1
|
Quesada E, Rojas S, Campos X, Wu L. Gene therapy in neovascular age related macular degeneration: an update. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06837-2. [PMID: 40293479 DOI: 10.1007/s00417-025-06837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Neovascular age-related macular degeneration (NV-AMD) is a leading cause of preventable blindness in the elderly. Intravitreal injections of anti-VEGF agents are currently the treatment of choice for NV-AMD. However this treatment is burdensome and fosters non-compliance which leads to inferior visual outcomes. Gene therapy has emerged as a promising therapeutic option for NV-AMD that may improve these outcomes. Potential risks of gene therapy include a potential immune response that may be elicited by the vector, accidental activation of oncogenes or inactivation of tumor suppresor genes leading to malignant transformation via insertational mutagenesis and integration of the viral DNA inserts into the host's DNA. The main strategy of current gene therapy for NV-AMD has focused on delivering transgenes that express anti-angiogenic proteins that directly or indirectly inhibit the VEGF pathway. Ixoberogene soroparvovec, RGX-314 and 4D-150 are the leading NV-AMD genetic treatment programs. Pre-clinical models suggest that genome surgery with clustered regularly interspaced short palindromic repeats (CRISPR) may be another option in the future.
Collapse
Affiliation(s)
- Erika Quesada
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica
| | - Sofía Rojas
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica
| | - Xiomara Campos
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica
| | - Lihteh Wu
- Asociados de Mácula, Vítreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colón, San José, Costa Rica.
| |
Collapse
|
2
|
Lee Y, Fang Y, Kuila S, Imoukhuede PI. Cross-family interactions of vascular endothelial growth factors and platelet-derived growth factors on the endothelial cell surface: A computational model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640640. [PMID: 40093087 PMCID: PMC11908192 DOI: 10.1101/2025.02.27.640640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Angiogenesis, the formation of new vessels from existing vessels, is mediated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). Despite discoveries supporting the cross-family interactions between VEGF and PDGF families, sharing the binding partners between them makes it challenging to identify growth factors that predominantly affect angiogenesis. Systems biology offers promises to untangle this complexity. Thus, in this study, we developed a mass-action kinetics-based computational model for cross-family interactions between VEGFs (VEGF-A, VEGF-B, and PlGF) and PDGFs (PDGF-AA, PDGF-AB, and PDGF-BB) with their receptors (VEGFR1, VEGFR2, NRP1, PDGFRα, and PDGFRβ). The model, parametrized with our literature mining and surface resonance plasmon assays, was validated by comparing the concentration of VEGFR1 complexes with a previously constructed angiogenesis model. The model predictions include five outcomes: 1) the percentage of free or bound ligands and 2) receptors, 3) the concentration of free ligands, 4) the percentage of ligands occupying each receptor, and 5) the concentration of ligands that is bound to each receptor. We found that at equimolar ligand concentrations (1 nM), PlGF and VEGF-A were the main binding partners of VEGFR1 and VEGFR2, respectively. Varying the density of receptors resulted in the following five outcomes: 1) Increasing VEGFR1 density depletes the free PlGF concentration, 2) increasing VEGFR2 density decreases PDGF:PDGFRα complexes, 3) increased NRP1 density generates a biphasic concentration of the free PlGF, 4) increased PDGFRα density increases PDGFs:PDGFRα binding, and 5) increasing PDGFRβ density increases VEGF-A:PDGFRβ. Our model offers a reproducible, fundamental framework for exploring cross-family interactions that can be extended to the tissue level or intracellular molecular level. Also, our model may help develop therapeutic strategies in pathological angiogenesis by identifying the dominant complex in the cell signaling. Author summary New blood vessel formation from existing ones is essential for growth, healing, and reproduction. However, when this process is disrupted-either too much or too little-it can contribute to diseases such as cancer and peripheral arterial disease. Two key families of proteins, vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs), regulate this process. Traditionally, scientists believed that VEGFs only bind to VEGF receptors and PDGFs to PDGF receptors. However, recent findings show that these proteins can interact with each other's receptors, making it more challenging to understand and control blood vessel formation. To clarify these complex interactions, we combined computer modeling with biological data to map out which proteins bind to which receptors and to what extent. Our findings show that when VEGFs and PDGFs are present in equal amounts, VEGFs are the primary binding partners for VEGF receptors. We also explored how changes in receptor levels affect these interactions in disease-like conditions. This work provides a foundational computational model for studying cross-family interactions, which can be expanded to investigate tissue-level effects and processes inside cells. Ultimately, our model may help develop better treatments for diseases linked to abnormal blood vessel growth by identifying key protein-receptor interactions.
Collapse
|
3
|
Hinsch VG, Boye SL, Boye SE. A Comprehensive Review of Clinically Applied Adeno-Associated Virus-Based Gene Therapies for Ocular Disease. Hum Gene Ther 2025. [PMID: 39989340 DOI: 10.1089/hum.2024.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
The eye is an ideal target for gene therapy due its accessibility, immune privilege, small size, and compartmentalization. Adeno-associated virus (AAV) is the gold standard vector for gene delivery and can be injected via multiple routes of administration to target different parts of this organ. The approval of Luxturna™, a subretinally delivered gene therapy for RPE65-associated Leber's congenital amaurosis, and the large number of successful proof of concept studies performed in animal models injected great momentum into the pursuit of additional AAV-based gene therapies for the treatment of retinal disease. This review provides a comprehensive summary of all subretinally, intravitreally, and suprachoroidally delivered AAV-based ocular gene therapies that have progressed to clinical stage. Attention is given to primary (safety) and secondary (efficacy) outcomes, or lack thereof. Lessons learned and future directions are addressed, both of which point to optimism that the ocular gene therapy field is poised for continued momentum and additional regulatory approvals.
Collapse
Affiliation(s)
- Valerie G Hinsch
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Gill A, Kinghorn K, Bautch VL, Mac Gabhann F. Mechanistic computational modeling of sFLT1 secretion dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637983. [PMID: 40027776 PMCID: PMC11870409 DOI: 10.1101/2025.02.12.637983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Constitutively secreted by endothelial cells, soluble FLT1 (sFLT1 or sVEGFR1) binds and sequesters extracellular vascular endothelial growth factors (VEGF), thereby reducing VEGF binding to VEGF receptor tyrosine kinases and their downstream signaling. In doing so, sFLT1 plays an important role in vascular development and in the patterning of new blood vessels in angiogenesis. Here, we develop multiple mechanistic models of sFLT1 secretion and identify a minimal mechanistic model that recapitulates key qualitative and quantitative features of temporal experimental datasets of sFLT1 secretion from multiple studies. We show that the experimental data on sFLT1 secretion is best represented by a delay differential equation (DDE) system including a maturation term, reflecting the time required between synthesis and secretion. Using optimization to identify appropriate values for the key mechanistic parameters in the model, we show that two model parameters (extracellular degradation rate constant and maturation time) are very strongly constrained by the experimental data, and that the remaining parameters are related by two strongly constrained constants. Thus, only one degree of freedom remains, and measurements of the intracellular levels of sFLT1 would fix the remaining parameters. Comparison between simulation predictions and additional experimental data of the outcomes of chemical inhibitors and genetic perturbations suggest that intermediate values of the secretion rate constant best match the simulation with experiments, which would completely constrain the model. However, some of the inhibitors tested produce results that cannot be reproduced by the model simulations, suggesting that additional mechanisms not included here are required to explain those inhibitors. Overall, the model reproduces most available experimental data and suggests targets for further quantitative investigation of the sFLT1 system.
Collapse
Affiliation(s)
- Amy Gill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Karina Kinghorn
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Victoria L Bautch
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Feilim Mac Gabhann
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Khouri-Farah N, Winchester EW, Schilder BM, Robinson K, Curtis SW, Skene NG, Leslie-Clarkson EJ, Cotney J. Gene expression patterns of the developing human face at single cell resolution reveal cell type contributions to normal facial variation and disease risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633396. [PMID: 39868299 PMCID: PMC11761091 DOI: 10.1101/2025.01.18.633396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Craniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks). This resource resolves the transcriptional dynamics of seven major cell types and uncovers distinct major cell types, including muscle progenitors and cranial neural crest cells (CNCCs), as well as dozens of subtypes of ectoderm and mesenchyme. Comparative analyses reveal substantial conservation of major cell types, alongside human biased differences in gene expression programs. CNCCs, which play a crucial role in craniofacial morphogenesis, exhibit the lowest marker gene conservation, underscoring their evolutionary plasticity. Spatial transcriptomics further localizes cell populations, providing a detailed view of their developmental roles and anatomical context. We also link these developmental processes to genetic variation, identifying cell type-specific enrichments for common variants associated with facial morphology and rare variants linked to orofacial clefts. Intriguingly, Neanderthal-introgressed sequences are enriched near genes with biased expression in cartilage and specialized ectodermal subtypes, suggesting their contribution to modern human craniofacial features. This atlas offers unprecedented insights into the cellular and genetic mechanisms shaping the human face, highlighting conserved and distinctly human aspects of craniofacial biology. Our findings illuminate the developmental origins of craniofacial disorders, the genetic basis of facial variation, and the evolutionary legacy of ancient hominins. This work provides a foundational resource for exploring craniofacial biology, with implications for developmental genetics, evolutionary biology, and clinical research into congenital anomalies.
Collapse
Affiliation(s)
| | | | - Brian M Schilder
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Kelsey Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nathan G Skene
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | | | - Justin Cotney
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Golshekan M, Abedinzade M, Ahmadi E, Neha S, Najafi M. Revolutionizing Cancer Treatment: Harnessing the Power of Mesenchymal Stem Cells for Precise Targeted Therapy in the Tumor Microenvironment. Curr Top Med Chem 2025; 25:243-262. [PMID: 38797895 DOI: 10.2174/0115680266299112240514103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
In recent years, mesenchymal stem cells (MSCs) have emerged as promising anti-- cancer mediators with the potential to treat several cancers. MSCs have been modified to produce anti-proliferative, pro-apoptotic, and anti-angiogenic molecules that could be effective against a variety of malignancies. Additionally, customizing MSCs with cytokines that stimulate pro-tumorigenic immunity or using them as vehicles for traditional chemical molecules with anti-cancer characteristics. Even though the specific function of MSCs in tumors is still challenged, promising outcomes from preclinical investigations of MSC-based gene therapy for a variety of cancers inspire the beginning of clinical trials. In addition, the tumor microenvironment (TME) could have a substantial influence on normal tissue stem cells, which can affect the treatment outcomes. To overcome the complications of TME in cancer development, MSCs could provide some signs of hope for converting TME into unequivocal therapeutic tools. Hence, this review focuses on engineered MSCs (En-MSCs) as a promising approach to overcoming the complications of TME.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mostafa Golshekan
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmoud Abedinzade
- Department of Medical Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Ahmadi
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Singh Neha
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H, Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother 2024; 180:117585. [PMID: 39442237 DOI: 10.1016/j.biopha.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy. To develop an effective therapy, it is essential to understand the basics of the physiological and tumor angiogenesis process. This review presents the primary factors related to physiological and tumor angiogenesis and the mechanisms of angiogenesis in tumors. We summarize potential molecular targets for cancer treatment by focusing on the vasculature, with the VEGF/VEGFR pathway being one of the most important and well-studied. Additionally, we present the advantages and limitations of currently used clinical protocols for cancer treatment targeting the VEGF/VEGFR pathway.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Agata Sikorska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Sara Molenda
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland.
| |
Collapse
|
8
|
Wazan LE, Widhibrata A, Liu GS. Soluble FLT-1 in angiogenesis: pathophysiological roles and therapeutic implications. Angiogenesis 2024; 27:641-661. [PMID: 39207600 DOI: 10.1007/s10456-024-09942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Fine-tuning angiogenesis, the development of new blood vessels, is essential for maintaining a healthy circulatory and lymphatic system. The small glycoprotein vascular endothelial growth factors (VEGF) are the key mediators in this process, binding to their corresponding membrane-bound VEGF receptors (VEGFRs) to activate angiogenesis signaling pathways. These pathways are crucial throughout human life as they are involved in lymphatic and vascular endothelial cell permeability, migration, proliferation, and survival. Neovascularization, the formation of abnormal blood vessels, occurs when there is a dysregulation of angiogenesis and can result in debilitating disease. Hence, VEGFRs have been widely studied to understand their role in disease-causing angiogenesis. VEGFR1, also known as Fms-like tyrosine kinase-1 (FLT-1), is also found in a soluble form, soluble FLT-1 or sFLT-1, which is known to act as a VEGF neutralizer. It is incorporated into anti-VEGF therapy, designed to treat diseases caused by neovascularization. Here we review the journey of sFLT-1 discovery and delve into the alternative splicing mechanism that creates the soluble receptor, its prevalence in disease states, and its use in current and future potential therapies.
