1
|
Zhu L, Li Y, Yu X, Chen Y, Zhang J, Pang C, Xie J, Gao L, Du L, Cao W, Fan D, Cui C, Yu H, Deng B. Fighting Amyotrophic Lateral Sclerosis by Protecting the Liver? A Prospective Cohort Study. Ann Neurol 2024. [PMID: 39425590 DOI: 10.1002/ana.27115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Previous studies have observed liver abnormalities in amyotrophic lateral sclerosis (ALS) patients. This study aimed to investigate whether early signs of liver disease, measured by magnetic resonance imaging-derived iron-corrected T1-mapping (cT1), are risk factors for developing ALS. METHODS cT1 and proton density fat fraction were measured and automatically analyzed using LiverMultiScan® software. The Fibrosis-4 index was calculated using an established formula based on age and blood markers. Cox proportional hazard models were used to examine the relationship between liver disease, liver biomarkers, and incident ALS. RESULTS In a cohort of 533,707 individuals from UK Biobank, 24 ALS cases were identified among 28,328 participants with liver disease during the follow-up period. Among a total of 33,959 individuals with complete liver imaging data, 15 incident ALS cases were observed during a median follow-up period of 5.6 years. Individuals with liver disease had a higher risk of developing ALS, with an adjusted hazard ratio of 7.35 (95% CI 4.47-12.09; p < 0.001). An increase in cT1 was also associated with a higher risk of ALS. After adjusting for age, sex, Townsend deprivation index, smoking status, alcohol intake frequency, body mass index, proton density fat fraction, Fibrosis-4, and metabolic syndrome, an increase in cT1 remained significantly associated with a higher risk of ALS, with an adjusted hazard ratio of 3.15 (95% CI 1.79-5.55) per 1-SD increase. Sensitivity analyses confirmed these robust results. INTERPRETATION Liver disease activity, indicated by cT1, increases the risk of developing ALS, independent of metabolic syndrome, liver fat, or fibrosis. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Luyi Zhu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyue Yu
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Yinuo Chen
- First Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Junwei Zhang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyang Pang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiali Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingfei Gao
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lihuai Du
- College of Mathematics and Physics, Wenzhou University, Wenzhou, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Can Cui
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Pellicci DG, Tavakolinia N, Perriman L, Berzins SP, Menne C. Thymic development of human natural killer T cells: recent advances and implications for immunotherapy. Front Immunol 2024; 15:1441634. [PMID: 39267746 PMCID: PMC11390520 DOI: 10.3389/fimmu.2024.1441634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of lipid-reactive, unconventional T cells that have anti-tumor properties that make them a promising target for cancer immunotherapy. Recent studies have deciphered the developmental pathway of human MAIT and Vγ9Vδ2 γδ-T cells as well as murine iNKT cells, yet our understanding of human NKT cell development is limited. Here, we provide an update in our understanding of how NKT cells develop in the human body and how knowledge regarding their development could enhance human treatments by targeting these cells.
Collapse
Affiliation(s)
- Daniel G Pellicci
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Louis Perriman
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Fiona Elsey Cancer Institute, Ballarat, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
| | | |
Collapse
|
3
|
Gao H, Wang X, Gan H, Li M, Shi J, Guo Y. Deciphering the circulating immunological landscape of thoracic aortic aneurysm: Insights from a two-sample Mendelian randomization study. Heliyon 2024; 10:e31198. [PMID: 38803862 PMCID: PMC11128510 DOI: 10.1016/j.heliyon.2024.e31198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Thoracic Aortic Aneurysm (TAA) poses significant health risks due to aortic dilation. Recent evidence suggests a pivotal role for the immune-inflammatory response in the mechanism of aortic aneurysm formation. In this study, we aim to investigate the causal relationship between circulating immune cells and TAA. Methods This study employs a two-sample Mendelian Randomization (MR) approach, utilizing genome-wide association study (GWAS) summary statistics for 731 immune cell types and two TAA data from large-scale studies. Causal effects of both peripheral immune cells on TAA and TAA on peripheral immune cells are explored. To ensure more accurate results, we intersected the findings from two TAA data from large-scale studies, excluding results where the direction of the odds ratio (OR) was inconsistent. Findings The study identifies specific immune cells associated with TAA. Notably, CD45+ NKT cell (OR: 0.95, 95CI%: 0.90-0.99 in FinnGen study; OR: 0.91, 95CI%: 0.84-0.99 in CHIP + MGI study) and CD45+ HLA-DR + CD8+ T cells (OR: 0.95, 95CI%: 0.90-0.99 in FinnGen study; OR: 0.90, 95CI%: 0.82-0.99 in CHIP + MGI study) demonstrate a protective role against TAA. In addition, CD28+ CD45RA- CD8+ T cells (relative cell counts and absolute cell counts) and HVEM + CM + CD8+ T cells are adversely affected by TAA. Interpretation The findings indicate that the potential protective influence exerted by specific subsets of peripheral NKT cells and CD8+ T cells in mitigating the development of TAA, while simultaneously highlighting the reciprocal effects of TAA on peripheral Treg cells subsets and T cell subsets. The complex interaction between immune cells and TAA could provide valuable clues for earlier detection and more efficacious treatment strategies for TAA.
Collapse
Affiliation(s)
- Haoyu Gao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hanghang Gan
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shi
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Mimic S, Aru B, Pehlivanoğlu C, Sleiman H, Andjus PR, Yanıkkaya Demirel G. Immunology of amyotrophic lateral sclerosis - role of the innate and adaptive immunity. Front Neurosci 2023; 17:1277399. [PMID: 38105925 PMCID: PMC10723830 DOI: 10.3389/fnins.2023.1277399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
This review aims to summarize the latest evidence about the role of innate and adaptive immunity in Amyotrophic Lateral Sclerosis (ALS). ALS is a devastating neurodegenerative disease affecting upper and lower motor neurons, which involves essential cells of the immune system that play a basic role in innate or adaptive immunity, that can be neurotoxic or neuroprotective for neurons. However, distinguishing between the sole neurotoxic or neuroprotective function of certain cells such as astrocytes can be challenging due to intricate nature of these cells, the complexity of the microenvironment and the contextual factors. In this review, in regard to innate immunity we focus on the involvement of monocytes/macrophages, microglia, the complement, NK cells, neutrophils, mast cells, and astrocytes, while regarding adaptive immunity, in addition to humoral immunity the most important features and roles of T and B cells are highlighted, specifically different subsets of CD4+ as well as CD8+ T cells. The role of autoantibodies and cytokines is also discussed in distinct sections of this review.
Collapse
Affiliation(s)
- Stefan Mimic
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Başak Aru
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Cemil Pehlivanoğlu
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Hadi Sleiman
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Pavle R. Andjus
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
5
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Parihar N, Bhatt LK. The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease. Int Immunopharmacol 2023; 122:110666. [PMID: 37473709 DOI: 10.1016/j.intimp.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
7
|
Tang S, Wang Y, Ma X, Xiang X, Zhou X, Li Y, Jia Y, Hu F, Li Y. Decreased natural killer T-like cells correlated to disease activity in systemic lupus erythematosus. Clin Rheumatol 2023; 42:1435-1442. [PMID: 36629999 DOI: 10.1007/s10067-022-06494-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To evaluate the absolute numbers and frequencies of natural killer T-like (NKT-like) cells in systemic lupus erythematosus (SLE) and to characterize the possible role of the cells. METHODS Seventy-nine patients with SLE together with 30 age- and sex-matched healthy controls were enrolled. Flow cytometric determination of peripheral NKT-like cells was carried out for all participants by detecting the absolute counts (Abs) and percentage (%) of CD3 + CD16 + CD56 + cells. Disease activity index, laboratory parameters, and clinical manifestations were collected. The correlation between the cells and these parameters was analyzed. RESULTS SLE patients had, with respect to controls, considerably decreased values of NKT-like cells (P < 0.001 in both absolute number and percentage). The absolute number of NKT-like cells was found to have positive correlations with WBC, RBC, PLT, C3, C4, IgM and negative correlations with the disease duration, SLEDAI-2 K, anti-dsDNA, anti-nucleosome, anti-ribosomal protein, CRP, ESR. Meanwhile, it was found that the percentage values of NKT-like cells decreased in SLE patients with nephritis which was correlated with anti-ribosomal protein and CRP in comparison to SLE patients without nephritis. Moreover, an increase in the NKT-like cell counts was also observed in the patients with a clinical response to the treatment. CONCLUSIONS The absolute counts and frequencies of NKT-like cells decreased in SLE patients significantly, which correlated to disease activities and could recover to normal after the treatment. The NKT-like cells may play an important role in the pathogenesis of SLE and could be a useful marker in the disease assessment. Key Points • The absolute counts and frequencies of NKT-like cells decreased in SLE patients significantly. • NKT-like cells were related to the disease activities and could restore after the treatment. • NKT-like cells may be a useful marker in the disease assessment.
Collapse
Affiliation(s)
- Sumei Tang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), 11 Xizhimen South St, Beijing, 100044, China
| | - Yushu Wang
- Inspection Center, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Xiangbo Ma
- Department of Rheumatology and Immunology, Handan First Hospital, Hebei, China
| | - Xiaohong Xiang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), 11 Xizhimen South St, Beijing, 100044, China
| | - Xinhua Zhou
- Clinical Laboratory, Third Hospital of Nanchang, Jiangxi, 330009, China
| | - Yan Li
- Clinical Laboratory, First People's Hospital of Jinzhong, Shanxi, 030600, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), 11 Xizhimen South St, Beijing, 100044, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), 11 Xizhimen South St, Beijing, 100044, China.
