1
|
Cai Y, Gu H, Li L, Liu X, Bai Y, Shen L, Han B, Xu Y, Yao H. New TIPARP inhibitor rescues mitochondrial function and brain injury in ischemic stroke. Pharmacol Res 2024:107508. [PMID: 39547463 DOI: 10.1016/j.phrs.2024.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke is a high-mortality disease that urgently requires new therapeutic strategies. Insufficient cerebral blood supply can induce poly (ADP-ribose) polymerase (PARP) activation and mitochondrial dysfunction, leading to tissue damage and motor dysfunction. We demonstrate that expression of TCDD inducible PARP (TIPARP) is elevated in ischemic stroke patients and mice. Knockdown of Tiparp reduces brain infarction and promotes recovery of motor function in ischemic stroke mice. Rationally designed TIPARP inhibitor, XG-04-B1, promotes repair of brain injury and recovery of motor function in ischemic stroke mice. Mechanistically, XG-04-B1 increases neuronal plasticity and inhibits astrocyte activation in ischemic stroke mice. In addition, eukaryotic translation initiation factor 3 subunit B (EIF3B) is a direct target of TIPARP. TIPARP interacts with EIF3B through nucleoplasmic redistribution, leading to mitochondrial dysfunction. Knockdown of Tiparp and inhibition of TIPARP via XG-04-B1 restore mitochondrial homeostasis in ischemic stroke mice. Taken together, TIPARP activation contributes to mitochondrial dysfunction and subsequent brain injury, and is therefore a promising therapeutic target for stroke.
Collapse
Affiliation(s)
- Yang Cai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Hongfeng Gu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lu Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Xue Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.
| | - Yungen Xu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Barreira-Silva P, Lian Y, Kaufmann SHE, Moura-Alves P. The role of the AHR in host-pathogen interactions. Nat Rev Immunol 2024:10.1038/s41577-024-01088-4. [PMID: 39415055 DOI: 10.1038/s41577-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
Host-microorganism encounters take place in many different ways and with different types of outcomes. Three major types of microorganisms need to be distinguished: (1) pathogens that cause harm to the host and must be controlled; (2) environmental microorganisms that can be ignored but must be controlled at higher abundance; and (3) symbiotic microbiota that require support by the host. Recent evidence indicates that the aryl hydrocarbon receptor (AHR) senses and initiates signalling and gene expression in response to a plethora of microorganisms and infectious conditions. It was originally identified as a receptor that binds xenobiotics. However, it was subsequently found to have a critical role in numerous biological processes, including immunity and inflammation and was recently classified as a pattern recognition receptor. Here we review the role of the AHR in host-pathogen interactions, focusing on AHR sensing of different microbial classes, the ligands involved, responses elicited and disease outcomes. Moreover, we explore the therapeutic potential of targeting the AHR in the context of infection.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Feijs-Žaja KLH, Ikenga NJ, Žaja R. Pathological and physiological roles of ADP-ribosylation: established functions and new insights. Biol Chem 2024:hsz-2024-0057. [PMID: 39066732 DOI: 10.1515/hsz-2024-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
The posttranslational modification of proteins with poly(ADP-ribose) was discovered in the sixties. Since then, we have learned that the enzymes involved, the so-called poly(ADP-ribosyl)polymerases (PARPs), are transferases which use cofactor NAD+ to transfer ADP-ribose to their targets. Few PARPs are able to create poly(ADP-ribose), whereas the majority transfers a single ADP-ribose. In the last decade, hydrolases were discovered which reverse mono(ADP-ribosyl)ation, detection methods were developed and new substrates were defined, including nucleic acids. Despite the continued effort, relatively little is still known about the biological function of most PARPs. In this review, we summarise key functions of ADP-ribosylation and introduce emerging insights.
Collapse
Affiliation(s)
- Karla L H Feijs-Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nonso J Ikenga
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Roko Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
4
|
Manetsch P, Böhi F, Nowak K, Leslie Pedrioli DM, Hottiger MO. PARP7-mediated ADP-ribosylation of FRA1 promotes cancer cell growth by repressing IRF1- and IRF3-dependent apoptosis. Proc Natl Acad Sci U S A 2023; 120:e2309047120. [PMID: 38011562 DOI: 10.1073/pnas.2309047120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023] Open
Abstract
PARP7 was reported to promote tumor growth in a cell-autonomous manner and by repressing the antitumor immune response. Nevertheless, the molecular mechanism of how PARP7-mediated ADP-ribosylation exerts these effects in cancer cells remains elusive. Here, we identified PARP7 as a nuclear and cysteine-specific mono-ADP-ribosyltransferase that modifies targets critical for regulating transcription, including the AP-1 transcription factor FRA1. Loss of FRA1 ADP-ribosylation via PARP7 inhibition by RBN-2397 or mutation of the ADP-ribosylation site C97 increased FRA1 degradation by the proteasome via PSMC3. The reduction in FRA1 protein levels promoted IRF1- and IRF3-dependent cytokine as well as proapoptotic gene expression, culminating in CASP8-mediated apoptosis. Furthermore, high PARP7 expression was indicative of the PARP7 inhibitor response in FRA1-positive lung and breast cancer cells. Collectively, our findings highlight the connected roles of PARP7 and FRA1 and emphasize the clinical potential of PARP7 inhibitors for FRA1-driven cancers.
Collapse
Affiliation(s)
- Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Cancer Biology Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Kathrin Nowak
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Deena M Leslie Pedrioli
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Jiao H, Yan Z, Zhai X, Yang Y, Wang N, Li X, Jiang Z, Su S. Transcriptome screening identifies TIPARP as an antiviral host factor against the Getah virus. J Virol 2023; 97:e0059123. [PMID: 37768084 PMCID: PMC10617542 DOI: 10.1128/jvi.00591-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Alphaviruses threaten public health continuously, and Getah virus (GETV) is a re-emerging alphavirus that can potentially infect humans. Approved antiviral drugs and vaccines against alphaviruses are few available, but several host antiviral factors have been reported. Here, we used GETV as a model of alphaviruses to screen for additional host factors. Tetrachlorodibenzo-p-dioxin-inducible poly(ADP ribose) polymerase was identified to inhibit GETV replication by inducing ubiquitination of the glycoprotein E2, causing its degradation by recruiting the E3 ubiquitin ligase membrane-associated RING-CH8 (MARCH8). Using GETV as a model virus, focusing on the relationship between viral structural proteins and host factors to screen antiviral host factors provides new insights for antiviral studies on alphaviruses.
Collapse
Affiliation(s)
- Houqi Jiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ziqing Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaofeng Zhai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yichen Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ningning Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoling Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhiwen Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Pinto CJG, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Nunes Dos Santos C. Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: A strategy towards gut inflammation. Redox Biol 2023; 61:102622. [PMID: 36812782 PMCID: PMC9958510 DOI: 10.1016/j.redox.2023.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor able to control complex transcriptional processes in several cell types, which has been correlated with various diseases, including inflammatory bowel diseases (IBD). Numerous studies have described different compounds as ligands of this receptor, like xenobiotics, natural compounds, and several host-derived metabolites. Dietary (poly)phenols have been studied regarding their pleiotropic activities (e.g., neuroprotective and anti-inflammatory), but their AHR modulatory capabilities have also been considered. However, dietary (poly)phenols are submitted to extensive metabolism in the gut (e.g., gut microbiota). Thus, the resulting gut phenolic metabolites could be key players modulating AHR since they are the ones that reach the cells and may exert effects on the AHR throughout the gut and other organs. This review aims at a comprehensive search for the most abundant gut phenolic metabolites detected and quantified in humans to understand how many have been described as AHR modulators and what could be their impact on inflammatory gut processes. Even though several phenolic compounds have been studied regarding their anti-inflammatory capacities, only 1 gut phenolic metabolite, described as AHR modulator, has been evaluated on intestinal inflammatory models. Searching for AHR ligands could be a novel strategy against IBD.
Collapse
Affiliation(s)
- Catarina J G Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom.
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.
| |
Collapse
|
7
|
vahidi M, Houshmand M, Banoei M, Heidari F. The association between TIPARP gene polymorphisms rs2665390 and ovarian cancer susceptibility. Gynecol Oncol Rep 2023; 47:101175. [PMID: 37091214 PMCID: PMC10113771 DOI: 10.1016/j.gore.2023.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Ovarian cancer is taken as the most typical malignancy among women and the ninth most typical cancer in Iran. Predictive tools are of great importance as ovarian cancer is usually detected in patients at later stages of the disease. In other countries, the TIPARP gene rs2665390 has been reported to be pertinent to ovarian cancer as a risk factor. This study aims to examine if this polymorphism pertains to the risk of ovarian cancer to diagnose suitable biomarkers in the Iranian population. Method: In the present case-control piliot study, peripheral blood samples were gathered from 60 control subjects and 60 patients with ovarian cancer. The gene was determined by Tetra ARMS PCR after DNA extraction. Tetra ARMS PCR is a flexible, rapid, and cost-effective method to detect allele-specific DNA polymorphisms. The data were analyzed by chi-square test. Results: The results indicated that there was a significant association between the T/T and C/C genotypes distribution and C and T allele in ovarian cancer for rs2665390 polymorphism in the two populations. In addition, significant correlations were observed in patients with the (T/T) genotype (p = 0.0048) as frequencies of ovarian cancer decreased. Discussion & Conclusions: Based on the results, rs2665390 polymorphism of TiPARP gene might be pertained to the susceptibility of ovarian cancer in the Iranian pilot population, which can be used as a suitable biomarker for the population and help physicians with their predictions. However, more studies need to be conducted in this area to broaden our horizons on this issue.
