1
|
Li Y, Zhao W, Shen Y, Xu Y, Chen S, Pan L. T Cell Receptor-Directed Bispecific T Cell Engager Targeting MHC-Linked NY-ESO-1 for Tumor Immunotherapy. Biomedicines 2024; 12:776. [PMID: 38672132 PMCID: PMC11048172 DOI: 10.3390/biomedicines12040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Antibody-based bispecific T cell engagers (TCEs) that redirect T cells to kill tumor cells have shown a promising therapeutic effect on hematologic malignancies. However, tumor-specific targeting is still a challenge for TCEs, impeding the development of TCEs for solid tumor therapy. The major histocompatibility complex (MHC) presents almost all intracellular peptides (including tumor-specific peptides) on the cell surface to be scanned by the TCR on T cells. With the premise of choosing optimal peptides, the final complex peptide-MHC could be the tumor-specific target for TCEs. Here, a novel TCR-directed format of a TCE targeting peptide-MHC was designed named IgG-T-TCE, which was modified from the IgG backbone and prepared in a mammalian cell expression system. The recombinant IgG-T-TCE-NY targeting NY-ESO-1157-165/HLA-A*02:01 could be generated in HEK293 cells with a glycosylated TCR and showed potency in T cell activation and redirecting T cells to specifically kill target tumor cells. We also found that the in vitro activity of IgG-T-TCE-NY could be leveraged by various anti-CD3 antibodies and Fc silencing. The IgG-T-TCE-NY efficiently inhibited tumor growth in a tumor-PBMC co-engrafted mouse model without any obvious toxicities.
Collapse
Affiliation(s)
- Yiming Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
| | - Wenbin Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
- Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Ying Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
- Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Yingchun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
| | - Liqiang Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
| |
Collapse
|
2
|
Barbati C, Bromuro C, Vendetti S, Torosantucci A, Cauda R, Cassone A, Palma C. The Glycan Ectodomain of SARS-CoV-2 Spike Protein Modulates Cytokine Production and Expression of CD206 Mannose Receptor in PBMC Cultures of Pre-COVID-19 Healthy Subjects. Viruses 2024; 16:497. [PMID: 38675840 PMCID: PMC11054381 DOI: 10.3390/v16040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The ability of recombinant, SARS-CoV-2 Spike (S) protein to modulate the production of two COVID-19 relevant, pro-inflammatory cytokines (IL-6 and IFN-γ) in PBMC cultures of healthy, pre-COVID-19 subjects was investigated. We observed that cytokine production was largely and diversely modulated by the S protein depending on antigen or mitogen stimulation, as well as on the protein source, insect (S-in) or human (S-hu) cells. While both proteins co-stimulated cytokine production by polyclonally CD3-activated T cells, PBMC activation by the mitogenic lectin Concanavalin A (Con A) was up-modulated by S-hu protein and down-modulated by S-in protein. These modulatory effects were likely mediated by the S glycans, as demonstrated by direct Con A-S binding experiments and use of yeast mannan as Con A binder. While being ineffective in modulating memory antigenic T cell responses, the S proteins and mannan were able to induce IL-6 production in unstimulated PBMC cultures and upregulate the expression of the mannose receptor (CD206), a marker of anti-inflammatory M2 macrophage. Our data point to a relevant role of N-glycans, particularly N-mannosidic chains, decorating the S protein in the immunomodulatory effects here reported. These novel biological activities of the S glycan ectodomain may add to the comprehension of COVID-19 pathology and immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Cristiana Barbati
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (C.B.); (C.B.); (S.V.); (A.T.)
| | - Carla Bromuro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (C.B.); (C.B.); (S.V.); (A.T.)
| | - Silvia Vendetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (C.B.); (C.B.); (S.V.); (A.T.)
| | - Antonella Torosantucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (C.B.); (C.B.); (S.V.); (A.T.)
| | - Roberto Cauda
- Dipartimento Salute e Bioetica, Sezione Malattie Infettive, Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136 Rome, Italy;
| | - Antonio Cassone
- Polo d’Innovazione della Genomica, Genetica e Biologia, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Carla Palma
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (C.B.); (C.B.); (S.V.); (A.T.)
| |
Collapse
|
3
|
Dressman JW, McDowell CT, Lu X, Angel PM, Drake RR, Mehta AS. Development of an Antibody-Based Platform for the Analysis of Immune Cell-Specific N-linked Glycosylation. Anal Chem 2023; 95:10289-10297. [PMID: 37293957 PMCID: PMC10988393 DOI: 10.1021/acs.analchem.3c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
N-linked glycosylation plays an important role in both the innate and adaptive immune response through the modulation of cell surface receptors as well as general cell-to-cell interactions. The study of immune cell N-glycosylation is gaining interest but is hindered by the complexity of cell-type-specific N-glycan analysis. Analytical techniques such as chromatography, LC-MS/MS, and the use of lectins are all currently used to analyze cellular glycosylation. Issues with these analytical techniques include poor throughput, which is often limited to a single sample at a time, lack of structural information, the need for a large amount of starting materials, and the requirement for cell purification, thereby reducing their feasibility for N-glycan study. Here, we report the development of a rapid antibody array-based approach for the capture of specific nonadherent immune cells coupled with MALDI-IMS to analyze cellular N-glycosylation. This workflow is adaptable to multiple N-glycan imaging approaches such as the removal or stabilization and derivatization of terminal sialic acid residues providing unique avenues of analysis that have otherwise not been explored in immune cell populations. The reproducibility, sensitivity, and versatility of this assay provide an invaluable tool for researchers and clinical applications, significantly expanding the field of glycoimmunology.
Collapse
Affiliation(s)
- James W. Dressman
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Colin T. McDowell
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Xiaowei Lu
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Peggi M. Angel
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Richard R. Drake
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Anand S. Mehta
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| |
Collapse
|
4
|
Conroy LR, Clarke HA, Allison DB, Valenca SS, Sun Q, Hawkinson TR, Young LEA, Ferreira JE, Hammonds AV, Dunne JB, McDonald RJ, Absher KJ, Dong BE, Bruntz RC, Markussen KH, Juras JA, Alilain WJ, Liu J, Gentry MS, Angel PM, Waters CM, Sun RC. Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis. Nat Commun 2023; 14:2759. [PMID: 37179348 PMCID: PMC10182559 DOI: 10.1038/s41467-023-38437-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Matrix assisted laser desorption/ionization imaging has greatly improved our understanding of spatial biology, however a robust bioinformatic pipeline for data analysis is lacking. Here, we demonstrate the application of high-dimensionality reduction/spatial clustering and histopathological annotation of matrix assisted laser desorption/ionization imaging datasets to assess tissue metabolic heterogeneity in human lung diseases. Using metabolic features identified from this pipeline, we hypothesize that metabolic channeling between glycogen and N-linked glycans is a critical metabolic process favoring pulmonary fibrosis progression. To test our hypothesis, we induced pulmonary fibrosis in two different mouse models with lysosomal glycogen utilization deficiency. Both mouse models displayed blunted N-linked glycan levels and nearly 90% reduction in endpoint fibrosis when compared to WT animals. Collectively, we provide conclusive evidence that lysosomal utilization of glycogen is required for pulmonary fibrosis progression. In summary, our study provides a roadmap to leverage spatial metabolomics to understand foundational biology in pulmonary diseases.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Harrison A Clarke
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Derek B Allison
- Markey Cancer Center, Lexington, KY, 40536, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Samuel Santos Valenca
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Qi Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Tara R Hawkinson
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Juanita E Ferreira
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Autumn V Hammonds
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jaclyn B Dunne
- Department of Cell & Molecular Pharmacology & Experimental Therapeutics at the Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robert J McDonald
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kimberly J Absher
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Brittany E Dong
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Ronald C Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kia H Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jelena A Juras
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Warren J Alilain
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, Lexington, KY, 40536, USA
| | - Jinze Liu
- Department of Biostatistics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Matthew S Gentry
- Markey Cancer Center, Lexington, KY, 40536, USA
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, 32610, USA
| | - Peggi M Angel
- Department of Cell & Molecular Pharmacology & Experimental Therapeutics at the Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christopher M Waters
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
- Markey Cancer Center, Lexington, KY, 40536, USA.
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
5
|
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, Pinho SS. Glycans as shapers of tumour microenvironment: A sweet driver of T-cell-mediated anti-tumour immune response. Immunology 2023; 168:217-232. [PMID: 35574724 DOI: 10.1111/imm.13494] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.
