1
|
Hajizadeh M, Jabbari A, Spotin A, Hejazian SS, Mikaeili Galeh T, Hassannia H, Sahlolbei M, Pagheh AS, Ahmadpour E. Modulatory Effects of Hydatid Cyst Fluid on a Mouse Model of Experimental Autoimmune Encephalomyelitis. Vet Sci 2024; 11:34. [PMID: 38250940 PMCID: PMC10819194 DOI: 10.3390/vetsci11010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The reduced burden of helminth parasites in industrialized countries is probably one of the reasons for the increased prevalence of autoimmune disorders such as multiple sclerosis (MS). The current study aimed to evaluate the potential preventive effects of hydatid cyst fluid (HCF) on the disease severity in an EAE mouse model of MS. EAE-induced mice were treated with HCF before and after EAE induction. An RT-PCR-based evaluation of IFN-γ, IL-1β, TNF, T-bet, IL-4, GATA3, IL-17, RoRγ, TGF-β, and FOXP3 expression levels in splenocytes and an ELISA-based analysis of IFN-γ and IL-4 levels in cell culture supernatant of splenocytes were performed. Histopathological examinations of mice during the study were also conducted. The expression levels of T-bet, IL-4, GATA3, TGF-β, and FOXP3 in EAE + HCF mice were significantly higher compared to EAE + PBS mice. In the EAE + HCF group, the expression levels of IFN-γ, IL-1β, and TNF were significantly lower than in the EAE + PBS group. The histopathological results showed significantly reduced inflammation and demyelination in EAE + HCF mice compared to EAE + PBS mice. Our study provides proof-of-concept in the EAE mouse model of MS that helminth-derived products such as HCF have a potential prophylactic effect on MS development and present a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Maryam Hajizadeh
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Aynaz Jabbari
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
| | - Seyyed Sina Hejazian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Tahereh Mikaeili Galeh
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy 53464-58167, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine and Amol Faculty of Paramedical Sciences, Mazandaran, University of Medical Sciences, Sari 48175-866, Iran
| | - Maryam Sahlolbei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
| | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand 14619-65381, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
| |
Collapse
|
2
|
Mone K, Reddy J. The knowns and unknowns of cardiac autoimmunity in viral myocarditis. Rev Med Virol 2023; 33:e2478. [PMID: 37658748 DOI: 10.1002/rmv.2478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Myocarditis can result from various infectious and non-infectious causes that can lead to dilated cardiomyopathy (DCM) and heart failure. Among the infectious causes, viruses are commonly suspected. But the challenge is our inability to demonstrate infectious viral particles during clinical presentations, partly because by that point, the viruses would have damaged the tissues and be cleared by the immune system. Therefore, viral signatures such as viral nucleic acids and virus-reactive antibodies may be the only readouts pointing to viruses as potential primary triggers of DCM. Thus, it becomes hard to explain persistent inflammatory infiltrates that might occur in individuals affected with chronic myocarditis/DCM manifesting myocardial dysfunctions. In these circumstances, autoimmunity is suspected, and antibodies to various autoantigens have been demonstrated, suggesting that immune therapies to suppress the autoimmune responses may be necessary. From this perspective, we endeavoured to determine whether or not the known viral causes are associated with development of autoimmune responses to cardiac antigens that include both cardiotropic and non-cardiotropic viruses. If so, what their nature and significance are in developing chronic myocarditis resulting from viruses as primary triggers.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Lima M, Aloizou AM, Siokas V, Bakirtzis C, Liampas I, Tsouris Z, Bogdanos DP, Baloyannis SJ, Dardiotis E. Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the Covid-19 pandemia? Rev Neurosci 2022; 33:703-720. [PMID: 35258237 DOI: 10.1515/revneuro-2021-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to examine whether there is a possible (etiological/triggering) relationship between infection with various Coronaviruses, including Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2), the virus responsible for the Coronavirus disease-19 (Covid-19) pandemia, and Multiple Sclerosis (MS), and whether an increase of the prevalence of MS after the current Covid-19 pandemia should be expected, examining new and preexisting data. Although the exact pathogenesis of MS remains unknown, environmental agents seem to greatly influence the onset of the disease, with viruses being the most popular candidate. Existing data support this possible etiological relationship between viruses and MS, and experimental studies show that Coronaviruses can actually induce an MS-like demyelinating disease in animal models. Findings in MS patients could also be compatible with this coronaviral MS hypothesis. More importantly, current data from the Covid-19 pandemia show that SARS-CoV-2 can trigger autoimmunity and possibly induce autoimmune diseases, in the Central Nervous System as well, strengthening the viral hypothesis of MS. If we accept that Coronaviruses can induce MS, it is reasonable to expect an increase in the prevalence of MS after the Covid-19 pandemia. This knowledge is of great importance in order to protect the aging groups that are more vulnerable against autoimmune diseases and MS specifically, and to establish proper vaccination and health policies.
Collapse
Affiliation(s)
- Maria Lima
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, Multiple Sclerosis Center, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500 Viopolis, Larissa, Greece
| | - Stavros J Baloyannis
- Research Institute for Alzheimer's disease, Aristotle University of Thessaloniki, 57200 Iraklio Lagkada, Thessaloniki, Greece.,1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| |
Collapse
|
4
|
Lin B, Launder D, Bailey DY, Assifuah FK, Miller OA, Conti HR, Du J, Koffman BM. Targeting macrophages by an aza-anthrapyrazole to ameliorate experimental autoimmune encephalomyelitis. Mult Scler Relat Disord 2020; 43:102190. [PMID: 32447250 DOI: 10.1016/j.msard.2020.102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease in the central nerve system, in which both innate and adaptive immune cells are involved. BBR3378, an aza-anthrapyrazole prevents experimental autoimmune encephalomyelitis (EAE), an inflammatory condition similar to MS, by antagonizing T cell autoimmune responses. Here, we report BBR3378's regulatory effect on macrophages. METHODS EAE was induced in ten-week-old female C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein peptides followed by BBR3378 or sham treatment administered intraperitoneally, and clinical signs were assessed using a 0-5 scoring system. These mice were subjected to serum ELISA for cytokine IFNγ and TNFα levels, RT qPCR analysis of macrophage markers in isolated monocytes, and flow cytometry analysis for macrophage infiltration in the brain. Macrophages derived from primary monocytes and macrophage cell line RAW 264.7 were used to investigate BBR3378's effect on LPS-stimulated pro-inflammatory cytokine induction. RAW 264.7 cells expressing NF-κB-driven luciferase reporter were treated with LPS with or without BBR3378, and luciferase assays performed to assess the inhibition on NF-κB activation. LPS-induced activation of mitogen-activated protein kinases (MAPKs) with or without the presence of BBR3378 was also investigated by Western blot analysis. RESULTS BBR3378 down-regulated cytokine-induced macrophage differentiation and activation in EAE mice, contributing to protection against macrophage infiltration in the brain and clinical symptoms from EAE. Treating macrophages with BBR3378 counteracted LPS-induced cytokine production via blocking activation of key signal molecules mediating inflammatory responses, such as NF-κB and MAPKs. CONCLUSIONS These data suggest that in addition to T cells, BBR3378 can also target macrophages to attenuate the inflammation associated with EAE.