Collapse
Affiliation(s)
- Layal Ei Wazan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Ariel Widhibrata
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
9
|
Bai T, Cui B, Xing M, Chen S, Zhu Y, Lin D, Guo Y, Du M, Wang X, Zhou D, Yan H. Stable inhibition of choroidal neovascularization by adeno-associated virus 2/8-vectored bispecific molecules. Gene Ther 2024; 31:511-523. [PMID: 38961279 DOI: 10.1038/s41434-024-00461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Neovascular age-related macular degeneration (nAMD) causes severe visual impairment. Pigment epithelium-derived factor (PEDF), soluble CD59 (sCD59), and soluble fms-like tyrosine kinase-1 (sFLT-1) are potential therapeutic agents for nAMD, which target angiogenesis and the complement system. Using the AAV2/8 vector, two bi-target gene therapy agents, AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59, were generated, and their therapeutic efficacy was investigated in laser-induced choroidal neovascularization (CNV) and Vldlr-/- mouse models. After a single injection, AAV2/8-mediated gene expression was maintained at high levels in the retina for two months. Both AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 significantly reduced CNV development for an extended period without side effects and provided efficacy similar to two injections of current anti-vascular endothelial growth factor monotherapy. Mechanistically, these agents suppressed the extracellular signal-regulated kinase and nuclear factor-κB pathways, resulting in anti-angiogenic activity. This study demonstrated the safety and long-lasting effects of AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 in CNV treatment, providing a promising therapeutic strategy for nAMD.
Collapse
Affiliation(s)
- Tinghui Bai
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Bohao Cui
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Dongxue Lin
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China.
| |
Collapse
|
10
|
Ma H, Wang C, Jiang M, Jin K, Xu T, Wang Z, Xu J, Ni L, Shi H, Shen P, Chen Y, Feng X, Zhang W. Persistently elevated sFlt-1 and recovery of reduced ADAMTS13 activity in malignant hypertension. J Hypertens 2024; 42:410-419. [PMID: 37889602 DOI: 10.1097/hjh.0000000000003601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Malignant hypertension (MHT) characterized by acute hypertension with retinopathy or multiorgan damage, is a severe form of hypertensive emergency and associated with target organ involvement and poor kidney outcome. However, the underlying mechanisms are unclear. METHODS Eighty-four patients with acute severe hypertension from the Nephrology Department and Emergency Department in a single center during January 2016 and December 2017 were prospectively enrolled and divided into MHT ( n = 48) and non-MHT ( n = 36) subgroups according to target organ evaluation. Forty healthy controls were recruited. Serum soluble Fms-like tyrosine kinase-1 (sFlt-1) levels and plasma ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 motif, member 13) activity were examined at baseline and 12-month follow-up. Renal endpoints were defined as a significant decrease in the estimated glomerular filtration rate (eGFR) of more than 40% or the occurrence of end-stage renal disease. RESULTS Serum sFlt-1 levels were persistently elevated in MHT. Baseline serum sFLT-1 levels were correlated with plasma ADAMTS13 activity and markers of target organ damage. Plasma ADAMTS13 activity was reduced in both MHT and non-MHT patients and recovered to the normal range at 12-month follow-up. During an average follow-up time of 53 ± 13 months, the restoration of reduced ADAMTS13 activity was correlated with the improvement of kidney function and independently reduced the risk of renal endpoints. CONCLUSIONS Abnormal angiogenesis and endothelial damage are involved in the pathophysiology of hypertensive emergency. Evaluation of ADAMTS13 and sFlt-1 may help in the diagnosis and assessment of MHT. Recovery of ADAMTS13 predicts better renal outcome in patients with hypertensive emergencies.
Collapse
Affiliation(s)
- Hongkun Ma
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chongjian Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Mengdi Jiang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kexin Jin
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Tingting Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhiyu Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jing Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liyan Ni
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Hao Shi
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Pingyan Shen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yongxi Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiaobei Feng
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Wen Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
11
|
Kinghorn K, Gill A, Marvin A, Li R, Quigley K, Singh S, Gore MT, le Noble F, Gabhann FM, Bautch VL. A defined clathrin-mediated trafficking pathway regulates sFLT1/VEGFR1 secretion from endothelial cells. Angiogenesis 2024; 27:67-89. [PMID: 37695358 PMCID: PMC10881643 DOI: 10.1007/s10456-023-09893-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Live-imaging of temporally controlled sFLT1 release from the endoplasmic reticulum showed clathrin-dependent sFLT1 trafficking at the Golgi into secretory vesicles that then trafficked to the plasma membrane. Depletion of STX6 altered vessel sprouting in 3D, suggesting that endothelial cell sFLT1 secretion influences proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Amy Gill
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Renee Li
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Simcha Singh
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Fayazi B, Tadibi V, Ranjbar K. The role of hypoxia related hormones responses in acute mountain sickness susceptibility individuals unaccustomed to high altitude. PLoS One 2023; 18:e0292173. [PMID: 37796960 PMCID: PMC10553285 DOI: 10.1371/journal.pone.0292173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
Acute mountain sickness (AMS) is caused by rapid ascent to altitude (>2500 m) and remains a poorly understood pathophysiological condition. Accordingly, we investigated the relationship between acute exposure to high altitude and hypoxia related biochemical proteins. 21 healthy subjects (Female (8) and male (13), Age: 36.7±8.5, BMI: 23.2±3.1) volunteers participated in this project and fasting blood samples were taken before (sea level) and after 1 and 24-h exposure to high altitude (3,550 m). Blood oxygen saturation (SpO2), AMS status (Lake Louise Score) and serum HIF-1, Endothelin-1, VEGF and Orexin-A were measured (via ELISA) at 1, 6 and 24 h after exposure to high altitude. Pre-ascent measurement of hypoxia related proteins (Orexin-A, HIF-1, VEGF and Endothelin-1) where all significantly (<0.05) higher in the AMS-resistant individuals (No-AMS) when compared to AMS susceptible individuals (AMS+). Upon ascent to high altitude, 11 out of 21 volunteers had AMS (10.1±0.6 in AMS+ vs. 0.9±0.6 in No-AMS, P<0.05) and presented with lower resting SpO2 levels (77.7±0.4 vs. 83.5±0.3 respectively, p<0.05). Orexin-A, HIF-1, VEGF and Endothelin-1, significantly increased 24 hrs after exposure to high altitude in both AMS+ and No-AMS. The response of Orexin-A was similar between two groups, also, HIF-1 elevation 24 hrs after exposure to altitude was more in AMS+ (13% vs. 19%), but the increase of VEGF and Endothelin-1, 1 and 24 hrs after exposure to altitude in No-AMS was double that of AMS+. Hypoxia related proteins include Orexin-A, HIF-1, VEGF and Endothelin-1 may play a pathophysiological role in those who are susceptible to AMS.
Collapse
Affiliation(s)
- Bayan Fayazi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Vahid Tadibi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Kamal Ranjbar
- Department of Exercise Physiology, Faculty of Sport Sciences, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| |
Collapse
|
13
|
Marcelino M, Cai CL, Wadowski S, Aranda JV, Beharry KD. Biomarkers of lung alveolarization and microvascular maturation in response to intermittent hypoxia and/or early antioxidant/fish oil supplementation in neonatal rats. Pediatr Pulmonol 2023; 58:2352-2363. [PMID: 37265429 PMCID: PMC10463793 DOI: 10.1002/ppul.26495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/11/2023] [Accepted: 05/14/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Extremely preterm infants experience frequent intermittent hypoxia (IH) episodes during oxygen therapy which causes significant damage to the lungs and curtails important signaling pathways that regulate normal lung alveolarization and microvascular maturation. We tested the hypothesis that early supplementation with fish oil and/or antioxidants in rats exposed to neonatal IH improves expression of lung biomarkers of alveolarization and microvascular maturation, and reduces IH-induced lung injury. STUDY DESIGN/METHODS From birth (P0) to P14, rat pups were exposed to room air (RA) or neonatal IH during which they received daily oral supplementation with either: (1) olive oil (OO) (control); (2) Coenzyme Q10 (CoQ10) in OO; (3) fish oil; (4) glutathione nanoparticles (nGSH); or (5) fish oil +CoQ10. At P14 pups were placed in RA until P21 with no further treatment. RA controls were similarly treated. Lung growth and alveolarization, histopathology, apoptosis, oxidative stress and biomarkers of alveolarization and microvascular maturation were determined. RESULTS Neonatal IH was associated with reduced lung weights and severe histopathological outcomes. These effects were curtailed with fish oil and nGSH. nGSH was also protective against apoptosis, while CoQ10 prevented IH-induced ROS production. Of all treatments, nGSH and CoQ10 + fish oil-induced vascular endothelial growth factor165 and CD31 (Platelet endothelial cell adhesion molecule-1), which are associated with angiogenesis. CoQ10 + fish oil improved alveolarization in RA and IH despite evidence of hemorrhage. CONCLUSIONS The benefits of nGSH and CoQ10 + fish oil suggest an antioxidant effect which may be required to curtail IH-induced lung injury. Further clinical assessment of the effectiveness of nGSH is warranted.
Collapse
Affiliation(s)
- Matthew Marcelino
- State University of New York Downstate Health Sciences University, College of Medicine, Brooklyn, NY 11203
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Stephen Wadowski
- Department of Pediatrics, Division of Pediatric Pulmonology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| |
Collapse
|
14
|
Vora N, Kalagiri RR, Shetty K, Mustafa Y, Kundysek W, Raju M, Govande V, Beeram M, Uddin MN. Comparison of clinical outcomes and biochemical markers in normal and preeclamptic pregnancies: a prospective cohort study. Proc AMIA Symp 2023; 36:572-577. [PMID: 37614853 PMCID: PMC10443954 DOI: 10.1080/08998280.2023.2223449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 08/25/2023] Open
Abstract
Background Preeclampsia (PreE), the de novo onset of hypertension and proteinuria at 20 weeks of gestation, is a leading cause of maternal and fetal morbidity and mortality. This study compared inflammatory biomarkers in PreE and normal pregnancies using paired samples of mothers and neonates. Methods Twenty normal pregnant and 27 PreE patients were monitored for biomarkers, neonatal outcomes, and placental morphologies. Fetal and maternal serum levels of vascular endothelial growth factor (VEGF), placental growth factor (PlGF), soluble endoglin (sENG), and soluble fms-like tyrosine kinase-1 (sFLT-1) were measured by enzyme-linked immunosorbent assay. Results Placental thickness was 25 mm in early PreE subjects compared to 32 mm in late PreE subjects (P < 0.05). Placental volume was 296 cm3 in early PreE compared to 393 cm3 in late PreE (P < 0.05). The average hospital stay for PreE babies was longer (20 ± 5 days) compared to babies from normal pregnancies (2 ± 1 days; P < 0.05). PreE babies had a lower Ponderal index (2.28 ± 0.3) than those from normal pregnancies (2.95 ± 0.2; P < 0.05). sENG and sFLT-1 had cord values like the maternal values, while VEGF and PlGF did not. Conclusion PreE alters the intrauterine environment by activating chemical mediators that result in maternal and fetal complications.