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), 11 Xizhimen South St, Beijing, 100044, China.
| |
Collapse
|
8
|
Lee SW, Park HJ, Van Kaer L, Hong S. Roles and therapeutic potential of CD1d-Restricted NKT cells in inflammatory skin diseases. Front Immunol 2022; 13:979370. [PMID: 36119077 PMCID: PMC9478174 DOI: 10.3389/fimmu.2022.979370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens rather than peptides. Due to their immunoregulatory properties, extensive work has been done to elucidate the immune functions of NKT cells in various immune contexts such as autoimmunity for more than two decades. In addition, as research on barrier immunity such as the mucosa-associated lymphoid tissue has flourished in recent years, the role of NKT cells to immunity in the skin has attracted substantial attention. Here, we review the contributions of NKT cells to regulating skin inflammation and discuss the factors that can modulate the functions of NKT cells in inflammatory skin diseases such as atopic dermatitis. This mini-review article will mainly focus on CD1d-dependent NKT cells and their therapeutic potential in skin-related immune diseases.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
- *Correspondence: Seokmann Hong,
| |
Collapse
|
9
|
Crohn’s Disease, Host–Microbiota Interactions, and Immunonutrition: Dietary Strategies Targeting Gut Microbiome as Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23158361. [PMID: 35955491 PMCID: PMC9369148 DOI: 10.3390/ijms23158361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Crohn’s disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host–microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host–microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity.
Collapse
|
10
|
iNKT cells can effectively inhibit IL-6 production by B cells in systemic sclerosis. Cytotherapy 2022; 24:482-488. [PMID: 35181242 DOI: 10.1016/j.jcyt.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a connective tissue disease with poorly understood pathogenesis and limited treatment options. Patient mortality is rooted predominantly in the development of pulmonary and cardiac complications. The overactivated immune system is assumed to sustain the inflammatory signature of this autoimmune disease. Here, we investigate the potential of immunoregulatory invariant natural killer T (iNKT) cells to inhibit proinflammatory B cell responses in an in vitro model of inflammation. METHODS B cells from healthy volunteers (n = 17) and patients with SSc (n = 15) were used for functional testing upon lipopolysaccharide (LPS) stimulation in a co-culture system with third-party iNKT cells. Cytokine production was measured with antibody-based immunoassays (ELISA) and intracellular cytokine staining. RESULTS iNKT cells strongly inhibited the production of proinflammatory interleukin-6 by B cells upon stimulation with LPS in both healthy volunteers and patients with SSc. In a Transwell assay, cell contact between B cells and iNKT cells proved necessary for this inhibitory effect. Similarly, blocking of CD1d on the surface of B cells abolished the immunoregulatory effect of iNKT cells on B cells. B cell subsets with higher expression of CD1d, namely unswitched memory B cells, were more susceptible to iNKT cell inhibition. CONCLUSION Our in vitro data underline the potential of iNKT cells in the control of SSc and provide a rationale for the use of novel iNKT cell-based therapeutic strategies in the context of autoimmune diseases.
Collapse
|
11
|
Hu Y, Chen Y, Chen Z, Zhang X, Guo C, Yu Z, Xu P, Sun L, Zhou X, Gong Y, Yu Q, Shi Y. Dysregulated Peripheral Invariant Natural Killer T Cells in Plaque Psoriasis Patients. Front Cell Dev Biol 2022; 9:799560. [PMID: 35186952 PMCID: PMC8850372 DOI: 10.3389/fcell.2021.799560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Psoriasis is a common immune-mediated skin disease that involves T-cell-mediated immunity. Invariant natural killer T (iNKT) cells are a unique lymphocyte subpopulation that share properties and express surface markers of both NK cells and T cells. Previous reports indicate that iNKT cells regulate the development of various inflammatory diseases. IL-17 is a key cytokine in the pathogenesis of psoriasis and a key therapeutic target. Secukinumab is a fully human IgG1κ antibody that targets IL-17A, thereby antagonizing the biological effects of IL-17. Objective: To explore the expression of iNKT cells in psoriasis patients and the effect of secukinumab on them. Methods: We examined the frequencies of iNKT cells, Tregs, naïve and memory CD4+and CD8+T cells in the PBMCs as well as their cytokine production in a cohort of 40 patients with moderate-to-severe plaque psoriasis and 40 gender- and age-matched healthy controls. We further collected peripheral blood of another 15 moderate-to-severe plaque psoriasis patients who were treated with secukinumab and evaluated the proportion of iNKT cells in the PBMCs at baseline and week 12. Results: The frequencies of conventional CD4+ T cells, CD8+ T cells, and Tregs in the PBMCs were comparable between psoriasis patients and healthy controls, but the frequencies of Th17 cells, Tc1 cells and Tc17 cells were increased in psoriasis patients. The frequency of peripheral iNKT cells and CD69+iNKT cells was significantly decreased in psoriasis patients. Both iNKT2 cells and iNKT17 cells were increased in psoriasis patients, but the ratio of iNKT2 cells vs iNKT17 cells was significantly reduced in psoriasis patients. After receiving secukinumab, the proportion of iNKT cells in the PBMCs of patients was increased, while the proportion of iNKT17 cells was decreased. Conclusion: Dysregulated iNKT cells may be involved in the pathogenesis of psoriasis and secukinumab may play a regulatory role on iNKT cells.
Collapse
Affiliation(s)
- Yifan Hu
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Youdong Chen
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Zeyu Chen
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - ChunYuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - ZengYang Yu
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Peng Xu
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Lei Sun
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Xue Zhou
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Qian Yu
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Qian Yu, ; Yuling Shi,
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Qian Yu, ; Yuling Shi,
| |
Collapse
|
12
|
Modulation of Tregs and iNKT by Fingolimod in Multiple Sclerosis Patients. Cells 2021; 10:cells10123324. [PMID: 34943831 PMCID: PMC8699557 DOI: 10.3390/cells10123324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
The altered numbers and functions of cells belonging to immunoregulatory cell networks such as T regulatory (Tregs) and invariant Natural Killer T (iNKT) cells have been reported in Multiple Sclerosis (MS), an immune-mediated disease. We aimed to assess the frequencies of Tregs and iNKT cells in MS patients throughout a one-year treatment with fingolimod (FTY) and to correlate immunological data with efficacy and safety data. The percentage of Tregs (defined as Live Dead-CD3 + CD4 + FoxP3 + CD25++/CD127- cells) increased steadily throughout the year, while there was no significant difference in the absolute number or percentage of iNKT cells (defined as CD3 + CD14-CD19- Vα24-Jα18 TCR+ cells). However, out of all the iNKT cells, the CD8+ iNKT and CD4-CD8- double-negative (DN) cell percentages steadily increased, while the CD4+ iNKT cell percentages decreased significantly. The mean percentage of CD8+ T cells at all time-points was lower in patients with infections throughout the study. The numbers and percentages of DN iNKT cells were more elevated, considering all time-points, in patients who presented a clinical relapse. FTY may, therefore, exert its beneficial effect in MS patients through various mechanisms, including the increase in Tregs and in iNKT subsets with immunomodulatory potential such as CD8+ iNKT cells. The occurrence of infections was associated with lower mean CD8+ cell counts during treatment with FTY.
Collapse
|
13
|
NKT and NKT-like Cells in Autoimmune Neuroinflammatory Diseases-Multiple Sclerosis, Myasthenia Gravis and Guillain-Barre Syndrome. Int J Mol Sci 2021; 22:ijms22179520. [PMID: 34502425 PMCID: PMC8431671 DOI: 10.3390/ijms22179520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
NKT cells comprise three subsets—type I (invariant, iNKT), type II, and NKT-like cells, of which iNKT cells are the most studied subset. They are capable of rapid cytokine production after the initial stimulus, thus they may be important for polarisation of Th cells. Due to this, they may be an important cell subset in autoimmune diseases. In the current review, we are summarising results of NKT-oriented studies in major neurological autoimmune diseases—multiple sclerosis, myasthenia gravis, and Guillain-Barre syndrome and their corresponding animal models.
Collapse
|
14
|
Carrión B, Liu Y, Hadi M, Lundstrom J, Christensen JR, Ammitzbøll C, Dziegiel MH, Sørensen PS, Comabella M, Montalban X, Sellebjerg F, Issazadeh-Navikas S. Transcriptome and Function of Novel Immunosuppressive Autoreactive Invariant Natural Killer T Cells That Are Absent in Progressive Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1065. [PMID: 34385365 PMCID: PMC8362604 DOI: 10.1212/nxi.0000000000001065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to determine whether natural killer T (NKT) cells, including invariant (i) NKT cells, have clinical value in preventing the progression of multiple sclerosis (MS) by examining the mechanisms by which a distinct self-peptide induces a novel, protective invariant natural killer T cell (iNKT cell) subset. METHODS We performed a transcriptomic and functional analysis of iNKT cells that were reactive to a human collagen type II self-peptide, hCII707-721, measuring differentially induced genes, cytokines, and suppressive capacity. RESULTS We report the first transcriptomic profile of human conventional vs novel hCII707-721-reactive iNKT cells. We determined that hCII707-721 induces protective iNKT cells that are found in the blood of healthy individuals but not progressive patients with MS (PMS). By transcriptomic analysis, we observed that hCII707-721 promotes their development and proliferation, favoring the splicing of full-length AKT serine/threonine kinase 1 (AKT1) and effector function of this unique lineage by upregulating tumor necrosis factor (TNF)-related genes. Furthermore, hCII707-721-reactive iNKT cells did not upregulate interferon (IFN)-γ, interleukin (IL)-4, IL-10, IL-13, or IL-17 by RNA-seq or at the protein level, unlike the response to the glycolipid alpha-galactosylceramide. hCII707-721-reactive iNKT cells increased TNFα only at the protein level and suppressed autologous-activated T cells through FAS-FAS ligand (FAS-FASL) and TNFα-TNF receptor I signaling but not TNF receptor II. DISCUSSION Based on their immunomodulatory properties, NKT cells have a potential value in the treatment of autoimmune diseases, such as MS. These significant findings suggest that endogenous peptide ligands can be used to expand iNKT cells, without causing a cytokine storm, constituting a potential immunotherapy for autoimmune conditions, including PMS.