Collapse
Affiliation(s)
- Boren Lin
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States.
| | - Dylan Launder
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
| | - Destiny Y Bailey
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
| | - Frank K Assifuah
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
| | - Olivia A Miller
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
| | - Heather R Conti
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Boyd M Koffman
- Department of Neurology, The University of Toledo, Toledo, OH, United States.
| |
Collapse
|
5
|
Perianes-Cachero A, Lobo MVT, Hernández-Pinto AM, Busto R, Lasunción-Ripa MA, Arilla-Ferreiro E, Puebla-Jiménez L. Oxidative Stress and Lymphocyte Alterations in Chronic Relapsing Experimental Allergic Encephalomyelitis in the Rat Hippocampus and Protective Effects of an Ethanolamine Phosphate Salt. Mol Neurobiol 2019; 57:860-878. [DOI: 10.1007/s12035-019-01774-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/01/2019] [Indexed: 01/20/2023]
|
6
|
Tian KW, Zhang YY, Jiang H, Han S. Intravenous C16 and angiopoietin-1 improve the efficacy of placenta-derived mesenchymal stem cell therapy for EAE. Sci Rep 2018; 8:4649. [PMID: 29545630 PMCID: PMC5854598 DOI: 10.1038/s41598-018-22867-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023] Open
Abstract
The placenta has emerged as an attractive source of mesenchymal stem cells (MSCs) because of the absence of ethical issues, non-invasive access, and abundant yield. However, inflammatory cell invasion into grafts negatively impacts the survival and efficacy of transplanted cells. Previous studies have shown that synthetic C16 peptide can competitively block the transmigration of leukocytes into the central nerve system, while angiopoietin-1 (Ang-1) can inhibit inflammation-induced blood vessel leakage and inflammatory cell infiltration in rats with experimental allergic encephalomyelitis (EAE). In this study, we investigated the effects of intravenous administration of C16 and Ang-1 on the efficacy of placenta-derived MSC (PMSC) transplantation in a rat model of EAE. We found that, compared with PMSCs alone, treatment with PMSCs along with intravenously administered C16 and Ang-1 was more effective at ameliorating demyelination/neuronal loss and neurological dysfunction, reducing inflammatory cell infiltration, perivascular edema, and reactive astrogliosis (p < 0.05). Mechanistic studies revealed that intravenous C16 and Ang-1 increased PMSC engraftment in the central nervous system and promoted expression of the neurotropic proteins brain-derived neurotrophic factor, growth-associated protein 43, and p75 neurotrophin receptor as well as the neuronal-glial lineage markers neurofilament protein 200 and myelin basic protein in the engrafted PMSCs.
Collapse
Affiliation(s)
- Ke-Wei Tian
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Yuan-Yuan Zhang
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Hong Jiang
- Department of Electrophysiology, SirRunRunShaw Hospital, Medical College, Zhejiang University, 310016, Hangzhou, Zhejiang Province, China
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China.
| |
Collapse
|
7
|
Angelici L, Piola M, Cavalleri T, Randi G, Cortini F, Bergamaschi R, Baccarelli AA, Bertazzi PA, Pesatori AC, Bollati V. Effects of particulate matter exposure on multiple sclerosis hospital admission in Lombardy region, Italy. ENVIRONMENTAL RESEARCH 2016; 145:68-73. [PMID: 26624240 PMCID: PMC4797990 DOI: 10.1016/j.envres.2015.11.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/24/2015] [Accepted: 11/16/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system, characterized by recurrent relapses of inflammation that cause mild to severe disability. Exposure to airborne particulate matter (PM) has been associated with acute increases in systemic inflammatory responses and neuroinflammation. In the present study, we hypothesize that exposure to PM<10μm in diameter (PM10) might increase the occurrence of MS-related hospitalizations. METHODS We obtained daily concentrations of PM10 from 53 monitoring sites covering the study area and we identified 8287 MS-related hospitalization through hospital admission-discharge records of the Lombardy region, Italy, between 2001 and 2009. We used a Poisson regression analysis to investigate the association between exposure to PM10 and risk of hospitalization. RESULTS A higher RR of hospital admission for MS relapse was associated with exposure to PM10 at different time intervals. The maximum effect of PM10 on MS hospitalization was found for exposure between days 0 and 7: Hospital admission for MS increased 42% (95%CI 1.39-1.45) on the days preceded by one week with PM10 levels in the highest quartile. The p-value for trend across quartiles was<0.001. CONCLUSIONS These data support the hypothesis that air pollution may have a role in determining MS occurrence and relapses. Our findings could open new avenues for determining the pathogenic mechanisms of MS and potentially be applied to other autoimmune diseases.
Collapse
Affiliation(s)
- Laura Angelici
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, 20122 Milan, Italy
| | - Mirko Piola
- Neurology Unit, Azienda Ospedaliera Fatebenefratelli e Oftalmico, Milano, Italy
| | - Tommaso Cavalleri
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, 20122 Milan, Italy
| | - Giorgia Randi
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, 20122 Milan, Italy
| | - Francesca Cortini
- Epidemiology Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Bergamaschi
- Multiple Sclerosis Center, Department of Clinical Neurology, Neurological Institute 'C. Mondino', Pavia, Italy
| | - Andrea A Baccarelli
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Pier Alberto Bertazzi
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, 20122 Milan, Italy; Epidemiology Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, 20122 Milan, Italy; Epidemiology Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, 20122 Milan, Italy; Epidemiology Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
8
|
Goodin DS. The epidemiology of multiple sclerosis: insights to a causal cascade. HANDBOOK OF CLINICAL NEUROLOGY 2016; 138:173-206. [PMID: 27637959 DOI: 10.1016/b978-0-12-802973-2.00011-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MS-pathogenesis involves both genetic-susceptibility and environmental determinants. Three (or more) sequential environmental-factors are implicated. The first acts near birth, the second acts during childhood/adolescence, and the third acts subsequently. Two candidate factors (vitamin D deficiency and Epstein-Barr viral infection) seem particularly well-suited to the first two environmental-events but other factors (e.g., obesity and smoking behavior) seem also to be involved in the causal scheme. MS-pathogenesis can be modeled by incorporating both the environmental and genetic-factors into a causal scheme, which can then help to explain some of the changes in MS-epidemiology (e.g., increasing disease-prevalence, changing sex-ratio, and regional-variations in monozygotic-twin-concordance-rates), which have been taking place recently. This model suggests that genetic-susceptibility is overwhelmingly the most important determinant of MS and that, at least, 92.5% of individuals (and likely much more) are, essentially, incapable of developing MS, regardless of their specific environmental-exposures. Nevertheless, the genetics is complex and the contribution of any specific gene to MS-susceptibility seems to be quite modest. Thus, even for the DRB1*1501 allele (the strongest known MS-susceptibility marker), most carriers are not in the genetically-susceptible group. Moreover, 45-50% of individuals with MS lack this allele entirely and some of the haplotypes that carry this allele don't also confer any disease-risk. Finally, because the prevalence of genetic-susceptibility seems to be so similar throughout North America and Europe, and despite the crucial importance of a person's genetic make-up to disease pathogenesis, it is the environmental-factors, which largely responsible for the observed regional variations in disease-characteristics. Thus, despite MS being more common in women, men are more likely to be genetically-susceptible. This apparent paradox seems to relate to the fact that women are much more responsive than men to the recent changes in environmental-exposure (whatever these have been). These gender-differences may help to explain changes in the sex-ratio and the increasing disease-prevalence, which have both been observed recently. The potential importance of these conclusions regarding the role of environment in MS-pathogenesis is that they open the door to the possibility of pursuing strategies for primary primary disease prevention in the future.
Collapse
Affiliation(s)
- D S Goodin
- Multiple Sclerosis Center at the University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Goodin DS, Reder AT, Bermel RA, Cutter GR, Fox RJ, John GR, Lublin FD, Lucchinetti CF, Miller AE, Pelletier D, Racke MK, Trapp BD, Vartanian T, Waubant E. Relapses in multiple sclerosis: Relationship to disability. Mult Scler Relat Disord 2015; 6:10-20. [PMID: 27063617 DOI: 10.1016/j.msard.2015.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/21/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a recurrent inflammatory disease of the central nervous system, which ultimately causes substantial disability in many patients. A key clinical feature of this disease is the occurrence of relapses, consisting of episodes of neurological dysfunction followed by periods of remission. This review considers in detail the importance of the occurrence of relapses to the ultimate course of MS and the impact of relap setreatment (both acutely and prophylactically) on the long-term outcome for individuals. The ultimate goal of therapy in MS is the reduction of long-term disability. Clinical trials in MS, however, typically only extend for a very short time period compared to the time it takes for disability to evolve. Consequently, short-term outcome measures that are associated with, and predict, future disability need to be identified. In this regard, not only are relapses a characteristic feature of MS, they have also been proven to be associated with the occurrence of long-term disability. Moreover, treatments that reduce the number and severity of these attacks improve the long-term prognosis.