Collapse
Affiliation(s)
- Niraj Vora
- Department of Pediatrics and Neonatology, Baylor Scott & White Medical Center – Temple, Temple, Texas, USA
| | - Ram R. Kalagiri
- Department of Pediatrics and Neonatology, Baylor Scott & White Medical Center – Temple, Temple, Texas, USA
| | | | | | - Waverly Kundysek
- Department of Medical Physiology, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Muppala Raju
- Department of Pediatrics and Neonatology, Baylor Scott & White Medical Center – Temple, Temple, Texas, USA
| | - Vinayak Govande
- Department of Pediatrics and Neonatology, Baylor Scott & White Medical Center – Temple, Temple, Texas, USA
| | - Madhava Beeram
- Department of Pediatrics and Neonatology, Baylor Scott & White Medical Center – Temple, Temple, Texas, USA
| | - Mohammad Nasir Uddin
- Department of Pediatrics and Neonatology, Baylor Scott & White Medical Center – Temple, Temple, Texas, USA
- Department of Medical Physiology, Texas A&M University College of Medicine, College Station, Texas, USA
| |
Collapse
|
15
|
Huang CC, Hsueh YW, Chang CW, Hsu HC, Yang TC, Lin WC, Chang HM. Establishment of the fetal-maternal interface: developmental events in human implantation and placentation. Front Cell Dev Biol 2023; 11:1200330. [PMID: 37266451 PMCID: PMC10230101 DOI: 10.3389/fcell.2023.1200330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Early pregnancy is a complex and well-orchestrated differentiation process that involves all the cellular elements of the fetal-maternal interface. Aberrant trophoblast-decidual interactions can lead to miscarriage and disorders that occur later in pregnancy, including preeclampsia, intrauterine fetal growth restriction, and preterm labor. A great deal of research on the regulation of implantation and placentation has been performed in a wide range of species. However, there is significant species variation regarding trophoblast differentiation as well as decidual-specific gene expression and regulation. Most of the relevant information has been obtained from studies using mouse models. A comprehensive understanding of the physiology and pathology of human implantation and placentation has only recently been obtained because of emerging advanced technologies. With the derivation of human trophoblast stem cells, 3D-organoid cultures, and single-cell analyses of differentiated cells, cell type-specific transcript profiles and functions were generated, and each exhibited a unique signature. Additionally, through integrative transcriptomic information, researchers can uncover the cellular dysfunction of embryonic and placental cells in peri-implantation embryos and the early pathological placenta. In fact, the clinical utility of fetal-maternal cellular trafficking has been applied for the noninvasive prenatal diagnosis of aneuploidies and the prediction of pregnancy complications. Furthermore, recent studies have proposed a viable path toward the development of therapeutic strategies targeting placenta-enriched molecules for placental dysfunction and diseases.
Collapse
|
16
|
Duan R, Pan H, Li D, Liao S, Han B. Ergothioneine improves myocardial remodeling and heart function after acute myocardial infarction via S-glutathionylation through the NF-ĸB dependent Wnt5a-sFlt-1 pathway. Eur J Pharmacol 2023; 950:175759. [PMID: 37121564 DOI: 10.1016/j.ejphar.2023.175759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/02/2023]
Abstract
Myocardial infarction (MI) remains the leading cause of cardiovascular death worldwide. Studies have shown that soluble fms-like tyrosine kinase-1 (sFlt-1) has a harmful effect on the heart after MI. However, ergothioneine (ERG) has been shown to have protective effects in rats with preeclampsia by reducing circulating levels of sFlt-1. In this study, we aimed to investigate the mechanism by which ERG protects the heart after MI in rats. Our results indicate that treatment with 10 mg/kg ERG for 7 days can improve cardiac function as determined by echocardiography. Additionally, ERG can reduce the size of the damaged area, prevent heart remodeling, fibrosis, and reduce cardiomyocyte death after MI. To explain the mechanism behind the cardioprotective effects of ERG, we conducted several experiments. We observed a significant reduction in the expression of monocyte chemoattractant protein-1 (MCP-1), p65, and p-p65 proteins in heart tissues of ERG-treated rats compared to the control group. ELISA results also showed that ERG significantly reduced plasma levels of sFlt-1. Using Glutaredoxin-1 (GLRX) and CD31 immunofluorescence, we found that GLRX was expressed in clusters in the myocardial tissue surrounding the coronary artery, and ERG can reduce the expression of GLRX caused by MI. In vitro experiments using a human coronary artery endothelial cell (HCAEC) hypoxia model confirmed that ERG can reduce the expression of sFlt-1, GLRX, and Wnt5a. These findings suggest that ERG protects the heart from MI damage by reducing s-glutathionylation through the NF-ĸB-dependent Wnt5a-sFlt-1 pathway.
Collapse
Affiliation(s)
- Rui Duan
- Department of Cardiology, Xuzhou Central Hospital, Jiangsu, PR China
| | - Haotian Pan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, PR China
| | - DongCheng Li
- Department of Cardiology, Huai'an First People's Hospital, Jiangsu, PR China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, PR China.
| | - Bing Han
- Department of Cardiology, Xuzhou Central Hospital, Jiangsu, PR China.
| |
Collapse
|
17
|
Payne LB, Abdelazim H, Hoque M, Barnes A, Mironovova Z, Willi CE, Darden J, Houk C, Sedovy MW, Johnstone SR, Chappell JC. A Soluble Platelet-Derived Growth Factor Receptor-β Originates via Pre-mRNA Splicing in the Healthy Brain and Is Upregulated during Hypoxia and Aging. Biomolecules 2023; 13:711. [PMID: 37189457 PMCID: PMC10136073 DOI: 10.3390/biom13040711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The platelet-derived growth factor-BB (PDGF-BB) pathway provides critical regulation of cerebrovascular pericytes, orchestrating their investment and retention within the brain microcirculation. Dysregulated PDGF Receptor-beta (PDGFRβ) signaling can lead to pericyte defects that compromise blood-brain barrier (BBB) integrity and cerebral perfusion, impairing neuronal activity and viability, which fuels cognitive and memory deficits. Receptor tyrosine kinases such as PDGF-BB and vascular endothelial growth factor-A (VEGF-A) are often modulated by soluble isoforms of cognate receptors that establish signaling activity within a physiological range. Soluble PDGFRβ (sPDGFRβ) isoforms have been reported to form by enzymatic cleavage from cerebrovascular mural cells, and pericytes in particular, largely under pathological conditions. However, pre-mRNA alternative splicing has not been widely explored as a possible mechanism for generating sPDGFRβ variants, and specifically during tissue homeostasis. Here, we found sPDGFRβ protein in the murine brain and other tissues under normal, physiological conditions. Utilizing brain samples for follow-on analysis, we identified mRNA sequences corresponding to sPDGFRβ isoforms, which facilitated construction of predicted protein structures and related amino acid sequences. Human cell lines yielded comparable sequences and protein model predictions. Retention of ligand binding capacity was confirmed for sPDGFRβ by co-immunoprecipitation. Visualizing fluorescently labeled sPDGFRβ transcripts revealed a spatial distribution corresponding to murine brain pericytes alongside cerebrovascular endothelium. Soluble PDGFRβ protein was detected throughout the brain parenchyma in distinct regions, such as along the lateral ventricles, with signals also found more broadly adjacent to cerebral microvessels consistent with pericyte labeling. To better understand how sPDGFRβ variants might be regulated, we found elevated transcript and protein levels in the murine brain with age, and acute hypoxia increased sPDGFRβ variant transcripts in a cell-based model of intact vessels. Our findings indicate that soluble isoforms of PDGFRβ likely arise from pre-mRNA alternative splicing, in addition to enzymatic cleavage mechanisms, and these variants exist under normal physiological conditions. Follow-on studies will be needed to establish potential roles for sPDGFRβ in regulating PDGF-BB signaling to maintain pericyte quiescence, BBB integrity, and cerebral perfusion-critical processes underlying neuronal health and function, and in turn, memory and cognition.
Collapse
Affiliation(s)
- Laura Beth Payne
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Hanaa Abdelazim
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Maruf Hoque
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Audra Barnes
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zuzana Mironovova
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Caroline E. Willi
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Jordan Darden
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Clifton Houk
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Meghan W. Sedovy
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - John C. Chappell
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA 24016, USA
- FBRI Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
18
|
Schulz A, Drost CC, Hesse B, Beul K, Boeckel GR, Lukasz A, Pavenstädt H, Brand M, Di Marco GS. The Endothelial Glycocalyx as a Target of Excess Soluble Fms-like Tyrosine Kinase-1. Int J Mol Sci 2023; 24:ijms24065380. [PMID: 36982455 PMCID: PMC10049398 DOI: 10.3390/ijms24065380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Soluble fms-like tyrosine kinase-1 (sFlt-1) is a secreted protein that binds heparan sulfate expressed on the endothelial glycocalyx (eGC). In this paper we analyze how excess sFlt-1 causes conformational changes in the eGC, leading to monocyte adhesion, a key event triggering vascular dysfunction. In vitro exposure of primary human umbilical vein endothelial cells to excess sFlt-1 decreased eGC height and increased stiffness as determined by atomic force microscopy (AFM). Yet, structural loss of the eGC components was not observed, as indicated by Ulex europaeus agglutinin I and wheat germ agglutinin staining. Moreover, the conformation observed under excess sFlt-1, a collapsed eGC, is flat and stiff with unchanged coverage and sustained content. Functionally, this conformation increased the endothelial adhesiveness to THP-1 monocytes by about 35%. Heparin blocked all these effects, but the vascular endothelial growth factor did not. In vivo administration of sFlt-1 in mice also resulted in the collapse of the eGC in isolated aorta analyzed ex vivo by AFM. Our findings show that excess sFlt-1 causes the collapse of the eGC and favors leukocyte adhesion. This study provides an additional mechanism of action by which sFlt-1 may cause endothelial dysfunction and injury.
Collapse
|
19
|
Payne LB, Abdelazim H, Hoque M, Barnes A, Mironovova Z, Willi CE, Darden J, Jenkins-Houk C, Sedovy MW, Johnstone SR, Chappell JC. A Soluble Platelet-Derived Growth Factor Receptor-β Originates via Pre-mRNA Splicing in the Healthy Brain and is Differentially Regulated during Hypoxia and Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527005. [PMID: 36778261 PMCID: PMC9915746 DOI: 10.1101/2023.02.03.527005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The platelet-derived growth factor-BB (PDGF-BB) pathway provides critical regulation of cerebrovascular pericytes, orchestrating their investment and retention within the brain microcirculation. Dysregulated PDGF Receptor-beta (PDGFRβ) signaling can lead to pericyte defects that compromise blood-brain barrier (BBB) integrity and cerebral perfusion, impairing neuronal activity and viability, which fuels cognitive and memory deficits. Receptor tyrosine kinases (RTKs) like PDGF-BB and vascular endothelial growth factor-A (VEGF-A) are often modulated by soluble isoforms of cognate receptors that establish signaling activity within a physiological range. Soluble PDGFRβ (sPDGFRβ) isoforms have been reported to form by enzymatic cleavage from cerebrovascular mural cells, and pericytes in particular, largely under pathological conditions. However, pre-mRNA alternative splicing has not been widely explored as a possible mechanism for generating sPDGFRβ variants, and specifically during tissue homeostasis. Here, we found sPDGFRβ protein in the murine brain and other tissues under normal, physiological conditions. Utilizing brain samples for follow-on analysis, we identified mRNA sequences corresponding to sPDGFRβ isoforms, which facilitated construction of predicted protein structures and related amino acid sequences. Human cell lines yielded comparable sequences and protein model predictions. Retention of ligand binding capacity was confirmed for sPDGFRβ by co-immunoprecipitation. Visualizing fluorescently labeled sPDGFRβ transcripts revealed a spatial distribution corresponding to murine brain pericytes alongside cerebrovascular endothelium. Soluble PDGFRβ protein was detected throughout the brain parenchyma in distinct regions such as along the lateral ventricles, with signals also found more broadly adjacent to cerebral microvessels consistent with pericyte labeling. To better understand how sPDGFRβ variants might be regulated, we found elevated transcript and protein levels in the murine brain with age, and acute hypoxia increased sPDGFRβ variant transcripts in a cell-based model of intact vessels. Our findings indicate that soluble isoforms of PDGFRβ likely arise from pre-mRNA alternative splicing, in addition to enzymatic cleavage mechanisms, and these variants exist under normal physiological conditions. Follow-on studies will be needed to establish potential roles for sPDGFRβ in regulating PDGF-BB signaling to maintain pericyte quiescence, BBB integrity, and cerebral perfusion - critical processes underlying neuronal health and function, and in turn memory and cognition.