Collapse
Affiliation(s)
- Belinda Carrión
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Yawei Liu
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Mahdieh Hadi
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Jon Lundstrom
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Jeppe Romme Christensen
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Cecilie Ammitzbøll
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Morten Hanefeld Dziegiel
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Per Soelberg Sørensen
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Manuel Comabella
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Xavier Montalban
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Finn Sellebjerg
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Shohreh Issazadeh-Navikas
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark.
| |
Collapse
|
15
|
Brettschneider EES, Terabe M. The Role of NKT Cells in Glioblastoma. Cells 2021; 10:cells10071641. [PMID: 34208864 PMCID: PMC8307781 DOI: 10.3390/cells10071641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.
Collapse
Affiliation(s)
- Emily E. S. Brettschneider
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
- Correspondence: ; Tel.: +1-240-760-6731
| |
Collapse
|
16
|
Schmitt H, Neurath MF, Atreya R. Role of the IL23/IL17 Pathway in Crohn's Disease. Front Immunol 2021; 12:622934. [PMID: 33859636 PMCID: PMC8042267 DOI: 10.3389/fimmu.2021.622934] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Crohn's disease (CD) is a chronic relapsing disorder of the gastrointestinal tract and represents one of the main entities of inflammatory bowel disease (IBD). CD affects genetically susceptible patients that are influenced by environmental factors and the intestinal microbiome, which results in excessive activation of the mucosal immune system and aberrant cytokine responses. Various studies have implicated the pro-inflammatory cytokines IL17 and IL23 in the pathogenesis of CD. IL23 is a member of the IL12 family of cytokines and is able to enhance and affect the expansion of pathogenic T helper type 17 (Th17) cells through various mechanisms, including maintenance of Th17 signature genes, upregulation of effector genes or suppression of repressive factors. Moreover, IL17 and IL23 signaling is able to induce a cascade of pro-inflammatory molecules like TNF, IFNγ, IL22, lymphotoxin, IL1β and lipopolysaccharide (LPS). Here, IL17A and TNF are known to mediate signaling synergistically to drive expression of inflammatory genes. Recent advances in understanding the immunopathogenetic mechanisms underlying CD have led to the development of new biological therapies that selectively intervene and inhibit inflammatory processes caused by pro-inflammatory mediators like IL17 and IL23. Recently published data demonstrate that treatment with selective IL23 inhibitors lead to markedly high response rates in the cohort of CD patients that failed previous anti-TNF therapy. Macrophages are considered as a main source of IL23 in the intestine and are supposed to play a key role in the molecular crosstalk with T cell subsets and innate lymphoid cells in the gut. The following review focuses on mechanisms, pathways and specific therapies in Crohn's disease underlying the IL23/IL17 pathway.
Collapse
Affiliation(s)
- Heike Schmitt
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Markus F. Neurath
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Raja Atreya
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| |
Collapse
|
17
|
Ge F, Huo Z, Li C, Wang R, Wang R, Liu Y, Chen J, Lu Y, Wen Y, Jiang Y, Peng H, Wu X, Liang H, He J, Liang W. Lung cancer risk in patients with multiple sclerosis: a Mendelian randomization analysis. Mult Scler Relat Disord 2021; 51:102927. [PMID: 33812221 DOI: 10.1016/j.msard.2021.102927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The relationship of multiple sclerosis (MS) with lung cancer is under debate. Conventional observational studies have reported conflicting findings, but such studies are susceptible to confounding and reverse causation. With a Mendelian Randomization approach, we were able to evaluate the causality between MS and lung cancer. METHODS According to published genome-wide association studies (GWASs), we obtained 35 MS-related single-nucleotide polymorphisms, which were used as instrumental variables in our study. Summary data of individual-level genetic information were obtained from the International Lung Cancer Consortium (ILCCO), with a total of 15,861 controls and 11,348 cases; the latter is composed of patients with lung adenocarcinoma and squamous cell lung cancer. The inverse variance-weighted method was applied to estimate the causation between MS and lung cancer. To further evaluate the pleiotropy, the MR-Egger and Weighted median methods were implemented. RESULTS The results of MR analysis suggested a causal effect of MS on lung cancer incidence, with evidence of an increased risk for overall lung cancer [odds ratio (OR): 1.0648; 95% confidence interval (CI): 1.0163-1.1156; p = 0.0082]. However, subgroup analyses showed no significant causal relationships between MS and lung adenocarcinoma (OR = 1.0716; 95% CI 0.9840-1.1671, p = 0.1119) and squamous cell lung cancer (OR = 1.0284; 95% CI 0.9575-1.1045, p = 0.4424). In addition, no pleiotropy was found in our study. CONCLUSION Our study indicated that MS is a causal risk factor in the development of lung cancer. Further work is needed to elucidate the potential mechanisms.
Collapse
Affiliation(s)
- Fan Ge
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Department of Clinical Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhenyu Huo
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Runchen Wang
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rui Wang
- Department of Clinical Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yeling Liu
- Department of Clinical Medicine, Third Clinical School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiana Chen
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Lu
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yaokai Wen
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu Jiang
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haoxin Peng
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiangrong Wu
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Department of Oncology, the First People's Hospital of Zhaoqing, Zhaoqing, 526000, China.
| |
Collapse
|
18
|
Sato Y, Ogawa E, Okuyama R. Role of Innate Immune Cells in Psoriasis. Int J Mol Sci 2020; 21:ijms21186604. [PMID: 32917058 PMCID: PMC7554918 DOI: 10.3390/ijms21186604] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin condition caused by a combination of hereditary and environmental factors. Its development is closely related to the adaptive immune response. T helper 17 cells are major IL-17-producing cells, a function that plays an important role in the pathogenesis of psoriasis. However, recent findings have demonstrated that innate immune cells also contribute to the development of psoriasis. Innate lymphoid cells, γδ T cells, natural killer T cells, and natural killer cells are activated in psoriasis, contributing to disease pathology through IL-17-dependent and -independent mechanisms. The present review provides an overview of recent findings, demonstrating a role for innate immunity in psoriasis.
Collapse
Affiliation(s)
| | | | - Ryuhei Okuyama
- Correspondence: ; Tel.: +81-263-37-2645; Fax: +81-263-37-2646
| |
Collapse
|
19
|
Rosati E, Pogorelyy MV, Dowds CM, Moller FT, Sorensen SB, Lebedev YB, Frey N, Schreiber S, Spehlmann ME, Andersen V, Mamedov IZ, Franke A. Identification of Disease-associated Traits and Clonotypes in the T Cell Receptor Repertoire of Monozygotic Twins Affected by Inflammatory Bowel Diseases. J Crohns Colitis 2020; 14:778-790. [PMID: 31711184 PMCID: PMC7346890 DOI: 10.1093/ecco-jcc/jjz179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Intestinal inflammation in inflammatory bowel diseases [IBD] is thought to be T cell mediated and therefore dependent on the interaction between the T cell receptor [TCR] and human leukocyte antigen [HLA] proteins expressed on antigen presenting cells. The collection of all TCRs in one individual, known as the TCR repertoire, is characterised by enormous diversity and inter-individual variability. It was shown that healthy monozygotic [MZ] twins are more similar in their TCR repertoire than unrelated individuals. Therefore MZ twins, concordant or discordant for IBD, may be useful to identify disease-related and non-genetic factors in the TCR repertoire which could potentially be used as disease biomarkers. METHODS Employing unique molecular barcoding that can distinguish between polymerase chain reaction [PCR] artefacts and true sequence variation, we performed deep TCRα and TCRβ repertoire profiling of the peripheral blood of 28 MZ twin pairs from Denmark and Germany, 24 of whom were discordant and four concordant for IBD. RESULTS We observed disease- and smoking-associated traits such as sharing, diversity and abundance of specific clonotypes in the TCR repertoire of IBD patients, and particularly in patients with active disease, compared with their healthy twins. CONCLUSIONS Our findings identified TCR repertoire features specific for smokers and IBD patients, particularly when signs of disease activity were present. These findings are a first step towards the application of TCR repertoire analyses as a valuable tool to characterise inflammatory bowel diseases and to identify potential biomarkers and true disease causes.
Collapse
MESH Headings
- Adult
- C-Reactive Protein/analysis
- Colitis, Ulcerative/diagnosis
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/physiopathology
- Crohn Disease/diagnosis
- Crohn Disease/immunology
- Crohn Disease/physiopathology
- Denmark
- Feces
- Female
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Germany
- Humans
- Leukocyte L1 Antigen Complex/analysis
- Male
- Patient Acuity
- Receptors, Antigen, T-Cell, alpha-beta/blood
- Sequence Analysis, DNA
- Smoking/immunology
- Twins, Monozygotic
Collapse
Affiliation(s)
- Elisa Rosati
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Mikhail V Pogorelyy
- Laboratory of comparative and functional genomic, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Department of Translational Medicine, Pirogov Russian National Research Medical University [RNRMU], Moscow, Russian Federation
| | - C Marie Dowds
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Frederik T Moller
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Signe B Sorensen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yuri B Lebedev
- Laboratory of comparative and functional genomic, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Norbert Frey
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Martina E Spehlmann
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- IRS-Center Sønderjylland, University of Southern Denmark, Odense, Denmark
| | - Ilgar Z Mamedov
- Laboratory of comparative and functional genomic, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Department of Translational Medicine, Pirogov Russian National Research Medical University [RNRMU], Moscow, Russian Federation
- Laboratory of molecular biology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Corresponding author: Andre Franke, Dr. rer. nat.., Institute of Clinical Molecular Biology,Christian-Albrechts-University of Kiel,Rosalind-Franklin-Str. 12,D- 24105 Kiel,Germany. Tel,: 49 179 485 1891;
| |
Collapse
|
20
|
Rizzo C, Grasso G, Destro Castaniti GM, Ciccia F, Guggino G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines (Basel) 2020; 8:vaccines8020272. [PMID: 32503132 PMCID: PMC7349953 DOI: 10.3390/vaccines8020272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Primary Sjogren Syndrome (pSS) is a complex, multifactorial rheumatic disease that mainly targets salivary and lacrimal glands, inducing epithelitis. The cause behind the autoimmunity outbreak in pSS is still elusive; however, it seems related to an aberrant reaction to exogenous triggers such as viruses, combined with individual genetic pre-disposition. For a long time, autoantibodies were considered as the hallmarks of this disease; however, more recently the complex interplay between innate and adaptive immunity as well as the consequent inflammatory process have emerged as the main mechanisms of pSS pathogenesis. The present review will focus on innate cells and on the principal mechanisms of inflammation connected. In the first part, an overview of innate cells involved in pSS pathogenesis is provided, stressing in particular the role of Innate Lymphoid Cells (ILCs). Subsequently we have highlighted the main inflammatory pathways, including intra- and extra-cellular players. A better knowledge of such processes could determine the detection of new therapeutic targets that are a major need for pSS.