Collapse
Affiliation(s)
- Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Guilherme Faria
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina S Dantas
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuel M Vicente
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Oganesyan I, Hajduk J, Harrison JA, Marchand A, Czar MF, Zenobi R. Exploring Gas-Phase MS Methodologies for Structural Elucidation of Branched N-Glycan Isomers. Anal Chem 2022; 94:10531-10539. [PMID: 35833795 DOI: 10.1021/acs.analchem.2c02019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural isomers of N-glycans that are identical in mass and atomic composition provide a great challenge to conventional mass spectrometry (MS). This study employs additional dimensions of structural elucidation including ion mobility (IM) spectroscopy coupled to hydrogen/deuterium exchange (HDX) and electron capture dissociation (ECD) to characterize three main A2 N-glycans and their conformers. A series of IM-MS experiments were able to separate the low abundance N-glycans and their linkage-based isomers (α1-3 and α1-6 for A2G1). HDX-IM-MS data indicated the presence of multiple gas-phase structures for each N-glycan including the isomers of A2G1. Identification of A2G1 isomers by their collision cross section was complicated due to the preferential collapse of sugars in the gas phase, but it was possible by further ECD fragmentation. The cyclic IM-ECD approach was capable of assigning and identifying each isomer to its IM peak. Two unique cross-ring fragments were identified for each isomer: m/z = 624.21 for α1-6 and m/z = 462.16 for α1-3. Based on these key fragments, the first IM peak, indicating a more compact conformation, was assigned to α1-3 and the second IM peak, a more extended conformer, was assigned to α1-6.
Collapse
Affiliation(s)
- Irina Oganesyan
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Joanna Hajduk
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Julian A Harrison
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Adrien Marchand
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Martin F Czar
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
7
|
Echegaray N, Yegin S, Kumar M, Hassoun A, Bastianello Campagnol PC, Lorenzo JM. Application of oligosaccharides in meat processing and preservation. Crit Rev Food Sci Nutr 2022; 63:10947-10958. [PMID: 35648076 DOI: 10.1080/10408398.2022.2081963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent decades, consumer preference and attention to foodstuff presented as healthy and with desirable nutritional information, has increased significantly. In this field, the meat industry has a challenging task since meat and meat products have been related to various chronic diseases. Functional ingredients have emerged in response to the increasing demand for healthier and more nutritious foods. On this matter, oligosaccharides such as fructooligosaccharides (FOS), xylooligosaccharides (XOS), galactooligosaccharides (GOS), and chitooligosaccharides (COS) have been presented as suitable ingredients for the meat industry with the aim of obtaining healthier meat derivatives (e.g. with low fat or sugar content, reduced amount of additives, and desirable functional properties, etc.). However, studies considering application of such oligomers in the meat sector are scarce. In addition, a large number of issues remain to be solved related both to obtaining and characterizing the oligosaccharides available in the industry and to the effect that these ingredients have on the features of meat products (mainly physicochemical and sensory). The study of new oligosaccharides, the methodologies for obtaining them, and their application to new meat products should be promoted, as well as improving knowledge about their effects on the properties of functional meat foods.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Sirma Yegin
- Department of Food Engineering, Ege University, Izmir, Bornova, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | | | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
8
|
Wang J, Peng W, Yu A, Fokar M, Mechref Y. Glycome Profiling of Cancer Cell Lines Cultivated in Physiological and Commercial Media. Biomolecules 2022; 12:biom12060743. [PMID: 35740868 PMCID: PMC9221004 DOI: 10.3390/biom12060743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
A complex physiological culture medium (Plasmax) was introduced recently, composed of nutrients and metabolites at concentrations normally found in human plasma to mimic the in vivo environment for cell line cultivation. As glycosylation has been proved to be involved in cancer development, it is necessary to investigate the glycan expression changes in media with different nutrients. In this study, a breast cancer cell line, MDA-MB-231BR, and a brain cancer cell line, CRL-1620, were cultivated in Plasmax and commercial media to reveal cell line glycosylation discrepancies prompted by nutritional environments. Glycomics analyses of cell lines were performed using LC-MS/MS. The expressions of multiple fucosylated N-glycans, such as HexNAc4Hex3DeoxyHex1 and HexNAc5Hex3DeoxyHex1, derived from both cell lines exhibited a significant increase in Plasmax. Among the O-glycans, significant differences were also observed. Both cell lines cultivated in EMEM had the lowest amounts of O-glycans expressed. The original work described the development of Plasmax, which improves colony formation, and resulted in transcriptomic and metabolomic alterations of cancer cell lines, while our results indicate that Plasmax can significantly impact protein glycosylation. This study also provides information to guide the selection of media for in vitro cancer cell glycomics studies.
Collapse
Affiliation(s)
- Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.W.); (W.P.); (A.Y.)
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.W.); (W.P.); (A.Y.)
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.W.); (W.P.); (A.Y.)
| | - Mohamed Fokar
- Center of Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.W.); (W.P.); (A.Y.)
- Center of Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA;
- Correspondence: ; Tel.: +1-806-742-3059
| |
Collapse
|
9
|
Howlader MA, Guo T, Cairo CW. Inhibitors of Human Neuraminidase Enzymes Block Transmigration in vitro. Front Mol Biosci 2022; 9:835757. [PMID: 35281276 PMCID: PMC8913934 DOI: 10.3389/fmolb.2022.835757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Cell migration to a site of inflammation is an important step of the immune response. This process is coordinated by cytokines, receptors, and the signal processing machinery of the cell. Many cellular receptors are glycosylated, and their activity can be modulated through changes in glycan structure. Furthermore, glycosylation can be critical to the folding and trafficking of receptors. In this work, we investigated the role of native human neuraminidase enzymes (NEU) in transmigration. We used a cultured T cell line (Jurkat) and a transwell assay with fibronectin (FN) coated wells and cytokines (IL-4 and TNF-α) as chemoattractants in the bottom chamber. We observed that NEU1, NEU3, and NEU4 were positive regulators of transmigration using an siRNA knockdown. Furthermore, we found that pharmacological inhibition of these enzymes inhibited transmigration. We conclude that human NEU isoenzymes NEU1, NEU3, and NEU4 can act as positive regulators of transmigration and should be investigated as targets for anti-inflammatory strategies.
Collapse
|
10
|
Conroy LR, Chang JE, Sun Q, Clarke HA, Buoncristiani MD, Young LEA, McDonald RJ, Liu J, Gentry MS, Allison DB, Sun RC. High-dimensionality reduction clustering of complex carbohydrates to study lung cancer metabolic heterogeneity. Adv Cancer Res 2022; 154:227-251. [PMID: 35459471 PMCID: PMC9273336 DOI: 10.1016/bs.acr.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The tumor microenvironment contains a heterogeneous population of stromal and cancer cells that engage in metabolic crosstalk to ultimately promote tumor growth and contribute to progression. Due to heterogeneity within solid tumors, pooled mass spectrometry workflows are less sensitive at delineating unique metabolic perturbations between stromal and immune cell populations. Two critical, but understudied, facets of glucose metabolism are anabolic pathways for glycogen and N-linked glycan biosynthesis. Together, these complex carbohydrates modulate bioenergetics and protein-structure function, and create functional microanatomy in distinct cell populations within the tumor heterogeneity. Herein, we combine high-dimensionality reduction and clustering (HDRC) analysis with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and demonstrate its ability for the comprehensive assessment of tissue histopathology and metabolic heterogeneity in human FFPE sections. In human lung adenocarcinoma (LUAD) tumor tissues, HDRC accurately clusters distinct regions and cell populations within the tumor microenvironment, including tumor cells, tumor-infiltrating lymphocytes, cancer-associated fibroblasts, and necrotic regions. In-depth pathway enrichment analyses revealed unique metabolic pathways are associated with each distinct pathological region. Further, we highlight the potential of HDRC analysis to study complex carbohydrate metabolism in a case study of lung cancer disparity. Collectively, our results demonstrate the promising potentials of HDRC of pixel-based carbohydrate analysis to study cell-type and regional-specific stromal signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States; Markey Cancer Center, Lexington, KY, United States
| | - Josephine E Chang
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Qi Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States; Department of Computer Science, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Harrison A Clarke
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Michael D Buoncristiani
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Robert J McDonald
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jinze Liu
- Department of Biostatistics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthew S Gentry
- Markey Cancer Center, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Derek B Allison
- Markey Cancer Center, Lexington, KY, United States; Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, United States.