Collapse
|
8
|
Sanderson DJ, Rodriguez KM, Bejan DS, Olafsen NE, Bohn ID, Kojic A, Sundalam S, Siordia IR, Duell AK, Deng N, Schultz C, Grant DM, Matthews J, Cohen MS. Structurally distinct PARP7 inhibitors provide new insights into the function of PARP7 in regulating nucleic acid-sensing and IFN-β signaling. Cell Chem Biol 2023; 30:43-54.e8. [PMID: 36529140 PMCID: PMC9868104 DOI: 10.1016/j.chembiol.2022.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
The mono-ADP-ribosyltransferase PARP7 has emerged as a key negative regulator of cytosolic NA-sensors of the innate immune system. We apply a rational design strategy for converting a pan-PARP inhibitor into a potent selective PARP7 inhibitor (KMR-206). Consistent with studies using the structurally distinct PARP7 inhibitor RBN-2397, co-treatment of mouse embryonic fibroblasts with KMR-206 and NA-sensor ligands synergistically induced the expression of the type I interferon, IFN-β. In mouse colon carcinoma (CT-26) cells, KMR-206 alone induced IFN-β. Both KMR-206 and RBN-2397 increased PARP7 protein levels in CT-26 cells, demonstrating that PARP7's catalytic activity regulates its own protein levels. Curiously, treatment with saturating doses of KMR-206 and RBN-2397 achieved different levels of PARP7 protein, which correlated with the magnitude of type I interferon gene expression. These latter results have important implications for the mechanism of action of PARP7 inhibitors and highlights the usefulness of having structurally distinct chemical probes for the same target.
Collapse
Affiliation(s)
- Daniel J Sanderson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Road, Portland, OR 97239, USA
| | - Kelsie M Rodriguez
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Road, Portland, OR 97239, USA
| | - Daniel S Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Road, Portland, OR 97239, USA
| | - Ninni E Olafsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo 0315, Norway
| | - Inga D Bohn
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo 0315, Norway
| | - Ana Kojic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Road, Portland, OR 97239, USA
| | - Sunil Sundalam
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Road, Portland, OR 97239, USA
| | - Ivan R Siordia
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Road, Portland, OR 97239, USA
| | - Anna K Duell
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Road, Portland, OR 97239, USA
| | - Nancy Deng
- Computational Chemistry, ChemPartner, San Francisco, CA 94080, USA
| | - Carsten Schultz
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Road, Portland, OR 97239, USA
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S, Canada
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo 0315, Norway; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S, Canada
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Road, Portland, OR 97239, USA.
| |
Collapse
|
9
|
TIPARP is involved in the regulation of intraocular pressure. Commun Biol 2022; 5:1386. [PMID: 36536086 PMCID: PMC9763400 DOI: 10.1038/s42003-022-04346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the major risk factor for glaucoma. The molecular mechanism of elevated IOP is unclear, which impedes glaucoma therapy. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible Poly-ADP-ribose Polymerase (TIPARP), a member of the PARP family, catalyses mono-ADP-ribosylation. Here we showed that TIPARP was widely expressed in the cornea, trabecular meshwork, iris, retina, optic nerve, sclera, and choroid of human eyes. The expression of TIPARP was significantly upregulated in the blood and trabecular meshwork of patients with primary open angle glaucoma compared with that of healthy controls. Transcriptome analysis revealed that the expression of genes related to extracellular matrix deposition and cell adhesion was decreased in TIPARP-upregulated human trabecular meshwork (HTM) cells. Moreover, western blot analysis showed that collagen types I and IV, fibronectin, and α-SMA were increased in TIPARP-downregulated or TIPARP-inhibited HTM cells. In addition, cross-linked actin networks were produced, and vinculin was upregulated in these cells. Subconjunctival injection of the TIPARP inhibitor RBN-2397 increased the IOP in Sprague-Dawley rats. Therefore, we identified TIPARP as a regulator of IOP through modulation of extracellular matrix and cell cytoskeleton proteins in HTM cells. These results indicate that TIPARP is a potential therapeutic target for ocular hypertension and glaucoma.
Collapse
|
10
|
Quantification of PARP7 Protein Levels and PARP7 Inhibitor Target Engagement in Cells Using a Split Nanoluciferase System. Methods Mol Biol 2022; 2609:387-395. [PMID: 36515849 DOI: 10.1007/978-1-0716-2891-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PARP7 is an enzyme that catalyzes mono-ADP-ribosylation (MARylation), is a critical regulator of type I interferon signaling, and has emerged as an immune-oncology drug candidate. PARP7 is a labile protein that is regulated in a proteasome-dependent manner. Indeed, endogenous PARP7 levels are undetectable by western blot in most cells. Intriguingly, treatment of cells with orthosteric small molecule inhibitors of PARP7 can increase endogenous PARP7 protein to detectable levels. This characteristic of PARP7 inhibitors could potentially be exploited to assess target engagement-and thus cellular efficacy-of PARP7 inhibitors; however, no method exists to quantitatively monitor endogenous PARP7 levels in a high-throughput manner. In this protocol, we describe an assay using a split Nanoluciferase (NanoLuc) system for quantifying endogenous PARP7 protein levels and PARP7 inhibitor target engagement in cells in a 96-well plate format. We show that this assay can be used to quantify PARP7 protein levels under various cellular treatments and can assess cellular PARP7 inhibitor target engagement. We envision this split NanoLuc PARP7 assay can be used not only for evaluating the cellular efficacy of PARP7 inhibitors in a high-throughput manner but also for uncovering the mechanisms regulating PARP7 protein levels in cells.
Collapse
|
11
|
Li P, Lei Y, Qi J, Liu W, Yao K. Functional roles of ADP-ribosylation writers, readers and erasers. Front Cell Dev Biol 2022; 10:941356. [PMID: 36035988 PMCID: PMC9404506 DOI: 10.3389/fcell.2022.941356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation is a reversible post-translational modification (PTM) tightly regulated by the dynamic interplay between its writers, readers and erasers. As an intricate and versatile PTM, ADP-ribosylation plays critical roles in various physiological and pathological processes. In this review, we discuss the major players involved in the ADP-ribosylation cycle, which may facilitate the investigation of the ADP-ribosylation function and contribute to the understanding and treatment of ADP-ribosylation associated disease.
Collapse
|
12
|
Chen H, Diolaiti ME, O’Leary PC, Rojc A, Krogan NJ, Kim M, Ashworth A. A Whole-Genome CRISPR Screen Identifies AHR Loss as a Mechanism of Resistance to a PARP7 Inhibitor. Mol Cancer Ther 2022; 21:1076-1089. [PMID: 35439318 PMCID: PMC9769698 DOI: 10.1158/1535-7163.mct-21-0841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/09/2022] [Accepted: 04/12/2022] [Indexed: 01/07/2023]
Abstract
Inhibitors directed toward PARP1 and PARP2 are approved agents for the treatment of BRCA1 and BRCA2-related cancers. Other members of the PARP family have also been implicated in cancer and are being assessed as therapeutic targets in cancer and other diseases. Recently, an inhibitor of PARP7 (RBN-2397) has reached early-stage human clinical trials. Here, we performed a genome-wide CRISPR screen for genes that modify the response of cells to RBN-2397. We identify the polycyclic aromatic hydrocarbon receptor AHR and multiple components of the cohesin complex as determinants of resistance to this agent. Activators and inhibitors of AHR modulate the cellular response to PARP7 inhibition, suggesting potential combination therapy approaches.
Collapse
Affiliation(s)
- Huadong Chen
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA 94158
| | - Morgan E. Diolaiti
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA 94158
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Patrick C. O’Leary
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA 94158
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Ajda Rojc
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA 94158
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA 94158
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA 94158
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA 94158
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Minkyu Kim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA 94158
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA 94158
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA 94158
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| |
Collapse
|
13
|
Lüscher B, Verheirstraeten M, Krieg S, Korn P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol Life Sci 2022; 79:288. [PMID: 35536484 PMCID: PMC9087173 DOI: 10.1007/s00018-022-04290-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023]
Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Maud Verheirstraeten
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Korn
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
14
|
Abstract
Post-translational modifications exist in different varieties to regulate diverse characteristics of their substrates, ultimately leading to maintenance of cell health. The enzymes of the intracellular poly(ADP-ribose) polymerase (PARP) family can transfer either a single ADP-ribose to targets, in a reaction called mono(ADP-ribosyl)ation or MARylation, or multiple to form chains of poly(ADP-ribose) or PAR. Traditionally thought to be attached to arginine or glutamate, recent data have added serine, tyrosine, histidine and others to the list of potential ADP-ribose acceptor amino acids. PARylation by PARP1 has been relatively well studied, whereas less is known about the other family members such as PARP7 and PARP10. ADP-ribosylation on arginine and serine is reversed by ARH1 and ARH3 respectively, whereas macrodomain-containing MACROD1, MACROD2 and TARG1 reverse modification of acidic residues. For the other amino acids, no hydrolases have been identified to date. For many PARPs, it is not clear yet what their endogenous targets are. Better understanding of their biochemical reactions is required to be able to determine their biological functions in future studies. In this review, we discuss the current knowledge of PARP specificity in vitro and in cells, as well as provide an outlook for future research.