Collapse
Affiliation(s)
- Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Giulia Grasso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Giulia Maria Destro Castaniti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Francesco Ciccia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy;
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
- Correspondence: ; Tel.: +39-091-6552260
| |
Collapse
|
21
|
Sandoval-Talamantes AK, Gómez-González BA, Uriarte-Mayorga DF, Martínez-Guzman MA, Wheber-Hidalgo KA, Alvarado-Navarro A. Neurotransmitters, neuropeptides and their receptors interact with immune response in healthy and psoriatic skin. Neuropeptides 2020; 79:102004. [PMID: 31902596 DOI: 10.1016/j.npep.2019.102004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Psoriasis is a chronic inflammatory disease with a multifactorial origin that affects the skin. It is characterized by keratinocyte hyperproliferation, which results in erythemato-squamous plaques. Just as the immune system plays a fundamental role in psoriasis physiopathology, the nervous system maintains the inflammatory process through the neuropeptides and neurotransmitters synthesis, as histamine, serotonin, calcitonin gene-related peptide, nerve growth factor, vasoactive intestinal peptide, substance P, adenosine, glucagon-like peptide, somatostatin and pituitary adenylate cyclase polypeptide. In patients with psoriasis, the systemic or in situ expression of these chemical mediators and their receptors are altered, which affects the clinical activity of patients due to its link to the immune system, provoking neurogenic inflammation. It is important to establish the role of the nervous system since it could represent a therapeutic alternative for psoriasis patients. The aim of this review is to offer a detailed review of the current literature about the neuropeptides and neurotransmitters involved in the physiopathology of psoriasis.
Collapse
Affiliation(s)
- Ana Karen Sandoval-Talamantes
- Centro de Reabilitación Infantil Teletón de Occidente, Copal 4575, Col. Arboledas del Sur, 44980 Guadalajara, Jalisco, México
| | - B A Gómez-González
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - D F Uriarte-Mayorga
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - M A Martínez-Guzman
- Unima Diagnósticos de México, Paseo de los Mosqueteros 4181, Col. Villa Universitaria, 45110 Zapopan, Jalisco, México
| | - Katia Alejandra Wheber-Hidalgo
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y dermatología, Universidad de Guadalajara, México, Sierra Mojada 950, Col. Independencia, 44340, Guadalajara, Jalisco, México.
| |
Collapse
|
22
|
Invariant NKT Cells and Rheumatic Disease: Focus on Primary Sjogren Syndrome. Int J Mol Sci 2019; 20:ijms20215435. [PMID: 31683641 PMCID: PMC6862604 DOI: 10.3390/ijms20215435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Primary Sjogren syndrome (pSS) is a complex autoimmune disease mainly affecting salivary and lacrimal glands. Several factors contribute to pSS pathogenesis; in particular, innate immunity seems to play a key role in disease etiology. Invariant natural killer (NK) T cells (iNKT) are a T-cell subset able to recognize glycolipid antigens. Their function remains unclear, but studies have pointed out their ability to modulate the immune system through the promotion of specific cytokine milieu. In this review, we discussed the possible role of iNKT in pSS development, as well as their implications as future markers of disease activity.
Collapse
|
23
|
High prevalence of CD3, NK, and NKT cells in the graft predicts adverse outcome after matched-related and unrelated transplantations with post transplantation cyclophosphamide. Bone Marrow Transplant 2019; 55:544-552. [PMID: 31541204 DOI: 10.1038/s41409-019-0665-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
Abstract
The predictive value of graft composition and plasma biomarkers on the outcome of allogeneic HSCT is well known for conventional GVHD prophylaxis based on calcineurin inhibitors with or without antithymocyte globulin. Currently, there is limited data whether these results could be translated to post transplantation cyclophosphamide (PTCy). The prospective extension cohort of NCT02294552 trial enrolled 79 adult patients with acute leukemia in CR. Twenty-six received matched-related bone marrow (BM) grafts with single-agent PTCy and 53 received unrelated peripheral blood stem cell graft (PBSC) with PTCy, tacrolimus, and MMF. The grafts were studied by the flow cytometry, and plasma samples were analyzed by ELISA. In the cluster and major component analysis, we determined that transplantation from donors with high content of CD3, NKT, and CD16-CD56 + subpopulations in the PBSC grafts was associated with poor immunological recovery and compromised event-free survival (50% vs. 80%, HR 2.93, p = 0.015) both due to increased relapse incidence and non-relapse mortality. The significant independent predictor of moderate and severe chronic GVHD was the high prevalence of and iNKT, Vβ11, and double-positive cells in the PBSC grafts from young donors (HR 2.75, p = 0.0483). No patterns could be identified for BM grafts and for plasma biomarkers.
Collapse
|
24
|
Zarobkiewicz MK, Kowalska W, Halczuk P, Woś J, Jodłowska-Jędrych B, Rejdak K, Roliński J, Bojarska-Junak AA. RORγT is overexpressed in iNKT and γδ T cells during relapse in relapsing-remitting multiple sclerosis. J Neuroimmunol 2019; 337:577046. [PMID: 31505409 DOI: 10.1016/j.jneuroim.2019.577046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
The aim of the current study is to evaluate IL-17 production and RORγT, and IL-23R expression by iNKT, Th17 and γδ T cells in the peripheral blood of relapsing-remitting multiple sclerosis patients. Samples of peripheral blood from 21 relapse patients and 12 remission patients, and 15 healthy volunteers were stained with monoclonal antibodies for flow cytometry analysis. No significant differences in iNKT, γδ T and Th17 percentages were noted. The significant overexpression of RORγT was observed in all three subpopulations - therefore, iNKT, γδ T and Th cells may be an important source of IL-17 shortly prior to the relapse.
Collapse
Affiliation(s)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Paweł Halczuk
- Department of Neurology, Medical University of Lublin, Lublin, Poland; Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, Lublin, Poland
| | - Justyna Woś
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, Lublin, Poland
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
25
|
Abstract
Natural killer T (NKT) cells are a unique subset of T lymphocytes with the expression of T cell receptor (TCR) and NK cell lineage receptors. These cells can rapidly release large quantities of cytokines and function as a bridge between innate and adaptive immunity. To date, multiple reports have investigated the role of NKT cells under various pathological conditions, such as cancer, autoimmune disease, and infection. Knowledge about NKT cells in neurological diseases is increasing, albeit limited. Here, we review evidence for the involvement of NKT cells in neurological diseases, and discuss immunotherapeutic potential and future study goals. As the development and function of NKT cells become increasingly well understood, the next few years should yield many new insights into NKT cell function, and mechanistic regulation in neurological disorders.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Van Kaer L, Postoak JL, Wang C, Yang G, Wu L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol Immunol 2019; 16:531-539. [PMID: 30874627 DOI: 10.1038/s41423-019-0221-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) in which the immune system damages the protective insulation surrounding the nerve fibers that project from neurons. A hallmark of MS and its animal model, experimental autoimmune encephalomyelitis (EAE), is autoimmunity against proteins of the myelin sheath. Most studies in this field have focused on the roles of CD4+ T lymphocytes, which form part of the adaptive immune system as both mediators and regulators in disease pathogenesis. Consequently, the treatments for MS often target the inflammatory CD4+ T-cell responses. However, many other lymphocyte subsets contribute to the pathophysiology of MS and EAE, and these subsets include CD8+ T cells and B cells of the adaptive immune system, lymphocytes of the innate immune system such as natural killer cells, and subsets of innate-like T and B lymphocytes such as γδ T cells, natural killer T cells, and mucosal-associated invariant T cells. Several of these lymphocyte subsets can act as mediators of CNS inflammation, whereas others exhibit immunoregulatory functions in disease. Importantly, the efficacy of some MS treatments might be mediated in part by effects on lymphocytes other than CD4+ T cells. Here we review the contributions of distinct subsets of lymphocytes on the pathogenesis of MS and EAE, with an emphasis on lymphocytes other than CD4+ T cells. A better understanding of the distinct lymphocyte subsets that contribute to the pathophysiology of MS and its experimental models will inform the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Joshua L Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Chuan Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
27
|
Burrello C, Pellegrino G, Giuffrè MR, Lovati G, Magagna I, Bertocchi A, Cribiù FM, Boggio F, Botti F, Trombetta E, Porretti L, Di Sabatino A, Vecchi M, Rescigno M, Caprioli F, Facciotti F. Mucosa-associated microbiota drives pathogenic functions in IBD-derived intestinal iNKT cells. Life Sci Alliance 2019; 2:2/1/e201800229. [PMID: 30760554 PMCID: PMC6374994 DOI: 10.26508/lsa.201800229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis has been linked to the aberrant activation of the Gut-associated lymphoid tissues against components of the intestinal microbiota. Although the contribution of CD4+ T helper cells to inflammatory processes is being increasingly acknowledged, the functional engagement of human invariant natural killer T (iNKT) cells is still poorly defined. Here, we evaluated the functional characteristics of intestinal iNKT cells during IBD pathogenesis and to exploit the role of mucosa-associated microbiota recognition in triggering iNKT cells' pro-inflammatory responses in vivo. Lamina propria iNKT cells, isolated from surgical specimens of active ulcerative colitis and Crohn's disease patients and non-IBD donors, were phenotypically and functionally analyzed ex vivo, and stable cell lines and clones were generated for in vitro functional assays. iNKT cells expressing a pro-inflammatory cytokine profile were enriched in the lamina propria of IBD patients, and their exposure to the mucosa-associated microbiota drives pro-inflammatory activation, inducing direct pathogenic activities against the epithelial barrier integrity. These observations suggest that iNKT cell pro-inflammatory functions may contribute to the fuelling of intestinal inflammation in IBD patients.