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States; Markey Cancer Center, Lexington, KY, United States.
| |
Collapse
|
11
|
Prates-Syed WA, Chaves LCS, Crema KP, Vuitika L, Lira A, Côrtes N, Kersten V, Guimarães FEG, Sadraeian M, Barroso da Silva FL, Cabral-Marques O, Barbuto JAM, Russo M, Câmara NOS, Cabral-Miranda G. VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. Vaccines (Basel) 2021; 9:1409. [PMID: 34960155 PMCID: PMC8708688 DOI: 10.3390/vaccines9121409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/23/2022] Open
Abstract
Virus-like particles (VLPs) are a versatile, safe, and highly immunogenic vaccine platform. Recently, there are developmental vaccines targeting SARS-CoV-2, the causative agent of COVID-19. The COVID-19 pandemic affected humanity worldwide, bringing out incomputable human and financial losses. The race for better, more efficacious vaccines is happening almost simultaneously as the virus increasingly produces variants of concern (VOCs). The VOCs Alpha, Beta, Gamma, and Delta share common mutations mainly in the spike receptor-binding domain (RBD), demonstrating convergent evolution, associated with increased transmissibility and immune evasion. Thus, the identification and understanding of these mutations is crucial for the production of new, optimized vaccines. The use of a very flexible vaccine platform in COVID-19 vaccine development is an important feature that cannot be ignored. Incorporating the spike protein and its variations into VLP vaccines is a desirable strategy as the morphology and size of VLPs allows for better presentation of several different antigens. Furthermore, VLPs elicit robust humoral and cellular immune responses, which are safe, and have been studied not only against SARS-CoV-2 but against other coronaviruses as well. Here, we describe the recent advances and improvements in vaccine development using VLP technology.
Collapse
Affiliation(s)
- Wasim A. Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Lorena C. S. Chaves
- Department of Microbiology and Immunology, School of Medicine, Emory University, Claudia Nance Rollins Building, Atlanta, GA 30329, USA;
| | - Karin P. Crema
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| | - Victor Kersten
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | | | - Mohammad Sadraeian
- São Carlos Institute of Physics, IFSC-USP, São Carlos 13566590, SP, Brazil; (F.E.G.G.); (M.S.)
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | - Fernando L. Barroso da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040903, SP, Brazil;
- Department of Chemical and Biomolecular Engeneering, North Carolina State University, Raleigh, NC 27695, USA
| | - Otávio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children’s Medical Center, Tehran 1419733151, Iran
| | - José A. M. Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 0124690, SP, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Niels O. S. Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508000, SP, Brazil; (W.A.P.-S.); (K.P.C.); (L.V.); (A.L.); (N.C.); (V.K.); (O.C.-M.); (J.A.M.B.); (M.R.); (N.O.S.C.)
- Institute of Research and Education in Child Health (PENSI), São Paulo 01228200, SP, Brazil
| |
Collapse
|
12
|
Yu A, Zhao J, Zhong J, Wang J, Yadav SPS, Molitoris BA, Wagner MC, Mechref Y. Altered O-glycomes of Renal Brush-Border Membrane in Model Rats with Chronic Kidney Diseases. Biomolecules 2021; 11:1560. [PMID: 34827558 PMCID: PMC8615448 DOI: 10.3390/biom11111560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as a decrease in renal function or glomerular filtration rate (GFR), and proteinuria is often present. Proteinuria increases with age and can be caused by glomerular and/or proximal tubule (PT) alterations. PT cells have an apical brush border membrane (BBM), which is a highly dynamic, organized, and specialized membrane region containing multiple glycoproteins required for its functions including regulating uptake, secretion, and signaling dependent upon the physiologic state. PT disorders contribute to the dysfunction observed in CKD. Many glycoprotein functions have been attributed to their N- and O-glycans, which are highly regulated and complex. In this study, the O-glycans present in rat BBMs from animals with different levels of kidney disease and proteinuria were characterized and analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). A principal component analysis (PCA) documented that each group has distinct O-glycan distributions. Higher fucosylation levels were observed in the CKD and diabetic groups, which may contribute to PT dysfunction by altering physiologic glycoprotein interactions. Fucosylated O-glycans such as 1-1-1-0 exhibited higher abundance in the severe proteinuric groups. These glycomic results revealed that differential O-glycan expressions in CKD progressions has the potential to define the mechanism of proteinuria in kidney disease and to identify potential therapeutic interventions.
Collapse
Affiliation(s)
- Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (A.Y.); (J.Z.); (J.Z.); (J.W.)
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (A.Y.); (J.Z.); (J.Z.); (J.W.)
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (A.Y.); (J.Z.); (J.Z.); (J.W.)
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (A.Y.); (J.Z.); (J.Z.); (J.W.)
| | - Shiv Pratap S. Yadav
- Department of Medicine, Nephrology Division, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Bruce A. Molitoris
- Department of Medicine, Nephrology Division, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Mark C. Wagner
- Department of Medicine, Nephrology Division, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (A.Y.); (J.Z.); (J.Z.); (J.W.)
| |
Collapse
|
13
|
Gutierrez-Reyes CD, Jiang P, Atashi M, Bennett A, Yu A, Peng W, Zhong J, Mechref Y. Advances in mass spectrometry-based glycoproteomics: An update covering the period 2017-2021. Electrophoresis 2021; 43:370-387. [PMID: 34614238 DOI: 10.1002/elps.202100188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Andrew Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
14
|
Yang F, Lin J, Chen W. Post-translational modifications in T cells in systemic erythematosus lupus. Rheumatology (Oxford) 2021; 60:2502-2516. [PMID: 33512488 DOI: 10.1093/rheumatology/keab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic erythematosus lupus (SLE) is a classic autoimmune disease characterized by multiple autoantibodies and immune-mediated tissue damage. The aetiology of this disease is still unclear. A new drug, belimumab, which acts against the B-lymphocyte stimulator (BLyS), can effectively improve the condition of SLE patients, but it cannot resolve all SLE symptoms. The discovery of novel, precise therapeutic targets is urgently needed. It is well known that abnormal T-cell function is one of the most crucial factors contributing to the pathogenesis of SLE. Protein post-translational modifications (PTMs), including phosphorylation, glycosylation, acetylation, methylation, ubiquitination and SUMOylation have been emphasized for their roles in activating protein activity, maintaining structural stability, regulating protein-protein interactions and mediating signalling pathways, in addition to other biological functions. Summarizing the latest data in this area, this review focuses on the potential roles of diverse PTMs in regulating T-cell function and signalling pathways in SLE pathogenesis, with the goal of identifying new targets for SLE therapy.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Jin Lin
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiqian Chen
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 352] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
16
|
Cho BG, Jiang P, Goli M, Gautam S, Mechref Y. Using micro pillar array columns (μPAC) for the analysis of permethylated glycans. Analyst 2021; 146:4374-4383. [DOI: 10.1039/d1an00643f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of both 50 cm and 200 cm micro pillar array column (μPAC) for the analysis of permethylated glycan is demonstrated and assessed.
Collapse
Affiliation(s)
- Byeong Gwan Cho
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Peilin Jiang
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Mona Goli
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
17
|
Gómez-Henao W, Tenorio EP, Sanchez FRC, Mendoza MC, Ledezma RL, Zenteno E. Relevance of glycans in the interaction between T lymphocyte and the antigen presenting cell. Int Rev Immunol 2020; 40:274-288. [PMID: 33205679 DOI: 10.1080/08830185.2020.1845331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The immunological synapse promotes receptors and ligands interaction in the contact interface between the T lymphocyte and the antigen presenting cell; glycosylation of the proteins involved in this biological process favors regulation of molecular interactions and development of the T lymphocyte effector response. Glycans in the immunological synapse influence cellular and molecular processes such as folding, expression, and structural stability of proteins, they also mediate ligand-receptor interaction and propagation of the intracellular signaling or inhibition of uncontrolled cellular activation that could lead to the development of autoimmunity, among others. It has been suggested that altered glycosylation of proteins that participate in the immunological synapse affects the signaling processes and cell proliferation, as well as exacerbation of the effector mechanisms of T cells that trigger systemic damage and autoimmunity. Understanding the role of glycans in the immune response has allowed for advances in the development of immunotherapies in different fields through the controlled and specific activation of the immune response. This review describes the structural and biological aspects of glycans associated with some molecules present in the immunological synapse, providing information that allows understanding the function of glycosylation in the interaction between the T lymphocyte and the antigen-presenting cell, as well as its impact on signaling and development regulation of T lymphocytes effector response.