Collapse
Affiliation(s)
- Douglas S Goodin
- Multiple Sclerosis Center, University of California, San Francisco Medical Center, San Francisco, CA, United States; Department of Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, United States.
| | - Anthony T Reder
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Robert A Bermel
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, United States
| | - Gary R Cutter
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Gareth R John
- Multiple Sclerosis Research Laboratory, Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Friedman Brain Institute, New York, NY, United States; Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
| | - Fred D Lublin
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Aaron E Miller
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel Pelletier
- Neuro-Immunology Division and Yale Multiple Sclerosis Center, Advanced Imaging in Multiple Sclerosis (AIMS) Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - Michael K Racke
- Department of Neurology, Wexner Medical Center at The Ohio State University, Columbus, OH, United States
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Timothy Vartanian
- Judith Jaffe Multiple Sclerosis Center, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medical College, United States
| | - Emmanuelle Waubant
- UCSF Regional Pediatric MS Center, Race to Erase MS, San Francisco, CA, United States
| |
Collapse
|
10
|
Hanken K, Eling P, Hildebrandt H. The representation of inflammatory signals in the brain - a model for subjective fatigue in multiple sclerosis. Front Neurol 2014; 5:264. [PMID: 25566171 PMCID: PMC4263099 DOI: 10.3389/fneur.2014.00264] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/24/2014] [Indexed: 01/23/2023] Open
Abstract
In multiple sclerosis (MS) patients, fatigue is rated as one of the most common and disabling symptoms. However, the pathophysiology underlying this fatigue is not yet clear. Several lines of evidence suggest that immunological factors, such as elevated levels of pro-inflammatory cytokines, may contribute to subjective fatigue in MS patients. Pro-inflammatory cytokines represent primary mediators of immune-to-brain-communication, modulating changes in the neurophysiology of the central nervous system. Recently, we proposed a model arguing that fatigue in MS patients is a subjective feeling, which is related to inflammation. Moreover, it implies that fatigue can be measured behaviorally only by applying specific cognitive tasks related to alertness and vigilance. In the present review, we focus on the subjective feeling of MS-related fatigue. We examine the hypothesis that the subjective feeling of MS-related fatigue may be a variant of inflammation-induced sickness behavior, resulting from cytokine-mediated activity changes within brain areas involved in interoception and homeostasis including the insula, the anterior cingulate, and the hypothalamus. We first present studies demonstrating a relationship between pro-inflammatory cytokines and subjective fatigue in healthy individuals, in people with inflammatory disorders, and particularly in MS patients. Subsequently, we discuss studies analyzing the impact of anti-inflammatory treatment on fatigue. In the next part of this review, we present studies on the transmission and neural representation of inflammatory signals, with a special focus on possible neural concomitants of inflammation-induced fatigue. We also present two of our studies on the relationship between local gray and white matter atrophy and fatigue in MS patients. Finally, we discuss some implications of our findings and future perspectives.
Collapse
Affiliation(s)
- Katrin Hanken
- Department of Neurology, Klinikum Bremen-Ost , Bremen , Germany
| | - Paul Eling
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen , Nijmegen , Netherlands
| | | |
Collapse
|
11
|
Goodin DS. The epidemiology of multiple sclerosis: insights to disease pathogenesis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:231-66. [PMID: 24507521 DOI: 10.1016/b978-0-444-52001-2.00010-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of studying the epidemiology of multiple sclerosis (MS) is twofold. First, it is important to understand clearly the natural history of the illness in order to assist patients in making decisions about their future with respect to issues such as family planning, the importance of securing lifelong healthcare, their ability to get and maintain employment, and making appropriate choices of therapy for their particular circumstances. This is not to suggest that, even with the best possible information, the ultimate prognosis for any individual can be predicted with absolute accuracy. It cannot. Nevertheless, accurate information can be very helpful both to reassure patients that many individuals with MS do remarkably well in the long term (perhaps, especially, with current and future therapies) and also to empower individuals with respect to their ability to make their own life choices. Second, and arguably the more important purpose for studying the epidemiology of MS, is to gain insights to the underlying causes of the disease. Indeed, if the principal mechanisms of disease pathogenesis were to be understood clearly, then it might be possible to entertain notions of either a cure for existing disease or the primary prevention of future disease. Much of our current understanding of disease pathogenesis, as discussed in other chapters of this volume, has been derived from basic science investigations of animal models of MS such as experimental autoimmune encephalomyelitis (EAE), and these models have provided considerable insight both to the complexity of the mammalian immune system and to the mechanisms underlying its dysfunction in inflammatory autoimmune conditions. Nevertheless, MS is a disease of humans without any known, naturally occurring, counterpart in any nonhuman species. For this reason, the clues to disease pathogenesis provided by a study of basic epidemiologic facts regarding MS (and by a systematic consideration of their implications) are essential to a comprehensive understanding of the human illness we call MS.
Collapse
Affiliation(s)
- Douglas S Goodin
- Department of Neurology, University of California, San Francisco, USA.
| |
Collapse
|
12
|
Abstract
Glucorticorticoids have both anti-inflammatory and immunosuppressive properties and both synthetic and natural glucocorticoid medications have been used to treat a number of inflammatory and autoimmune conditions, including the management of acute multiple sclerosis (MS) attacks. Many of the studies supporting the use of this approach to MS treatment have important limitations. Nevertheless, on balance, the data seem to support the notion that a brief glucocorticoid treatment regimen (~2 weeks) hastens recovery from an acute MS flare and that this treatment, in general, is well tolerated. However, such treatment does not seem to alter the final degree of recovery from the MS attack. Among the practice community, even within MS centers, there seems to be a general belief that the selection of the optimal agent, route of administration, and the duration of therapy can be made on the basis of personal experience and/or theoretic considerations. As a result, currently, there are a variety of idiosyncratic regimens (often vigorously defended), which are commonly used to treat patients. Nevertheless, it is important to recognize that the best route of administration, the optimal dose and duration of treatment, and the preferred agent or agents have yet to be firmly established. Moreover, although it may well turn out that some of these factors are more important than others, the best current evidence for the efficacy of glucocorticoid treatment in MS, by far, comes from the optic neuritis treatment trial, which used high-dose intravenous methylprednisolone for the first 3 days followed by an 11-day course of low-dose oral prednisone.
Collapse
Affiliation(s)
- Douglas S Goodin
- Department of Neurology, University of California, San Francisco, USA.
| |
Collapse
|
13
|
Spann NJ, Glass CK. Sterols and oxysterols in immune cell function. Nat Immunol 2013; 14:893-900. [PMID: 23959186 DOI: 10.1038/ni.2681] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/02/2013] [Indexed: 12/12/2022]
Abstract
Intermediates in the cholesterol-biosynthetic pathway and oxysterol derivatives of cholesterol regulate diverse cellular processes. Recent studies have expanded the appreciation of their roles in controlling the functions of cells of the innate and adaptive immune systems. Here we review recent literature reporting on the biological functions of sterol intermediates and oxysterols, acting through transcription factors such as the liver X receptors (LXRs), sterol regulatory element-binding proteins (SREBPs) and the G protein-coupled receptor EBI2, in regulating the differentiation and population expansion of cells of the innate and adaptive immune systems, their responses to inflammatory mediators, their effects on the phagocytic functions of macrophages and their effects on antiviral activities and the migration of immune cells. Such findings have raised many new questions about the production of endogenous bioactive sterols and oxysterols and their mechanisms of action in the immune system.
Collapse
Affiliation(s)
- Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
14
|
Li L, Liu J, Delohery T, Zhang D, Arendt C, Jones C. The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. J Neuroimmunol 2013; 265:82-90. [PMID: 24182769 DOI: 10.1016/j.jneuroim.2013.10.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/22/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
Teriflunomide is an inhibitor of dihydro-orotate dehydrogenase (DHODH), and is hypothesized to ameliorate multiple sclerosis by reducing proliferation of stimulated lymphocytes. We investigated teriflunomide's effects on proliferation, activation, survival, and function of stimulated human peripheral blood mononuclear cell subsets in vitro. Teriflunomide had little/no impact on lymphocyte activation but exerted significant dose-dependent inhibition of T- and B-cell proliferation, which was uridine-reversible (DHODH-dependent). Viability analyses showed no teriflunomide-associated cytotoxicity. Teriflunomide significantly decreased release of several pro-inflammatory cytokines from activated monocytes in a DHODH-independent fashion. In conclusion, teriflunomide acts on multiple immune cell types and processes via DHODH-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Li Li
- BioInnovation Group, Sanofi, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wegmann KW, Bouwer HGA, Gregory CR, Whitham RH, Hinrichs DJ. Targeting T cells responsive to the priming epitope prevent the relapsing phase of experimental autoimmune encephalomyelitis. J Neuroimmunol 2013; 260:74-81. [PMID: 23611642 DOI: 10.1016/j.jneuroim.2013.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
Upon recovery from the initial episode of experimental autoimmune encephalomyelitis (EAE), virtually all SJL mice develop relapsing/remitting episodes of disease. These relapses may occur due to the reactivation of memory T cells initially stimulated as part of the disease-inducing protocol or naïve T-cell populations stimulated by distinct encephalitogens derived from the inflammatory disease process (epitope spread). We have used encephalitogen-specific non-linear peptide octamers to modify the course of relapsing EAE (rEAE) in SJL mice immunized with an oliogodendrocyte-specific protein peptide (OSP 55-71). Our studies show that the peptide-octamers, which target the T cells stimulated by the priming encephalitogen, but not other candidate encephalitogens, prevent rEAE.