Collapse
Affiliation(s)
- Claudia Burrello
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pellegrino
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rita Giuffrè
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Ilaria Magagna
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Alice Bertocchi
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Boggio
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fiorenzo Botti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
28
|
The presence of anti-nuclear antibodies alone is associated with changes in B cell activation and T follicular helper cells similar to those in systemic autoimmune rheumatic disease. Arthritis Res Ther 2018; 20:264. [PMID: 30486869 PMCID: PMC6263058 DOI: 10.1186/s13075-018-1752-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diagnosis of systemic autoimmune rheumatic diseases (SARD) relies on the presence of hallmark anti-nuclear antibodies (ANA), many of which can be detected years before clinical manifestations. However, ANAs are also seen in healthy individuals, most of whom will not develop SARD. Here, we examined a unique cohort of asymptomatic ANA+ individuals to determine whether they share any of the cellular immunologic features seen in SARD. METHODS Healthy ANA- controls and ANA+ (ANA ≥1:160 by immunofluorescence) participants with no SARD criteria, with at least one criterion (undifferentiated connective tissue disease (UCTD)), or meeting SARD classification criteria were recruited. Peripheral blood cellular immunological changes were assessed by flow cytometry and transcript levels of BAFF, interferon (IFN)-induced and plasma cell-expressed genes were quantified by NanoString. RESULTS A number of the immunologic abnormalities seen in SARD, including changes in peripheral B (switched memory) and T (iNKT, T regulatory, activated memory T follicular helper) subsets and B cell activation, were also seen in asymptomatic ANA+ subjects and those with UCTD. The extent of these immunologic changes correlated with ANA titer or the number of different specific ANAs produced. Principal component analysis of the cellular data indicated that a significant proportion of asymptomatic ANA+ subjects and subjects with UCTD clustered with patients with early SARD, rather than ANA- healthy controls. CONCLUSIONS ANA production is associated with altered T and B cell activation even in asymptomatic individuals. Some of the currently accepted cellular features of SARD may be associated with ANA production rather than the immunologic events that cause symptoms in SARD.
Collapse
|
29
|
Natural killer T cells mediate inflammation in the bile ducts. Mucosal Immunol 2018; 11:1582-1590. [PMID: 30115993 PMCID: PMC6402771 DOI: 10.1038/s41385-018-0066-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 02/04/2023]
Abstract
Cholangiocytes function as antigen-presenting cells with CD1d-dependent activation of natural killer T (NKT) cells in vitro. NKT cells may act both pro- and anti-inflammatory in liver immunopathology. We explored this immune pathway and the antigen-presenting potential of NKT cells in the bile ducts by challenging wild-type and Cd1d-/- mice with intrabiliary injection of the NKT cell activating agent oxazolone. Pharmacological blocking of CD1d-mediated activation was performed with a monoclonal antibody. Intrabiliary oxazolone injection in wild-type mice caused acute cholangitis with significant weight loss, elevated serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase and bilirubin, increased histologic grade of cholangitis and number of T cells, macrophages, neutrophils and myofibroblasts per portal tract after 7 days. NKT cells were activated after intrabiliary injection of oxazolone with upregulation of activation markers. Cd1d-/- and wild-type mice pretreated with antibody blocking of CD1d were protected from disease. These findings implicate that cells in the bile ducts function as antigen-presenting cells in vivo and activate NKT cells in a CD1d-restricted manner. The elucidation of this biliary immune pathway opens up for potentially new therapeutic approaches for cholangiopathies.
Collapse
|
30
|
Bodewes ILA, Versnel MA. Interferon activation in primary Sjögren's syndrome: recent insights and future perspective as novel treatment target. Expert Rev Clin Immunol 2018; 14:817-829. [PMID: 30173581 DOI: 10.1080/1744666x.2018.1519396] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is one of the most common systemic autoimmune diseases. At the moment, there is no cure for this disease and its etiopathology is complex. Interferons (IFNs) play an important role in the pathogenesis of this disease and are a potential treatment target. Areas covered: Here we discuss the role of IFNs in pSS pathogenesis, complications encountered upon studying IFN-induced gene expression, and comment on the current knowledge on easy clinical applicable 'IFN signatures'. The current treatment options targeting IFNs in pSS are summarized and the perspective of potential new strategies discussed. Expert commentary: The authors provide their perspective on the role of IFNs in pSS and how this knowledge could be used to improve pSS diagnosis, provide new treatment targets, to monitor clinical trials and to stratify pSS patients in order to move toward precision medicine.
Collapse
Affiliation(s)
- Iris L A Bodewes
- a Department of Immunology , Erasmus University Medical Centre , Rotterdam , the Netherlands
| | - Marjan A Versnel
- a Department of Immunology , Erasmus University Medical Centre , Rotterdam , the Netherlands
| |
Collapse
|
31
|
Mitchell JM, Berzins SP, Kannourakis G. A potentially important role for T cells and regulatory T cells in Langerhans cell histiocytosis. Clin Immunol 2018; 194:19-25. [DOI: 10.1016/j.clim.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/27/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
|
32
|
Dai H, Zhou Y, Tong C, Guo Y, Shi F, Wang Y, Shen P. Restoration of CD3 +CD56 + cell level improves skin lesions in severe psoriasis: A pilot clinical study of adoptive immunotherapy for patients with psoriasis using autologous cytokine-induced killer cells. Cytotherapy 2018; 20:1155-1163. [PMID: 30100374 DOI: 10.1016/j.jcyt.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 11/29/2022]
Abstract
Psoriasis is a chronic inflammatory skin disorder mediated by the cells and molecules of both the innate and adaptive immune systems. Autologous cytokine-induced killer (CIK) cell infusion is considered an effective and safe cancer treatment and is licensed for this use in China. Accumulated evidence indicating that CD3+CD56+ cells are significantly decreased in psoriatic patients prompted us to investigate if the restoration of CD3+CD56+ cells may be beneficial for psoriatic patients. We designed a clinical trial for psoriasis treatment that involved CIK cell infusion because CIK cells include a large amount of CD3+CD56+ T cells (NCT01894373 at www.clinicaltrials.gov). Six patients with severe psoriasis were initially enrolled, and four of them exhibited markedly lower levels of CD3+CD56+ cells in their peripheral blood (PB) relative to healthy donors. CIK cell infusion-associated toxicity was not observed in any infusion. The percentage of CD3+CD56+ cells in the PB markedly increased and the psoriasis area and severity index (PASI) synchronously decreased in four patients with lower CD3+CD56+ cell contents, and two of them obtained a more than 4-month PASI75 after completing a four-cycle treatment. However, a decrease in the CD3+CD56+ cells was observed concomitantly with disease recurrence after short-term amelioration. In contrast, no obvious improvement was observed in the two patients with nearly normal CD3+CD56+ cells in the PB before treatment. These observations suggest that the normalization of the CD3+CD56+ cell level may improve the skin lesions of severe psoriasis and warrant further clinical trials for severe psoriasis using repeated CIK adoptive immunotherapy.
Collapse
Affiliation(s)
- Hanren Dai
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Yong Zhou
- Department of dermatology, Chinese PLA General Hospital, Beijing, China
| | - Chuan Tong
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Yelei Guo
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Fengxia Shi
- Biotherapeutic Department, Chinese PLA General Hospital, Beijing, China
| | - Yao Wang
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China.
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.
| |
Collapse
|
33
|
Garner LC, Klenerman P, Provine NM. Insights Into Mucosal-Associated Invariant T Cell Biology From Studies of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1478. [PMID: 30013556 PMCID: PMC6036249 DOI: 10.3389/fimmu.2018.01478] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells are innate-like T cells that function at the interface between innate and adaptive immunity. They express semi-invariant T cell receptors (TCRs) and recognize unconventional non-peptide ligands bound to the MHC Class I-like molecules MR1 and CD1d, respectively. MAIT cells and iNKT cells exhibit an effector-memory phenotype and are enriched within the liver and at mucosal sites. In humans, MAIT cell frequencies dwarf those of iNKT cells, while in laboratory mouse strains the opposite is true. Upon activation via TCR- or cytokine-dependent pathways, MAIT cells and iNKT cells rapidly produce cytokines and show direct cytotoxic activity. Consequently, they are essential for effective immunity, and alterations in their frequency and function are associated with numerous infectious, inflammatory, and malignant diseases. Due to their abundance in mice and the earlier development of reagents, iNKT cells have been more extensively studied than MAIT cells. This has led to the routine use of iNKT cells as a reference population for the study of MAIT cells, and such an approach has proven very fruitful. However, MAIT cells and iNKT cells show important phenotypic, functional, and developmental differences that are often overlooked. With the recent availability of new tools, most importantly MR1 tetramers, it is now possible to directly study MAIT cells to understand their biology. Therefore, it is timely to compare the phenotype, development, and function of MAIT cells and iNKT cells. In this review, we highlight key areas where MAIT cells show similarity or difference to iNKT cells. In addition, we discuss important avenues for future research within the MAIT cell field, especially where comparison to iNKT cells has proven less informative.