Collapse
|
15
|
NAD+-consuming enzymes in immune defense against viral infection. Biochem J 2021; 478:4071-4092. [PMID: 34871367 PMCID: PMC8718269 DOI: 10.1042/bcj20210181] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic reminds us that in spite of the scientific progress in the past century, there is a lack of general antiviral strategies. In analogy to broad-spectrum antibiotics as antibacterial agents, developing broad spectrum antiviral agents would buy us time for the development of vaccines and treatments for future viral infections. In addition to targeting viral factors, a possible strategy is to understand host immune defense mechanisms and develop methods to boost the antiviral immune response. Here we summarize the role of NAD+-consuming enzymes in the immune defense against viral infections, with the hope that a better understanding of this process could help to develop better antiviral therapeutics targeting these enzymes. These NAD+-consuming enzymes include PARPs, sirtuins, CD38, and SARM1. Among these, the antiviral function of PARPs is particularly important and will be a focus of this review. Interestingly, NAD+ biosynthetic enzymes are also implicated in immune responses. In addition, many viruses, including SARS-CoV-2 contain a macrodomain-containing protein (NSP3 in SARS-CoV-2), which serves to counteract the antiviral function of host PARPs. Therefore, NAD+ and NAD+-consuming enzymes play crucial roles in immune responses against viral infections and detailed mechanistic understandings in the future will likely facilitate the development of general antiviral strategies.
Collapse
|
16
|
Hutin D, Long AS, Sugamori K, Shao P, Singh SK, Rasmussen M, Olafsen NE, Pettersen S, Grimaldi G, Grant DM, Matthews J. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD)-Inducible Poly-ADP-Ribose Polymerase (TIPARP/PARP7) Catalytic Mutant Mice (TiparpH532A) Exhibit Increased Sensitivity to TCDD-Induced Hepatotoxicity and Lethality. Toxicol Sci 2021; 183:154-169. [PMID: 34129049 PMCID: PMC8404992 DOI: 10.1093/toxsci/kfab075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-adenosine diphosphate (ADP)-ribose polymerase (TIPARP/PARP7), an aryl hydrocarbon receptor (AHR) target gene and mono-ADP-ribosyltransferase, acts as part of a negative feedback loop to repress AHR signaling. This process is prevented by a single H532A mutation in TIPARP that destroys its catalytic activity. We hypothesized that the loss of TIPARP catalytic activity would increase sensitivity to TCDD-induced toxicity in vivo. To test this, we created a catalytically deficient mouse line (TiparpH532A) by introducing a single H532A mutation in TIPARP. Treatment of mouse embryonic fibroblasts or hepatocytes isolated from TiparpH532A mice confirmed the increased TCDD-induced expression of the AHR target genes Cyp1a1, Cyp1b1, and Tiparp. TiparpH532A mice given a single injection of 10 µg/kg TCDD, a nonlethal dose in Tiparp+/+ mice, did not survive beyond day 10. All Tiparp+/+ mice survived the 30-day treatment. TCDD-treated TiparpH532A mice displayed increased expression of AHR target genes, increased steatohepatitis and hepatotoxicity. Hepatic RNA-sequencing revealed 7-fold more differentially expressed genes in TiparpH532A mice than in Tiparp+/+ mice (4542 vs 647 genes) 6 days after TCDD treatment. Differentially expressed genes included genes involved in xenobiotic metabolism, lipid homeostasis and inflammation. Taken together, these data further support TIPARP as a critical negative regulator of AHR activity and show that loss of its catalytic activity is sufficient to increase sensitivity to TCDD-induced steatohepatitis and lethality. Since TIPARP inhibition has recently emerged as a potential anticancer therapy, the impact on AHR signaling, TCDD and polycyclic aromatic hydrocarbon toxicity will need to be carefully considered under conditions of therapeutic TIPARP inhibition.
Collapse
Affiliation(s)
- David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Alexandra S Long
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Kim Sugamori
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Peng Shao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | | | - Marit Rasmussen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Ninni Elise Olafsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Solveig Pettersen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Giulia Grimaldi
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
17
|
Knockdown of lncRNA SNHG15 Ameliorates Oxygen and Glucose Deprivation (OGD)-Induced Neuronal Injury via Regulating the miR-9-5p/TIPARP Axis. Biochem Genet 2021; 60:755-769. [PMID: 34453220 DOI: 10.1007/s10528-021-10121-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Stroke is a cerebrovascular disease with impaired nerve function. Long non-coding RNA (lncRNA) is considered to be an important regulator of various diseases. Nevertheless, the role of lncRNA small nucleolar RNA host gene 15 (SNHG15) in cerebral ischemia injury induced by stroke is still unclear. Cell-counting kit 8 assay and flow cytometry were used to detect cell viability and apoptosis, respectively. The caspase3 activity of cells was measured using Caspase3 Activity Assay Kit. Besides, the protein levels of apoptosis markers and TCCD-induced poly (ADP)-ribose polymerase (TIPARP) were determined using western blot analysis. Moreover, quantitative real-time polymerase chain reaction was employed to examine the relative expression of SNHG15 and miR-9-5p. Furthermore, dual-luciferase reporter assay was used to assess the interaction between miR-9-5p and SNHG15 or TIPARP. In addition, biotin-labeled RNA pull-down assay was performed to evaluate the interaction between miR-9-5p and SNHG15 further. Middle cerebral artery occlusion (MCAO) model was constructed to further explore the role of SNHG15 in neuronal injury in vivo. Our data showed that oxygen and glucose deprivation (OGD) could induce N-2a cell injury and enhance SNHG15 expression. Silenced SNHG15 could promote the viability and suppress the apoptosis of OGD-induced N-2a cells. Also, SNHG15 knockdown also could alleviate the neuronal injury of MCAO mice. Mechanistically, SNHG15 could sponge miR-9-5p, and miR-9-5p could target TIPARP. Further experiments revealed that miR-9-5p inhibition or TIPARP overexpression could reverse the suppressive effect of SNHG15 knockdown on OGD-induced N-2a cell injury. Our findings indicated that SNHG15 knockdown inhibited neuronal injury through the miR-9-5p/TIPARP axis, suggesting that SNHG15 might be a potential target for cerebral ischemia injury induced by stroke.
Collapse
|
18
|
PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
|
19
|
Roles of the ubiquitin ligase CUL4B and ADP-ribosyltransferase TiPARP in TCDD-induced nuclear export and proteasomal degradation of the transcription factor AHR. J Biol Chem 2021; 297:100886. [PMID: 34146543 PMCID: PMC8318916 DOI: 10.1016/j.jbc.2021.100886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor activated by exogenous halogenated polycyclic aromatic hydrocarbon compounds, including the environmental toxin TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and naturally occurring dietary and endogenous compounds. The activated AHR enhances transcription of specific genes including phase I and phase II metabolism enzymes and other targets genes such as the TCDD-inducible poly(ADP-ribose) polymerase (TiPARP). The regulation of AHR activation is a dynamic process: immediately after transcriptional activation of the AHR by TCDD, the AHR is exported from the nucleus to the cytoplasm where it is subjected to proteasomal degradation. However, the mechanisms regulating AHR degradation are not well understood. Here, we studied the role of two enzymes reported to enhance AHR breakdown: the cullin 4B (CUL4B)AHR complex, an E3 ubiquitin ligase that targets the AHR and other proteins for ubiquitination, and TiPARP, which targets proteins for ADP-ribosylation, a posttranslational modification that can increase susceptibility to degradation. Using a WT mouse embryonic fibroblast (MEF) cell line and an MEF cell line in which CUL4B has been deleted (MEFCul4b-null), we discovered that loss of CUL4B partially prevented AHR degradation after TCDD exposure, while knocking down TiPARP in MEFCul4b-null cells completely abolished AHR degradation upon TCDD treatment. Increased TCDD-activated AHR protein levels in MEFCul4b-null and MEFCul4b-null cells in which TiPARP was knocked down led to enhanced AHR transcriptional activity, indicating that CUL4B and TiPARP restrain AHR action. This study reveals a novel function of TiPARP in controlling TCDD-activated AHR nuclear export and subsequent proteasomal degradation.