Collapse
Affiliation(s)
- Wilton Gómez-Henao
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico.,Cell Growth, Tissue Repair and Regeneration (CRRET), CNRS ERL 9215, Université Paris Est Créteil (UPEC), Créteil, France
| | - Eda Patricia Tenorio
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | | | - Miguel Cuéllar Mendoza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Ricardo Lascurain Ledezma
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| |
Collapse
|
18
|
Abyadeh M, Meyfour A, Gupta V, Zabet Moghaddam M, Fitzhenry MJ, Shahbazian S, Hosseini Salekdeh G, Mirzaei M. Recent Advances of Functional Proteomics in Gastrointestinal Cancers- a Path towards the Identification of Candidate Diagnostic, Prognostic, and Therapeutic Molecular Biomarkers. Int J Mol Sci 2020; 21:ijms21228532. [PMID: 33198323 PMCID: PMC7697099 DOI: 10.3390/ijms21228532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the common causes of morbidity and mortality. A high number of cases are diagnosed at an advanced stage, leading to a poor survival rate. This is primarily attributed to the lack of reliable diagnostic biomarkers and limited treatment options. Therefore, more sensitive, specific biomarkers and curative treatments are desirable. Functional proteomics as a research area in the proteomic field aims to elucidate the biological function of unknown proteins and unravel the cellular mechanisms at the molecular level. Phosphoproteomic and glycoproteomic studies have emerged as two efficient functional proteomics approaches used to identify diagnostic biomarkers, therapeutic targets, the molecular basis of disease and mechanisms underlying drug resistance in GI cancers. In this review, we present an overview on how functional proteomics may contribute to the understanding of GI cancers, namely colorectal, gastric, hepatocellular carcinoma and pancreatic cancers. Moreover, we have summarized recent methodological developments in phosphoproteomics and glycoproteomics for GI cancer studies.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
- Cell Science Research Center, Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
- Correspondence: (A.M.); (M.M.)
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | | | - Matthew J. Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Shila Shahbazian
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Ghasem Hosseini Salekdeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
- Correspondence: (A.M.); (M.M.)
| |
Collapse
|
19
|
Gautam S, Peng W, Cho BG, Huang Y, Banazadeh A, Yu A, Dong X, Mechref Y. Glucose unit index (GUI) of permethylated glycans for effective identification of glycans and glycan isomers. Analyst 2020; 145:6656-6667. [PMID: 32804173 PMCID: PMC7554265 DOI: 10.1039/d0an00314j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retention time is the most common and widely used criterion to report the separation of glycans using Liquid Chromatography (LC), but it varies widely across different columns, instruments and laboratories. This variation is problematic when inter-laboratory data is compared. Furthermore, it influences reproducibility and hampers efficient data interpretation. In our endeavor to overcome this variance, we propose the use of the Glucose Unit Index (GUI) on C18 and PGC column-based separation of reduced and permethylated glycans. GUI has previously been utilized for retention time normalization of native and labeled glycans. We evaluated this method with reduced and permethylated glycans derived from model glycoproteins fetuin and ribonuclease B (RNase B), and then implemented it to human blood serum to generate C18 and PGC column-based isomeric glycan libraries. GUI values for glycan compositions were calculated with respect to the glucose units derived from dextrin, which was employed as an elution standard. The GUI values were validated on three different LC systems (UltiMate 3000 Nano UHPLC systems) in two laboratories to ensure the reliability and reproducibility of the method. Applicability on real samples was demonstrated using human breast cancer cell lines. A total of 116 permethylated N-glycans separated on a C18 column and 134 glycans separated on a PGC column were compiled in a library. Overall, the established GUI method and the demonstration of reproducible inter- and intra-laboratory GUI values would aid the future development of automated glycan and isomeric glycan identification methods.
Collapse
Affiliation(s)
- Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee KB, Ang L, Yau WP, Seow WJ. Association between Metabolites and the Risk of Lung Cancer: A Systematic Literature Review and Meta-Analysis of Observational Studies. Metabolites 2020; 10:E362. [PMID: 32899527 PMCID: PMC7570231 DOI: 10.3390/metabo10090362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, lung cancer is the most prevalent cancer type. However, screening and early detection is challenging. Previous studies have identified metabolites as promising lung cancer biomarkers. This systematic literature review and meta-analysis aimed to identify metabolites associated with lung cancer risk in observational studies. The literature search was performed in PubMed and EMBASE databases, up to 31 December 2019, for observational studies on the association between metabolites and lung cancer risk. Heterogeneity was assessed using the I2 statistic and Cochran's Q test. Meta-analyses were performed using either a fixed-effects or random-effects model, depending on study heterogeneity. Fifty-three studies with 297 metabolites were included. Most identified metabolites (252 metabolites) were reported in individual studies. Meta-analyses were conducted on 45 metabolites. Five metabolites (cotinine, creatinine riboside, N-acetylneuraminic acid, proline and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene) and five metabolite groups (total 3-hydroxycotinine, total cotinine, total nicotine, total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (sum of concentrations of the metabolite and its glucuronides), and total nicotine equivalent (sum of total 3-hydroxycotinine, total cotinine and total nicotine)) were associated with higher lung cancer risk, while three others (folate, methionine and tryptophan) were associated with lower lung cancer risk. Significant heterogeneity was detected across most studies. These significant metabolites should be further evaluated as potential biomarkers for lung cancer.
Collapse
Affiliation(s)
- Kian Boon Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (K.B.L.); (W.-P.Y.)
| | - Lina Ang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
| | - Wai-Ping Yau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (K.B.L.); (W.-P.Y.)
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
| |
Collapse
|
21
|
Ugonotti J, Chatterjee S, Thaysen-Andersen M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol Aspects Med 2020; 79:100882. [PMID: 32847678 DOI: 10.1016/j.mam.2020.100882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
22
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Möckl L. The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Front Cell Dev Biol 2020; 8:253. [PMID: 32351961 PMCID: PMC7174505 DOI: 10.3389/fcell.2020.00253] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
All cells in the human body are covered by a dense layer of sugars and the proteins and lipids to which they are attached, collectively termed the "glycocalyx." For decades, the organization of the glycocalyx and its interplay with the cellular state have remained enigmatic. This changed in recent years. Latest research has shown that the glycocalyx is an organelle of vital significance, actively involved in and functionally relevant for various cellular processes, that can be directly targeted in therapeutic contexts. This review gives a brief introduction into glycocalyx biology and describes the specific challenges glycocalyx research faces. Then, the traditional view of the role of the glycocalyx is discussed before several recent breakthroughs in glycocalyx research are surveyed. These results exemplify a currently unfolding bigger picture about the role of the glycocalyx as a fundamental cellular agent.
Collapse
Affiliation(s)
- Leonhard Möckl
- Department of Chemistry, Stanford University, Stanford, CA, United States
| |
Collapse
|
24
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
25
|
Müller M, Buchner MR. Understanding the Localization of Berylliosis: Interaction of Be 2+ with Carbohydrates and Related Biomimetic Ligands. Chemistry 2019; 25:16257-16269. [PMID: 31498482 PMCID: PMC6973027 DOI: 10.1002/chem.201903439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Indexed: 01/28/2023]
Abstract
The interplay of metal ions with polysaccharides is important for the immune recognition in the lung. Due to the localization of beryllium associated diseases to the lung, it is likely that beryllium carbohydrate complexes play a vital role for the development of berylliosis. Herein, we present a detailed study on the interaction of Be2+ ions with fructose and glucose as well as simpler biomimetic ligands, which emulate binding motives of saccharides. Through NMR and IR spectroscopy as well as single-crystal X-ray diffraction, complemented by competition reactions we were able to determine a distinctive trend in the binding affinity of these ligands. This suggests that under physiological conditions beryllium ions are only bound irreversibly in glycoproteins or polysaccharides if a quasi ideal tetrahedral environment and κ4 -coordination is provided by the respective biomolecule. Furthermore, Lewis acid induced conversions of the ligands and an extreme increase in the Brønstedt acidity of the present OH-groups imply that upon enclosure of Be2+ , alterations may be induced by the metal ion in glycoproteins or polysaccharides. In addition the frequent formation of Be-O-heterocycles indicates that multinuclear beryllium compounds might be the actual trigger of berylliosis. This investigation on beryllium coordination chemistry was supplemented by binding studies of selected biomimetic ligands with Al3+ , Zn2+ , Mg2+ , and Li+ , which revealed that none of these beryllium related ions was tetrahedrally coordinated under the give conditions. Therefore, studies on the metabolization of beryllium compounds cannot be performed with other hard cations as a substitute for the hazardous Be2+ .