Collapse
Affiliation(s)
- Lucy C. Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Nicholas M. Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Iyer SS, Gensollen T, Gandhi A, Oh SF, Neves JF, Collin F, Lavin R, Serra C, Glickman J, de Silva PSA, Sartor RB, Besra G, Hauser R, Maxwell A, Llebaria A, Blumberg RS. Dietary and Microbial Oxazoles Induce Intestinal Inflammation by Modulating Aryl Hydrocarbon Receptor Responses. Cell 2018; 173:1123-1134.e11. [PMID: 29775592 PMCID: PMC6119676 DOI: 10.1016/j.cell.2018.04.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/07/2017] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
Genome-wide association studies have identified risk loci associated with the development of inflammatory bowel disease, while epidemiological studies have emphasized that pathogenesis likely involves host interactions with environmental elements whose source and structure need to be defined. Here, we identify a class of compounds derived from dietary, microbial, and industrial sources that are characterized by the presence of a five-membered oxazole ring and induce CD1d-dependent intestinal inflammation. We observe that minimal oxazole structures modulate natural killer T cell-dependent inflammation by regulating lipid antigen presentation by CD1d on intestinal epithelial cells (IECs). CD1d-restricted production of interleukin 10 by IECs is limited through activity of the aryl hydrocarbon receptor (AhR) pathway in response to oxazole induction of tryptophan metabolites. As such, the depletion of the AhR in the intestinal epithelium abrogates oxazole-induced inflammation. In summary, we identify environmentally derived oxazoles as triggers of CD1d-dependent intestinal inflammatory responses that occur via activation of the AhR in the intestinal epithelium.
Collapse
MESH Headings
- Animals
- Antigens, CD1d/genetics
- Antigens, CD1d/metabolism
- Colitis/chemically induced
- Colitis/metabolism
- Colitis/pathology
- Diet
- Disease Models, Animal
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interleukin-10/metabolism
- Intestines/cytology
- Intestines/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Natural Killer T-Cells/immunology
- Oxazoles/pharmacology
- RNA Interference
- RNA, Small Interfering/metabolism
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Signal Transduction/drug effects
- Tryptophan/metabolism
Collapse
Affiliation(s)
- Shankar S Iyer
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Gensollen
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amit Gandhi
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwhan F Oh
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joana F Neves
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frederic Collin
- Inspiralis, Innovation Centre, Norwich Research Park, Colney Lane, Norwich NR4 7GJ, UK
| | - Richard Lavin
- Center for Clinical and Translational Metagenomics, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carme Serra
- Laboratory of Medicinal Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Jonathan Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Punyanganie S A de Silva
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Balfour Sartor
- Departments of Medicine, and Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Gurdyal Besra
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Russell Hauser
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Harrer DC, Dörrie J, Schaft N. Chimeric Antigen Receptors in Different Cell Types: New Vehicles Join the Race. Hum Gene Ther 2018; 29:547-558. [PMID: 29320890 DOI: 10.1089/hum.2017.236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adoptive cellular therapy has evolved into a powerful force in the battle against cancer, holding promise for curative responses in patients with advanced and refractory tumors. Autologous T cells, reprogrammed to target malignant cells via the expression of a chimeric antigen receptor (CAR) represent the frontrunner in this approach. Tremendous clinical regressions have been achieved using CAR-T cells against a variety of cancers both in numerous preclinical studies and in several clinical trials, most notably against acute lymphoblastic leukemia, and resulted in a very recent United States Food and Drug Administration approval of the first CAR-T-cell therapy. In most studies CARs are transferred to conventional αβT cells. Nevertheless, transferring a CAR into different cell types, such as γδT cells, natural killer cells, natural killer T cells, and myeloid cells has yet received relatively little attention, although these cell types possess unique features that may aid in surmounting some of the hurdles CAR-T-cell therapy currently faces. This review focuses on CAR therapy using effectors beyond conventional αβT cells and discusses those strategies against the backdrop of developing a safe, powerful, and durable cancer therapy.
Collapse
Affiliation(s)
- Dennis C Harrer
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Jan Dörrie
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Niels Schaft
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| |
Collapse
|
36
|
Oleinika K, Rosser EC, Matei DE, Nistala K, Bosma A, Drozdov I, Mauri C. CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells. Nat Commun 2018; 9:684. [PMID: 29449556 PMCID: PMC5814456 DOI: 10.1038/s41467-018-02911-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Regulatory B cells (Breg) express high levels of CD1d that presents lipid antigens to invariant natural killer T (iNKT) cells. The function of CD1d in Breg biology and iNKT cell activity during inflammation remains unclear. Here we show, using chimeric mice, cell depletion and adoptive cell transfer, that CD1d–lipid presentation by Bregs induces iNKT cells to secrete interferon (IFN)-γ to contribute, partially, to the downregulation of T helper (Th)1 and Th17-adaptive immune responses and ameliorate experimental arthritis. Mice lacking CD1d-expressing B cells develop exacerbated disease compared to wild-type mice, and fail to respond to treatment with the prototypical iNKT cell agonist α-galactosylceramide. The absence of lipid presentation by B cells alters iNKT cell activation with disruption of metabolism regulation and cytokine responses. Thus, we identify a mechanism by which Bregs restrain excessive inflammation via lipid presentation. Regulatory B cells (Breg) are known to suppress immune responses by secreting interleukin-10 (IL-10). Here the authors show that, alternatively, Bregs may also present lipid antigens on surface CD1d to induce IFN-γ production from invariant natural killer cells to ameliorate experimental arthritis via IL-10-independent pathways.
Collapse
Affiliation(s)
- K Oleinika
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK.,Division of Infection and Immunity, University College London, London, WC1E 6BT UK, UK
| | - E C Rosser
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK.,Infection, Inflammation and Rheumatology Section, Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - D E Matei
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - K Nistala
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - A Bosma
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | | | - C Mauri
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
37
|
Torina A, Guggino G, La Manna MP, Sireci G. The Janus Face of NKT Cell Function in Autoimmunity and Infectious Diseases. Int J Mol Sci 2018; 19:ijms19020440. [PMID: 29389901 PMCID: PMC5855662 DOI: 10.3390/ijms19020440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Natural killer T cells (NKT) are a subset of T lymphocytes bridging innate and adaptive immunity. These cells recognize self and microbial glycolipids bound to non-polymorphic and highly conserved CD1d molecules. Three NKT cell subsets, type I, II, and NKT-like expressing different antigen receptors (TCR) were described and TCR activation promotes intracellular events leading to specific functional activities. NKT can exhibit different functions depending on the secretion of soluble molecules and the interaction with other cell types. NKT cells act as regulatory cells in the defense against infections but, on the other hand, their effector functions can be involved in the pathogenesis of several inflammatory disorders due to their exposure to different microbial or self-antigens, respectively. A deep understanding of the biology and functions of type I, II, and NKT-like cells as well as their interplay with cell types acting in innate (neuthrophils, innate lymphoid cells, machrophages, and dendritic cells) and adaptive immunity (CD4⁺,CD8⁺, and double negative T cells) should be important to design potential immunotherapies for infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Torina
- Experimental Zooprophylactic Institute of Sicily, Via Marinuzzi 3, 90100 Palermo, Italy.
| | - Giuliana Guggino
- Biomedical Department of Internal and Specialized Medicine, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90100 Palermo, Italy.
| | - Marco Pio La Manna
- Department of Biopathology and Medical Biotechnology, Section of General Pathology, University of Palermo, Via del Vespro 129, 90100 Palermo, Italy.
- Central Laboratory Advanced Diagnostic and Biological Research, University Hospital, Via del Vespro 129, 90100 Palermo, Italy.
| | - Guido Sireci
- Department of Biopathology and Medical Biotechnology, Section of General Pathology, University of Palermo, Via del Vespro 129, 90100 Palermo, Italy.
- Central Laboratory Advanced Diagnostic and Biological Research, University Hospital, Via del Vespro 129, 90100 Palermo, Italy.
| |
Collapse
|
38
|
The influence and impact of ageing and immunosenescence (ISC) on adaptive immunity during multiple sclerosis (MS) and the animal counterpart experimental autoimmune encephalomyelitis (EAE). Ageing Res Rev 2018; 41:64-81. [PMID: 29101043 DOI: 10.1016/j.arr.2017.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
The human ageing process encompasses mechanisms that effect a decline in homeostasis with increased susceptibility to disease and the development of chronic life-threatening illness. Increasing age affects the immune system which undergoes a progressive loss of efficiency, termed immunosenescence (ISC), to impact on quantitative and functional aspects of innate and adaptive immunity. The human demyelinating disease multiple sclerosis (MS) and the corresponding animal model experimental autoimmune encephalomyelitis (EAE) are strongly governed by immunological events that primarily involve the adaptive arm of the immune response. MS and EAE are frequently characterised by a chronic pathology and a protracted disease course which thereby creates the potential for exposure to the inherent, on-going effects and consequences of ISC. Collective evidence is presented to confirm the occurrence of established and unendorsed biological markers of ISC during the development of both diseases. Moreover, results are discussed from studies during the course of MS and EAE that reveal a premature upregulation of ISC-related biomarkers which indicates untimely alterations to the adaptive immune system. The effects of ISC and a prematurely aged immune system on autoimmune-associated neurodegenerative conditions such as MS and EAE are largely unknown but current evaluation of data justifies and encourages further investigation.