Collapse
|
20
|
PARP7 and Mono-ADP-Ribosylation Negatively Regulate Estrogen Receptor α Signaling in Human Breast Cancer Cells. Cells 2021; 10:cells10030623. [PMID: 33799807 PMCID: PMC8001409 DOI: 10.3390/cells10030623] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
ADP-ribosylation is a post-translational protein modification catalyzed by a family of proteins known as poly-ADP-ribose polymerases. PARP7 (TIPARP; ARTD14) is a mono-ADP-ribosyltransferase involved in several cellular processes, including responses to hypoxia, innate immunity and regulation of nuclear receptors. Since previous studies suggested that PARP7 was regulated by 17β-estradiol, we investigated whether PARP7 regulates estrogen receptor α signaling. We confirmed the 17β-estradiol-dependent increases of PARP7 mRNA and protein levels in MCF-7 cells, and observed recruitment of estrogen receptor α to the promoter of PARP7. Overexpression of PARP7 decreased ligand-dependent estrogen receptor α signaling, while treatment of PARP7 knockout MCF-7 cells with 17β-estradiol resulted in increased expression of and recruitment to estrogen receptor α target genes, in addition to increased proliferation. Co-immunoprecipitation assays revealed that PARP7 mono-ADP-ribosylated estrogen receptor α, and mass spectrometry mapped the modified peptides to the receptor’s ligand-independent transactivation domain. Co-immunoprecipitation with truncated estrogen receptor α variants identified that the hinge region of the receptor is required for PARP7-dependent mono-ADP-ribosylation. These results imply that PARP7-mediated mono-ADP-ribosylation may play an important role in estrogen receptor positive breast cancer.
Collapse
|
21
|
Abstract
The aryl hydrocarbon receptor (AHR) binds environmental toxins and mediates immune regulation. The tryptophan metabolite kynurenine has now been identified as an endogenous ligand of the human AHR constitutively produced by gliomas and other types of cancer via tryptophan-2,3-dioxygenase (TDO), thereby suppressing antitumor immune responses via the AHR. Thus, this pathway represents an important novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Platten
- Department of Neurooncology; University Hospital Heidelberg; Heidelberg, Germany ; Experimental Neuroimmunology Group; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Challa S, Stokes MS, Kraus WL. MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential. Cells 2021; 10:313. [PMID: 33546365 PMCID: PMC7913519 DOI: 10.3390/cells10020313] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Mono(ADP-ribosyl)ation (MARylation) is a regulatory post-translational modification of proteins that controls their functions through a variety of mechanisms. MARylation is catalyzed by mono(ADP-ribosyl) transferase (MART) enzymes, a subclass of the poly(ADP-ribosyl) polymerase (PARP) family of enzymes. Although the role of PARPs and poly(ADP-ribosyl)ation (PARylation) in cellular pathways, such as DNA repair and transcription, is well studied, the role of MARylation and MARTs (i.e., the PARP 'monoenzymes') are not well understood. Moreover, compared to PARPs, the development of MART-targeted therapeutics is in its infancy. Recent studies are beginning to shed light on the structural features, catalytic targets, and biological functions of MARTs. The development of new technologies to study MARTs have uncovered essential roles for these enzymes in the regulation of cellular processes, such as RNA metabolism, cellular transport, focal adhesion, and stress responses. These insights have increased our understanding of the biological functions of MARTs in cancers, neuronal development, and immune responses. Furthermore, several novel inhibitors of MARTs have been developed and are nearing clinical utility. In this review, we summarize the biological functions and molecular mechanisms of MARTs and MARylation, as well as recent advances in technology that have enabled detection and inhibition of their activity. We emphasize PARP-7, which is at the forefront of the MART subfamily with respect to understanding its biological roles and the development of therapeutically useful inhibitors. Collectively, the available studies reveal a growing understanding of the biochemistry, chemical biology, physiology, and pathology of MARTs.
Collapse
Affiliation(s)
- Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - MiKayla S. Stokes
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Palavalli Parsons LH, Challa S, Gibson BA, Nandu T, Stokes MS, Huang D, Lea JS, Kraus WL. Identification of PARP-7 substrates reveals a role for MARylation in microtubule control in ovarian cancer cells. eLife 2021; 10:e60481. [PMID: 33475085 PMCID: PMC7884071 DOI: 10.7554/elife.60481] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
PARP-7 (TiPARP) is a mono(ADP-ribosyl) transferase whose protein substrates and biological activities are poorly understood. We observed that PARP7 mRNA levels are lower in ovarian cancer patient samples compared to non-cancerous tissue, but PARP-7 protein nonetheless contributes to several cancer-related biological endpoints in ovarian cancer cells (e.g. growth, migration). Global gene expression analyses in ovarian cancer cells subjected to PARP-7 depletion indicate biological roles for PARP-7 in cell-cell adhesion and gene regulation. To identify the MARylated substrates of PARP-7 in ovarian cancer cells, we developed an NAD+ analog-sensitive approach, which we coupled with mass spectrometry to identify the PARP-7 ADP-ribosylated proteome in ovarian cancer cells, including cell-cell adhesion and cytoskeletal proteins. Specifically, we found that PARP-7 MARylates α-tubulin to promote microtubule instability, which may regulate ovarian cancer cell growth and motility. In sum, we identified an extensive PARP-7 ADP-ribosylated proteome with important roles in cancer-related cellular phenotypes.
Collapse
Affiliation(s)
- Lavanya H Palavalli Parsons
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bryan A Gibson
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - MiKayla S Stokes
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Cardiology, Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jayanthi S Lea
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
24
|
Borovok N, Weiss C, Sharkia R, Reichenstein M, Wissinger B, Azem A, Mahajnah M. Gene and Protein Expression in Subjects With a Nystagmus-Associated AHR Mutation. Front Genet 2020; 11:582796. [PMID: 33193710 PMCID: PMC7542227 DOI: 10.3389/fgene.2020.582796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
Recently, a consanguineous family was identified in Israel with three children affected by Infantile Nystagmus and Foveal Hypoplasia, following an autosomal recessive mode of inheritance. A homozygous stop mutation c.1861C > T; p.Q621∗ in the aryl hydrocarbon receptor (AHR) gene (AHR; MIM 600253) was identified that co-segregated with the disease in the larger family. AHR is the first gene to be identified causing an autosomal recessive Infantile Nystagmus-related disease in humans. The goal of this study is to delineate the molecular basis of this newly discovered human genetic disorder associated with a rare AHR gene mutation. The gene and protein expression levels of AHR and selected AHR targets from leukocyte cultures of healthy subjects and the patients were analyzed. We observed significant variation between mRNA and protein expression of CYP1A1, CYP1B1, and TiPARP under rest and AHR-induced conditions. The CYP1A1 enzymatic activity in induced leukocytes also differs significantly between the patients and healthy volunteers. Intriguingly, the heterozygous subjects demonstrate CYP1A1 and TiPARP gene and protein expression similar to homozygous patients. In contrast, CYP1B1 inducibility and expression vary between hetero- and homozygous subjects. Similarity and differences in gene and protein expression between heterozygotes and homozygous patients can give us a hint as to which metabolic pathway/s might be involved in the Nystagmus etiology. Thus, we have a unique human model for AHR deficiency that will allow us the opportunity to study the biochemical basis of this rare human mutation, as well as the involvement of AHR in other physiological processes.
Collapse
Affiliation(s)
- Natalia Borovok
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Celeste Weiss
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Rajech Sharkia
- Triangle Research and Development Center, Kafr Qara, Israel.,Beit Berl College, Beit Berl, Israel
| | - Michal Reichenstein
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Bernd Wissinger
- Institute for Ophthalmic Research Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Abdussalam Azem
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Muhammad Mahajnah
- Hillel Yaffe Medical Center, Hadera, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
25
|
Sanderson DJ, Cohen MS. Mechanisms governing PARP expression, localization, and activity in cells. Crit Rev Biochem Mol Biol 2020; 55:541-554. [PMID: 32962438 DOI: 10.1080/10409238.2020.1818686] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly-(ADP)-ribose polymerases (PARPs) are a family of 17 enzymes in humans that have diverse roles in cell physiology including DNA damage repair, transcription, innate immunity, and regulation of signaling pathways. The modular domain architecture of PARPs gives rise to this functional diversity. PARPs catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to targets-proteins and poly-nucleic acids. This enigmatic post-translational modification comes in two varieties: the transfer of a single unit of ADP-ribose, known as mono-ADP-ribosylation (MARylation) or the transfer of multiple units of ADP-ribose, known as poly-ADP-ribosylation (PARylation). Emerging data shows that PARPs are regulated at multiple levels to control when and where PARP-mediated M/PARylation occurs in cells. In this review, we will discuss the latest knowledge regarding the regulation of PARPs in cells: from transcription and protein stability to subcellular localization and modulation of catalytic activity.
Collapse
Affiliation(s)
- Daniel J Sanderson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
26
|
Abstract
Precisely controlling the activation of transcription factors is crucial for physiology. After a transcription factor is activated and carries out its transcriptional activity, it also needs to be properly deactivated. Here, we report a deactivation mechanism of HIF-1 and several other oncogenic transcription factors. HIF-1 promotes the transcription of an ADP ribosyltransferase, TiPARP, which serves to deactivate HIF-1. Mechanistically, TiPARP forms distinct nuclear condensates or nuclear bodies in an ADP ribosylation-dependent manner. The TiPARP nuclear bodies recruit both HIF-1α and an E3 ubiquitin ligase HUWE1, which promotes the ubiquitination and degradation of HIF-1α. Similarly, TiPARP promotes the degradation of c-Myc and estrogen receptor. By suppressing HIF-1α and other oncogenic transcription factors, TiPARP exerts strong antitumor effects both in cell culture and in mouse xenograft models. Our work reveals TiPARP as a negative-feedback regulator for multiple oncogenic transcription factors, provides insights into the functions of protein ADP-ribosylation, and suggests activating TiPARP as an anticancer strategy.