Collapse
|
20
|
Gaccioli F, Sovio U, Gong S, Cook E, Charnock-Jones DS, Smith GC. Increased Placental sFLT1 (Soluble fms-Like Tyrosine Kinase Receptor-1) Drives the Antiangiogenic Profile of Maternal Serum Preceding Preeclampsia but Not Fetal Growth Restriction. Hypertension 2023; 80:325-334. [PMID: 35866422 PMCID: PMC9847691 DOI: 10.1161/hypertensionaha.122.19482] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Preeclampsia and fetal growth restriction (FGR) are both associated with an increased ratio of sFLT1 (soluble fms-like tyrosine kinase-1) to PlGF (placenta growth factor) in maternal serum. In preeclampsia, it is assumed that increased placental release of sFLT1 results in PlGF being bound and inactivated. However, direct evidence for this model is incomplete, and it is unclear whether the same applies in FGR. METHODS We conducted a prospective cohort study where we followed 4212 women having first pregnancies from their dating ultrasound, obtained blood samples serially through the pregnancy, and performed systematic sampling of the placenta after delivery. The aim of the present study was to determine the relationship between protein levels of sFLT1 and PlGF in maternal serum measured at ≈36 weeks and placental tissue lysates obtained after term delivery in 82 women with preeclampsia, 50 women with FGR, and 132 controls. RESULTS The sFLT1:PlGF ratio was increased in both preeclampsia and FGR in both the placenta and maternal serum. However, in preeclampsia, the maternal serum ratio of sFLT1:PlGF was strongly associated with placental sFLT1 level (r=0.45; P<0.0001) but not placental PlGF level (r=-0.17; P=0.16). In contrast, in FGR, the maternal serum ratio of sFLT1:PlGF was strongly associated with placental PlGF level (r=-0.35; P=0.02) but not sFLT1 level (r=0.04; P=0.81). CONCLUSIONS We conclude that the elevated sFLT1:PlGF ratio is primarily driven by increased placental sFLT1 in preeclampsia, whereas in FGR, it is primarily driven by decreased placental PlGF.
Collapse
Affiliation(s)
- Francesca Gaccioli
- Department of Obstetrics and Gynaecology (F.G., U.S., S.G., E.C., D.S.C.-J., G.C.S.S.), University of Cambridge, United Kingdom
- Centre for Trophoblast Research (F.G., U.S., D.S.C.-J., G.C.S.S.), University of Cambridge, United Kingdom
| | - Ulla Sovio
- Department of Obstetrics and Gynaecology (F.G., U.S., S.G., E.C., D.S.C.-J., G.C.S.S.), University of Cambridge, United Kingdom
- Centre for Trophoblast Research (F.G., U.S., D.S.C.-J., G.C.S.S.), University of Cambridge, United Kingdom
| | - Sungsam Gong
- Department of Obstetrics and Gynaecology (F.G., U.S., S.G., E.C., D.S.C.-J., G.C.S.S.), University of Cambridge, United Kingdom
| | - Emma Cook
- Department of Obstetrics and Gynaecology (F.G., U.S., S.G., E.C., D.S.C.-J., G.C.S.S.), University of Cambridge, United Kingdom
| | - D. Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology (F.G., U.S., S.G., E.C., D.S.C.-J., G.C.S.S.), University of Cambridge, United Kingdom
- Centre for Trophoblast Research (F.G., U.S., D.S.C.-J., G.C.S.S.), University of Cambridge, United Kingdom
| | - Gordon C.S. Smith
- Department of Obstetrics and Gynaecology (F.G., U.S., S.G., E.C., D.S.C.-J., G.C.S.S.), University of Cambridge, United Kingdom
- Centre for Trophoblast Research (F.G., U.S., D.S.C.-J., G.C.S.S.), University of Cambridge, United Kingdom
| |
Collapse
|
21
|
Kinghorn K, Gill A, Marvin A, Li R, Quigley K, le Noble F, Mac Gabhann F, Bautch VL. A defined clathrin-mediated trafficking pathway regulates sFLT1/VEGFR1 secretion from endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525517. [PMID: 36747809 PMCID: PMC9900880 DOI: 10.1101/2023.01.27.525517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Depletion of STX6 altered vessel sprouting in a 3D angiogenesis model, indicating that endothelial cell sFLT1 secretion is important for proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill NC USA
| | - Amy Gill
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA
| | - Allison Marvin
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Renee Li
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Kaitlyn Quigley
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill NC USA
- Department of Biology, University of North Carolina, Chapel Hill NC USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill NC USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill NC USA
| |
Collapse
|
22
|
Moraes CRP, Borba-Junior IT, De Lima F, Silva JRA, Bombassaro B, Palma AC, Mansour E, Velloso LA, Orsi FA, Costa FTM, De Paula EV. Association of Ang/Tie2 pathway mediators with endothelial barrier integrity and disease severity in COVID-19. Front Physiol 2023; 14:1113968. [PMID: 36895630 PMCID: PMC9988918 DOI: 10.3389/fphys.2023.1113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Endothelial barrier (EB) disruption contributes to acute lung injury in COVID-19, and levels of both VEGF-A and Ang-2, which are mediators of EB integrity, have been associated with COVID-19 severity. Here we explored the participation of additional mediators of barrier integrity in this process, as well as the potential of serum from COVID-19 patients to induce EB disruption in cell monolayers. In a cohort from a clinical trial consisting of thirty patients with COVID-19 that required hospital admission due to hypoxia we demonstrate that i) levels of soluble Tie2 were increase, and of soluble VE-cadherin were decreased when compared to healthy individuals; ii) sera from these patients induce barrier disruption in monolayers of endothelial cells; and iii) that the magnitude of this effect is proportional to disease severity and to circulating levels of VEGF-A and Ang-2. Our study confirms and extends previous findings on the pathogenesis of acute lung injury in COVID-19, reinforcing the concept that EB is a relevant component of this disease. Our results pave the way for future studies that can refine our understanding of the pathogenesis of acute lung injury in viral respiratory disorders, and contribute to the identification of new biomarkers and therapeutic targets for these conditions.
Collapse
Affiliation(s)
| | | | - Franciele De Lima
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - André C Palma
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Eli Mansour
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Lício Augusto Velloso
- School of Medical Sciences, University of Campinas, Campinas, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | | | | | - Erich Vinicius De Paula
- School of Medical Sciences, University of Campinas, Campinas, Brazil.,Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
23
|
The Soluble Fms-like Tyrosine Kinase-1 Contributes to Structural and Functional Changes in Endothelial Cells in Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms232416059. [PMID: 36555698 PMCID: PMC9787493 DOI: 10.3390/ijms232416059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Endothelial cells are a critical target of the soluble Fms-like tyrosine kinase-1 (sFlt-1), a soluble factor increased in different diseases with varying degrees of renal impairment and endothelial dysfunction, including chronic kidney disease (CKD). Although the mechanisms underlying endothelial dysfunction are multifactorial and complex, herein, we investigated the damaging effects of sFlt-1 on structural and functional changes in endothelial cells. Our results evidenced that sera from patients with CKD stiffen the endothelial cell cortex in vitro, an effect correlated with sFlt-1 levels and prevented by sFlt-1 neutralization. Besides, we could show that recombinant sFlt-1 leads to endothelial stiffening in vitro and in vivo. This was accompanied by cytoskeleton reorganization and changes in the endothelial barrier function, as observed by increased actin polymerization and endothelial cell permeability, respectively. These results depended on the activation of the p38 MAPK and were blocked by the specific inhibitor SB203580. However, sFlt-1 only minimally affected the expression of stiffness-sensitive genes. These findings bring new insight into the mechanism of action of sFlt-1 and its biological effects that cannot be exclusively ascribed to the regulation of angiogenesis.
Collapse
|
24
|
Regression of Human Breast Carcinoma in Nude Mice after Ad sflt Gene Therapy Is Mediated by Tumor Vascular Endothelial Cell Apoptosis. Cancers (Basel) 2022; 14:cancers14246175. [PMID: 36551660 PMCID: PMC9777034 DOI: 10.3390/cancers14246175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Two vascular endothelial growth factor (VEGF) receptors, FLT-1 and KDR, are expressed preferentially in proliferating endothelium. There is increasing evidence that recombinant, soluble VEGF receptor domains interfering with VEGF signaling may inhibit in vivo neoangiogenesis, tumor growth and metastatic spread. We hypothesized that a soluble form of FLT-1 receptor (sFLT-1) could inhibit the growth of pre-established tumors via an anti-angiogenic mechanism. A replication-deficient adenovirus (Ad) vector carrying the sflt-1 cDNA (Adsflt) was used to overexpress the sFLT-1 receptor in a breast cancer animal model. MCF-7 cells, which produce VEGF, were used to establish solid tumors in the mammary fat pads of female nude mice. After six weeks, tumors were injected either with Adsflt or a negative control virus (AdCMV.βgal). After six months, average tumor volume in the Adsflt-infected group (33 ± 22 mm3) decreased by 91% relative to that of the negative control group (388 ± 94 mm3; p < 0.05). Moreover, 10 of 15 Adsflt-infected tumors exhibited complete regression. The vascular density of Adsflt-infected tumors was reduced by 50% relative to that of negative controls (p < 0.05), which is consistent with sFLT-1-mediated tumor regression through an anti-angiogenic mechanism. Moreover, cell necrosis and fibrosis associated with long-term regression of Adsflt−infected tumors were preceded by apoptosis of tumor vascular endothelial cells. Mice treated with Adsflt intratumorally showed no delay in the healing of cutaneous wounds, providing preliminary evidence that Ad-mediated sFLT-1 overexpression may be an effective anti-angiogenic therapy for cancer without the risk of systemic anti-angiogenic effects.
Collapse
|
25
|
Toutounchian S, Ahmadbeigi N, Mansouri V. Retinal and Choroidal Neovascularization Antivascular Endothelial Growth Factor Treatments: The Role of Gene Therapy. J Ocul Pharmacol Ther 2022; 38:529-548. [PMID: 36125411 DOI: 10.1089/jop.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neovascularization in ocular vessels causes a major disease burden. The most common causes of choroidal neovascularization (CNV) are age-related macular degeneration and diabetic retinopathy, which are the leading causes of irreversible vision loss in the adult population. Vascular endothelial growth factor (VEGF) is critical for the formation of new vessels and is the main regulator in ocular angiogenesis and vascular permeability through its receptors. Laser therapy and antiangiogenic factors have been used for CNV treatment. Bevacizumab, ranibizumab, and aflibercept are commonly used anti-VEGF agents; however, high costs and the need for frequent intraocular injections are major drawbacks of anti-VEGF drugs. Gene therapy, given the potency of one-time treatment and no need for frequent injections offers the real possibility of such a lasting treatment, with fewer adverse effects and higher patient quality of life. Herein, we reviewed the role of gene therapy in the CNV treatment. In addition, we discuss the advantages and challenges of current treatments compared with gene therapy.
Collapse
Affiliation(s)
- Samaneh Toutounchian
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Zhang L, Zhang X, Zhong X, Fan M, Wang G, Shi W, Xie R, Wei Y, Zhang H, Meng X, Wang Y, Ma Y. Soluble Flt-1 in AMI Patients Serum Inhibits Angiogenesis of Endothelial Progenitor Cells by Suppressing Akt and Erk’s Activity. BIOLOGY 2022; 11:biology11081194. [PMID: 36009821 PMCID: PMC9404789 DOI: 10.3390/biology11081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Acute myocardial infarction (AMI) is the leading cause of mortality in the world. Endothelial progenitor cells (EPCs) exert important roles in the recovery of collateral circulation via angiogenesis. In this study, we studied the characteristics of EPCs isolated from the peripheral blood of AMI patients and healthy subjects. We found that the number of EPCs increased in AMI patients and exhibited faster migration compared to healthy subjects. However, no difference in angiogenic activity was observed in EPCs between AMI patients and healthy subjects. Interestingly, the serum level of sFlt-1 was elevated in AMI patients. Further analysis demonstrated that sFlt-1 inhibited EPCs angiogenesis in vitro by inhibiting the Akt and Erk signaling pathways. In conclusion, our study uncovered that EPCs increased in quantity, but their angiogenesis activity was inhibited by serum sFlt-1 in AMI patients. Abstract In acute myocardial infarction (AMI), endothelial progenitor cells (EPCs) are essential for the recovery of collateral circulation via angiogenesis. Clinical research has shown that the poor prognosis of the patients with AMI is closely associated with the cell quantity and function of EPCs. Whether there are differences in the biological features of EPCs from AMI patients and healthy subjects is worth exploring. In this study, EPCs were isolated from human peripheral blood and identified as late-stage EPCs by flow cytometry, immunofluorescence, and blood vessel formation assay. Compared to healthy subjects, AMI patients had more EPCs in the peripheral blood compared to healthy subjects. In addition, EPCs from AMI patients exhibited higher migration ability in the transwell assay compared to EPCs from healthy subjects. However, no difference in the angiogenesis of EPCs was observed between AMI patients and healthy subjects. Further studies revealed that soluble vascular endothelial growth factor receptor 1 (sFlt-1) in the serum of AMI patients was involved in the inhibition of EPCs angiogenesis by suppressing the Akt and Erk pathways. In conclusion, this study demonstrated that elevated serum sFlt-1 inhibits angiogenesis of EPC in AMI patients. Our findings uncover a pathogenic role of sFlt-1 in AMI.