Collapse
Affiliation(s)
- Matthias Müller
- Anorganische Chemie, Nachwuchsgruppe BerylliumchemieFachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| | - Magnus R. Buchner
- Anorganische Chemie, Nachwuchsgruppe BerylliumchemieFachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| |
Collapse
|
26
|
Liang W, Mao S, Li M, Zhang N, Sun S, Fang H, Zhang J, Gu J, Wang J, Li W. Ablation of core fucosylation attenuates the signal transduction via T cell receptor to suppress the T cell development. Mol Immunol 2019; 112:312-321. [PMID: 31229844 DOI: 10.1016/j.molimm.2019.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 12/29/2022]
Abstract
Precise glycosylation plays a crucial and distinctive role in thymic T cell development. The core fucosylation is dramatically up-regulated at the transition from CD4-CD8- (DN) to CD4+CD8+ (DP) in the thymic development. Ablation of core fucosylation in T cells did reduce the size of the thymus due to a significant loss of CD4+ SP, CD8+ SP and DP thymocytes in core fucosyltransferase (Fut8) knockout (Fut8-/-) mice. T cell receptors (TCRs) are heavily core fucosylated glycoproteins. Loss of core fucosylation of TCR contributed to the reduced phosphorylation of ZAP70 (pZAP70) in Fut8-/- DP cells was observed. Compare to the Fut8+/+OT-II DP thymocytes, pZAP70 was significantly reduced in Fut8-/- OT-II DP thymocytes with OVA323-339 stimulation. Also, the pZAP70 of Fut8+/+OT-I DP thymocytes with OVA257-264 stimulation was remarkably attenuated by treatment of the fucosidase. Upon anti-CD3/CD28 Abs stimulation, the increased apoptosis was found in Fut8-/- thymocytes compared with Fut8+/+ thymocytes. Moreover, the TCRhiCD69hi (post-positive selection thymocytes) was markedly depleted in the Fut8-/- thymus without any stimulation. The expression of CD5 was significantly down-regulated on the DP cells in the Fut8-/- thymus. Our results therefore demonstrate that ablation of core fucosylation results in the abnormal T cell development due to the attenuated signaling via TCR.
Collapse
Affiliation(s)
- Wei Liang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Shanshan Mao
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Nianzhu Zhang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Shijie Sun
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Hui Fang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jianing Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Jianguo Gu
- Pharmacy College, Nantong University, Nantong, Jiangsu, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China.
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| |
Collapse
|
27
|
Hu M, Lan Y, Lu A, Ma X, Zhang L. Glycan-based biomarkers for diagnosis of cancers and other diseases: Past, present, and future. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:1-24. [PMID: 30905444 DOI: 10.1016/bs.pmbts.2018.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are essential biomolecules in regulating human physiology and pathology ranging from signal transduction to microbial infections. Developing complex human diseases, such as cancer, diabetes, and cardiovascular diseases, are a combination of genetic and environmental factors. Genetics dominates embryonic development and the passing of genes to the next generation whereas the information in glycans reflects the impact of internal and external environmental factors, such as diseases, lifestyle, and social factors, on a person's health and disease. The reason behind this is that glycans are not directly encoded in a genetic template. Instead, they are assembled dynamically by hundreds of enzymes organized in more than 10 complex biosynthetic pathways. Any environmental changes affecting enzymatic activities or the availability of high-energy monosaccharide donors in a specific location will disturb the final structure of glycans. The glycan structure-dependent biological activities subsequently enable or disable gene expressions, which partially explain that it is difficult to pinpoint specific genetic defects to aging-associated diseases. Glycan-based biomarkers are currently used for diagnosis of diabetes, cancers, and other complex diseases. We will recapitulate the discovery of glucose, glycated proteins, glycan-, and glycoprotein-based biomarkers followed by summarizing clinically used glycan/glycoprotein-based biomarkers. The potential serum/plasma-derived N- and O-linked glycans as biomarkers will also be discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Alexander Lu
- Program in Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Xuexiao Ma
- Department of Spine Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
28
|
Yu A, Zhao J, Peng W, Banazadeh A, Williamson SD, Goli M, Huang Y, Mechref Y. Advances in mass spectrometry-based glycoproteomics. Electrophoresis 2018; 39:3104-3122. [PMID: 30203847 PMCID: PMC6375712 DOI: 10.1002/elps.201800272] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
Protein glycosylation, an important PTM, plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, and host-pathogen interaction. Aberrant glycosylation has been correlated with various diseases. However, studying protein glycosylation remains challenging because of low abundance, microheterogeneities of glycosylation sites, and poor ionization efficiency of glycopeptides. Therefore, the development of sensitive and accurate approaches to characterize protein glycosylation is crucial. The identification and characterization of protein glycosylation by MS is referred to as the field of glycoproteomics. Methods such as enrichment, metabolic labeling, and derivatization of glycopeptides in conjunction with different MS techniques and bioinformatics tools, have been developed to achieve an unequivocal quantitative and qualitative characterization of glycoproteins. This review summarizes the recent developments in the field of glycoproteomics over the past 6 years (2012 to 2018).
Collapse
Affiliation(s)
- Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Seth D. Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
29
|
Pereira MS, Alves I, Vicente M, Campar A, Silva MC, Padrão NA, Pinto V, Fernandes Â, Dias AM, Pinho SS. Glycans as Key Checkpoints of T Cell Activity and Function. Front Immunol 2018; 9:2754. [PMID: 30538706 PMCID: PMC6277680 DOI: 10.3389/fimmu.2018.02754] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The immune system is highly controlled and fine-tuned by glycosylation, through the addition of a diversity of carbohydrates structures (glycans) to virtually all immune cell receptors. Despite a relative backlog in understanding the importance of glycans in the immune system, due to its inherent complexity, remarkable findings have been highlighting the essential contributions of glycosylation in the regulation of both innate and adaptive immune responses with important implications in the pathogenesis of major diseases such as autoimmunity and cancer. Glycans are implicated in fundamental cellular and molecular processes that regulate both stimulatory and inhibitory immune pathways. Besides being actively involved in pathogen recognition through interaction with glycan-binding proteins (such as C-type lectins), glycans have been also shown to regulate key pathophysiological steps within T cell biology such as T cell development and thymocyte selection; T cell activity and signaling as well as T cell differentiation and proliferation. These effects of glycans in T cells functions highlight their importance as determinants of either self-tolerance or T cell hyper-responsiveness which ultimately might be implicated in the creation of tolerogenic pathways in cancer or loss of immunological tolerance in autoimmunity. This review discusses how specific glycans (with a focus on N-linked glycans) act as regulators of T cell biology and their implications in disease.
Collapse
Affiliation(s)
- Márcia S Pereira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Inês Alves
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Manuel Vicente
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Ana Campar
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal.,Centro Hospitalar do Porto Porto, Portugal
| | - Mariana C Silva
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Nuno A Padrão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Vanda Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ângela Fernandes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| |
Collapse
|
30
|
Uslupehlivan M, Deveci R, Ün C. In silico investigation of the prion protein glycosylation profiles in relation to scrapie disease resistance in domestic sheep (Ovis aries). Mol Cell Probes 2018; 42:1-9. [PMID: 30261281 DOI: 10.1016/j.mcp.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/07/2018] [Accepted: 09/23/2018] [Indexed: 01/04/2023]
Abstract
The prion protein is a membrane-bound glycoprotein which consists mainly α-helix structure. In contrast, the infectious prion protein shows the beta-sheet structure. The prion-associated diseases are all lethal neurodegenerative abnormalities, called transmissible spongiform encephalopathies. Scrapie is the most common type of these illnesses affecting sheep, goats, and moufflon. The VRQ, AHQ, ARR and N146S polymorphisms in the sheep prion gene have been found to be associated with resistance to scrapie disease. So far, the relationship of polymorphisms to three-dimensional protein structures, post-translational modifications, and scrapie resistance has not been studied. In this study, the potential N- and O-glycosylation positions of sheep prion protein polymorphisms were analyzed, the secondary and three-dimensional protein structure models were predicted, three-dimensional glycoprotein models were constructed and the role of glycosylation positions in protein interactions was investigated. Here, we found that protein secondary and three-dimensional structures vary among polymorphisms. Moreover, we found wild-type prion and all polymorphic variants show N-glycosylation at Asn184 and Asn200 positions, while O-glycosylation profiles are variant-specific. We also found that structural changes among prion polymorphisms leads to the formation of variant spesific O-glycosylation profiles and these positions are associated with protein interactions. Based on these findings, we suggest that O-glycosylation may be effective on resistance/susceptibility of sheep prion polymorphisms to scrapie disease.