Collapse
|
27
|
Grunewald ME, Shaban MG, Mackin SR, Fehr AR, Perlman S. Murine Coronavirus Infection Activates the Aryl Hydrocarbon Receptor in an Indoleamine 2,3-Dioxygenase-Independent Manner, Contributing to Cytokine Modulation and Proviral TCDD-Inducible-PARP Expression. J Virol 2020; 94:e01743-19. [PMID: 31694960 PMCID: PMC7000979 DOI: 10.1128/jvi.01743-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor/transcription factor that modulates several cellular and immunological processes following activation by pathogen-associated stimuli, though its role during virus infection is largely unknown. Here, we show that AhR is activated in cells infected with mouse hepatitis virus (MHV), a coronavirus (CoV), and contributes to the upregulation of downstream effector TCDD-inducible poly(ADP-ribose) polymerase (TiPARP) during infection. Knockdown of TiPARP reduced viral replication and increased interferon expression, suggesting that TiPARP functions in a proviral manner during MHV infection. We also show that MHV replication induced the expression of other genes known to be downstream of AhR in macrophages and dendritic cells and in livers of infected mice. Further, we found that chemically inhibiting or activating AhR reciprocally modulated the expression levels of cytokines induced by infection, specifically, interleukin 1β (IL-1β), IL-10, and tumor necrosis factor alpha (TNF-α), consistent with a role for AhR activation in the host response to MHV infection. Furthermore, while indoleamine 2,3-dioxygenase (IDO1) drives AhR activation in other settings, MHV infection induced equal expression of downstream genes in wild-type (WT) and IDO1-/- macrophages, suggesting an alternative pathway of AhR activation. In summary, we show that coronaviruses elicit AhR activation by an IDO1-independent pathway, contributing to upregulation of downstream effectors, including the proviral factor TiPARP, and to modulation of cytokine gene expression, and we identify a previously unappreciated role for AhR signaling in CoV pathogenesis.IMPORTANCE Coronaviruses are a family of positive-sense RNA viruses with human and agricultural significance. Characterizing the mechanisms by which coronavirus infection dictates pathogenesis or counters the host immune response would provide targets for the development of therapeutics. Here, we show that the aryl hydrocarbon receptor (AhR) is activated in cells infected with a prototypic coronavirus, mouse hepatitis virus (MHV), resulting in the expression of several effector genes. AhR is important for modulation of the host immune response to MHV and plays a role in the expression of TiPARP, which we show is required for maximal viral replication. Taken together, our findings highlight a previously unidentified role for AhR in regulating coronavirus replication and the immune response to the virus.
Collapse
Affiliation(s)
- Matthew E Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Mohamed G Shaban
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Samantha R Mackin
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
28
|
Loss of Tiparp Results in Aberrant Layering of the Cerebral Cortex. eNeuro 2019; 6:ENEURO.0239-19.2019. [PMID: 31704703 PMCID: PMC6883171 DOI: 10.1523/eneuro.0239-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/13/2019] [Accepted: 10/10/2019] [Indexed: 01/26/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP) is an enzyme that adds a single ADP-ribose moiety to itself or other proteins. Tiparp is highly expressed in the brain; however, its function in this organ is unknown. Here, we used Tiparp–/– mice to determine Tiparp’s role in the development of the prefrontal cortex. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP) is an enzyme that adds a single ADP-ribose moiety to itself or other proteins. Tiparp is highly expressed in the brain; however, its function in this organ is unknown. Here, we used Tiparp–/– mice to determine Tiparp’s role in the development of the prefrontal cortex. Loss of Tiparp resulted in an aberrant organization of the mouse cortex, where the upper layers presented increased cell density in the knock-out mice compared with wild type. Tiparp loss predominantly affected the correct distribution and number of GABAergic neurons. Furthermore, neural progenitor cell proliferation was significantly reduced. Neural stem cells (NSCs) derived from Tiparp–/– mice showed a slower rate of migration. Cytoskeletal components, such as α-tubulin are key regulators of neuronal differentiation and cortical development. α-tubulin mono-ADP ribosylation (MAR) levels were reduced in Tiparp–/– cells, suggesting that Tiparp plays a role in the MAR of α-tubulin. Despite the mild phenotype presented by Tiparp–/– mice, our findings reveal an important function for Tiparp and MAR in the correct development of the cortex. Unravelling Tiparp’s role in the cortex, could pave the way to a better understanding of a wide spectrum of neurological diseases which are known to have increased expression of TIPARP.
Collapse
|
29
|
Circular RNA TLK1 Aggravates Neuronal Injury and Neurological Deficits after Ischemic Stroke via miR-335-3p/TIPARP. J Neurosci 2019; 39:7369-7393. [PMID: 31311824 DOI: 10.1523/jneurosci.0299-19.2019] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/30/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are expressed at high levels in the brain and are involved in various CNS diseases. However, the potential role of circRNAs in ischemic stroke-associated neuronal injury remains largely unknown. Here, we investigated the important functions of circRNA TLK1 (circTLK1) in this process. The levels of circTLK1 were significantly increased in brain tissues in a mouse model of focal cerebral ischemia and reperfusion. Knockdown of circTLK1 significantly decreased infarct volumes, attenuated neuronal injury, and improved neurological deficits. Furthermore, circTLK1 functioned as an endogenous miR-335-3p sponge to inhibit miR-335-3p activity, resulting in the increase of 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible poly (ADP-ribose) polymerase expression and a subsequent exacerbation of neuronal injury. Clinical studies confirmed increased levels of circTLK1 in the plasma of patients with acute ischemic stroke (59 males and 12 females). Our findings reveal a detrimental role of circTLK1 in ischemic brain injury.SIGNIFICANCE STATEMENT The extent of neuronal injury after brain ischemia is a primary factor determining stroke outcomes. However, the molecular switches that control the death of ischemic neurons are poorly understood. While our previous studies indicated the involvement of circRNAs in ischemic stroke, the potential role of circRNAs in neuronal injury remains largely unknown. The levels of circTLK1 were significantly increased in the brain tissue and plasma isolated from animal models of ischemic stroke and patients. Knockdown of circTLK1 significantly decreased infarct volumes, attenuated neuronal injury, and improved subsequent long-term neurological deficits. To our knowledge, these results provide the first definitive evidence that circTLK1 is detrimental in ischemic stroke.
Collapse
|
30
|
3-Methylcholanthrene Induces Chylous Ascites in TCDD-Inducible Poly-ADP-Ribose Polymerase ( Tiparp) Knockout Mice. Int J Mol Sci 2019; 20:ijms20092312. [PMID: 31083300 PMCID: PMC6540065 DOI: 10.3390/ijms20092312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
TCDD-inducible poly-ADP-ribose polymerase (TIPARP) is an aryl hydrocarbon receptor (AHR) target gene that functions as part of a negative feedback loop to repress AHR activity. Tiparp−/− mice exhibit increased sensitivity to the toxicological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including lethal wasting syndrome. However, it is not known whether Tiparp−/− mice also exhibit increased sensitivity to other AHR ligands. In this study, we treated male Tiparp−/− or wild type (WT) mice with a single injection of 100 mg/kg 3-methylcholanthrene (3MC). Consistent with TIPARP’s role as a repressor of AHR signaling, 3MC-treated Tiparp−/− mice exhibited increased hepatic Cyp1a1 and Cyp1b1 levels compared with WT mice. No 3MC-treated Tiparp−/− mice survived beyond day 16 and the mice exhibited chylous ascites characterized by an accumulation of fluid in the peritoneal cavity. All WT mice survived the 30-day treatment and showed no signs of fluid accumulation. Treated Tiparp−/− mice also exhibited a transient and mild hepatotoxicity with inflammation. 3MC-treated WT, but not Tiparp−/− mice, developed mild hepatic steatosis. Lipid deposits accumulated on the surface of the liver and other abdominal organs in the 3MC-Tiparp−/− mice. Our study reveals that Tiparp−/− mice have increased sensitivity to 3MC-induced liver toxicity, but unlike with TCDD, lethality is due to chylous ascites rather than wasting syndrome.
Collapse
|
31
|
Methods to Study TCDD-Inducible Poly-ADP-Ribose Polymerase (TIPARP) Mono-ADP-Ribosyltransferase Activity. Methods Mol Biol 2019; 1813:109-124. [PMID: 30097864 DOI: 10.1007/978-1-4939-8588-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
TCDD-inducible poly-ADP-ribose polymerase (TIPARP; also known as PARP7 and ARTD14) is a mono-ADP-ribosyltransferase that has emerged as an important regulator of innate immunity, stem cell pluripotency, and transcription factor regulation. Characterizing TIPARP's catalytic activity and identifying its target proteins are critical to understanding its cellular function. Here we describe methods that we use to characterize TIPARP catalytic activity and its mono-ADP-ribosylation of its target proteins.