Collapse
Affiliation(s)
- Lijie Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Xingkun Zhang
- Henan Key Laboratory of Coronary Heart Disease Control & Prevention, Department of Cardiology, Central China Fuwai Hospital, Zhengzhou 450003, China
- Department of Cardiology, Henan Provincial People’s Hospital, Zhengzhou 451450, China
| | - Xiaoming Zhong
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Mengya Fan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Guoliang Wang
- Department of Cardiovascular, the First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Wei Shi
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Ran Xie
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Xiangxu Meng
- Department of Cardiovascular, the First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
- Correspondence: (Y.W.); (Y.M.)
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
- Correspondence: (Y.W.); (Y.M.)
| |
Collapse
|
27
|
Sarkar J, Luo Y, Zhou Q, Ivakhnitskaia E, Lara D, Katz E, Sun MG, Guaiquil V, Rosenblatt M. VEGF receptor heterodimers and homodimers are differentially expressed in neuronal and endothelial cell types. PLoS One 2022; 17:e0269818. [PMID: 35862373 PMCID: PMC9302817 DOI: 10.1371/journal.pone.0269818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We have previously reported that VEGF-B is more potent than VEGF-A in mediating corneal nerve growth in vitro and in vivo, and this stimulation of nerve growth appears to be different from stimulation of angiogenesis by these same ligands, at least in part due to differences in VEGF receptor activation. VEGF signaling may be modulated by a number of factors including receptor number or the formation of receptor hetero- vs. homodimers. In endothelial cells, VEGF receptor heterodimer (VEGR1/R2) activation after ligand binding and subsequent phosphorylation alters the activation of downstream signaling cascades. However, our understanding of these processes in neuronal cell types remains unclear. The purpose of this study was to identify the presence and distribution of VEGF Receptor-Ligand interactions in neuronal cells as compared to endothelial cells. METHODS PC12 (rat neuronal cell line), MAEC (mouse aortic endothelial cell line), MVEC (mouse venous endothelial cell line) and HUVEC (human umbilical venous endothelial cell line; control group) were used. Cells were acutely stimulated either with VEGF-A (50 ng/μL) or VEGF-B (50 ng/μL) or "vehicle" (PBS; control group). We also isolated mouse trigeminal ganglion cells from thy1-YFP neurofluorescent mice. After treatment, cells were used as follows: (i) One group was fixed in 4% paraformaldehyde and processed for VEGFR1 and VEGFR2 immunostaining and visualized using confocal fluorescence microscopy and Total Internal Reflection (TIRF) microscopy; (ii) the second group was harvested in cell lysis buffer (containing anti-protease / anti-phosphatase cocktail), lysed and processed for immunoprecipitation (IP; Thermo Fisher IP kit) and immunoblotting (IB; LI-COR® Systems). Immunoprecipitated proteins were probed either with anti-VEGFR1 or anti-VEGFR2 IgG antibodies to evaluate VEGFR1-R2-heterodimerization; (iii) a third group of cells was also processed for Duolink Proximity Ligation Assay (PLA; Sigma) to assess the presence and distribution of VEGF-receptor homo- and heterodimers in neuronal and endothelial cells. RESULTS TIRF and fluorescence confocal microscopy revealed the presence of VEGFR1 co-localized with VEGFR2 in endothelial and PC12 neuronal cells. Cell lysates immunoprecipitated with anti-VEGFR1 further validated the existence of VEGFR1-R2 heterodimers in PC12 neuronal cells. Neuronal cells showed higher levels of VEGFR1-R2 heterodimers as compared to endothelial cells whereas endothelial cells showed higher VEGFR2-R2 homodimers compared to neuronal cells as demonstrated by Duolink PLA. Levels of VEGFR1-R1 homodimers were very low in neuronal and endothelial cells. CONCLUSIONS Differences in VEGF Receptor homo- and heterodimer distribution may explain the differential role of VEGF ligands in neuronal versus endothelial cell types. This may in turn influence VEGF activity and regulation of neuronal cell homeostasis.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Daniel Lara
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Eitan Katz
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Michael G. Sun
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Victor Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Mark Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
28
|
Königshofer P, Hofer BS, Brusilovskaya K, Simbrunner B, Petrenko O, Wöran K, Herac M, Stift J, Lampichler K, Timelthaler G, Bauer D, Hartl L, Robl B, Sibila M, Podesser BK, Oberhuber G, Schwabl P, Mandorfer M, Trauner M, Reiberger T. Distinct structural and dynamic components of portal hypertension in different animal models and human liver disease etiologies. Hepatology 2022; 75:610-622. [PMID: 34716927 PMCID: PMC9299647 DOI: 10.1002/hep.32220] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Liver fibrosis is the static and main (70%-80%) component of portal hypertension (PH). We investigated dynamic components of PH by a three-dimensional analysis based on correlation of hepatic collagen proportionate area (CPA) with portal pressure (PP) in animals or HVPG in patients. APPROACH AND RESULTS Different animal models (bile duct ligation: n = 31, carbon tetrachloride: n = 12, thioacetamide: n = 12, choline-deficient high-fat diet: n = 12) and patients with a confirmed single etiology of cholestatic (primary biliary cholangitis/primary sclerosing cholangitis: n = 16), alcohol-associated (n = 22), and metabolic (NASH: n = 19) liver disease underwent CPA quantification on liver specimens/biopsies. Based on CPA-to-PP/HVPG correlation, potential dynamic components were identified in subgroups of animals/patients with lower-than-expected and higher-than-expected PP/HVPG. Dynamic PH components were validated in a patient cohort (n = 245) using liver stiffness measurement (LSM) instead of CPA. CPA significantly correlated with PP in animal models (Rho = 0.531; p < 0.001) and HVPG in patients (Rho = 0.439; p < 0.001). Correlation of CPA with PP/HVPG varied across different animal models and etiologies in patients. In models, severity of hyperdynamic circulation and specific fibrosis pattern (portal fibrosis: p = 0.02; septa width: p = 0.03) were associated with PH severity. In patients, hyperdynamic circulation (p = 0.04), vascular dysfunction/angiogenesis (VWF-Ag: p = 0.03; soluble vascular endothelial growth factor receptor 1: p = 0.03), and bile acids (p = 0.04) were dynamic modulators of PH. The LSM-HVPG validation cohort confirmed these and also indicated IL-6 (p = 0.008) and hyaluronic acid (HA: p < 0.001) as dynamic PH components. CONCLUSIONS The relative contribution of "static" fibrosis on PH severity varies by type of liver injury. Next to hyperdynamic circulation, increased bile acids, VWF-Ag, IL-6, and HA seem to indicate a pronounced dynamic component of PH in patients.
Collapse
Affiliation(s)
- Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Experimental Hepatic Hemodynamic Lab (HEPEX)Medical University of ViennaViennaAustria,Christian Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria,Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria,CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Benedikt Silvester Hofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Experimental Hepatic Hemodynamic Lab (HEPEX)Medical University of ViennaViennaAustria,Christian Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria,Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Experimental Hepatic Hemodynamic Lab (HEPEX)Medical University of ViennaViennaAustria,Christian Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria,Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria,CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Experimental Hepatic Hemodynamic Lab (HEPEX)Medical University of ViennaViennaAustria,Christian Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria,Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria,CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria,Vienna Hepatic Hemodynamic Laboratoy, Division of Gastroenterology and Hepatology, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Experimental Hepatic Hemodynamic Lab (HEPEX)Medical University of ViennaViennaAustria,Christian Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria,Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria,CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Katharina Wöran
- Department of PathologyMedical University of ViennaViennaAustria
| | - Merima Herac
- Department of PathologyMedical University of ViennaViennaAustria
| | - Judith Stift
- Department of PathologyMedical University of ViennaViennaAustria
| | - Katharina Lampichler
- Department of Radiology and Nuclear MedicineMedical University of ViennaViennaAustria
| | - Gerald Timelthaler
- The Institute of Cancer ResearchDepartment of Medicine IMedical University of ViennaViennaAustria
| | - David Bauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Experimental Hepatic Hemodynamic Lab (HEPEX)Medical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic Laboratoy, Division of Gastroenterology and Hepatology, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Experimental Hepatic Hemodynamic Lab (HEPEX)Medical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic Laboratoy, Division of Gastroenterology and Hepatology, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Bernhard Robl
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Maria Sibila
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Bruno K. Podesser
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | - Georg Oberhuber
- INNPATHInstitute of Pathology, University Hospital of InnsbruckInnsbruckAustria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Experimental Hepatic Hemodynamic Lab (HEPEX)Medical University of ViennaViennaAustria,Christian Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria,Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria,CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria,Vienna Hepatic Hemodynamic Laboratoy, Division of Gastroenterology and Hepatology, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic Laboratoy, Division of Gastroenterology and Hepatology, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Experimental Hepatic Hemodynamic Lab (HEPEX)Medical University of ViennaViennaAustria,Christian Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria,Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria,CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria,Vienna Hepatic Hemodynamic Laboratoy, Division of Gastroenterology and Hepatology, Department of Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
29
|
Moreno SE, Massee M, Koob TJ. Dehydrated human amniotic membrane regulates tenocyte expression and angiogenesis in vitro: Implications for a therapeutic treatment of tendinopathy. J Biomed Mater Res B Appl Biomater 2021; 110:731-742. [PMID: 34611976 PMCID: PMC9292862 DOI: 10.1002/jbm.b.34951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022]
Abstract
Tendon injuries are among the most common ailments of the musculoskeletal system. Prolonged inflammation and persistent vasculature are common complications associated with poor healing. Damaged tendon, replaced with scar tissue, never completely regains the native structural or biomechanical properties. This study evaluated the effects of micronized dehydrated human amnion/chorion membrane (μdHACM) on the inflammatory environment and hypervascularity associated with tendinopathy. Stimulation of human tenocytes with interleukin‐1 beta (IL1β) induced the expression of inflammatory and catabolic markers, resulting in secretion of active MMPs and type 3 collagen that is associated with a degenerative phenotype. Treatment with μdHACM diminished the effects of IL1β, reducing the expression of inflammatory genes, proteases, and extracellular matrix components, and decreasing the presence of active MMP and type 3 collagen. Additionally, a co‐culture model was developed to evaluate the effects of μdHACM on angiogenesis associated with tendinopathy. Micronized dHACM differentially regulated angiogenesis depending upon the cellular environment in which it was placed. This phenomenon can be explained in part through the detection of both angiogenic protagonists and antagonists in μdHACM. Observations from this study identify a mechanism by which μdHACM regulates inflammatory processes and angiogenesis in vitro, two key pathways implicated in tendinopathic injuries.
Collapse
|
30
|
Zhang J, Hua W, Zhao X, Yang F, Guo T, Zhang J, Zheng X, Liang W. Paeoniflorin alleviates endothelial dysfunction caused by overexpression of soluble fms-like tyrosine kinase 1 and soluble endoglin in preeclampsia via VEGFA upregulation. Biosci Biotechnol Biochem 2021; 85:814-823. [PMID: 33590855 DOI: 10.1093/bbb/zbaa106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/03/2020] [Indexed: 11/14/2022]
Abstract
This study assessed the protective effects of paeoniflorin against preeclampsia-related endothelial damage (ED). Human umbilical vein endothelial cells (HUVECs) isolated from healthy puerperae were identified by immunofluorescence assay. After paeoniflorin treatment, HUVECs were induced by soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng) to establish ED. Cell viability, migration, invasion, tube formation, and apoptosis were assessed by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium MTT assay, Scratch assay, Transwell assay, tube formation assay, and flow cytometry. VEGFA expression in HUVECs was analyzed by Western blot. HUVECs were successfully isolated and identified as Von Willebrand factor (vWF) positive. Individual treatment or cotreatment of sFlt-1 and sEng inhibited migration, invasion and tube formation, enhanced apoptosis, and decreased VEGFA expression in HUVECs. Paeoniflorin pretreatment partially reversed the effects delivered by cotreatment of sFlt-1 and sEng in HUVECs. Paeoniflorin alleviated preeclampsia-related ED caused by overexpression of sFlt-1 and sEng by upregulating VEGFA.