Collapse
Affiliation(s)
- Keith W Wegmann
- Immunology Research Group, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
16
|
Multiple sclerosis and the blood-central nervous system barrier. Cardiovasc Psychiatry Neurol 2013; 2013:530356. [PMID: 23401746 PMCID: PMC3562587 DOI: 10.1155/2013/530356] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/25/2012] [Accepted: 12/25/2012] [Indexed: 12/23/2022] Open
Abstract
The central nervous system (CNS) is isolated from the blood system by a physical barrier that contains efflux transporters and catabolic enzymes. This blood-CNS barrier (BCNSB) plays a pivotal role in the pathophysiology of multiple sclerosis (MS). It binds and anchors activated leukocytes to permit their movement across the BCNSB and into the CNS. Once there, these immune cells target particular self-epitopes and initiate a cascade of neuroinflammation, which leads to the breakdown of the BCNSB and the formation of perivascular plaques, one of the hallmarks of MS. Immunomodulatory drugs for MS are either biologics or small molecules, with only the latter having the capacity to cross the BCNSB and thus have a propensity to cause CNS side effects. However, BCNSB penetration is a desirable feature of MS drugs that have molecular targets within the CNS. These are nabiximols and dalfampridine, which target cannabinoid receptors and potassium channels, respectively. Vascular cell adhesion molecule-1, present on endothelial cells of the BCNSB, also serves as a drug discovery target since it interacts with α4-β1-integrin on leucocytes. The MS drug natalizumab, a humanized monoclonal antibody against α4-β1-integrin, blocks this interaction and thus reduces the movement of immune cells into the CNS. This paper further elaborates on the role of the BCNSB in the pathophysiology and pharmacotherapy of MS.
Collapse
|
17
|
Faraco G, Cavone L, Chiarugi A. The therapeutic potential of HDAC inhibitors in the treatment of multiple sclerosis. Mol Med 2011; 17:442-7. [PMID: 21373721 DOI: 10.2119/molmed.2011.00077] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 11/06/2022] Open
Abstract
Multiple sclerosis (MS) is a devastating autoimmune disorder of the central nervous system (CNS) for which there is no efficacious cure. Thanks to numerous preclinical and clinical studies, drugs able to mitigate the inexorable course of the disease have been made available recently. Still, there is a terrible need for compounds capable of reducing the severity of the autoimmune attack and of blocking progression of the disorder. Also, besides the classic immunosuppressive strategies, it is now appreciated that compounds directly targeting neuronal death can be of relevance to the treatment of MS patients. Acetylation homeostasis is a key regulator of both immune cell activation and neuronal survival. Of note, potent histone deacetylase inhibitors (HDACi) endowed with antiinflammatory and neuroprotective properties have been identified. Efficacy of HDACi in experimental models of MS has been reported consistently. In this review, we provide an appraisal of the literature on HDACi and MS, also discussing the mechanisms by which HDACi can suppress the autoimmune attack to the CNS.
Collapse
Affiliation(s)
- Giuseppe Faraco
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York, USA
| | | | | |
Collapse
|
18
|
Abstract
Integrins are heterodimeric, transmembrane receptors that function as mechanosensors, adhesion molecules and signal transduction platforms in a multitude of biological processes. As such, integrins are central to the etiology and pathology of many disease states. Therefore, pharmacological inhibition of integrins is of great interest for the treatment and prevention of disease. In the last two decades several integrin-targeted drugs have made their way into clinical use, many others are in clinical trials and still more are showing promise as they advance through preclinical development. Herein, this review examines and evaluates the various drugs and compounds targeting integrins and the disease states in which they are implicated.
Collapse
|
19
|
Mulvey MR, Doupe M, Prout M, Leong C, Hizon R, Grossberndt A, Klowak M, Gupta A, Melanson M, Gomori A, Esfahani F, Klassen L, Frost EE, Namaka M. Staphylococcus aureus harbouring Enterotoxin A as a possible risk factor for multiple sclerosis exacerbations. Mult Scler 2011; 17:397-403. [PMID: 21212089 DOI: 10.1177/1352458510391343] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Staphylococcus aureus may produce superantigens that can non-specifically activate CD4(+) cells to potentially target the myelin basic protein. OBJECTIVE This study examined the association between individuals with multiple sclerosis (MS) and colonization with S. aureus harbouring superantigens. METHODS Nasal swabs were collected from non-MS subjects and patients with MS who had not experienced a relapse in the past six months (MS stable group) and who had suffered a relapse within 30 days of study recruitment (MS exacerbation group). S. aureus was isolated from the anterior nares of participants following standard procedures and staphylococcal superantigen genes (sea, seb, and tsst-1) were detected using standard laboratory PCR techniques. RESULTS The study enrolled 204 patients, 80 in the non-MS and MS stable groups and 44 patients in the MS exacerbation group. Overall, 27.0% of patients were colonized with S. aureus with no significant differences identified between study groups. Amongst individuals colonized with S. aureus, the prevalence of sea was significantly greater in the MS exacerbation versus non-MS study group (p < 0.05; odds ratio 7.9; 95% confidence interval 1.2-49.5). CONCLUSIONS The ability to rapidly screen patients for the presence of S. aureus producing sea may serve as a useful marker of a potential MS exacerbation.
Collapse
Affiliation(s)
- Michael R Mulvey
- National Microbiology Laboratory, Antimicrobial Resistance and Nosocomial Infections, Winnipeg, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tanaka M, Tanaka K. Pathogenesis and treatment of paraneoplastic neurologic syndrome. Expert Rev Neurother 2010; 2:901-9. [PMID: 19810923 DOI: 10.1586/14737175.2.6.901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Paraneoplastic neurologic syndrome, a rare complication of carcinoma, includes various neurologic disorders, such as encephalomyelitis, paraneoplastic cerebellar degeneration, subacute sensory neuronopathy, retinal paraneoplastic syndrome, opsoclonus-myoclonus syndrome and stiff-person syndrome. Several antibodies to malignant tumor cells and neurons are detected in sera and cerebrospinal fluids of patients with this syndrome, however, there is no direct evidence of antiYo or antiHu antibodies' causative roles in neuronal loss. Recent studies showed cytotoxic T-cell activities against peptides of an antigen protein recognized by antibodies in the peripheral blood of patients with paraneoplastic cerebellar degeneration and antiYo antibodies, as well as in patients with antiHu syndrome. Treatment of paraneoplastic neurologic syndrome with plasmapheresis, immunosuppresive drugs, or intravenous immunoglobulin therapy has been attempted. Here, we discuss previous reports and theoretical treatments based on recent etiological hypothesis of paraneoplastic cerebellar degeneration.
Collapse
Affiliation(s)
- Masami Tanaka
- Department of Neurology and Clinical Research Center, Nishi-Niigata Central Hospital, Niigata, Japan.
| | | |
Collapse
|
21
|
Kuwabara T, Ishikawa F, Yasuda T, Aritomi K, Nakano H, Tanaka Y, Okada Y, Lipp M, Kakiuchi T. CCR7 ligands are required for development of experimental autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:2513-21. [PMID: 19625643 DOI: 10.4049/jimmunol.0800729] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CCL19 and CCL21 are thought to be critical for experimental autoimmune encephalomyelitis (EAE) induction, but their precise role is unknown. We examined the role of these chemokines in inducing EAE. C57BL/6 mice lacking expression of these chemokines (plt/plt mice) or their receptor CCR7 were resistant to EAE induced with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG(35-55)) and pertussis toxin. However, passive transfer of pathogenic T cells from wild-type mice induced EAE in plt/plt mice, suggesting a defect independent of the role of CCR7 ligands in the migration of immune cells. Examination of draining lymph node (DLN) cells from MOG(35-55)-immunized plt/plt mice found decreased IL-23 and IL-12 production by plt/plt dendritic cells (DCs) and a concomitant defect in Th17 cell and Th1 cell generation. In contrast, production of the Th17 lineage commitment factors IL-6 and TGF-beta were unaffected by loss of CCR7 ligands. The adoptive transfer of in vitro-generated Th17 cells from DLN cells of MOG(35-55)-immunized plt/plt mice developed EAE in wild-type recipient mice, whereas that of Th1 cells did not. Pathogenic Th17 cell generation was restored in plt/plt DLNs with the addition of exogenous IL-23 or CCL19/CCL21 and could be reversed by inclusion of anti-IL-23 mAb in cultures. Exogenous CCL19/CCL21 induced IL-23p19 expression and IL-23 production by plt/plt or wild-type DCs. Therefore, CCR7 ligands have a novel function in stimulating DCs to produce IL-23 and are important in the IL-23-dependent generation of pathogenic Th17 cells in EAE induction.
