exposed to different concentrations of exogenous morphine, M6G was also synthesized. This shift in the glucuronidation was associated with variations in the expression of UGT isozymes. In particular, UGT1A7 expression was rapidly upregulated and this event was translated into enhanced protein levels of UGT1A7; lesser effects were exerted on UGT1A1 and UGT1A6. Upon prolonged exposure to morphine, microglial cell UGT expression returned to baseline conditions or even to reduced levels of expression. Morphine exposure did not affect the synthesis of both PGE2 and nitrites, ruling out a generalized priming of microglia by morphine. In conclusion, this study suggests that morphine glucuronides found in the cerebrospinal liquor upon peripheral morphine administration may at least in part be brain-born, reconciling the conceptual gap between the high hydrophilic features of morphine glucuronides and their presence beyond the blood-brain barrier.
Collapse
Affiliation(s)
- Anna Rita Togna
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Letizia Antonilli
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Melania Dovizio
- Department of Neuroscience and Imaging, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy; Center of Excellence on Aging (CeSI), "Gabriele d'Annunzio" University Foundation, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Salemme
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Lorenza De Carolis
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giuseppina I Togna
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Paola Patrignani
- Department of Neuroscience and Imaging, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy; Center of Excellence on Aging (CeSI), "Gabriele d'Annunzio" University Foundation, Via dei Vestini 31, 66100 Chieti, Italy
| | - Paolo Nencini
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
46
|
Suominen T, Uutela P, Ketola RA, Bergquist J, Hillered L, Finel M, Zhang H, Laakso A, Kostiainen R. Determination of Serotonin and Dopamine Metabolites in Human Brain Microdialysis and Cerebrospinal Fluid Samples by UPLC-MS/MS: Discovery of Intact Glucuronide and Sulfate Conjugates. PLoS One 2013; 8:e68007. [PMID: 23826355 PMCID: PMC3694921 DOI: 10.1371/journal.pone.0068007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/26/2013] [Indexed: 11/25/2022] Open
Abstract
An UPLC-MS/MS method was developed for the determination of serotonin (5-HT), dopamine (DA), their phase I metabolites 5-HIAA, DOPAC and HVA, and their sulfate and glucuronide conjugates in human brain microdialysis samples obtained from two patients with acute brain injuries, ventricular cerebrospinal fluid (CSF) samples obtained from four patients with obstructive hydrocephalus, and a lumbar CSF sample pooled mainly from patients undergoing spinal anesthesia in preparation for orthopedic surgery. The method was validated by determining the limits of detection and quantification, linearity, repeatability and specificity. The direct method enabled the analysis of the intact phase II metabolites of 5-HT and DA, without hydrolysis of the conjugates. The method also enabled the analysis of the regioisomers of the conjugates, and several intact glucuronide and sulfate conjugates were identified and quantified for the first time in the human brain microdialysis and CSF samples. We were able to show the presence of 5-HIAA sulfate, and that dopamine-3-O-sulfate predominates over dopamine-4-O-sulfate in the human brain. The quantitative results suggest that sulfonation is a more important phase II metabolism pathway than glucuronidation in the human brain.
Collapse
Affiliation(s)
- Tina Suominen
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Päivi Uutela
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Raimo A. Ketola
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry – BMC and Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Lars Hillered
- Neurosurgery, Department of Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Moshe Finel
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hongbo Zhang
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Risto Kostiainen
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
47
|
Laux-Biehlmann A, Mouheiche J, Vérièpe J, Goumon Y. Endogenous morphine and its metabolites in mammals: History, synthesis, localization and perspectives. Neuroscience 2013; 233:95-117. [DOI: 10.1016/j.neuroscience.2012.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
|
48
|
Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 2013; 18:273-87. [PMID: 22565785 DOI: 10.1038/mp.2012.42] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymorphic drug-metabolizing enzymes (DMEs) are responsible for the metabolism of the majority of psychotropic drugs. By explaining a large portion of variability in individual drug metabolism, pharmacogenetics offers a diagnostic tool in the burgeoning era of personalized medicine. This review updates existing evidence on the influence of pharmacogenetic variants on drug exposure and discusses the rationale for genetic testing in the clinical context. Dose adjustments based on pharmacogenetic knowledge are the first step to translate pharmacogenetics into clinical practice. However, also clinical factors, such as the consequences on toxicity and therapeutic failure, must be considered to provide clinical recommendations and assess the cost-effectiveness of pharmacogenetic treatment strategies. DME polymorphisms are relevant not only for clinical pharmacology and practice but also for research in psychiatry and neuroscience. Several DMEs, above all the cytochrome P (CYP) enzymes, are expressed in the brain, where they may contribute to the local biochemical homeostasis. Of particular interest is the possibility of DMEs playing a physiological role through their action on endogenous substrates, which may underlie the reported associations between genetic polymorphisms and cognitive function, personality and vulnerability to mental disorders. Neuroimaging studies have recently presented evidence of an effect of the CYP2D6 polymorphism on basic brain function. This review summarizes evidence on the effect of DME polymorphisms on brain function that adds to the well-known effects of DME polymorphisms on pharmacokinetics in explaining the range of phenotypes that are relevant to psychiatric practice.
Collapse
|
49
|
Uchihashi S, Nishikawa M, Sakaki T, Ikushiro SI. Comparison of serotonin glucuronidation activity of UDP-glucuronosyltransferase 1a6a (Ugt1a6a) and Ugt1a6b: evidence for the preferential expression of Ugt1a6a in the mouse brain. Drug Metab Pharmacokinet 2012; 28:260-4. [PMID: 23089803 DOI: 10.2133/dmpk.dmpk-12-nt-091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mouse UDP-glucuronosyltransferase (Ugt) 1a6a and Ugt1a6b share 98% sequence homology, but there have been no reports to date that compare their expression levels or enzymatic activities in serotonin glucuronidation. Thus, we designed specific primers for Ugt1a6a and Ugt1a6b to compare their expression in mouse brain regions and livers. Ugt1a6a was dominantly expressed in mouse brains, especially the hippocampus, while both Ugt1a6a and Ugt1a6b were highly expressed in mouse livers, indicating that there are significant differences in the expression patterns of Ugt1a6a and Ugt1a6b among mouse tissues. Glucuronidation of endogenous neurotransmitter serotonin was catalyzed by Ugt1a6b with k(cat)/K(m) (4.5 M(-1)·s(-1)) slightly higher than that of Ugt1a6a (2.4 M(-1)·s(-1)). However, the difference in expression levels between Ugt1a6a and Ugt1a6b in the hippocampus led us to speculate that Ugt1a6a is likely the predominant catalyst of serotonin glucuronidation in the mouse brain. In conclusion, we successfully elucidated the differences between Ugt1a6a and Ugt1a6b expression in the mouse brain. Our new findings indicate that Ugt1a6a and Ugt1a6b play different roles in mice, driven by differences in expression and kinetic properties for serotonin glucuronidation.
Collapse
Affiliation(s)
- Shinsuke Uchihashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Japan
| | | | | | | |
Collapse
|
50
|
Uchihashi S, Nishikawa M, Sakaki T, Ikushiro SI. The critical role of amino acid residue at position 117 of mouse UDP-glucuronosyltransfererase 1a6a and 1a6b in resveratrol glucuronidation. J Biochem 2012; 152:331-40. [DOI: 10.1093/jb/mvs078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|