Collapse
|
32
|
Bock KW. Aryl hydrocarbon receptor (AHR) functions in NAD + metabolism, myelopoiesis and obesity. Biochem Pharmacol 2019; 163:128-132. [PMID: 30779909 DOI: 10.1016/j.bcp.2019.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022]
Abstract
Diverse physiologic functions of AHR, a transcription factor discovered in studies of dioxin toxicity, are currently elucidated in many laboratories including chemical and microbial defense, immunity and myelopoiesis. Accumulating evidence suggests that AHR may also be involved in obesity and TCDD-mediated lethality in sensitive species. Underlying mechanisms include NAD+- and sirtuin-mediated deregulation of lipid, glucose and NAD+ homeostasis. Progress in NAD metabolome research suggests large consumption of NAD+ by NAD glycohydrolases (NADases) and NAD-dependent sirtuins. In focus are two NADases: (i) TiPARP (TCDD-induced poly(ADP-ribose) polymerase), one of several nuclear NADases, and (ii) plasma membrane-bound ectoNADase/CD38, a multifunctional enzyme and receptor. CD38 is involved in extra- and intracellular NAD degradation but acts also as differentiation marker. Both CD38 and AHR are components of a complex signalsome that enhances retinoic acid-induced differentiation of myeloid progenitor cells to granulocytes. Further advances of NAD metabolome research may lead to therapeutic options in the control of obesity and to improved risk assessment of TCDD toxicity.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
33
|
Hutin D, Tamblyn L, Gomez A, Grimaldi G, Soedling H, Cho T, Ahmed S, Lucas C, Kanduri C, Grant DM, Matthews J. Hepatocyte-Specific Deletion of TIPARP, a Negative Regulator of the Aryl Hydrocarbon Receptor, Is Sufficient to Increase Sensitivity to Dioxin-Induced Wasting Syndrome. Toxicol Sci 2018; 165:347-360. [PMID: 29873790 PMCID: PMC6154274 DOI: 10.1093/toxsci/kfy136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of dioxin (2, 3, 7, 8-tetrachlorodibenzo-p-dioxin; TCDD), which includes thymic atrophy, steatohepatitis, and a lethal wasting syndrome in laboratory rodents. Although the mechanisms of dioxin toxicity remain unknown, AHR signaling in hepatocytes is necessary for dioxin-induced liver toxicity. We previously reported that loss of TCDD-inducible poly(adenosine diphosphate [ADP]-ribose) polymerase (TIPARP/PARP7/ARTD14), an AHR target gene and mono-ADP-ribosyltransferase, increases the sensitivity of mice to dioxin-induced toxicities. To test the hypothesis that TIPARP is a negative regulator of AHR signaling in hepatocytes, we generated Tiparpfl/fl mice in which exon 3 of Tiparp is flanked by loxP sites, followed by Cre-lox technology to create hepatocyte-specific (Tiparpfl/flCreAlb) and whole-body (Tiparpfl/flCreCMV; TiparpEx3-/-) Tiparp null mice. Tiparpfl/flCreAlb and TiparpEx3-/- mice given a single injection of 10 μg/kg dioxin did not survive beyond days 7 and 9, respectively, while all Tiparp+/+ mice survived the 30-day treatment. Dioxin-exposed Tiparpfl/flCreAlb and TiparpEx3-/- mice had increased steatohepatitis and hepatotoxicity as indicated by greater staining of neutral lipids and serum alanine aminotransferase activity than similarly treated wild-type mice. Tiparpfl/flCreAlb and TiparpEx3-/- mice exhibited augmented AHR signaling, denoted by increased dioxin-induced gene expression. Metabolomic studies revealed alterations in lipid and amino acid metabolism in liver extracts from Tiparpfl/flCreAlb mice compared with wild-type mice. Taken together, these data illustrate that TIPARP is an important negative regulator of AHR activity, and that its specific loss in hepatocytes is sufficient to increase sensitivity to dioxin-induced steatohepatitis and lethality.
Collapse
Affiliation(s)
- David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Laura Tamblyn
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Alvin Gomez
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Giulia Grimaldi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Helen Soedling
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Tiffany Cho
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Shaimaa Ahmed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Christin Lucas
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Chakravarthi Kanduri
- Department of Informatics, Jebsen Centre of Excellence for Celiac Disease Research, University of Oslo, Oslo, Norway
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 2018; 14:1164-1184. [PMID: 29938598 DOI: 10.1080/15548627.2018.1458173] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and are involved in the regulation of physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, using a circRNA microarray, we showed that circular RNA Hectd1 (circHectd1) levels were significantly increased in ischemic brain tissues in transient middle cerebral artery occlusion (tMCAO) mouse stroke models and further validated this finding in plasma samples from acute ischemic stroke (AIS) patients. Knockdown of circHectd1 expression significantly decreased infarct areas, attenuated neuronal deficits, and ameliorated astrocyte activation in tMCAO mice. Mechanistically, circHECTD1 functions as an endogenous MIR142 (microRNA 142) sponge to inhibit MIR142 activity, resulting in the inhibition of TIPARP (TCDD inducible poly[ADP-ribose] polymerase) expression with subsequent inhibition of astrocyte activation via macroautophagy/autophagy. Taken together, the results of our study indicate that circHECTD1 and its coupling mechanism are involved in cerebral ischemia, thus providing translational evidence that circHECTD1 can serve as a novel biomarker of and therapeutic target for stroke. ABBREVIATIONS 3-MA: 3-methyladenine; ACTB: actin beta; AIS: acute ischemic stroke; AS: primary mouse astrocytes; BECN1: beclin 1, autophagy related; BMI: body mass index; circHECTD1: circRNA HECTD1; circRNAs: circular RNAs; CBF: cerebral blood flow; Con: control; DAPI: 4',6-diamidino-2-phenylindole; ECA: external carotid artery; FISH: fluorescence in situ hybridization; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; Gdna: genomic DNA; GFAP: glial fibrillary acidic protein; GO: gene ontology; HDL: high-density lipoprotein; IOD: integrated optical density; LDL: low-density lipoprotein; LPA: lipoprotein(a); MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MIR142: microRNA 142; mNSS: modified neurological severity scores; MRI: magnetic resonance imaging; NIHSS: National Institute of Health Stoke Scale; OGD-R: oxygen glucose deprivation-reperfusion; PCR: polymerase chain reaction; PFA: paraformaldehyde; SQSTM1: sequestosome 1; TIPARP: TCDD inducible poly(ADP-ribose) polymerase; tMCAO: transient middle cerebral artery occlusion; TTC: 2,3,5-triphenyltetrazolium chloride; UTR: untranslated region; WT: wild type.
Collapse
Affiliation(s)
- Bing Han
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yuan Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yanhong Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Ying Bai
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Xufeng Chen
- b Department of Emergency , Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Rongrong Huang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Fangfang Wu
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Shuo Leng
- c Department of Radiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Jie Chao
- d Department of Physiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - John H Zhang
- e Department of Physiology and Pharmacology , School of Medicine, Loma Linda University , Loma Linda , California , USA
| | - Gang Hu
- f Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China.,g Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
35
|
Zhen Y, Yu Y. Proteomic Analysis of the Downstream Signaling Network of PARP1. Biochemistry 2018; 57:429-440. [PMID: 29327913 DOI: 10.1021/acs.biochem.7b01022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Poly-ADP-ribosylation (PARylation) is a protein posttranslational modification (PTM) that is critically involved in many biological processes that are linked to cell stress responses. It is catalyzed by a class of enzymes known as poly-ADP-ribose polymerases (PARPs). In particular, PARP1 is a nuclear protein that is activated upon sensing nicked DNA. Once activated, PARP1 is responsible for the synthesis of a large number of PARylated proteins and initiation of the DNA damage response mechanisms. This observation provided the rationale for developing PARP1 inhibitors for the treatment of human malignancies. Indeed, three PARP1 inhibitors (Olaparib, Rucaparib, and Niraparib) have recently been approved by the Food and Drug Administration for the treatment of ovarian cancer. Moreover, in 2017, both Olaparib and Niraparib have also been approved for the treatment of fallopian tube cancer and primary peritoneal cancer. Despite this very exciting progress in the clinic, the basic signaling mechanism that connects PARP1 to a diverse array of biological processes is still poorly understood. This is, in large part, due to the inherent technical difficulty associated with the analysis of protein PARylation, which is a low-abundance, labile, and heterogeneous PTM. The study of PARylation has been greatly facilitated by the recent advances in mass spectrometry-based proteomic technologies tailored to the analysis of this modification. In this Perspective, we discuss these breakthroughs, including their technical development, and applications that provide a global view of the many biological processes regulated by this important protein modification.
Collapse
Affiliation(s)
- Yuanli Zhen
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| |
Collapse
|
36
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
37
|
Yang SY, Ahmed S, Satheesh SV, Matthews J. Genome-wide mapping and analysis of aryl hydrocarbon receptor (AHR)- and aryl hydrocarbon receptor repressor (AHRR)-binding sites in human breast cancer cells. Arch Toxicol 2017; 92:225-240. [PMID: 28681081 PMCID: PMC5773648 DOI: 10.1007/s00204-017-2022-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxic actions of environmental contaminants, such as 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), and also plays roles in vascular development, the immune response, and cell cycle regulation. The AHR repressor (AHRR) is an AHR-regulated gene and a negative regulator of AHR; however, the mechanisms of AHRR-dependent repression of AHR are unclear. In this study, we compared the genome-wide binding profiles of AHR and AHRR in MCF-7 human breast cancer cells treated for 24 h with TCDD using chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq). We identified 3915 AHR- and 2811 AHRR-bound regions, of which 974 (35%) were common to both datasets. When these 24-h datasets were also compared with AHR-bound regions identified after 45 min of TCDD treatment, 67% (1884) of AHRR-bound regions overlapped with those of AHR. This analysis identified 994 unique AHRR-bound regions. AHRR-bound regions mapped closer to promoter regions when compared with AHR-bound regions. The AHRE was identified and overrepresented in AHR:AHRR-co-bound regions, AHR-only regions, and AHRR-only regions. Candidate unique AHR- and AHRR-bound regions were validated by ChIP–qPCR and their ability to regulate gene expression was confirmed by luciferase reporter gene assays. Overall, this study reveals that AHR and AHRR exhibit similar but also distinct genome-wide binding profiles, supporting the notion that AHRR is a context- and gene-specific repressor of AHR activity.