Collapse
Affiliation(s)
- Taku Kuwabara
- Department of Immunology, Toho University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Khademi M, Bornsen L, Rafatnia F, Andersson M, Brundin L, Piehl F, Sellebjerg F, Olsson T. The effects of natalizumab on inflammatory mediators in multiple sclerosis: prospects for treatment-sensitive biomarkers. Eur J Neurol 2009; 16:528-36. [PMID: 19220425 DOI: 10.1111/j.1468-1331.2009.02532.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Natalizumab affects systemic cytokine expressions and clinical course in relapsing-remitting multiple sclerosis (RRMS). We analyzed levels of inflammatory cytokines in cerebrospinal fluid (CSF) cells and peripheral blood mononuclear cells (PBMCs), levels of matrix metalloproteinase (MMP)-9 and osteopontin (OPN) in CSF, and clinical outcome measures in 22 natalizumab-treated RRMS patients. METHODS mRNA levels of cytokines in cells were detected with real-time RT-PCR. Protein levels of OPN and MMP-9 were measured by ELISA. RESULTS Natalizumab reduced CSF cell counts (P < 0.0001). Tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma) mRNAs were significantly increased in PBMCs. In contrast, expressions of IFN-gamma and interleukin (IL)-23 were decreased but IL-10 increased in the CSF cells. OPN and MMP-9 were reduced in the CSF. Patients being in remission at baseline showed the same deviations of mediators as those in relapse after natalizumab treatment. The open label clinical outcome measures were either stable or improved during therapy. CONCLUSIONS Natalizumab attenuates pro-inflammatory mediators intrathecally and the reduced pro-inflammatory milieu may allow increased production of the anti-inflammatory mediator IL-10. The increased systemic cytokines may impede the improvement of certain clinical measures like fatigue. The affected mediators seem to be sensitive to an immune-modifying treatment which could be used as biomarkers for this therapy.
Collapse
Affiliation(s)
- M Khademi
- Neuroimmunology Unit, CMM, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Majava V, Petoukhov MV, Hayashi N, Pirilä P, Svergun DI, Kursula P. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure. BMC STRUCTURAL BIOLOGY 2008; 8:10. [PMID: 18284662 PMCID: PMC2288786 DOI: 10.1186/1472-6807-8-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 02/19/2008] [Indexed: 11/18/2022]
Abstract
BACKGROUND The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. RESULTS The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC) in different temperatures, and Kd was observed to be in the low muM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. CONCLUSION Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure. The observed affinity can be physiologically relevant, given the high abundance of both binding partners in the nervous system.
Collapse
Affiliation(s)
- Viivi Majava
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - Maxim V Petoukhov
- EMBL Hamburg Outstation, Hamburg, Germany
- Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
| | - Nobuhiro Hayashi
- Institute for Comprehensive Medical Science, Fujita Health University, Japan
| | - Päivi Pirilä
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - Dmitri I Svergun
- EMBL Hamburg Outstation, Hamburg, Germany
- Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
| |
Collapse
|
24
|
Sun SW, Liang HF, Schmidt RE, Cross AH, Song SK. Selective vulnerability of cerebral white matter in a murine model of multiple sclerosis detected using diffusion tensor imaging. Neurobiol Dis 2007; 28:30-8. [PMID: 17683944 PMCID: PMC2905808 DOI: 10.1016/j.nbd.2007.06.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022] Open
Abstract
In this study, axial (lambda(parallel)) and radial (lambda(perpendicular)) diffusivities derived from diffusion tensor imaging (DTI) were used to evaluate white matter injury in brains of mice affected by experimental autoimmune encephalomyelitis (EAE). Sixteen female C57BL/6 mice were immunized with amino acids 35-55 of myelin oligodendrocyte glycoprotein (MOG(35-55)). Three months after immunization, optic nerve and tract were severely affected with 19% and 18% decrease in lambda(parallel) respectively, suggesting the presence of axonal injury. In addition, a 156% and 86% increase in lambda( perpendicular) was observed in optic nerve and tract respectively, suggestive of myelin injury. After in vivo DTI, mice were perfusion fixed and immunohistochemistry for the identification of myelin basic protein (MBP) and phosphorylated neurofilament (pNF) was performed to verify the presence of axonal and myelin injury. The present study demonstrated that the visual pathway is selectively affected in MOG(35-55) induced murine EAE and these injuries are non-invasively detectable using lambda(parallel) and lambda( perpendicular).
Collapse
Affiliation(s)
- Shu-Wei Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
25
|
Pahuja A, Maki RA, Hevezi PA, Chen A, Verge GM, Lechner SM, Roth RB, Zlotnik A, Alleva DG. Experimental autoimmune encephalomyelitis develops in CC chemokine receptor 7-deficient mice with altered T-cell responses. Scand J Immunol 2006; 64:361-9. [PMID: 16970675 DOI: 10.1111/j.1365-3083.2006.01787.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CC chemokine receptor 7 (CCR7) is involved in the initiation of immune responses by mediating the migration of naïve T cells and mature dendritic cells to T-cell-rich zones of secondary lymphoid organs where antigen presentation occurs. To address whether CCR7 plays a role in the development of autoimmunity, we induced experimental autoimmune encephalomyelitis in CCR7-deficient mice on a C57BL/6 background (CCR7(-/-)) using the neuroantigen, myelin oligodendrocyte glycoprotein 35-55 amino acid peptide (MOG((35-55))) and Bordetella pertussis toxin (PTX). CCR7(-/-) mice acquired disease with an intensity similar to wild-type littermates. MOG((35-55))-specific lymphocyte responses were dominant in the spleen of CCR7(-/-) mice, rather than in lymph nodes as observed in wild-type mice. These results indicate that effective immune responses (with altered kinetics) can develop in the absence of CCR7 but develop in the spleen rather than lymph nodes as CCR7 is necessary for T and dendritic cells to enter lymph nodes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Movement/genetics
- Cell Movement/immunology
- Cells, Cultured
- Chemokines, CC/metabolism
- Chronic Disease
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Immunophenotyping
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Receptors, CCR7
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/physiology
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- A Pahuja
- Departmen of Discovery Biology, Neurocrine Biosciences, Inc., San Diego, CA 92130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cellular caspase-8 (FLICE)-like inhibitory protein (cFLIP) was originally identified as an inhibitor of death-receptor signalling through competition with caspase-8 for recruitment to FAS-associated via death domain (FADD). More recently, it has been determined that both cFLIP and caspase-8 are required for the survival and proliferation of T cells following T-cell-receptor stimulation. This paradoxical finding launched new investigations of how these molecules might connect with signalling pathways that link to cell survival and growth following antigen-receptor activation. As discussed in this Review, insight gained from these studies indicates that cFLIP and caspase-8 form a heterodimer that ultimately links T-cell-receptor signalling to activation of nuclear factor-kappaB through a complex that includes B-cell lymphoma 10 (BCL-10), mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1) and receptor-interacting protein 1 (RIP1).