Collapse
Affiliation(s)
- Muhammet Uslupehlivan
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| | - Remziye Deveci
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| | - Cemal Ün
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| |
Collapse
|
31
|
Oliveira-Brito PKM, Roque-Barreira MC, da Silva TA. The Response of IL-17-Producing B Cells to ArtinM Is Independent of Its Interaction with TLR2 and CD14. Molecules 2018; 23:molecules23092339. [PMID: 30216978 PMCID: PMC6225408 DOI: 10.3390/molecules23092339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing Toll-like receptor (TLR)2 and cluster of differentiation (CD)14 N-glycans, induces cytokine production, and promotes type 1 T helper (Th1) immunity, a process that plays an assisting role in the combat against fungal infections. We recently demonstrated that ArtinM stimulates CD4+ T cells to produce interleukin (IL)-17 through direct interaction with CD3. Here, we further investigated the effects of ArtinM on the production of IL-17 by B cell activation. We showed that ArtinM activates murine B cells, increasing IL-17 and IL-12p40 production. The direct effect of ArtinM was sufficient to induce IL-17 production in B cells, and we did not find differences in the levels of IL-17 between the B cells purified from the wild-type (WT) and knockout (KO) mice for TLR2 or CD14 in the presence of ArtinM. Thus, the effects of ArtinM on splenic B cells through carbohydrate recognition may contribute to Th17 immunity; however, the mechanism involved is not associated with the interaction of ArtinM with TLR2 and CD14. The current work represents a pioneering effort in the understanding of the induction of IL-17 by lectins in B cells.
Collapse
Affiliation(s)
- Patrícia Kellen Martins Oliveira-Brito
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| | - Maria Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| | - Thiago Aparecido da Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
32
|
Zhong J, Banazadeh A, Peng W, Mechref Y. A carbon nanoparticles-based solid-phase purification method facilitating sensitive MALDI-MS analysis of permethylated N-glycans. Electrophoresis 2018; 39:3087-3095. [PMID: 30086189 DOI: 10.1002/elps.201800254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
Abstract
In recent decades, MALDI-MS has been extensively used for the analysis of glycans. However, native glycans usually have low ionization efficiency in MS, which hinders the direct analysis. Permethylation of glycans is a solution for this issue, but a significant amount of salt is introduced during this process, which can further suppress the MS signals. Thus, it is necessary to purify the glycans prior to MALDI-MS analysis. In this study, we developed a carbon nanoparticles-based solid-phase purification method to enable direct MALDI-MS analysis of permethylated glycans. Two carbon nanomaterials, carbon nanoparticles (CNPs) and graphene nanosheets (GNs), and two conventional carbon materials, activated charcoal and porous graphitic carbon (PGC), were investigated as sorbents to purify permethylated N-glycans derived from ribonuclease B and fetuin. The results confirmed the superior performance of CNPs over the other carbon materials. Additionally, our method was also employed to purify glycans released from human sera in different esophageal disease stages. The obtained data confirmed 16 and 18 structures in adenocarcinoma and Barret's sera with significantly different relative intensities versus disease-free sera. Comparing the performance of CNPs-based solid-phase purification method employed in this study to online purification suggested more than 97% recovery rate. The results of this study demonstrate that CNPs have the potential to be a better alternative to existing solid-phase purification sorbents.
Collapse
Affiliation(s)
- Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
33
|
Komor R, Pastuch-Gawolek G, Krol E, Szeja W. Synthesis and Preliminary Evaluation of Biological Activity of Glycoconjugates Analogues of Acyclic Uridine Derivatives. Molecules 2018; 23:molecules23082017. [PMID: 30104510 PMCID: PMC6222857 DOI: 10.3390/molecules23082017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 12/16/2022] Open
Abstract
Herein we present the methodology for obtaining glycosyltransferase inhibitors, analogues of natural enzyme substrates of donor-type: UDP-glucose and UDP-galactose. The synthesis concerned glycoconjugates, nucleoside analogues containing an acyclic ribose mimetic linked to a uracil moiety in their structure. The biological activity of the synthesised compounds was determined on the basis of their ability to inhibit the model enzyme action of β-1,4-galactosyltransferase from bovine milk. The obtained results allowed to expand and supplement the existing library of synthetic compounds that are able to regulate the biological activity of enzymes from the GT class.
Collapse
Affiliation(s)
- Roman Komor
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
| | - Gabriela Pastuch-Gawolek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Wieslaw Szeja
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
| |
Collapse
|
34
|
Dai S, Zhang T, Zhang Y, Wang H, Deng F. Zika Virus Baculovirus-Expressed Virus-Like Particles Induce Neutralizing Antibodies in Mice. Virol Sin 2018; 33:213-226. [PMID: 29774519 PMCID: PMC6013542 DOI: 10.1007/s12250-018-0030-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/30/2018] [Indexed: 12/30/2022] Open
Abstract
The newly emerged mosquito-borne Zika virus (ZIKV) strains pose a global challenge owing to its ability to cause microcephaly and neurological disorders. Several ZIKV vaccine candidates have been proposed, including inactivated and live attenuated virus vaccines, vector-based vaccines, DNA and RNA vaccines. These have been shown to be efficacious in preclinical studies in mice and nonhuman primates, but their use will potentially be a threat to immunocompromised individuals and pregnant women. Virus-like particles (VLPs) are empty particles composed merely of viral proteins, which can serve as a safe and valuable tool for clinical prevention and treatment strategies. In this study, we used a new strategy to produce ZIKV VLPs based on the baculovirus expression system and demonstrated the feasibility of their use as a vaccine candidate. The pre-membrane (prM) and envelope (E) proteins were co-expressed in insect cells and self-assembled into particles similar to ZIKV. We found that the ZIKV VLPs could be quickly and easily prepared in large quantities using this system. The VLPs were shown to have good immunogenicity in immunized mice, as they stimulated high levels of virus neutralizing antibody titers, ZIKV-specific IgG titers and potent memory T cell responses. Thus, the baculovirus-based ZIKV VLP vaccine is a safe, effective and economical vaccine candidate for use against ZIKV.
Collapse
Affiliation(s)
- Shiyu Dai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanfang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
35
|
Emerging glycobiology tools: A renaissance in accessibility. Cell Immunol 2018; 333:2-8. [PMID: 29759530 DOI: 10.1016/j.cellimm.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
The glycobiology of the immune response is a topic that has garnered increased attention due to a number of key discoveries surrounding IgG function, the specificity of some broadly neutralizing anti-HIV antibodies, cancer immunoregulation by galectin molecules and others. This review is the opening article in a Special Edition of Cellular Immunology focused on glycoimmunology, and has the goal of setting the context for these articles by providing a mini-review of how glycans impact immunity. We also focus on some of the technological and methodological advances in the field of glycobiology that are being deployed to lower the barrier of entry into the glycosciences, and to more fully interrogate the glycome and its function.
Collapse
|
36
|
Zhang Z, Wuhrer M, Holst S. Serum sialylation changes in cancer. Glycoconj J 2018; 35:139-160. [PMID: 29680984 PMCID: PMC5916985 DOI: 10.1007/s10719-018-9820-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a major cause of death in both developing and developed countries. Early detection and efficient therapy can greatly enhance survival. Aberrant glycosylation has been recognized to be one of the hallmarks of cancer as glycans participate in many cancer-associated events. Cancer-associated glycosylation changes often involve sialic acids which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the literature on changes of sialylation in serum of cancer patients. Furthermore, the methods available to measure serum and plasma sialic acids as well as possible underlying biochemical mechanisms involved in the serum sialylation changes are surveyed. In general, total serum sialylation levels appear to be increased with various malignancies and show a potential for clinical applications, especially for disease monitoring and prognosis. In addition to overall sialic acid levels and the amount of sialic acid per total protein, glycoprofiling of specific cancer-associated glycoproteins, acute phase proteins and immunoglobulins in serum as well as the measurements of sialylation-related enzymes such as sialidases and sialyltransferases have been reported for early detection of cancer, assessing cancer progression and improving prognosis of cancer patients. Moreover, sialic-acid containing glycan antigens such as CA19-9, sialyl Lewis X and sialyl Tn on serum proteins have also displayed their value in cancer diagnosis and management whereby increased levels of these factors positively correlated with metastasis or poor prognosis.