Collapse
Affiliation(s)
- Sunny Y. Yang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Present Address: Department of Pharmaceutical Sciences, University of British Columbia, Wesbrook Mall, Vancouver, V6T 1Z3 Canada
| | - Shaimaa Ahmed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Somisetty V. Satheesh
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, 1046, 0317 Oslo, Norway
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, 1046, 0317 Oslo, Norway
| |
Collapse
|
38
|
Diani-Moore S, Shoots J, Singh R, Zuk JB, Rifkind AB. NAD + loss, a new player in AhR biology: prevention of thymus atrophy and hepatosteatosis by NAD + repletion. Sci Rep 2017; 7:2268. [PMID: 28536482 PMCID: PMC5442136 DOI: 10.1038/s41598-017-02332-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023] Open
Abstract
Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) is a carcinogenic and highly toxic industrial byproduct that persists in the environment and produces a pleiotropic toxicity syndrome across vertebrate species that includes wasting, hepatosteatosis, and thymus atrophy. Dioxin toxicities require binding and activation of the aryl hydrocarbon receptor (AhR), a ligand activated transcription factor. However, after nearly 50 years of study, it remains unknown how AhR activation by dioxin produces toxic effects. Here, using the chick embryo close to hatching, a well-accepted model for dioxin toxicity, we identify NAD+ loss through PARP activation as a novel unifying mechanism for diverse effects of dioxin in vivo. We show that NAD+ loss is attributable to increased PARP activity in thymus and liver, as cotreatment with dioxin and the PARP inhibitor PJ34 increased NAD+ levels and prevented both thymus atrophy and hepatosteatosis. Our findings additionally support a role for decreased NAD+ dependent Sirt6 activity in mediating dioxin toxicity following PARP activation. Strikingly, treatment in vivo with the NAD+ repleting agent nicotinamide, a form of vitamin B3, prevented thymus atrophy and hepatosteatosis by dioxin and increased sirtuin activity, providing a therapeutic approach for preventing dioxin toxicities in vivo.
Collapse
Affiliation(s)
- Silvia Diani-Moore
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, 1300 York Avenue, NY, NY, 10021, USA
| | - Jenny Shoots
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, 1300 York Avenue, NY, NY, 10021, USA
| | - Rubi Singh
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, 1300 York Avenue, NY, NY, 10021, USA
| | - Joshua B Zuk
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, 1300 York Avenue, NY, NY, 10021, USA
| | - Arleen B Rifkind
- Department of Pharmacology and Pharmacology PhD Program, Weill Cornell Medicine, 1300 York Avenue, NY, NY, 10021, USA.
| |
Collapse
|
39
|
|
40
|
Fiorito F, Santamaria R, Irace C, De Martino L, Iovane G. 2,3,7,8-tetrachlorodibenzo-p-dioxin and the viral infection. ENVIRONMENTAL RESEARCH 2017; 153:27-34. [PMID: 27883971 DOI: 10.1016/j.envres.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/13/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a widespread highly toxic environmental contaminant, suppresses immune response and leads to an increased susceptibility to infectious agents. In particular, several studies have provided evidence that TCDD decreases resistance to numerous viruses. Indeed, in vivo and in vitro investigations showed that the presence of TCDD is able to interfere with the replication of both human and animal viruses, such as influenza A viruses, coxsackie virus B3, immunodeficiency virus type-1 (HIV-1), cytomegalovirus (CMV), herpes simplex II, and bovine herpesvirus 1. Moreover, TCDD could induce an exacerbation of latent infection produced by HIV-1, CMV or Epstein-Barr virus. In this review, we first describe the general effects of TCDD exposure on mammalian cells, then we focus on its influence on the viral infections. Overall, the available data support the concept that TCDD exposure may act as an additional risk factor in promoting of viral diseases.
Collapse
Affiliation(s)
- Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055 Naples, Italy.
| | - Rita Santamaria
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy.
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| |
Collapse
|
41
|
Lee HU, McPherson ZE, Tan B, Korecka A, Pettersson S. Host-microbiome interactions: the aryl hydrocarbon receptor and the central nervous system. J Mol Med (Berl) 2017; 95:29-39. [PMID: 27858116 PMCID: PMC5225196 DOI: 10.1007/s00109-016-1486-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022]
Abstract
The microbiome located within a given host and its organs forms a holobiont, an intimate functional entity with evolutionarily designed interactions to support nutritional intake and reproduction. Thus, all organs in a holobiont respond to changes within the microbiome. The development and function of the central nervous system and its homeostatic mechanisms are no exception and are also subject to regulation by the gut microbiome. In order for the holobiont to function effectively, the microbiome and host must communicate. The aryl hydrocarbon receptor is an evolutionarily conserved receptor recognizing environmental compounds, including a number of ligands produced directly and indirectly by the microbiome. This review focuses on the microbiome-gut-brain axis in regard to the aryl hydrocarbon receptor signaling pathway and its impact on underlying mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Hae Ung Lee
- The LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Zachary E McPherson
- The School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Bryan Tan
- The School of Medicine, Imperial College, London, UK
| | - Agata Korecka
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Solna, Sweden
| | - Sven Pettersson
- The LKC School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
42
|
Brauze D, Zawierucha P, Kiwerska K, Bednarek K, Oleszak M, Rydzanicz M, Jarmuz-Szymczak M. Induction of expression of aryl hydrocarbon receptor-dependent genes in human HepaRG cell line modified by shRNA and treated with β-naphthoflavone. Mol Cell Biochem 2016; 425:59-75. [PMID: 27796684 PMCID: PMC5225230 DOI: 10.1007/s11010-016-2862-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/22/2016] [Indexed: 11/28/2022]
Abstract
The aryl hydrocarbon receptor (AhR) mediates a variety of biological responses to ubiquitous environmental pollutants. In this study, the effects of administration of β-naphthoflavone (BNF), a potent AhR ligand, on the expression of AhR-dependent genes were examined by microarray and qPCR analysis in both, differentiated and undifferentiated HepaRG cell lines. To prove that BNF-induced changes of investigated genes were indeed AhR-dependent, we knock down the expression of AhR by stable transfection of HepaRG cells with shRNA. Regardless of genetical identity, our results clearly demonstrate different expression profiles of AhR-dependent genes between differentiated and undifferentiated HepaRG cells. Genes involved in metabolism of xenobiotics constitute only minute fraction of all genes regulated by AhR in HepaRG cells. Participation of AhR in induction of expression of genes associated with regulation of apoptosis or involved in cell proliferation as well as AhR-dependent inhibition of genes connected to cell adhesion could support suggestion of involvement of AhR not only in initiation but also in progression of carcinogenesis. Among the AhR-dependent genes known to be involved in metabolism of xenobiotics, cytochromes P4501A1 and 1B1 belong to the most inducible by BNF. On the contrary, expression of GSTA1 and GSTA2 was significantly inhibited after BNF treatment of HepaRG cells. Among the AhR-dependent genes that are not involved in metabolism of xenobiotics SERPINB2, STC2, ARL4C, and TIPARP belong to the most inducible by BNF. Our results imply involvement of Ah receptor in regulation of CYP19A1, the gene-encoding aromatase, and an enzyme responsible for a key step in the biosynthesis of estrogens.
Collapse
Affiliation(s)
- Damian Brauze
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| | - Piotr Zawierucha
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781, Poznan, Poland.,Department of Anatomy, Poznań University of Medical Sciences, 60-781, Poznan, Poland
| | - Katarzyna Kiwerska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Kinga Bednarek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Martyna Oleszak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Malgorzata Rydzanicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.,Department of Medical Genetics, Medical University of Warsaw, Pawinskiego 3c, 02-106, Warsaw, Poland
| | | |
Collapse
|
43
|
Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, Gautam S, Begum R. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Cell Prolif 2016; 49:421-37. [PMID: 27329285 DOI: 10.1111/cpr.12268] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
PARP family members can be found spread across all domains and continue to be essential molecules from lower to higher eukaryotes. Poly (ADP-ribose) polymerase 1 (PARP-1), newly termed ADP-ribosyltransferase D-type 1 (ARTD1), is a ubiquitously expressed ADP-ribosyltransferase (ART) enzyme involved in key cellular processes such as DNA repair and cell death. This review assesses current developments in PARP-1 biology and activation signals for PARP-1, other than conventional DNA damage activation. Moreover, many essential functions of PARP-1 still remain elusive. PARP-1 is found to be involved in a myriad of cellular events via conservation of genomic integrity, chromatin dynamics and transcriptional regulation. This article briefly focuses on its other equally important overlooked functions during growth, metabolic regulation, spermatogenesis, embryogenesis, epigenetics and differentiation. Understanding the role of PARP-1, its multidimensional regulatory mechanisms in the cell and its dysregulation resulting in diseased states, will help in harnessing its true therapeutic potential.