Collapse
Affiliation(s)
- Ralph C Budd
- Immunobiology Program, Department of Medicine, The University of Vermont College of Medicine, Burlington, Vermont 50405, USA
| | | | | |
Collapse
|
27
|
Namaka M, Pollitt-Smith M, Gupta A, Klowak M, Vasconcelos M, Turcotte D, Gong Y, Melanson M. The clinical importance of neutralizing antibodies in relapsing-remitting multiple sclerosis. Curr Med Res Opin 2006; 22:223-39. [PMID: 16466595 DOI: 10.1185/030079906x80413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Neutralizing antibodies (NAbs) develop in patients receiving interferon beta (IFN-beta) for multiple sclerosis (MS). Debate continues concerning the relevance of NAb development on treatment efficacy. OBJECTIVE To determine the incidence and clinical importance of NAbs in patients with relapsing-remitting MS (RRMS). METHODS A comprehensive literature review was conducted using PubMed (accessed from 1983 to June 2005), Cochrane MS Group trials register (accessed June 2005), MEDLINE (accessed 1983 to June 2005), and Toxnet (accessed June 2005) databases. NAb-induced changes in clinical efficacy and disease progression were evaluated according to the clinical guidelines established by the American Academy of Neurology. RESULTS Currently, there is no standardized assay to comparatively assess NAbs among different treatments. NAbs develop independent of age, sex, disease duration and progression index at the onset of treatment. The occurrence of NAbs varies from 2-45% depending on the treatment initiated. NAb+ patients demonstrate accelerated disease progression as confirmed by an approximate 1-point increase in the Expanded Disability Status Scale score. The odds of relapse during a NAb+ period are between 1.51 and 1.58 (p < 0.03) with the time to first relapse being shortened by an average of 244 days after 12 months of IFN-beta therapy. NAb+ patients experience an approximately four-fold increase (p = 0.009) in the median number of active T2 magnetic resonance imaging (MRI) lesions compared to NAb-negative patients (1.4 vs. 0.3 respectively, p < 0.01). CONCLUSION The induction of NAbs in IFN-beta treated patients reduce clinical effect and accelerate disease progression.
Collapse
Affiliation(s)
- Mike Namaka
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Khusial P, Plaag R, Zieve GW. LSm proteins form heptameric rings that bind to RNA via repeating motifs. Trends Biochem Sci 2005; 30:522-8. [PMID: 16051491 DOI: 10.1016/j.tibs.2005.07.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 06/22/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Members of the LSm family of proteins share the Sm fold--a closed barrel comprising five anti-parallel beta strands with an alpha helix stacked on the top. The fold forms a subunit of hexameric or heptameric rings of approximately 7nm in diameter. Interactions between neighboring subunits center on an anti-parallel interaction of the fourth and fifth beta strands. In the lumen of the ring, the subunits have the same spacing as nucleotides in RNA, enabling the rings to bind to single-stranded RNA via a repeating motif. Eubacteria and archaea build homohexamers and homoheptamers, respectively, whereas eukaryotes use >18 LSm paralogs to build at least six different heteroheptameric rings. The four different rings in the nucleus that permanently bind small nuclear RNAs and function in pre-mRNA maturation are called Sm rings. The two different rings that transiently bind to RNAs and, thereby, assist in the degradation of mRNA in the cytoplasm and the maturation of a wide spectrum of RNAs in the nucleus are called LSm rings.
Collapse
Affiliation(s)
- Permanan Khusial
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | | | | |
Collapse
|
29
|
Sloka JS, Stefanelli M. The mechanism of action of methylprednisolone in the treatment of multiple sclerosis. Mult Scler 2005; 11:425-32. [PMID: 16042225 DOI: 10.1191/1352458505ms1190oa] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Methylprednisolone plays an important role in the current treatment of multiple sclerosis (MS), particularly in the acute phase of relapse. It acts in various ways to decrease the inflammatory cycle including: dampening the inflammatory cytokine cascade, inhibiting the activation of T cells, decreasing the extravasation of immune cells into the central nervous system, facilitating the apoptosis of activated immune cells, and indirectly decreasing the cytotoxic effects of nitric oxide and tumor necrosis factor alpha. This paper reviews the most recent observations on these mechanisms both to understand the disease mechanism and its treatment. As more becomes known about these mechanisms, it may become possible to design treatment regimes that are more specific towards both the individual and the disease state.
Collapse
Affiliation(s)
- J S Sloka
- Faculty of Medicine (Neurology), Memorial University of Newfoundland, NL, Canada.
| | | |
Collapse
|
30
|
Gauthier SA, Buckle GJ, Weiner HL. Immunosuppressive therapy for multiple sclerosis. Neurol Clin 2005; 23:247-72, viii-ix. [PMID: 15661097 DOI: 10.1016/j.ncl.2004.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Susan A Gauthier
- Partners Multiple Sclerosis Center, Brigham and Women's Hospital, 333 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
31
|
Jones TB, Ankeny DP, Guan Z, McGaughy V, Fisher LC, Basso DM, Popovich PG. Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J Neurosci 2004; 24:3752-61. [PMID: 15084655 PMCID: PMC6729355 DOI: 10.1523/jneurosci.0406-04.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myelin-reactive T-cells are activated by traumatic spinal cord injury (SCI) in rodents and humans. Despite the historical association of these cells with experimental and clinical neuropathology, recent data suggest a neuroprotective role for myelin-reactive T-cells. Because of the biological and therapeutic implications of these findings, we attempted to reproduce the original neuroprotective vaccine protocols in a model of rat SCI. Specifically, MBP-reactive T-cell function was enhanced in SCI rats via passive or active immunization. Locomotor function was assessed using a standardized locomotor rating scale (Basso-Beattie-Bresnahan scale) and was correlated with myelin and axon sparing. The functional and anatomical integrity of the rubrospinal pathway also was analyzed using the inclined plane test and anatomical tract tracing. MBP-immunized rats exhibited varying degrees of functional impairment, exacerbated lesion pathology, greater rubrospinal neuron loss, increased intraspinal T-cell accumulation, and enhanced macrophage activation relative to SCI control groups. These data are consistent with the conventional view of myelin-reactive T-cells as pathological effector cells.
Collapse
Affiliation(s)
- T Bucky Jones
- The Neuroscience Graduate Studies Program, Division of Physical Therapy, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Death ligands (such as Fas/CD95 ligand and TRAIL?Apo2L) and death receptors (such as Fas/CD95, TRAIL-R1?DR4, and TRAIL-R2/DR5) are involved in immune-mediated neutralization of activated or autoreactive lymphocytes, virus-infected cells, and tumor cells. Consequently, dysregulation of death receptor-dependent apoptotic signaling pathways has been implicated in the development of autoimmune diseases, immunodeficiency, and cancer. Moreover, the death ligand TRAIL has gained considerable interest as a potential anticancer agent, given its ability to induce apoptosis of tumor cells without affecting most types of untransformed cells. The FLICE-inhibitory protein (FLIP) potently blocks TRAIL-mediated cell death by interfering with caspase-8 activation. Pharmacologic down-regulation of FLIP might serve as a therapeutic means to sensitize tumor cells to apoptosis induction by TRAIL.
Collapse
Affiliation(s)
- Wilfried Roth
- The Burnham Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
33
|
Guggenmos J, Schubart AS, Ogg S, Andersson M, Olsson T, Mather IH, Linington C. Antibody Cross-Reactivity between Myelin Oligodendrocyte Glycoprotein and the Milk Protein Butyrophilin in Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2003; 172:661-8. [PMID: 14688379 DOI: 10.4049/jimmunol.172.1.661] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The etiology of multiple sclerosis (MS) is believed to involve environmental factors, but their identity and mode of action are unknown. In this study, we demonstrate that Ab specific for the extracellular Ig-like domain of myelin oligodendrocyte glycoprotein (MOG) cross-reacts with a homologous N-terminal domain of the bovine milk protein butyrophilin (BTN). Analysis of paired samples of MS sera and cerebrospinal fluid (CSF) identified a BTN-specific Ab response in the CNS that differed in its epitope specificity from that in the periphery. This effect was statistically significant for the Ab response to BTN(76-100) (p = 0.0026), which cosequestered in the CSF compartment with Ab to the homologous MOG peptide MOG(76-100) in 34% of MS patients (n = 35). These observations suggested that intratheccal synthesis of Ab recognizing BTN peptide epitopes in the CNS was sustained by molecular mimicry with MOG. Formal evidence of molecular mimicry between the two proteins was obtained by analyzing MOG-specific autoantibodies immunopurified from MS sera. The MOG-specific Ab repertoire cross-reacts with multiple BTN peptide epitopes including a MOG/BTN(76-100)-specific component that occurred at a higher frequency in MS patients than in seropositive healthy controls, as well as responses to epitopes within MOG/BTN(1-39) that occur at similar frequencies in both groups. The demonstration of molecular mimicry between MOG and BTN, along with sequestration of BTN-reactive Ab in CSF suggests that exposure to this common dietary Ag may influence the composition and function of the MOG-specific autoimmune repertoire during the course of MS.