Collapse
Affiliation(s)
- Zejian Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands.,Department of Biochemistry and Molecular Biology, Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands.
| |
Collapse
|
37
|
Identification of human glycosyltransferase genes expressed in erythroid cells predicts potential carbohydrate blood group loci. Sci Rep 2018; 8:6040. [PMID: 29662110 PMCID: PMC5902498 DOI: 10.1038/s41598-018-24445-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/08/2018] [Indexed: 01/24/2023] Open
Abstract
Glycans are biologically important structures synthesised by glycosyltransferase (GT) enzymes. Disruptive genetic null variants in GT genes can lead to serious illness but benign phenotypes are also seen, including antigenic differences on the red blood cell (RBC) surface, giving rise to blood groups. To characterise known and potential carbohydrate blood group antigens without a known underlying gene, we searched public databases for human GT loci and investigated their variation in the 1000 Genomes Project (1000 G). We found 244 GT genes, distributed over 44 families. All but four GT genes had missense variants or other variants predicted to alter the amino acid sequence, and 149 GT genes (61%) had variants expected to cause null alleles, often associated with antigen-negative blood group phenotypes. In RNA-Seq data generated from erythroid cells, 155 GT genes were expressed at a transcript level comparable to, or higher than, known carbohydrate blood group loci. Filtering for GT genes predicted to cause a benign phenotype, a set of 30 genes remained, 16 of which had variants in 1000 G expected to result in null alleles. Our results identify potential blood group loci and could serve as a basis for characterisation of the genetic background underlying carbohydrate RBC antigens.
Collapse
|
38
|
Memon S, Wang L, Li G, Liu X, Deng W, Xi D. Isolation and characterization of the major histocompatibility complex DQA1 and DQA2 genes in gayal (Bos frontalis). J Genet 2018. [DOI: 10.1007/s12041-018-0882-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Abstract
Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.
Collapse
Affiliation(s)
- Derfogail Delcassian
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,b Department of Anaesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA.,c Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Asha K Patel
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Division of Cancer and Stem Cells, School of Medicine, and Division of Advanced Materials and Healthcare Technologies, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Abel B Cortinas
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Robert Langer
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA.,f Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , MA , USA.,g Media Lab , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
40
|
Liang W, Mao S, Sun S, Li M, Li Z, Yu R, Ma T, Gu J, Zhang J, Taniguchi N, Li W. Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation. Front Immunol 2018; 9:78. [PMID: 29434598 PMCID: PMC5796888 DOI: 10.3389/fimmu.2018.00078] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/11/2018] [Indexed: 12/05/2022] Open
Abstract
CD4+ T cell activation promotes the pathogenic process of systemic lupus erythematosus (SLE). T cell receptor (TCR) complex are highly core fucosylated glycoproteins, which play important roles in T cell activation. In this study, we found that the core fucosylation of CD4+ T cells was significantly increased in SLE patients. Loss of core fucosyltransferase (Fut8), the sole enzyme for catalyzing the core fucosylation of N-glycan, significantly reduced CD4+ T cell activation and ameliorated the experimental autoimmune encephalomyelitis-induced syndrome in Fut8−/− mice. T cell activation with OVA323–339 loaded major histocompatibility complex II (pMHC-II) on B cell was dramatically attenuated in Fut8−/−OT-II CD4+ T cells compared with Fut8+/+OT-II CD4+ T cells. Moreover, the phosphorylation of ZAP-70 was significantly reduced in Fut8+/+OT-II CD4+ T cells by the treatment of fucosidase. Our results suggest that core fucosylation is required for efficient TCR–pMHC-II contacts in CD4+ T cell activation, and hyper core fucosylation may serve as a potential novel biomarker in the sera from SLE patients.
Collapse
Affiliation(s)
- Wei Liang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shanshan Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shijie Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhi Li
- Clinical Laboratory, Dalian Municipal Central Hospital, Dalian, China
| | - Rui Yu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianing Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, Advanced Science Institute, RIKEN, Saitama, Japan
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Wong YLE, Chen X, Wu R, Hung YLW, Chan TWD. Structural Characterization of Intact Glycoconjugates by Tandem Mass Spectrometry Using Electron-Induced Dissociation. Anal Chem 2017; 89:10111-10117. [PMID: 28838234 DOI: 10.1021/acs.analchem.7b03128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Characterizing the structures of glycoconjungates is important because of glycan heterogeneity and structural complexity of aglycon. The presence of relatively weak glycosidic linkages leads to preferential cleavages that limit the acquisition of structural information under typical mass spectrometry dissociation conditions, such as collision-induced dissociation (CID) and infrared multiphoton dissociation. In this paper, we explored the dissociation behaviors of different members of glycoconjugates, including glycopeptides, glycoalkaloids, and glycolipids, under electron-induced dissociation (EID) conditions. Using CID spectra as references, we found that EID is not only a complementary method to CID, but also a method that can generate extensive fragment ions for the structural characterization of all intact glycoconjugates studied. Furthermore, isomeric ganglioside species can be differentiated, and the double bond location in the ceramide moiety of the gangliosides can be identified through the MS3 approach involving sequential CID and EID processes.
Collapse
Affiliation(s)
- Y L Elaine Wong
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China.,Shandong Analysis and Test Centre, Shandong Academy of Sciences, Qilu University of Technology , Jinan, Shandong, People's Republic of China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| | - Y L Winnie Hung
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| |
Collapse
|
42
|
Kang KJ, Ko SY, Ryu CJ, Jang YJ. A monoclonal antibody recognizes undifferentiation-specific carbohydrate moieties expressed on cell surface of the human dental pulp cells. Stem Cell Res 2017; 21:85-93. [DOI: 10.1016/j.scr.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/29/2022] Open
|
43
|
CD68/macrosialin: not just a histochemical marker. J Transl Med 2017; 97:4-13. [PMID: 27869795 DOI: 10.1038/labinvest.2016.116] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/27/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022] Open
Abstract
CD68 is a heavily glycosylated glycoprotein that is highly expressed in macrophages and other mononuclear phagocytes. Traditionally, CD68 is exploited as a valuable cytochemical marker to immunostain monocyte/macrophages in the histochemical analysis of inflamed tissues, tumor tissues, and other immunohistopathological applications. CD68 alone or in combination with other cell markers of tumor-associated macrophages showed a good predictive value as a prognostic marker of survival in cancer patients. Lowression of CD68 was found in the lymphoid cells, non-hematopoietic cells (fibroblasts, endothelial cells, etc), and tumor cells. Cell-specific CD68 expression and differentiated expression levels are determined by the complex interplay between transcription factors, regulatory transcriptional elements, and epigenetic factors. Human CD68 and its mouse ortholog macrosialin belong to the family of LAMP proteins located in the lysosomal membrane and share many structural similarities such as the presence of the LAMP-like domain. Except for a second LAMP-like domain present in LAMPs, CD68/microsialin has a highly glycosylated mucin-like domain involved in ligand binding. CD68 has been shown to bind oxLDL, phosphatidylserine, apoptotic cells and serve as a receptor for malaria sporozoite in liver infection. CD68 is mainly located in the endosomal/lysosomal compartment but can rapidly shuttle to the cell surface. However, the role of CD68 as a scavenger receptor remains to be confirmed. It seems that CD68 is not involved in binding bacterial/viral pathogens, innate, inflammatory or humoral immune responses, although it may potentially be involved in antigen processing/presentation. CD68 could be functionally important in osteoclasts since its deletion leads to reduced bone resorption capacity. The role of CD68 in atherosclerosis is contradictory.
Collapse
|
44
|
Ge F, Memon S, Xi D, Li S, Liu X, Li G, Wang L, Leng J, Khan S, Deng W. Cloning and characterization of MHC-DQA1 and MHC-DQA2 molecules from yak (<i>Bos grunniens</i>). Arch Anim Breed 2016. [DOI: 10.5194/aab-59-395-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The major histocompatibility complex (MHC) plays a crucial role in the processing and presentation of antigens and in discrimination between self and non-self. The aim of this investigation was to scrutinize the structural diversity and possible duplication of the MHC-DQA genes in yak (Bos grunniens). Two cDNA sequences were amplified and designated as Bogr-DQA1 (DQA*0101) and Bogr-DQA2 (DQA*2001) with GenBank accession numbers JQ864314 and JQ864315, respectively. The nucleotide and amino acid sequence alignment between Bogr-DQA1 and Bogr-DQA2 molecules showed that these two identified MHC-DQA gene sequences had more similarity to alleles of specific DQA1 and DQA2 genes from other Ruminantia species than to each other. The result from phylogenic investigation also revealed that there was a larger genetic distance between these two genes than between homologous genes from different species. The presence of different bovine DQA putative motifs and the large genetic distance between Bogr-DQA1 and Bogr-DQA2 suggest that these sequences are non-allelic. Further, these results indicate that DQA gene duplication occurs in ruminants. This study will be helpful in knowing MHC diversity in common ruminants and will deepen our understanding of the variation of immunological functions, evolutionary constraints, and selective forces that affect MHC variation within and between species.