Collapse
Affiliation(s)
- Jin Zhang
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Wei Hua
- Reproductive Center, Xijing Hospital of Air Force Medical University, Xi'an City, Shan xi Province, China
| | - Xinyuan Zhao
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Fan Yang
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Ting Guo
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jianhua Zhang
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xuerong Zheng
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Wanqi Liang
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
31
|
Wedn AM, El-Bassossy HM, Eid AH, El-Mas MM. Modulation of preeclampsia by the cholinergic anti-inflammatory pathway: Therapeutic perspectives. Biochem Pharmacol 2021; 192:114703. [PMID: 34324867 DOI: 10.1016/j.bcp.2021.114703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is vital for the orchestration of the immune and inflammatory responses under normal and challenged conditions. Over the past two decades, peripheral and central circuits of CAP have been shown to be critically involved in dampening the inflammatory reaction in a wide array of inflammatory disorders. Additionally, emerging evidence supports a key role for CAP in the regulation of the female reproductive system during gestation as well as in the advent of serious pregnancy-related inflammatory insults such as preeclampsia (PE). Within this framework, the modulatory action of CAP encompasses the perinatal maternal and fetal adverse consequences that surface due to antenatal PE programming. Albeit, a considerable gap still exists in our knowledge of the precise cellular and molecular underpinnings of PE/CAP interaction, which hampered global efforts in safeguarding effective preventive or therapeutic measures against PE complications. Here, we summarize reports in the literature regarding the roles of peripheral and reflex cholinergic neuroinflammatory pathways of nicotinic acetylcholine receptors (nAChRs) in reprogramming PE complications in mothers and their progenies. The possible contributions of α7-nAChRs, cholinesterases, immune cells, adhesion molecules, angiogenesis, and endothelial dysfunction to the interaction have also been reviewed.
Collapse
Affiliation(s)
- Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
32
|
Colotti G, Failla CM, Lacal PM, Ungarelli M, Ruffini F, Di Micco P, Orecchia A, Morea V. Neuropilin-1 is required for endothelial cell adhesion to soluble vascular endothelial growth factor receptor 1. FEBS J 2021; 289:183-198. [PMID: 34252269 PMCID: PMC9290910 DOI: 10.1111/febs.16119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022]
Abstract
Neuropilin‐1 (NRP‐1) is a semaphorin receptor involved in neuron guidance, and a co‐receptor for selected isoforms of the vascular endothelial growth factor (VEGF) family. NRP‐1 binding to several VEGF‐A isoforms promotes growth factor interaction with VEGF receptor (VEGFR)‐2, increasing receptor phosphorylation. Additionally, NRP‐1 directly interacts with VEGFR‐1, but this interaction competes with NRP‐1 binding to VEGF‐A165 and does not enhance VEGFR‐1 activation. In this work, we investigated in detail the role of NRP‐1 interaction with the soluble isoform of VEGFR‐1 (sVEGFR‐1) in angiogenesis. sVEGFR‐1 acts both as a decoy receptor for VEGFs and as an extracellular matrix protein directly binding to α5β1 integrin on endothelial cells. By combining cell adhesion assays and surface plasmon resonance experiments on purified proteins, we found that sVEGFR‐1/NRP‐1 interaction is required both for α5β1 integrin binding to sVEGFR‐1 and for endothelial cell adhesion to a sVEGFR‐1‐containing matrix. We also found that a previously reported anti‐angiogenic peptide (Flt2‐11), which maps in the second VEGFR‐1 Ig‐like domain, specifically binds NRP‐1 and inhibits NRP‐1/sVEGFR‐1 interaction, a process that likely contributes to its anti‐angiogenic activity. In view of potential translational applications, we developed a five‐residue‐long peptide, derived from Flt2‐11, which has the same ability as the parent Flt2‐11 peptide to inhibit cell adhesion to, and migration towards, sVEGFR‐1. Therefore, the Flt2‐5 peptide represents a potential anti‐angiogenic compound per se, as well as an attractive lead for the development of novel angiogenesis inhibitors acting with a different mechanism with respect to currently used therapeutics, which interfere with VEGF‐A165 binding.
Collapse
Affiliation(s)
- Gianni Colotti
- Institute of Molecular Biology and Pathology (IBPM) of the National Research Council (CNR), Rome, Italy
| | | | | | | | | | - Patrizio Di Micco
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza' University of Rome, Italy
| | - Angela Orecchia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | - Veronica Morea
- Institute of Molecular Biology and Pathology (IBPM) of the National Research Council (CNR), Rome, Italy
| |
Collapse
|
33
|
Li S, van Dijk CGM, Meeldijk J, Kok HM, Blommestein I, Verbakel ALF, Kotte M, Broekhuizen R, Laclé MM, Goldschmeding R, Cheng C, Bovenschen N. Extracellular Granzyme K Modulates Angiogenesis by Regulating Soluble VEGFR1 Release From Endothelial Cells. Front Oncol 2021; 11:681967. [PMID: 34178673 PMCID: PMC8220216 DOI: 10.3389/fonc.2021.681967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023] Open
Abstract
Angiogenesis is crucial for normal development and homeostasis, but also plays a role in many diseases including cardiovascular diseases, autoimmune diseases, and cancer. Granzymes are serine proteases stored in the granules of cytotoxic cells, and have predominantly been studied for their pro-apoptotic role upon delivery in target cells. A growing body of evidence is emerging that granzymes also display extracellular functions, which largely remain unknown. In the present study, we show that extracellular granzyme K (GrK) inhibits angiogenesis and triggers endothelial cells to release soluble VEGFR1 (sVEGFR1), a decoy receptor that inhibits angiogenesis by sequestering VEGF-A. GrK does not cleave off membrane-bound VEGFR1 from the cell surface, does not release potential sVEGFR1 storage pools from endothelial cells, and does not trigger sVEGFR1 release via protease activating receptor-1 (PAR-1) activation. GrK induces de novo sVEGFR1 mRNA and protein expression and subsequent release of sVEGFR1 from endothelial cells. GrK protein is detectable in human colorectal tumor tissue and its levels positively correlate with sVEGFR1 protein levels and negatively correlate with T4 intratumoral angiogenesis and tumor size. In conclusion, extracellular GrK can inhibit angiogenesis via secretion of sVEGFR1 from endothelial cells, thereby sequestering VEGF-A and impairing VEGFR signaling. Our observation that GrK positively correlates with sVEGFR1 and negatively correlates with angiogenesis in colorectal cancer, suggest that the GrK-sVEGFR1-angiogenesis axis may be a valid target for development of novel anti-angiogenic therapies in cancer.
Collapse
Affiliation(s)
- Shuang Li
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helena M Kok
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Isabelle Blommestein
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annick L F Verbakel
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marit Kotte
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Miangela M Laclé
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
34
|
ShamsEldeen AM, Mehesen MN, Aboulhoda BE, Rashed LA, Elsebaie MM, Mohamed EA, Gamal MM. Prenatal intake of omega-3 promotes Wnt/β-catenin signaling pathway, and preserves integrity of the blood-brain barrier in preeclamptic rats. Physiol Rep 2021; 9:e14925. [PMID: 34174018 PMCID: PMC8234480 DOI: 10.14814/phy2.14925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Preeclampsia is a systemic, multi-organ endotheliopathy, associated with oxidative injury to the blood-brain barrier (BBB). Preeclampsia initiates a cascade of events that include neuroinflammation. Recently, it was documented that Wnt/β-catenin signaling pathway exerts neuroprotective effects and maintain BBB integrity. We investigate the protective effect of omega-3 against neurovascular complication of preeclampsia and its relation to Wnt/β-catenin signaling pathway. METHODOLOGY After confirmation of day 0 pregnancy (G0), 24 adult pregnant female Wistar rats were divided into four groups control pregnant, pregnant supplemented with omega-3, preeclampsia (PE); female rats received N (ω)-nitro-L-arginine methyl ester (L-NAME) (50 mg/kg/day SC from day 7 to day 16 of pregnancy for induction of preeclampsia) and PE rats supplemented with omega-3. The intake of omega-3 started on day zero (0) of pregnancy until the end of the study (144 mg/kg\day orally). RESULTS We found that omega-3 supplementation significantly improved cognitive functions and EEG amplitude, decreased blood pressure, water contents of brain tissues, sFlt-1, oxidative stress, proteinuria, and enhanced Wnt\β-catenin proteins. Histological examination showed improved cerebral microangiopathy, increased expression of claudin-1 and -3, CD31, and VEGF in the cerebral cortical microvasculature and choroid plexus in PE rats treated with omega-3. A positive correlation between protein expression level of Wnt \β-catenin and cognitive functions, and a negative correlation between claudin-5 relative expression, claudin-1 and -3 area % from one side and water content of the brain tissues from the other side were observed. CONCLUSION Wnt/β-catenin signaling pathway suspected to have an important role to improve BBB integrity. Neuroprotective, antioxidant, and anti-inflammatory effects of omega-3 were observed and can be suggested as protective supplementation for preeclampsia.
Collapse
Affiliation(s)
| | - Marwa Nagi Mehesen
- Department of Medical PharmacologyFaculty of MedicineCairo UniversityCairoEgypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and EmbryologyFaculty of MedicineCairo UniversityCairoEgypt
| | - Laila Ahmed Rashed
- Department of Biochemistry and Molecular BiologyFaculty of MedicineCairo UniversityCairoEgypt
| | | | | | | |
Collapse
|
35
|
Armistead B, Kadam L, Siegwald E, McCarthy FP, Kingdom JC, Kohan-Ghadr HR, Drewlo S. Induction of the PPARγ (Peroxisome Proliferator-Activated Receptor γ)-GCM1 (Glial Cell Missing 1) Syncytialization Axis Reduces sFLT1 (Soluble fms-Like Tyrosine Kinase 1) in the Preeclamptic Placenta. Hypertension 2021; 78:230-240. [PMID: 34024123 DOI: 10.1161/hypertensionaha.121.17267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Brooke Armistead
- From the Michigan State University, Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Grand Rapids (B.A., H.-R.K.-G., S.D.)
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland (L.K.)
| | - Emily Siegwald
- Spectrum Health SHARE Biorepository and Office of Research and Education, Spectrum Health, Grand Rapids, MI (E.S.)
| | - Fergus P McCarthy
- Department of Obstetrics and Gynaecology, Infant Research Centre, University College Cork, Ireland (F.P.M.)
| | - John C Kingdom
- Department of Obstetrics and Gynecology, University of Toronto, ON, Canada (J.C.K.).,Department of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada (J.C.K.)
| | - Hamid-Reza Kohan-Ghadr
- From the Michigan State University, Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Grand Rapids (B.A., H.-R.K.-G., S.D.)
| | - Sascha Drewlo
- From the Michigan State University, Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Grand Rapids (B.A., H.-R.K.-G., S.D.)
| |
Collapse
|
36
|
Syncytiotrophoblast stress in early onset preeclampsia: The issues perpetuating the syndrome. Placenta 2021; 113:57-66. [PMID: 34053733 DOI: 10.1016/j.placenta.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023]
Abstract
Preeclampsia is a pregnancy-specific syndrome characterized by a sudden increase in blood pressure accompanied by proteinuria and/or maternal multi-system damage associated to poor fetal outcome. In early-onset preeclampsia, utero-placental perfusion is altered, causing constant and progressive damage to the syncytiotrophoblast, generating syncytiotrophoblast stress. The latter leads to the detachment and release of syncytiotrophoblast fragments, anti-angiogenic factors and pro-inflammatory molecules into maternal circulation, resulting in the emergence and persistence of the characteristic symptoms of this syndrome during pregnancy. Therefore, understanding the origin and consequences of syncytiotrophoblast stress in preeclampsia is vital to develop new therapeutic alternatives, focused on reducing the burden of this syndrome. In this review, we describe five central characteristics of syncytial stress that should be targeted or prevented in order to reduce preeclampsia symptoms: histological alterations, syncytiotrophoblast damage, antiangiogenic protein export, placental deportation, and altered syncytiotrophoblast turnover. Therapeutic management of these characteristics may improve maternal and fetal outcomes.