Collapse
Affiliation(s)
- Johannes Guggenmos
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Gomes AC, Jönsson G, Mjörnheim S, Olsson T, Hillert J, Grandien A. Upregulation of the apoptosis regulators cFLIP, CD95 and CD95 ligand in peripheral blood mononuclear cells in relapsing-remitting multiple sclerosis. J Neuroimmunol 2003; 135:126-34. [PMID: 12576232 DOI: 10.1016/s0165-5728(02)00437-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease involving an inflammatory reaction within the white matter of the CNS, mediated by T cells, B cells and macrophages. The pathogenesis of MS may involve impaired activation-induced cell death of activated myelin-specific mature T cells. We investigated the mRNA expression of the apoptosis mediators cellular FLICE-inhibitory protein (cFLIP), caspase-8, CD95 and CD95L in peripheral blood mononuclear cells (PB MNCs) from MS patients using real-time PCR. The overall increased expression of the four key players in the CD95 pathway in relapsing-remitting MS suggests their involvement in the inflammatory process in this disease.
Collapse
Affiliation(s)
- Andreia C Gomes
- Department of Neurology, Neurotec Department, Karolinska Institute at Huddinge University Hospital, R54, SE-141 86, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
35
|
Seidi OA, Semra YK, Sharief MK. Expression of CD5 on B lymphocytes correlates with disease activity in patients with multiple sclerosis. J Neuroimmunol 2002; 133:205-10. [PMID: 12446024 DOI: 10.1016/s0165-5728(02)00360-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is growing evidence that implicates B lymphocytes and their products in the pathogenesis of multiple sclerosis (MS). A subpopulation of B lymphocytes expressing the CD5 antigen are involved in several autoimmune disorders through the release of autoantibodies. In this study, we used three-color flow cytometry to examine the expression of CD5 antigen on B lymphocytes from patients with relapsing-remitting MS, and correlated this expression with features of disease activity and circulating levels of autoantibodies against myelin basic protein. CD5 expression on B lymphocytes was significantly higher in patients with active MS when compared to patients with clinically stable MS or those with inflammatory or noninflammatory neurologic disorders. CD5(+) B lymphocytes from patients with active MS correlated significantly with the number of gadolinium-enhancing MRI lesions, and inversely with disease duration. The expression of CD5 on B lymphocytes in MS patients also correlated with circulating levels antibodies against myelin basic protein. Results presented here indicate that clinically active MS is associated with an expanded population of peripheral CD5(+) B lymphocytes.
Collapse
Affiliation(s)
- O A Seidi
- Department of Neuroimmunology, Guy's, King's and St. Thomas' School of Medicine, Hodgkin Building, Guy's Hospital, London, SE1 1UL, England, UK.
| | | | | |
Collapse
|
36
|
Steinman L, Martin R, Bernard C, Conlon P, Oksenberg JR. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu Rev Neurosci 2002; 25:491-505. [PMID: 12052918 DOI: 10.1146/annurev.neuro.25.112701.142913] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent technological breakthroughs allowing for large-scale analysis of gene transcripts and large-scale monitoring of the immune response with protein chips are revealing new participants in the pathogenesis of multiple sclerosis. Some of these participants may be useful targets for therapy.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, California 94305, USA.
| | | | | | | | | |
Collapse
|
37
|
Mix E, Pahnke J, Ibrahim SM. Gene-expression profiling of experimental autoimmune encephalomyelitis. Neurochem Res 2002; 27:1157-63. [PMID: 12462414 DOI: 10.1023/a:1020925425780] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model that serves as an experimental tool for studying the etiology, pathogenesis, as well as new therapeutic approaches of multiple sclerosis (MS). EAE is a polygenic chronic inflammatory demyelinating disease of the nervous system that involves the interaction between genetic and environmental factors. Previous studies have identified multiple quantitative trait loci (QTL) controlling different aspects of disease pathogenesis. However, progress in identifying new susceptibility genes outside the MHC locus has been slow. With the advent of new global methods for genetic analysis such as large-scale sequencing, gene expression profiling combined with classic linkage analysis and congenic and physical mapping progress is considerably accelerating. Here we review our preliminary work on the use of gene expression mapping to identify new putative genetic pathways contributing to the pathogenesis of EAE.
Collapse
|
38
|
Abstract
Functional magnetic resonance imaging (fMRI) allows noninvasive localization of cerebral activation with relatively high spatial and temporal resolution. The considerable potential for the elucidation of the mechanisms of brain function has made it a useful tool to investigate the neural substrate of motor, sensory and cognitive functions. Understanding derived from these basic cognitive neuroscience investigations is beginning to be applied to clinically relevant problems. In this article, applications to multiple sclerosis (MS) are reviewed, which address the challenging notion that adaptive cerebral plasticity may have an important influence on the relationship between MS pathology and its clinical expression.
Collapse
Affiliation(s)
- A Cifelli
- Department of Clinical Neurology, Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, UK
| | | |
Collapse
|
39
|
D'Souza CA, Mak B, Moscarello MA. The up-regulation of stromelysin-1 (MMP-3) in a spontaneously demyelinating transgenic mouse precedes onset of disease. J Biol Chem 2002; 277:13589-96. [PMID: 11830584 DOI: 10.1074/jbc.m108817200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The matrix metalloproteinases (MMPs) are a family of endoproteinases that degrade various components of the extracellular matrix and have been implicated in the pathogenesis of multiple sclerosis. To determine whether up-regulation of MMP-3, or stromelysin-1, was a causative factor during the development of demyelination, we have examined the expression of MMP-3 mRNA and protein in brain tissue of a spontaneously demyelinating mouse model overexpressing DM20 (ND4 line) prior to and during the progression of disease. Stromelysin-1, but not other MMP mRNA was elevated approximately 10-fold in transgenic mice between 5 days and 1 month of age, more than 2 months before the onset of disease, and was coordinately expressed with the DM20 transgene. Stromelysin-1 protein levels were also up-regulated as was tissue inhibitor of metalloproteinase-1 (TIMP-1), an in vivo regulator of stromelysin-1 mRNA. When we crossed our ND4 mice with a line of transgenic mice overexpressing TIMP-1 in brain, clinical signs in these mice were attenuated, and the level of stromelysin-1 protein was reduced. Thus, in this transgenic model of demyelinating disease up-regulation of DM20, MMP-3, and TIMP-1 represent important changes in the chemical pathogenesis in brain, which precede the onset of disease.
Collapse
Affiliation(s)
- Cheryl A D'Souza
- Department of Structural Biology, The Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
40
|
Reiman R, Gerard C, Campbell IL, Barnum SR. Disruption of the C5a receptor gene fails to protect against experimental allergic encephalomyelitis. Eur J Immunol 2002; 32:1157-63. [PMID: 11932923 DOI: 10.1002/1521-4141(200204)32:4<1157::aid-immu1157>3.0.co;2-m] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation of the complement system generates the anaphylatoxic peptide C5a, which elicits a broad range of inflammatory activities. The biological activities of C5a are mediated through its binding to the widely expressed C5a receptor (C5aR), a G-protein-coupled seven transmembrane domain receptor. In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, the C5aR is expressed on monocytes/macrophages, reactive astrocytes and T cells infiltrating the central nervous system (CNS). To investigate the role of the C5aR in this T cell-driven autoimmune model, we induced EAE in C5aR-deficient mice (C5aR(-/-)) and wild-type mice using a myelin oligodendrocyte glycoprotein (MOG) peptide as the immunogen. We found that C5aR(-/-) mice were fully susceptible to MOG-induced EAE with no difference in disease onset or severity in C5aR(-/-) mice compared to control mice. Cellular infiltrates (macrophages and T cells) were similar in the spinal cords of both animal groups and splenic T cells from C5aR(-/-) mice and control mice responded identically to MOG in T cell proliferation assays. Ribonuclease protection assays demonstrated no significant differences in pro-inflammatory gene expression between receptor-deficient and sufficient mice. These results indicate that the C5aR is not an essential mediator in the induction and progression of EAE.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- CD3 Complex/biosynthesis
- CD3 Complex/genetics
- Cells, Cultured/immunology
- Chemokines/biosynthesis
- Chemokines/genetics
- Complement Activation
- Complement C5a/physiology
- Cytokines/biosynthesis
- Cytokines/genetics
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Lymphocyte Activation
- Macrophage-1 Antigen/biosynthesis
- Macrophage-1 Antigen/genetics
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/pathology
- RNA, Messenger/biosynthesis
- Receptor, Anaphylatoxin C5a
- Receptors, Complement/deficiency
- Receptors, Complement/genetics
- Receptors, Complement/physiology
- Spinal Cord/pathology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Rachael Reiman
- Department of Microbiology, University of Alabama at Birmingham, Birmingham 35294, USA
| | | | | | | |
Collapse
|
41
|
Abstract
There have been considerable advances made recently in the treatment of multiple sclerosis (MS). In particular, interferon (IFN)beta has been demonstrated in several independent, multicentre clinical trials to lower unequivocally the biological activity of this illness. The results of these trials have been remarkably consistent, demonstrating a reduction in both disease activity and cumulative disability, using a combination of clinical and magnetic resonance imaging outcome measures. Nevertheless, the importance of the total weekly IFNbeta dose in the clinical management of individual patients has been controversial. However, there is considerable information available regarding the effect of IFNbeta dose on the various biochemical and clinical markers that are affected by IFNbeta, which is derived both from pre-clinical studies and multicentre clinical trials. On balance, convincing evidence is provided to support the notion that there is a clinically relevant dose-response in the use of IFNbeta to treat patients with relapsing/remitting MS. However, many of the clinical trials of IFNbeta in MS have confounded the potential effects of dose with the possible effects of frequency of IFNbeta administration. As a result, it is possible that the apparent dose-response observed in these clinical trials may be due, in part, to the more frequent dose administration schedule rather than the total weekly dose.