Collapse
|
39
|
van Puijvelde GH, Kuiper J. NKT cells in cardiovascular diseases. Eur J Pharmacol 2017; 816:47-57. [DOI: 10.1016/j.ejphar.2017.03.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
|
40
|
Stax AM, Tuengel J, Girardi E, Kitano N, Allan LL, Liu V, Zheng D, Panenka WJ, Guillaume J, Wong CH, van Calenbergh S, Zajonc DM, van den Elzen P. Autoreactivity to Sulfatide by Human Invariant NKT Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:97-106. [PMID: 28526683 DOI: 10.4049/jimmunol.1601976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/25/2017] [Indexed: 12/28/2022]
Abstract
Invariant NKT (iNKT) cells are innate-like lymphocytes that recognize lipid Ags presented by CD1d. The prototypical Ag, α-galactosylceramide, strongly activates human and mouse iNKT cells, leading to the assumption that iNKT cell physiology in human and mouse is similar. In this article, we report the surprising finding that human, but not mouse, iNKT cells directly recognize myelin-derived sulfatide presented by CD1d. We propose that sulfatide is recognized only by human iNKT cells because of the unique positioning of the 3-O-sulfated β-galactose headgroup. Surface plasmon resonance shows that the affinity of human CD1d-sulfatide for the iNKT cell receptor is relatively low compared with CD1d-α-galactosylceramide (KD of 19-26 μM versus 1 μM). Apolipoprotein E isolated from human cerebrospinal fluid carries sulfatide that can be captured by APCs and presented by CD1d to iNKT cells. APCs from patients with metachromatic leukodystrophy, who accumulate sulfatides due to a deficiency in arylsulfatase-A, directly activate iNKT cells. Thus, we have identified sulfatide as a self-lipid recognized by human iNKT cells and propose that sulfatide recognition by innate T cells may be an important pathologic feature of neuroinflammatory disease and that sulfatide in APCs may contribute to the endogenous pathway of iNKT cell activation.
Collapse
Affiliation(s)
- Annelein M Stax
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Jessica Tuengel
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Naoki Kitano
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Lenka L Allan
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Victor Liu
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Dongjun Zheng
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - William J Panenka
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Joren Guillaume
- Laboratory for Medicinal Chemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; and
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Peter van den Elzen
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
41
|
Invariant natural killer T cells ameliorate murine chronic GVHD by expanding donor regulatory T cells. Blood 2017; 129:3121-3125. [PMID: 28416503 DOI: 10.1182/blood-2016-11-752444] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic graft-versus-host-disease (cGVHD) can cause multiorgan system disease, typically with autoimmune-like features, resulting in high mortality and morbidity caused by treatment limitations. Invariant natural killer T cells (iNKTs), a small population characterized by expression of a semi-invariant T-cell receptor, rapidly produce copious amounts of diverse cytokines on activation that exert potent immune regulatory function. Here, we show that iNKTs are significantly reduced in a cGVHD murine model that recapitulates several aspects of autoimmunity and organ fibrosis observed in patients with cGVHD. Low iNKT infused doses effectively prevented and, importantly, reversed established cGVHD, as did third-party iNKTs. iNKTs suppressed the autoimmune response by reducing the germinal center (GC) reaction, which was associated with an increase in total Tregs and follicular Tregs (Tfr) that control the GC reaction, along with pathogenic antibody production. Treg depletion during iNKT infusions completely abolished iNKT efficacy in treating cGVHD. iNKT cell interleukin 4 production and GC migration were critical to cGVHD reversal. In vivo stimulation of iNKT cells by α-galactosyl-ceramide was effective in both preventing and treating cGVHD. Together, this study demonstrates iNKT deficiency in cGVHD mice and highlights the key role of iNKTs in regulating cGVHD pathogenesis and as a potentially novel prophylactic and therapeutic option for patients with cGVHD.
Collapse
|
42
|
de Andrés C, Fernández-Paredes L, Tejera-Alhambra M, Alonso B, Ramos-Medina R, Sánchez-Ramón S. Activation of Blood CD3 +CD56 +CD8 + T Cells during Pregnancy and Multiple Sclerosis. Front Immunol 2017; 8:196. [PMID: 28280497 PMCID: PMC5322280 DOI: 10.3389/fimmu.2017.00196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/09/2017] [Indexed: 01/24/2023] Open
Abstract
A striking common feature of most autoimmune diseases is their female predominance, with at least twice as common among women than men in relapsing–remitting multiple sclerosis (MS), the prevailing MS clinical form with onset at childbearing age. This fact, together with the protective effect on disease activity during pregnancy, when there are many biological changes including high levels of estrogens and progesterone, puts sex hormones under the spotlight. The role of natural killer (NK) and NKT cells in MS disease beginning and course is still to be elucidated. The uterine NK (uNK) cells are the most predominant immune population in early pregnancy, and the number and function of uNK cells infiltrating the endometrium are sex-hormones’ dependent. However, there is controversy on the role of estrogen or progesterone on circulating NK (CD56dim and CD56bright) and NKT cells’ subsets. Here, we show a significantly increased activation of CD3+CD56+CD8+ cells in pregnant MS women (MSP) compared with non-pregnant MS women (NPMS) (p < 0.001) and even with respect to healthy pregnant women (HP, p < 0.001), remaining increased even after delivery. The dynamics of expression of early activation marker CD69 on CD3+CD56+CD8+ cells showed a progressive statistically significant increase along the gestation trimesters (T) and at postpartum (PP) with respect to NPMS (1T: p = 0.018; 2T: p = 0.004; 3T: p < 0.001; PP: p = 0.001). In addition, early activation expression of CD69 on CD3+CD56+CD8+ cells was higher in MSP than HP in the first two trimesters of gestation (p = 0.004 and p = 0.015, respectively). NPMS showed significantly increased cytotoxic/regulatory NK ratio compared with healthy controls (p < 0.001). On the other hand, gender studies showed no differences between MS women and men in NK and CD3+CD56+CD8+ cells’ subsets. Our findings may add on the understanding of the regulatory axis in MS during pregnancy. Further studies on specific CD8+ NKT cells function and their role in pregnancy beneficial effects on MS are warranted to move forward more effective MS treatments.
Collapse
Affiliation(s)
- Clara de Andrés
- Department of Neurology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | | | - Marta Tejera-Alhambra
- Department of Immunology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | - Bárbara Alonso
- Department of Immunology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | - Rocío Ramos-Medina
- Department of Immunology, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, IdISSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Microbiology I, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
43
|
Chen J, Yang J, Qiao Y, Li X. Understanding the Regulatory Roles of Natural Killer T Cells in Rheumatoid Arthritis: T Helper Cell Differentiation Dependent or Independent? Scand J Immunol 2017; 84:197-203. [PMID: 27384545 DOI: 10.1111/sji.12460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is the most common chronic systemic autoimmune disease. This disease is thought to be caused by pathogenic T cells. Th1, Th2, Th17 and Treg cells have been implicated in the pathogenesis of RA. These Th cells differentiate from CD4+ T cells primarily due to the effects of cytokines. Natural killer T (NKT) cells are a distinct subset of lymphocytes that can rapidly secrete massive amount of cytokines, including IL-2, IL-4, IL-12 and IFN-γ. Numerous studies showed that NKT cells can influence the differentiation of CD4+ T cells via cytokines in vitro. These findings suggest that NKT cells play an important role in RA by polarizing Th1, Th2, Th17 and Treg cells. In view of the complexity of RA, we discussed whether NKT cells really influence the development of RA through regulating the differentiation of Th cells.