Collapse
|
37
|
Lewis D, Donofrio CA, O'Leary C, Li KL, Zhu X, Williams R, Djoukhadar I, Agushi E, Hannan CJ, Stapleton E, Lloyd SK, Freeman SR, Wadeson A, Rutherford SA, Hammerbeck-Ward C, Evans DG, Jackson A, Pathmanaban ON, Roncaroli F, King AT, Coope DJ. The microenvironment in sporadic and neurofibromatosis type II-related vestibular schwannoma: the same tumor or different? A comparative imaging and neuropathology study. J Neurosurg 2021; 134:1419-1429. [PMID: 32470937 DOI: 10.3171/2020.3.jns193230] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/11/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Inflammation and angiogenesis may play a role in the growth of sporadic and neurofibromatosis type 2 (NF2)-related vestibular schwannoma (VS). The similarities in microvascular and inflammatory microenvironment have not been investigated. The authors sought to compare the tumor microenvironment (TME) in sporadic and NF2-related VSs using a combined imaging and tissue analysis approach. METHODS Diffusion MRI and high-temporal-resolution dynamic contrast-enhanced (DCE) MRI data sets were prospectively acquired in 20 NF2-related and 24 size-matched sporadic VSs. Diffusion metrics (mean diffusivity, fractional anisotropy) and DCE-MRI-derived microvascular biomarkers (transfer constant [Ktrans], fractional plasma volume, tissue extravascular-extracellular space [ve], longitudinal relaxation rate, tumoral blood flow) were compared across both VS groups, and regression analysis was used to evaluate the effect of tumor size, pretreatment tumor growth rate, and tumor NF2 status (sporadic vs NF2-related) on each imaging parameter. Tissues from 17 imaged sporadic VSs and a separate cohort of 12 NF2-related VSs were examined with immunohistochemistry markers for vessels (CD31), vessel permeability (fibrinogen), and macrophage density (Iba1). The expression of vascular endothelial growth factor (VEGF) and VEGF receptor 1 was evaluated using immunohistochemistry, Western blotting, and double immunofluorescence. RESULTS Imaging data demonstrated that DCE-MRI-derived microvascular characteristics were similar in sporadic and NF2-related VSs. Ktrans (p < 0.001), ve (p ≤ 0.004), and tumoral free water content (p ≤ 0.003) increased with increasing tumor size and pretreatment tumor growth rate. Regression analysis demonstrated that with the exception of mean diffusivity (p < 0.001), NF2 status had no statistically significant effect on any of the imaging parameters or the observed relationship between the imaging parameters and tumor size (p > 0.05). Tissue analysis confirmed the imaging metrics among resected sporadic VSs and demonstrated that across all VSs studied, there was a close association between vascularity and Iba1+ macrophage density (r = 0.55, p = 0.002). VEGF was expressed by Iba1+ macrophages. CONCLUSIONS The authors present the first in vivo comparative study of microvascular and inflammatory characteristics in sporadic and NF2-related VSs. The imaging and tissue analysis results indicate that inflammation is a key contributor to TME and should be viewed as a therapeutic target in both VS groups.
Collapse
Affiliation(s)
- Daniel Lewis
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
- 2Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre (WMIC), University of Manchester
| | - Carmine A Donofrio
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Claire O'Leary
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
- 3Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - Ka-Loh Li
- 2Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre (WMIC), University of Manchester
| | - Xiaoping Zhu
- 2Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre (WMIC), University of Manchester
| | - Ricky Williams
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Ibrahim Djoukhadar
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Erjon Agushi
- 2Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre (WMIC), University of Manchester
| | - Cathal J Hannan
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Emma Stapleton
- 4Department of Otolaryngology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Simon K Lloyd
- 4Department of Otolaryngology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Simon R Freeman
- 4Department of Otolaryngology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Andrea Wadeson
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Scott A Rutherford
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Charlotte Hammerbeck-Ward
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
| | - D Gareth Evans
- 5Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - Alan Jackson
- 2Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre (WMIC), University of Manchester
| | - Omar N Pathmanaban
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
- 6Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester; and
| | - Federico Roncaroli
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
- 3Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - Andrew T King
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
- 7Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - David J Coope
- 1Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre
- 3Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| |
Collapse
|
38
|
Boldeanu L, Dijmărescu AL, Radu M, Siloşi CA, Popescu-Drigă MV, Poenariu IS, Siloşi I, Boldeanu MV, Novac MB, Novac LV. The role of mediating factors involved in angiogenesis during implantation. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:665-672. [PMID: 33817707 PMCID: PMC8112745 DOI: 10.47162/rjme.61.3.04] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a critical component of normal implantation and placentation and underlines the importance of vascularization in early pregnancy. Differentiated expression of angiogenesis factors in different decision tissues during different stages of implantation, indicates their involvement in the regulation of vascular remodeling and angiogenesis. Disorders in vascular development may play a role in the pathogenesis of recurrent abortions. The success of implantation, placentation and subsequent pregnancy evolution requires coordination of vascular development and adaptations at both sides of the maternal–fetal interface. The human implantation process is a continuous process, which begins with the apposition and attachment of the blastocyst to the apical surface of the luminal endometrial epithelium and continues throughout the first trimester of pregnancy until the extravillous trophoblast invades and remodels maternal vascularization. Numerous regulatory molecules play functional roles in many processes, including preparation of the endometrial stroma (decidualization), epithelium for implantation, control of trophoblastic adhesion and invasion. These regulatory molecules include cytokines, chemokines, and proteases, many of which are expressed by different cell types, having slightly different functions as the implant progresses
Collapse
Affiliation(s)
- Lidia Boldeanu
- Department of Immunology, Department of Anesthesiology and Intensive Care, University of Medicine and Pharmacy of Craiova, Romania; , ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Role of Vascular Endothelial Growth Factor (VEGF) in Human Embryo Implantation: Clinical Implications. Biomolecules 2021; 11:biom11020253. [PMID: 33578823 PMCID: PMC7916576 DOI: 10.3390/biom11020253] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a well-known angiogenic factor that plays a critical role in various physiological and pathological processes. VEGF also contributes to the process of embryo implantation by enhancing embryo development, improving endometrial receptivity, and facilitating the interactions between the developing embryo and the endometrium. There is a correlation between the alteration of VEGF expression and reproductive failure, including recurrent implantation failure (RIF) and recurrent miscarriage (RM). In order to clarify the role of VEGF in embryo implantation, we reviewed recent literature concerning the expression and function of VEGF in the reproductive system around the time of embryo implantation and we provide a summary of the findings reported so far. We also explored the effects and the possible underlying mechanisms of action of VEGF in embryo implantation.
Collapse
|
40
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
41
|
Smalley H, Rowe JM, Nieto F, Zeledon J, Pollard K, Tomich JM, Fleming SD. Beta2 glycoprotein I-derived therapeutic peptides induce sFlt-1 secretion to reduce melanoma vascularity and growth. Cancer Lett 2020; 495:66-75. [PMID: 32891714 PMCID: PMC7899169 DOI: 10.1016/j.canlet.2020.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/11/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
Melanoma, a form of skin cancer, is one of the most common cancers in young men and women. Tumors require angiogenesis to provide oxygen and nutrients for growth. Pro-angiogenic molecules such as VEGF and anti-angiogenic molecules such as sFlt-1 control angiogenesis. In addition, the serum protein, Beta2 Glycoprotein I (β2-GPI) induces or inhibits angiogenesis depending on conformation and concentration. β2-GPI binds to proteins and negatively charged phospholipids on hypoxic endothelial cells present in the tumor microenvironment. We hypothesized that peptides derived from the binding domain of β2-GPI would regulate angiogenesis and melanoma growth. In vitro analyses determined the peptides reduced endothelial cell migration and sFlt-1 secretion. In a syngeneic, immunocompetent mouse melanoma model, β2-GPI-derived peptides also reduced melanoma growth in a dose-dependent response with increased sFlt-1 and attenuated vascular markers compared to negative controls. Importantly, administration of peptide with sFlt-1 antibody resulted in tumor growth. These data demonstrate the therapeutic potential of novel β2-GPI-derived peptides to attenuate tumor growth and endothelial migration is sFlt-1 dependent.
Collapse
Affiliation(s)
- Haley Smalley
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jennifer M Rowe
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Fernando Nieto
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jazmin Zeledon
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kellyn Pollard
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - John M Tomich
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
42
|
Lin FL, Wang PY, Chuang YF, Wang JH, Wong VHY, Bui BV, Liu GS. Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update. Mol Ther 2020; 28:2120-2138. [PMID: 32649860 PMCID: PMC7544979 DOI: 10.1016/j.ymthe.2020.06.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant growth of blood vessels (neovascularization) is a key feature of severe eye diseases that can cause legal blindness, including neovascular age-related macular degeneration (nAMD) and diabetic retinopathy (DR). The development of anti-vascular endothelial growth factor (VEGF) agents has revolutionized the treatment of ocular neovascularization. Novel proangiogenic targets, such as angiopoietin and platelet-derived growth factor (PDGF), are under development for patients who respond poorly to anti-VEGF therapy and to reduce adverse effects from long-term VEGF inhibition. A rapidly advancing area is gene therapy, which may provide significant therapeutic benefits. Viral vector-mediated transgene delivery provides the potential for continuous production of antiangiogenic proteins, which would avoid the need for repeated anti-VEGF injections. Gene silencing with RNA interference to target ocular angiogenesis has been investigated in clinical trials. Proof-of-concept gene therapy studies using gene-editing tools such as CRISPR-Cas have already been shown to be effective in suppressing neovascularization in animal models, highlighting the therapeutic potential of the system for treatment of aberrant ocular angiogenesis. This review provides updates on the development of anti-VEGF agents and novel antiangiogenic targets. We also summarize current gene therapy strategies already in clinical trials and those with the latest approaches utilizing CRISPR-Cas gene editing against aberrant ocular neovascularization.
Collapse
Affiliation(s)
- Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia.
| |
Collapse
|
43
|
Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol 2020; 16:479-494. [PMID: 32601352 DOI: 10.1038/s41574-020-0372-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Pre-eclampsia and fetal growth restriction arise from disorders of placental development and have some shared mechanistic features. Initiation is often rooted in the maldevelopment of a maternal-placental blood supply capable of providing for the growth requirements of the fetus in later pregnancy, without exerting undue stress on maternal body systems. Here, we review normal development of a placental bed with a safe and adequate blood supply and a villous placenta-blood interface from which nutrients and oxygen can be extracted for the growing fetus. We consider disease mechanisms that are intrinsic to the maternal environment, the placenta or the interaction between the two. Systemic signalling from the endocrine placenta targets the maternal endothelium and multiple organs to adjust metabolism for an optimal pregnancy and later lactation. This signalling capacity is skewed when placental damage occurs and can deliver a dangerous pathogenic stimulus. We discuss the placental secretome including glycoproteins, microRNAs and extracellular vesicles as potential biomarkers of disease. Angiomodulatory mediators, currently the only effective biomarkers, are discussed alongside non-invasive imaging approaches to the prediction of disease risk. Identifying the signs of impending pathology early enough to intervene and ameliorate disease in later pregnancy remains a complex and challenging objective.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK.
| | - Jenny E Myers
- Maternal and Fetal Health Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Kate Timms
- Lydia Becker Institute of Inflammation and Immunology, The University of Manchester, Manchester, UK
| | - Melissa Westwood
- Maternal and Fetal Health Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
44
|
Li X, Zhou B, Han X, Liu H. Effect of nicotine on placental inflammation and apoptosis in preeclampsia-like model. Life Sci 2020; 261:118314. [PMID: 32835699 DOI: 10.1016/j.lfs.2020.118314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
AIMS Placental tissues from patients with preeclampsia (PE) and in the lipopolysaccharide (LPS)-induced PE-like model were used to investigate the implication of placental inflammation and apoptosis in PE. Whether the beneficial effects of nicotine are related to inhibition of placental inflammation and apoptosis in the PE-like model were investigated. MAIN METHODS Placental apoptosis was detected in PE patients and the PE-like rat model by TUNEL staining. Changes in the number of CD68+ macrophages in placental tissues from PE patients were detected by immunofluorescent staining. The mRNA expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin (IL-1β), MCP-1, and proteins involved in extrinsic or intrinsic apoptosis signaling in the PE-like model was determined by qRT-PCR; immunofluorescent staining was used to detect the expression of TNF-α receptor (TNFR1), MCP-1 and apoptosis-related proteins. KEY FINDINGS Placental apoptosis was increased in both PE patients and the PE-like model, more macrophages infiltrated into placenta in PE patients. A significant upregulation in mRNA expression of TNF-α, IL-1β, MCP-1, and caspase 3, caspase 8, caspase 9 was found in the PE-like rats compared to the control animals, the immunoreactivity of placental MCP-1, TNFR1, and apoptosis-related proteins (caspase 3, caspase 8, caspase 9, Bax) was also enhanced; nicotine treatment significantly reversed those changes. SIGNIFICANCE Our data suggests that the protective effects of nicotine are associated with inhibiting placenta inflammation and apoptosis, and nicotine might be a potentially therapeutic candidate for preventing preeclampsia.