Collapse
Affiliation(s)
- T Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - M Jariwala
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Bhatt
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Sutariya
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A R Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - R Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
44
|
Yamada T, Horimoto H, Kameyama T, Hayakawa S, Yamato H, Dazai M, Takada A, Kida H, Bott D, Zhou AC, Hutin D, Watts TH, Asaka M, Matthews J, Takaoka A. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. Nat Immunol 2016; 17:687-94. [PMID: 27089381 DOI: 10.1038/ni.3422] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxic activity of many environmental xenobiotics. However, its role in innate immune responses during viral infection is not fully understood. Here we demonstrate that constitutive AHR signaling negatively regulates the type I interferon (IFN-I) response during infection with various types of virus. Virus-induced IFN-β production was enhanced in AHR-deficient cells and mice and resulted in restricted viral replication. We found that AHR upregulates expression of the ADP-ribosylase TIPARP, which in turn causes downregulation of the IFN-I response. Mechanistically, TIPARP interacted with the kinase TBK1 and suppressed its activity by ADP-ribosylation. Thus, this study reveals the physiological importance of endogenous activation of AHR signaling in shaping the IFN-I-mediated innate response and, further, suggests that the AHR-TIPARP axis is a potential therapeutic target for enhancing antiviral responses.
Collapse
Affiliation(s)
- Taisho Yamada
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromasa Horimoto
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeshi Kameyama
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Molecular Medical Biochemistry Unit, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Sumio Hayakawa
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Molecular Medical Biochemistry Unit, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Hiroaki Yamato
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masayoshi Dazai
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Debbie Bott
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Angela C Zhou
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Molecular Medical Biochemistry Unit, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
45
|
Liu C, Yu X. ADP-ribosyltransferases and poly ADP-ribosylation. Curr Protein Pept Sci 2016; 16:491-501. [PMID: 25938242 DOI: 10.2174/1389203716666150504122435] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022]
Abstract
Protein ADP-ribosylation is an important posttranslational modification that plays versatile roles in multiple biological processes. ADP-ribosylation is catalyzed by a group of enzymes known as ADP-ribosyltransferases (ARTs). Using nicotinamide adenine dinucleotide (NAD(+)) as the donor, ARTs covalently link single or multiple ADP-ribose moieties from NAD(+) to the substrates, forming mono ADP-ribosylation or poly ADP-ribosylation (PARylation). Novel functions of ARTs and ADPribosylation have been revealed over the past few years. Here we summarize the current knowledge on ARTs and PARylation.
Collapse
Affiliation(s)
| | - Xiaochun Yu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors. Biochem J 2016; 473:899-910. [PMID: 26814197 DOI: 10.1042/bj20151077] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/26/2016] [Indexed: 12/27/2022]
Abstract
Members of the poly-ADP-ribose polymerase (PARP) family catalyse the ADP-ribosylation of target proteins and are known to play important roles in many cellular processes, including DNA repair, differentiation and transcription. The majority of PARPs exhibit mono-ADP-ribosyltransferase activity rather than PARP activity; however, little is known about their biological activity. In the present study, we report that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP), mono-ADP-ribosylates and positively regulates liver X receptor α (LXRα) and LXRβ activity. Overexpression of TIPARP enhanced LXR-reporter gene activity. TIPARP knockdown or deletion reduced LXR regulated target gene expression levels in HepG2 cells and in Tiparp(-/-)mouse embryonic fibroblasts (MEFs) respectively. Deletion and mutagenesis studies showed that TIPARP's zinc-finger and catalytic domains were required to enhance LXR activity. Protein interaction studies using TIPARP and LXRα/β peptide arrays revealed that LXRs interacted with an N-terminal sequence (a.a. 209-236) of TIPARP, which also overlapped with a putative co-activator domain of TIPARP (a.a. 200-225). Immunofluorescence studies showed that TIPARP and LXRα or LXRβ co-localized in the nucleus.In vitroribosylation assays provided evidence that TIPARP mono-ADP-ribosylated both LXRα and LXRβ. Co-immunoprecipitation (co-IP) studies revealed that ADP-ribosylase macrodomain 1 (MACROD1), but not MACROD2, interacted with LXRs in a TIPARP-dependent manner. This was complemented by reporter gene studies showing that MACROD1, but not MACROD2, prevented the TIPARP-dependent increase in LXR activity. GW3965-dependent increases in hepatic Srebp1 mRNA and protein expression levels were reduced in Tiparp(-/-)mice compared with Tiparp(+/+)mice. Taken together, these data identify a new mechanism of LXR regulation that involves TIPARP, ADP-ribosylation and MACROD1.
Collapse
|
47
|
Zhou L. AHR Function in Lymphocytes: Emerging Concepts. Trends Immunol 2016; 37:17-31. [PMID: 26700314 PMCID: PMC4707131 DOI: 10.1016/j.it.2015.11.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with AHR's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for AHR in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate AHR transcription and function. I propose a conceptual framework in which AHR function is determined by three factors: the amount of AHR in any given cell, the abundance and potency of AHR ligands within certain tissues, and the tissue microenvironment wherein AHR(+) cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of AHR function.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
48
|
Intracellular Mono-ADP-Ribosylation in Signaling and Disease. Cells 2015; 4:569-95. [PMID: 26426055 PMCID: PMC4695847 DOI: 10.3390/cells4040569] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022] Open
Abstract
A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases.
Collapse
|
49
|
Becker RA, Patlewicz G, Simon TW, Rowlands JC, Budinsky RA. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Regul Toxicol Pharmacol 2015; 73:172-90. [PMID: 26145830 DOI: 10.1016/j.yrtph.2015.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
An Adverse Outcome Pathway (AOP) represents the existing knowledge of a biological pathway leading from initial molecular interactions of a toxicant and progressing through a series of key events (KEs), culminating with an apical adverse outcome (AO) that has to be of regulatory relevance. An AOP based on the mode of action (MOA) of rodent liver tumor promotion by dioxin-like compounds (DLCs) has been developed and the weight of evidence (WoE) of key event relationships (KERs) evaluated using evolved Bradford Hill considerations. Dioxins and DLCs are potent aryl hydrocarbon receptor (AHR) ligands that cause a range of species-specific adverse outcomes. The occurrence of KEs is necessary for inducing downstream biological responses and KEs may occur at the molecular, cellular, tissue and organ levels. The common convention is that an AOP begins with the toxicant interaction with a biological response element; for this AOP, this initial event is binding of a DLC ligand to the AHR. Data from mechanistic studies, lifetime bioassays and approximately thirty initiation-promotion studies have established dioxin and DLCs as rat liver tumor promoters. Such studies clearly show that sustained AHR activation, weeks or months in duration, is necessary to induce rodent liver tumor promotion--hence, sustained AHR activation is deemed the molecular initiating event (MIE). After this MIE, subsequent KEs are 1) changes in cellular growth homeostasis likely associated with expression changes in a number of genes and observed as development of hepatic foci and decreases in apoptosis within foci; 2) extensive liver toxicity observed as the constellation of effects called toxic hepatopathy; 3) cellular proliferation and hyperplasia in several hepatic cell types. This progression of KEs culminates in the AO, the development of hepatocellular adenomas and carcinomas and cholangiolar carcinomas. A rich data set provides both qualitative and quantitative knowledge of the progression of this AOP through KEs and the KERs. Thus, the WoE for this AOP is judged to be strong. Species-specific effects of dioxins and DLCs are well known--humans are less responsive than rodents and rodent species differ in sensitivity between strains. Consequently, application of this AOP to evaluate potential human health risks must take these differences into account.
Collapse
Affiliation(s)
- Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA.
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE 19711, USA
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| |
Collapse
|
50
|
Ahmed S, Bott D, Gomez A, Tamblyn L, Rasheed A, Cho T, MacPherson L, Sugamori KS, Yang Y, Grant DM, Cummins CL, Matthews J. Loss of the Mono-ADP-ribosyltransferase, Tiparp, Increases Sensitivity to Dioxin-induced Steatohepatitis and Lethality. J Biol Chem 2015; 290:16824-40. [PMID: 25975270 DOI: 10.1074/jbc.m115.660100] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp(-/-) mice given a single injection of 100 μg/kg dioxin did not survive beyond day 5; all Tiparp(+/+) mice survived the 30-day treatment. Dioxin-treated Tiparp(-/-) mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin.
Collapse
Affiliation(s)
| | - Debbie Bott
- From the Department of Pharmacology and Toxicology
| | - Alvin Gomez
- From the Department of Pharmacology and Toxicology
| | | | - Adil Rasheed
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tiffany Cho
- From the Department of Pharmacology and Toxicology
| | | | | | - Yang Yang
- From the Department of Pharmacology and Toxicology
| | - Denis M Grant
- From the Department of Pharmacology and Toxicology, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Carolyn L Cummins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|