Collapse
|
45
|
Zhou S, Hu Y, Veillon L, Snovida SI, Rogers JC, Saba J, Mechref Y. Quantitative LC-MS/MS Glycomic Analysis of Biological Samples Using AminoxyTMT. Anal Chem 2016; 88:7515-22. [PMID: 27377957 PMCID: PMC5759044 DOI: 10.1021/acs.analchem.6b00465] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein glycosylation plays an important role in various biological processes, such as modification of protein function, regulation of protein-protein interactions, and control of turnover rates of proteins. Moreover, glycans have been considered as potential biomarkers for many mammalian diseases and development of aberrant glycosylation profiles is an important indicator of the pathology of a disease or cancer. Hence, quantitation is an important aspect of a comprehensive glycomics study. Although numerous MS-based quantitation strategies have been developed in the past several decades, some issues affecting sensitivity and accuracy of quantitation still exist, and the development of more effective quantitation strategies is still required. Aminoxy tandem mass tag (aminoxyTMT) reagents are recently commercialized isobaric tags which enable relative quantitation of up to six different glycan samples simultaneously. In this study, liquid chromatography and mass spectrometry conditions have been optimized to achieve reliable LC-MS/MS quantitative glycomic analysis using aminoxyTMT reagents. Samples were resuspended in 0.2 M sodium chloride solution to promote the formation of sodium adduct precursor ions, which leads to higher MS/MS reporter ion yields. This method was first evaluated with glycans from model glycoproteins and pooled human blood serum samples. The observed variation of reporter ion ratios was generally less than 10% relative to the theoretical ratio. Even for the highly complex minor N-glycans, the variation was still below 15%. This strategy was further applied to the glycomic profiling of N-glycans released from blood serum samples of patients with different esophageal diseases. Our results demonstrate the benefits of utilizing aminoxyTMT reagents for reliable quantitation of biological glycomic samples.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| | - Yunli Hu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| | | | | | - Julian Saba
- Thermo Fisher Scientific, San Jose, CA, 95134
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| |
Collapse
|
46
|
Brakowski R, Pontius K, Franzreb M. Investigation of the transglycosylation potential of ß-Galactosidase from Aspergillus oryzae in the presence of the ionic liquid [Bmim][PF6]. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Zhou S, Hu Y, Mechref Y. High-temperature LC-MS/MS of permethylated glycans derived from glycoproteins. Electrophoresis 2016; 37:1506-13. [PMID: 26914157 PMCID: PMC4962687 DOI: 10.1002/elps.201500568] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/06/2022]
Abstract
Various glycomic analysis methods have been developed due to the essential roles of glycans in biological processes as well as the potential application of glycomics in biomarker discovery in many diseases. Permethylation is currently considered to be one of the most common derivatization methods in MS-based glycomic analysis. Permethylation not only improves ionization efficiency and stability of sialylated glycans in positive mode but also allows for enhanced separation performance on reversed-phase liquid chromatography (RPLC). Recently, RPLC-MS analysis of permethylated glycans exhibited excellent performance in sensitivity and reproducibility and became a widely-applied comprehensive strategy in glycomics. However, separating permethylated glycans by RPLC always suffers from peak broadening for high-molecular-weight branched glycans, which probably due to the low exchange rate between the stationary phase and mobile phase limited by intermolecular interactions of the methyl groups associated with the branching of the glycan structures. In this study, we employed high separation temperature conditions for RPLC of permethylated glycans, thus achieving enhanced peak capacity, improving peak shape, and enhancing separation efficiency. Additionally, partial isomeric separation were observed in RPLC of permethylated glycans at high-temperature. Mathematical processing of the correlation between retention time and molecular weight also revealed the advantage of high-temperature LC method for both manual and automatic glycan identification.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Yunli Hu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
48
|
Jolly P, Damborsky P, Madaboosi N, Soares RRG, Chu V, Conde JP, Katrlik J, Estrela P. DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosens Bioelectron 2015; 79:313-9. [PMID: 26720920 DOI: 10.1016/j.bios.2015.12.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022]
Abstract
Two novel sandwich-based immunoassays for prostate cancer (PCa) diagnosis are reported, in which the primary antibody for capture is replaced by a DNA aptamer. The assays, which can be performed in parallel, were developed in a microfluidic device and tested for the detection of free Prostate Specific Antigen (fPSA). A secondary antibody (Aptamer-Antibody Assay) or a lectin (Aptamer-Lectin Assay) is used to quantify, by chemiluminescence, both the amount of fPSA and its glycosylation levels. The use of aptamers enables a more reliable, selective and controlled sensing of the analyte. The dual approach provides sensitive detection of fPSA along with selective fPSA glycoprofiling, which is of significant importance in the diagnosis and prognosis of PCa, as tumor progression is associated with changes in fPSA glycosylation. With these approaches, we can potentially detect 0.5 ng/mL of fPSA and 3 ng/mL of glycosylated fPSA using Sambucus nigra (SNA) lectin, both within the relevant clinical range. The approach can be applied to a wide range of biomarkers, thus providing a good alternative to standard antibody-based immunoassays with significant impact in medical diagnosis and prognosis.
Collapse
Affiliation(s)
- Pawan Jolly
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| | - Pavel Damborsky
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84105, Slovakia.
| | - Narayanan Madaboosi
- INESC-MN - Microsystems and Nanotechnologies, R. Alves Redol 9, 1000-029 Lisboa, Portugal.
| | - Ruben R G Soares
- INESC-MN - Microsystems and Nanotechnologies, R. Alves Redol 9, 1000-029 Lisboa, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Virginia Chu
- INESC-MN - Microsystems and Nanotechnologies, R. Alves Redol 9, 1000-029 Lisboa, Portugal.
| | - João P Conde
- INESC-MN - Microsystems and Nanotechnologies, R. Alves Redol 9, 1000-029 Lisboa, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84105, Slovakia.
| | - Pedro Estrela
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
49
|
Zerze GH, Mittal J. Effect of O-Linked Glycosylation on the Equilibrium Structural Ensemble of Intrinsically Disordered Polypeptides. J Phys Chem B 2015; 119:15583-92. [PMID: 26618856 DOI: 10.1021/acs.jpcb.5b10022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosylation is one of the most common post-translational modifications (PTMs), which provides a large proteome diversity. Previous work on glycosylation of globular proteins has revealed remarkable effects of glycosylation on protein function, altering the folding stability and structure and/or altering the protein surface which affects their binding characteristics. Intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) of large proteins are also frequently glycosylated, yet how glycosylation affects their function remains to be elucidated. An important open question is, does glycosylation affect IDP structure or binding characteristics or both? In this work, we particularly address the structural effects of O-linked glycosylation by investigating glycosylated and unglycosylated forms of two different IDPs, tau174-183 and human islet amyloid polypeptide (hIAPP), by all-atom explicit solvent simulations. We simulate these IDPs in aqueous solution for O-linked glycosylated and unglycosylated forms by employing two modern all-atom force fields for which glycan parameters are also available. We find that O-linked glycosylation only has a modest effect on equilibrium structural ensembles of IDPs, for the cases studied here, which suggests that the functional role of glycosylation may be primarily exerted by modulation of the protein binding characteristics rather than structure.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
50
|
Immunosuppressive drugs affect high-mannose/hybrid N-glycans on human allostimulated leukocytes. Anal Cell Pathol (Amst) 2015; 2015:324980. [PMID: 26339568 PMCID: PMC4538311 DOI: 10.1155/2015/324980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/21/2015] [Indexed: 02/04/2023] Open
Abstract
N-glycosylation plays an important role in the majority of physiological and pathological processes occurring in the immune system. Alteration of the type and abundance of glycans is an element of lymphocyte differentiation; it is also common in the development of immune-mediated inflammatory diseases. The N-glycosylation process is very sensitive to different environmental agents, among them the pharmacological environment of immunosuppressive drugs. Some results show that high-mannose oligosaccharides have the ability to suppress different stages of the immune response. We evaluated the effects of cyclosporin A (CsA) and rapamycin (Rapa) on high-mannose/hybrid-type glycosylation in human leukocytes activated in a two-way mixed leukocyte reaction (MLR). CsA significantly reduced the number of leukocytes covered by high-mannose/hybrid N-glycans, and the synergistic action of CsA and Rapa led to an increase of these structures on the remaining leukocytes. This is the first study indicating that β1 and β3 integrins bearing high-mannose/hybrid structures are affected by Rapa and CsA. Rapa taken separately and together with CsA changed the expression of β1 and β3 integrins and, by regulating the protein amount, increased the oligomannose/hybrid-type N-glycosylation on the leukocyte surface. We suggest that the changes in the glycosylation profile of leukocytes may promote the development of tolerance in transplantation.
Collapse
|