Collapse
Affiliation(s)
- Xin Li
- First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bei Zhou
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinjia Han
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Huishu Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
45
|
Zhai Y, Liu Y, Qi Y, Long X, Gao J, Yao X, Chen Y, Wang X, Lu S, Zhao Z. The soluble VEGF receptor sFlt-1 contributes to endothelial dysfunction in IgA nephropathy. PLoS One 2020; 15:e0234492. [PMID: 32790760 PMCID: PMC7425938 DOI: 10.1371/journal.pone.0234492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial injury is a common manifestation in IgA nephropathy (IgAN). After the previous identification of the upregulated soluble fms-like tyrosine kinase-1 (sFlt-1) correlated with endothelial injury in IgAN, in the present study, we further explored the role of sFlt-1 in endothelial injury in IgAN. We enrolled 72 patients with IgAN and detected the sFlt-1 levels. The polymeric IgA1 (pIgA1) complexes were isolated from the pooled plasma samples of another 10 patients with IgAN. Apoptosis proteins were detected in cultured human umbilical vein endothelial cells (HUVECs) with the stimulation of recombinant sFlt-1 or the caspase-9 inhibitor Z-LEHD-FMK. We identified there were positive correlations between sFlt-1 and IgA-IgG complex as well as vWF levels in patients with IgAN. The sFlt-1 levels in HUVECs were significantly upregulated by pIgA1 complex derived from IgAN patients in a concentration-dependent manner. The proliferation ability of HUVECs was damaged when stimulated with sFlt-1 protein in a time- and dose- dependent manner. And the apoptosis rate was up-regulated significantly as the stimulation concentrations of sFlt-1 increased. We found sFlt-1 challenge could significantly increase the expression of vWF. In addition, sFlt-1 increased the levels of caspase-9, caspase-3, Bax and mitochondrial membrane potential; facilitated the release of cytochrome C from mitochondria to cytoplasma. In contrast, Z-LEHD-FMK attenuated high sFlt-1-induced HUVECs apoptosis. In conclusion, our study demonstrated that sFlt-1 expression was up-regulated by the challenge of pIgA1 complex derived from patients with IgAN. Furthermore, increased sFlt-1 facilitated human umbilical vein endothelial cells apoptosis via the mitochondrial-dependent pathway.
Collapse
Affiliation(s)
- Yaling Zhai
- The Renal Research Institution of Zhengzhou University, Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youxia Liu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanyuan Qi
- The Renal Research Institution of Zhengzhou University, Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoqing Long
- The Renal Research Institution of Zhengzhou University, Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingge Gao
- The Renal Research Institution of Zhengzhou University, Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingchen Yao
- The Renal Research Institution of Zhengzhou University, Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yazhuo Chen
- The Renal Research Institution of Zhengzhou University, Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinnian Wang
- The Renal Research Institution of Zhengzhou University, Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shan Lu
- The Renal Research Institution of Zhengzhou University, Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- The Renal Research Institution of Zhengzhou University, Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
46
|
Drwal E, Rak A, Tworzydło W, Gregoraszczuk EŁ. “Real life” polycyclic aromatic hydrocarbon (PAH) mixtures modulate hCG, hPL and hPLGF levels and disrupt the physiological ratio of MMP-2 to MMP-9 and VEGF expression in human placenta cell lines. Reprod Toxicol 2020; 95:1-10. [DOI: 10.1016/j.reprotox.2020.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022]
|
47
|
Moore KH, Chapman H, George EM. Unfractionated heparin displaces sFlt-1 from the placental extracellular matrix. Biol Sex Differ 2020; 11:34. [PMID: 32600401 PMCID: PMC7325113 DOI: 10.1186/s13293-020-00311-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is an anti-angiogenic protein which is secreted by numerous cell types and acts as a decoy receptor for the angiogenic protein vascular endothelial growth factor (VEGF). Despite its physiologic importance in maintaining angiogenic balance, excess sFlt-1 levels are associated with the pathogenesis of many diseases, especially those with angiogenic imbalance, endothelial dysfunction, and hypertension. Although sFlt-1 is a soluble protein, it contains a binding site for the extracellular matrix component heparan sulfate. This allows cells to retain and localize sFlt-1 in order to prevent excessive VEGF signaling. During pregnancy, placental syncytiotrophoblasts develop a large extracellular matrix which contains significant amounts of heparan sulfate. Consequently, the placenta becomes a potential storage site for large amounts of sFlt-1 bound to extracellular heparan sulfate. Additionally, it should be noted that sFlt-1 can bind to the anticoagulant unfractionated heparin due to its molecular mimicry to heparan sulfate. However, it remains unknown whether unfractionated heparin can compete with heparan sulfate for binding of localized sFlt-1. In this study, we hypothesized that administration of unfractionated heparin would displace and solubilize placental extracellular matrix(ECM)-bound sFlt-1. If unfractionated heparin can displace this large reservoir of sFlt-1 in the placenta and mobilized it into the maternal circulation, we should be able to observe its effects on maternal angiogenic balance and blood pressure. To test this hypothesis, we utilized in vitro, ex vivo, and in vivo methods. Using the BeWo placental trophoblast cell line, we observed increased sFlt-1 in the media of cells treated with unfractionated heparin compared to controls. The increase in media sFlt-1 was found in conjunction with decreased localized cellular Flt (sFlt-1 and Flt-1) as measured by total cell fluorescence. Similar results were observed using ex vivo placental villous explants treated with unfractionated heparin. Real-time quantitative PCR of the explants showed no change in sFlt-1 or heparanase-1 mRNA expression, eliminating increased production and enzymatic cleavage of heparan sulfate as causes for sFlt-1 media increase. Timed-pregnant rats given a continuous infusion of unfractionated heparin exhibited an increased mean arterial pressure as well as decreased bioavailable VEGF compared to vehicle-treated animals. These data demonstrate that chronic unfractionated heparin treatment is able to displace matrix-bound sFlt-1 into the maternal circulation to such a degree that mean arterial pressure is significantly affected. Here we have shown that the placental ECM is a storage site for large quantities of sFlt-1, and that it should be carefully considered in future studies concerning angiogenic balance in pregnancy.
Collapse
Affiliation(s)
- Kyle H Moore
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Heather Chapman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
48
|
Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules 2020; 10:biom10060953. [PMID: 32599856 PMCID: PMC7357118 DOI: 10.3390/biom10060953] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a serious pregnancy complication, affecting about 5–7% of pregnancies worldwide and is characterized by hypertension and damage to multiple maternal organs, primarily the liver and kidneys. PE usually begins after 20 weeks’ gestation and, if left untreated, can lead to serious complications and lifelong disabilities—even death—in both the mother and the infant. As delivery is the only cure for the disease, treatment is primarily focused on the management of blood pressure and other clinical symptoms. The pathogenesis of PE is still not clear. Abnormal spiral artery remodeling, placental ischemia and a resulting increase in the circulating levels of vascular endothelial growth factor receptor-1 (VEGFR-1), also called soluble fms-like tyrosine kinase-1 (sFlt-1), are believed to be among the primary pathologies associated with PE. sFlt-1 is produced mainly in the placenta during pregnancy and acts as a decoy receptor, binding to free VEGF (VEGF-A) and placental growth factor (PlGF), resulting in the decreased bioavailability of each to target cells. Despite the pathogenic effects of increased sFlt-1 on the maternal vasculature, recent studies from our laboratory and others have strongly indicated that the increase in sFlt-1 in PE may fulfill critical protective functions in preeclamptic pregnancies. Thus, further studies on the roles of sFlt-1 in normal and preeclamptic pregnancies are warranted for the development of therapeutic strategies targeting VEGF signaling for the treatment of PE. Another impediment to the treatment of PE is the lack of suitable methods for delivery of cargo to placental cells, as PE is believed to be of placental origin and most available therapies for PE adversely impact both the mother and the fetus. The present review discusses the pathogenesis of PE, the complex role of sFlt-1 in maternal disease and fetal protection, and the recently developed placenta-targeted drug delivery system for the potential treatment of PE with candidate therapeutic agents.
Collapse
Affiliation(s)
- Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab 144411, India;
- Correspondence:
| | - Neeta Raj Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab 144411, India;
| | - Matthew Petitt
- Redwood Biomedical Editing, Redwood City, CA 94061, USA;
| | - Devika Maulik
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (D.M.); (N.R.N.)
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (D.M.); (N.R.N.)
| |
Collapse
|
49
|
Aspirin enhances trophoblast invasion and represses soluble fms-like tyrosine kinase 1 production: a putative mechanism for preventing preeclampsia. J Hypertens 2020; 37:2461-2469. [PMID: 31335509 DOI: 10.1097/hjh.0000000000002185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Recent studies suggested that prophylactic aspirin prior to 16 weeks of gestation in high-risk patients may reduce the risk of developing preeclampsia; however, the exact mechanism of aspirin's effect on the pathophysiology of preeclampsia is not clear. This study was designed to investigate the effect of aspirin on trophoblast cell function and its effect on soluble fms-like tyrosine kinase 1 (sFlt-1) production to elucidate the preventive mechanisms for preeclampsia. METHODS AND RESULTS We used two human trophoblastic cell lines (HTR-8/SVneo and JAR) and freshly isolated cytotrophoblasts from normal and preeclamptic placenta at term to determine the effect of aspirin on trophoblast cell function. Trophoblasts were pretreated with aspirin, and then cell functions and sFlt-1 expression were assessed. Our results showed that aspirin promoted trophoblast invasion not only in HTR-8/SVneo and JAR cells, but also in isolated cytotrophoblasts. sFlt-1 production was repressed by aspirin in a dose-dependent manner. By adding Flt-1 recombinant protein, the trophoblast invasion ability was inhibited in HTR-8/SVneo cells, which was reversed by Flt-1 small interfering ribonucleic acid knockdown. In addition, metalloproteinase 2/9 expression and activity were activated by aspirin but inhibited by sFlt-1. Aspirin also downregulated Akt phosphorylation, and trophoblast invasiveness was facilitated under Akt inhibitor treatment. CONCLUSION Aspirin enhances cell invasiveness and inhibits sFlt-1 production in trophoblasts. Moreover, sFlt-1 itself also inhibits trophoblast invasion. Our novel findings suggest that the preeclampsia prevention effect of aspirin may be exerted through these two mechanisms.
Collapse
|
50
|
Koh M, Noguchi S, Araki M, Otsuka H, Yokosuka M, Soeta S. Expressions of vascular endothelial growth factor receptors, Flk1 and Flt1, in rat skin mast cells during development. J Vet Med Sci 2020; 82:745-753. [PMID: 32321901 PMCID: PMC7324820 DOI: 10.1292/jvms.20-0092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is a principal regulator of hematopoiesis as well as angiogenesis. However, the functions of VEGF-A and its receptors (VEGFRs) in the differentiation of mast cells (MCs) in the skin remain unclear. The aim of this study was to determine the expression patterns of two VEGFRs (Flk1 and Flt1) in the skin MCs during development and maturation in rats. From the 17th days of embryonic development (E17) to 1 day after birth (Day 1), most of skin MCs were immature cells containing predominant alcian blue (AB)+ rather than safranin O (SO)+ granules (AB>SO MCs). AB>SO MC proportions gradually decreased, while mature AB<SO MC proportions increased from Day 7 to 28. Flk1+ MC proportions increased from E20 and reached to approximately 90% from Day 1 to 21, thereafter decreased to about 10% at Day 60 and 90. Flk1+ MC proportions changed almost in parallel with the numbers of MCs and Ki67+ MC proportions from E17 to Day 90. The proportions of MCs with both nuclear and cytoplasmic Flt1-immunoreactivity were markedly increased at Day 28, when the proportions of nuclear Flk1+, Ki67+, and AB>SO MCs had significantly decreased, and AB<SO MC proportions significantly increased. Considering that the main function of Flt1 is suppression of Flk1 effects, our results indicated that cross-talk between Flk1 and Flt1 regulates the proliferation and maturation of the skin MCs during late embryonic and neonatal development in rats.
Collapse
Affiliation(s)
- Miki Koh
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo 180-8602 Japan
| | - Syunya Noguchi
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo 180-8602 Japan
| | - Mami Araki
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo 180-8602 Japan
| | - Hirotada Otsuka
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo 180-8602 Japan
| | - Makoto Yokosuka
- Laboratory of Comparative and Behavioral Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo 180-8602 Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo 180-8602 Japan
| |
Collapse
|