Collapse
Affiliation(s)
- J Chen
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - J Yang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Y Qiao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - X Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
44
|
Bianchini E, De Biasi S, Simone AM, Ferraro D, Sola P, Cossarizza A, Pinti M. Invariant natural killer T cells and mucosal-associated invariant T cells in multiple sclerosis. Immunol Lett 2017; 183:1-7. [PMID: 28119072 DOI: 10.1016/j.imlet.2017.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic progressive inflammatory demyelinating disorder of the central nervous system, and in several countries is a leading cause of permanent neurological disability in young adults, particularly women. MS is considered an autoimmune disease, caused by an aberrant immune response to environmental triggers in genetically susceptible subjects. However, the contribution of the innate or of the adaptive immune system to the development and progression of the disease has not yet been fully elucidated. Innate-like T lymphocytes are unconventional T cells that bridge the innate and adaptive arms of the immune system, because they use a T cell receptor to sense external ligands, but behave like innate cells when they rapidly respond to stimuli. These cells could play an important role in the pathogenesis of MS. Here, we focus on invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells, and we review the current knowledge on their biology and possible involvement in MS. Although several studies have evaluated the frequency and functions of iNKT and MAIT cells both in MS patients and in experimental mouse models, contradictory observations have been reported, and it is not clear whether they exert a protective or a pro-inflammatory and harmful role. A better understanding of how immune cells are involved in MS, and of their interactions could be of great interest for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Bianchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Anna Maria Simone
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Diana Ferraro
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Patrizia Sola
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
45
|
De Biasi S, Simone AM, Nasi M, Bianchini E, Ferraro D, Vitetta F, Gibellini L, Pinti M, Del Giovane C, Sola P, Cossarizza A. iNKT Cells in Secondary Progressive Multiple Sclerosis Patients Display Pro-inflammatory Profiles. Front Immunol 2016; 7:555. [PMID: 27965675 PMCID: PMC5127814 DOI: 10.3389/fimmu.2016.00555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS), an autoimmune disease with neurodegeneration and inflammation is characterized by several alterations of different T cell subsets. However, few data exist on the role of iNKT lymphocytes. OBJECTIVE To identify possible changes in the phenotype of iNKT cells in patients with different clinical forms of MS and find alterations in their polyfunctionality [i.e., ability to produce simultaneously up to four cytokines such as IL-17, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and IL-4]. METHODS We studied a total of 165 patients, 91 with a relapsing-remitting form [RR; 31 were treated with interferon (IFN)1a-β, 25 with natalizumab (NAT), 29 with glatiramer acetate; 17 were newly diagnosed RR without treatment, 19 not-active RR without treatment]. Forty-four patients had a progressive MS: 20 primary progressive (PP) and 24 secondary progressive (SP). A total of 55 age- and sex-matched subjects represented healthy controls (CTR). Among fresh peripheral blood mononuclear cells, iNKT cells were identified by flow cytometry. Moreover, the capability of iNKT cells to produce different cytokines (IL-17, TNF-α, IFN-γ, and IL-4) after in vitro stimulation were evaluated in 18 RR (11 treated with NAT and 7 with IFN), 4 PP, 6 SP, and 16 CTR. RESULTS No main differences were found in iNKT cell phenotype among MS patients with different MS forms or during different treatments. However, the polyfunctional response of iNKT cells showed Th1 and Th17 profiles. This was well evident in patients with SP form, who are characterized by high levels of inflammation and neurodegeneration, and exhibited a sustained increase in the production of Th17 cytokines. Patients treated with NAT displayed lower levels of iNKT cells producing IL-17, TNF-α, and IFN-γ. CONCLUSION Our data suggest that the progressive phase of the disease is characterized by permanent iNKT activation and a skewing towards an inflammatory phenotype. Compared to other treatments, NAT was able to modulate iNKT cell function.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Anna Maria Simone
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Elena Bianchini
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Diana Ferraro
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Francesca Vitetta
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Cinzia Del Giovane
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia , Modena , Italy
| | - Patrizia Sola
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia , Modena , Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
46
|
Abstract
Many rheumatic diseases are characterized by having an autoimmune background. Determining the mechanisms underlying autoimmunity is, therefore, important to further understand these diseases and to inform future lines of research aimed at developing new treatments and cures. As fast responders, innate lymphocytes have protective or pathogenic roles in the initiation as well as the maintenance of immune responses in general, and they contribute to tissue homeostasis, among other functions. Innate lymphocytes also seem to be involved in autoimmunity in particular. Since 2010, accumulating evidence clearly shows that different populations of innate lymphocytes have roles in responding to antigen-specific autoantibody and autoreactive T cells, thereby amplifying or attenuating disease processes. Cytotoxicity is a cardinal feature of many innate lymphocytes and can contribute to inflammatory tissue damage. Finally, innate lymphocytes can respond to biologic therapies for autoimmune diseases. Consequently, like TNF and other effector molecules, certain innate lymphocyte subsets might be appropriate therapeutic targets to ameliorate various autoimmune diseases. In this Review, we summarize the main characteristics and functions of innate lymphocyte subsets, and describe their roles in autoimmune disease. We also discuss how biologic therapies influence innate lymphocyte function and consider the potential for these cell subsets to act as future therapeutic targets.
Collapse
|
47
|
Côté-Bigras S, Tran V, Turcotte S, Rola-Pleszczynski M, Verreault J, Rottembourg D. Impaired immune regulation after radioiodine therapy for Graves' disease and the protective effect of Methimazole. Endocrine 2016; 52:587-96. [PMID: 26701678 DOI: 10.1007/s12020-015-0832-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
Abstract
Both therapies for Graves' disease (GD), radioactive iodine (RAI) and antithyroid drugs (ATD), were reported to have specific immune effects. We aimed at investigating the effects of RAI therapy on cellular subsets involved in immune regulation. We conducted a thirty day follow-up prospective cohort study of adult patients. Patients eligible for RAI therapy at our centre were approached. Twenty seven patients with GD were recruited, among whom 11 were treated with ATD. Twenty-two healthy subjects (HS) were also studied. Over time, frequency of regulatory T cells (Treg) and of invariant natural killer T cells (iNKT), along with Treg cell-mediated suppression and underlying mechanisms, were monitored in the peripheral blood. Variance in frequency of Treg and iNKT after RAI therapy was higher in GD patients than in HS over time (p < 0.0001). Reduced Treg suppressive function was observed after RAI therapy in GD patients (p = 0.002). ATD medication prior to RAI dampened these outcomes: less variation of Treg frequency (p = 0.0394), a trend toward less impaired Treg function, and prevention of reduced levels of suppressive cytokines (p < 0.05). Shortly after RAI therapy, alterations in immunoregulatory cells in patients with GD were observed and partially prevented by an ATD pretreatment. Worsening of autoimmunity after RAI was explained in previous studies by enhanced immune activity. This study adds new highlights on immune regulation deficiencies after therapeutic interventions in thyroid autoimmunity.
Collapse
Affiliation(s)
- Sarah Côté-Bigras
- Department of Pediatrics, Sherbrooke University Hospital and Faculty of Medicine, 3001, 12e Avenue Nord, Sherbrooke, QC, JIH5N4, Canada
| | - Viet Tran
- Department of Pediatrics, Sherbrooke University Hospital and Faculty of Medicine, 3001, 12e Avenue Nord, Sherbrooke, QC, JIH5N4, Canada
| | - Sylvie Turcotte
- Department of Pediatrics, Sherbrooke University Hospital and Faculty of Medicine, 3001, 12e Avenue Nord, Sherbrooke, QC, JIH5N4, Canada
| | - Marek Rola-Pleszczynski
- Department of Pediatrics, Sherbrooke University Hospital and Faculty of Medicine, 3001, 12e Avenue Nord, Sherbrooke, QC, JIH5N4, Canada
| | - Jean Verreault
- Department of Nuclear Medicine and Radiobiology, Sherbrooke University Hospital and Faculty of Medicine, Sherbrooke, QC, JIH5N4, Canada
| | - Diane Rottembourg
- Department of Pediatrics, Sherbrooke University Hospital and Faculty of Medicine, 3001, 12e Avenue Nord, Sherbrooke, QC, JIH5N4, Canada.
| |
Collapse
|
48
|
Abstract
CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.
Collapse
Affiliation(s)
- Lucia Mori
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Marco Lepore
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , ,
| | - Gennaro De Libero
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| |
Collapse
|
49
|
Weiss E, Zgaga L, Read S, Wild S, Dunlop MG, Campbell H, McQuillan R, Wilson JF. Farming, Foreign Holidays, and Vitamin D in Orkney. PLoS One 2016; 11:e0155633. [PMID: 27187691 PMCID: PMC4871509 DOI: 10.1371/journal.pone.0155633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/01/2016] [Indexed: 12/14/2022] Open
Abstract
Orkney, north of mainland Scotland, has the world's highest prevalence of multiple sclerosis (MS); vitamin D deficiency, a marker of low UV exposure, is also common in Scotland. Strong associations have been identified between vitamin D deficiency and MS, and between UV exposure and MS independent of vitamin D, although causal relationships remain to be confirmed. We aimed to compare plasma 25-hydroxyvitamin D levels in Orkney and mainland Scotland, and establish the determinants of vitamin D status in Orkney. We compared mean vitamin D and prevalence of deficiency in cross-sectional study data from participants in the Orkney Complex Disease Study (ORCADES) and controls in the Scottish Colorectal Cancer Study (SOCCS). We used multivariable regression to identify factors associated with vitamin D levels in Orkney. Mean (standard deviation) vitamin D was significantly higher among ORCADES than SOCCS participants (35.3 (18.0) and 31.7 (21.2), respectively). Prevalence of severe vitamin D deficiency was lower in ORCADES than SOCCS participants (6.6% to 16.2% p = 1.1 x 10(-15)). Older age, farming occupations and foreign holidays were significantly associated with higher vitamin D in Orkney. Although mean vitamin D levels are higher in Orkney than mainland Scotland, this masks variation within the Orkney population which may influence MS risk.
Collapse
Affiliation(s)
- Emily Weiss
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Lina Zgaga
- Public Health and Primary Care, Trinity College Centre for Health Sciences, Dublin, Ireland
| | - Stephanie Read
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Sarah Wild
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Malcolm G. Dunlop
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Harry Campbell
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Ruth McQuillan
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - James F. Wilson
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
50
|
Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biomed J 2016; 38:484-95. [PMID: 27013448 PMCID: PMC6138260 DOI: 10.1016/j.bj.2015.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/24/2015] [Indexed: 01/02/2023] Open
Abstract
Type 1 and type 2 diabetes are growing public health problems. Despite having different pathophysiologies, both diseases are associated with defects in immune regulation. Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipids presented by CD1d. These cells not only play a key role in the defense against pathogens, but also exert potent immunoregulatory functions. The regulatory role of iNKT cells in the prevention of type 1 diabetes has been demonstrated in murine models and analyzed in diabetic patients. The decreased frequency of iNKT cells in non-obese diabetic mice initially suggested the regulatory role of this cell subset. Increasing the frequency or the activation of iNKT cells with agonists protects non-obese diabetic mice from the development of diabetes. Several mechanisms mediate iNKT regulatory functions. They can rapidly produce immunoregulatory cytokines, interleukin (IL)-4 and IL-10. They induce tolerogenic dendritic cells, thereby inducing the anergy of autoreactive anti-islet T cells and increasing the frequency of T regulatory cells (Treg cells). Synthetic agonists are able to activate iNKT cells and represent potential therapeutic treatment in order to prevent type 1 diabetes. Growing evidence points to a role of immune system in glucose intolerance and type 2 diabetes. iNKT cells are resident cells of adipose tissue and their local and systemic frequencies are reduced in obese patients, suggesting their involvement in local and systemic inflammation during obesity. With the discovery of potential continuity between type 1 and type 2 diabetes in some patients, the role of iNKT cells in these diseases deserves further investigation.
Collapse
Affiliation(s)
- Celine Tard
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France
| | - Ophelie Rouxel
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France
| | - Agnes Lehuen
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France.
| |
Collapse
|