Collapse
Affiliation(s)
- D S Goodin
- Department of Neurology, University of California, San Francisco 94143-0114, USA.
| |
Collapse
|
42
|
Abstract
Lymphocyte homeostasis is a balance between lymphocyte proliferation and lymphocyte death. Tight control of apoptosis is essential for immune function, because its altered regulation can result in cancer and autoimmunity. Signals from members of the tumour-necrosis-factor receptor (TNF-R) family, such as Fas and TNF-R1, activate the caspase cascade and result in lymphocyte death by apoptosis. Anti-apoptotic proteins, such as FLIP (also known as FLICE/caspase-8 inhibitory protein) have recently been identified. FLIP expression is tightly regulated in T cells and might be involved in the control of both T-cell activation and death. Abnormal expression of FLIP might have a role not only in autoimmune diseases, but also in tumour development and cardiovascular disorders.
Collapse
Affiliation(s)
- M Thome
- Institute of Biochemistry, University of Lausanne, BIL Biomedical Research Center, Epalinges, Switzerland.
| | | |
Collapse
|
43
|
|
44
|
Mathisen PM, Kawczak JA, Yu M, Johnson JM, Tuohy VK. Differential DM20 mRNA expression distinguishes two distinct patterns of spontaneous recovery from murine autoimmune encephalomyelitis. J Neurosci Res 2001; 64:542-51. [PMID: 11391709 DOI: 10.1002/jnr.1106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for multiple sclerosis (MS) mediated by T cells responding to CNS myelin proteins. Immunization of SWXJ mice with the immunodominant p139-151 peptide of myelin proteolipid protein (PLP) results in a relapsing-remitting pattern of EAE characterized by incomplete remyelination during clinical recovery. In the present study we observed two distinct clinical patterns of spontaneous remission during recovery from EAE, viz., sustained remission involving continuous neurologic improvement and aborted remission involving modest transient clinical improvement. We hypothesized that the ability to recover from autoimmune demyelination was directly linked to remyelination events that recapitulated developmental processes. Quantitative immunocytochemistry of CNS tissue showed decreased demyelination in mice undergoing sustained remission compared to mice undergoing aborted remission. Quantitative RT-PCR analysis showed elevated expression of DM20, the developmental isoform of PLP, in CNS tissue from mice undergoing sustained remission compared to mice undergoing aborted recovery. Moreover, DM20 expression was similarly elevated in CNS tissue from mice undergoing sustained recovery from EAE relapse. Our data indicate that expression of the developmental DM20 isoform of PLP is intimately associated with decreased demyelination and sustained clinical recovery from EAE. Thus, DM20 gene expression may provide an appropriate molecular target for promoting CNS remyelination and may serve as a useful marker for predicting clinical outcome and assessing the effectiveness of strategies aimed at promoting CNS tissue repair during autoimmune demyelinating disease.
Collapse
MESH Headings
- Animals
- Biomarkers/analysis
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/physiopathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Gene Expression Regulation/immunology
- Immunohistochemistry
- Mice
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Myelin Proteolipid Protein/genetics
- Myelin Proteolipid Protein/immunology
- Myelin Sheath/immunology
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Nerve Tissue Proteins
- Predictive Value of Tests
- Prognosis
- Protein Isoforms/genetics
- Protein Isoforms/immunology
- RNA, Messenger/metabolism
- Recovery of Function/physiology
- Remission, Spontaneous
- Time Factors
Collapse
Affiliation(s)
- P M Mathisen
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
45
|
Alleva DG, Johnson EB, Wilson J, Beller DI, Conlon PJ. SJL and NOD macrophages are uniquely characterized by genetically programmed, elevated expression of the IL‐12(p40) gene, suggesting a conserved pathway for the induction of organ‐specific autoimmunity. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | | | - David I. Beller
- Neurocrine Biosciences, Inc., San Diego, California
- Department of Medicine, Rheumatology Section, E550, Boston University Medical Center, Boston, Massachusetts
| | | |
Collapse
|
46
|
Tejada-Simon MV, Hong J, Rivera VM, Zhang JZ. Reactivity pattern and cytokine profile of T cells primed by myelin peptides in multiple sclerosis and healthy individuals. Eur J Immunol 2001; 31:907-17. [PMID: 11241296 DOI: 10.1002/1521-4141(200103)31:3<907::aid-immu907>3.0.co;2-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoreactive T cells specific for candidate myelin antigens, including myelin basic protein (MBP) and proteolipid protein (PLP), are thought to play an important role in the pathogenesis of multiple sclerosis (MS). Myelin-reactive T cells primed in vivo by myelin breakdown products or microbial cross-reactive antigens during the disease processes may exhibit a reactivity pattern and cytokine profile different from those in the normal T cell repertoire. In this study, we examined the precursor frequency, the reactivity pattern and cytokine profile of myelin-reactive T cells that were primed in vitro with overlapping peptides of MBP and PLP in patients with MS and healthy individuals. The results revealed that T cells specific for peptides of MBP and PLP occurred at a relatively higher precursor frequency in patients with MS than that in healthy individuals. We identified a number of dominant T cell epitopes within MBP and PLP, some of which were not previously detected using whole myelin antigens as the primary stimuli. Some residues represented common immunodominant regions that were detected in both MS patients and healthy controls while others were associated only with MS. MBP-reactive T cell lines generally exhibited a Th0-like cytokine profile. There was significantly increased Th1 cytokine production (i. e. TNF and IFN-gamma) among MS-derived T cell lines. PLP-reactive T cell lines had a distinct cytokine profile, producing predominantly TNF-alpha and little or not IFN-gamma and IL-4. The findings have important implications in the understanding of the role of myelin-reactive T cells in MS.
Collapse
Affiliation(s)
- M V Tejada-Simon
- Multiple Sclerosis Research Laboratory, Baylor-Methodist Multiple Sclerosis Center and Department of Neurology, Baylor College of Medicine, Houston, USA
| | | | | | | |
Collapse
|
47
|
Liu Z, Pelfrey CM, Cotleur A, Lee JC, Rudick RA. Immunomodulatory effects of interferon beta-1a in multiple sclerosis. J Neuroimmunol 2001; 112:153-62. [PMID: 11108944 DOI: 10.1016/s0165-5728(00)00403-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several studies have established a role for interferon beta (IFNbeta) as a treatment for relapsing-remitting multiple sclerosis (MS). IFNbeta has been reported to decrease the relapse rate, relapse severity, progression of disability and development of new brain lesions. Its mechanisms of action, however, remain unclear. We hypothesize that immunomodulatory effects of IFNbeta may underlie its clinical efficacy. We used intracellular cytokine flow cytometry to analyze the effects of IFNbeta-1a on expression of the anti-inflammatory cytokine, IL-10, and its effects on major co-stimulatory molecules in MS patients. We found that peripheral blood mononuclear cells (PBMC) produced more IL-10 following in vitro or in vivo treatment with IFNbeta-1a. The primary cellular sources of IL-10 were monocytes and CD4(+) T lymphocytes. IL-10 production in response to IFNbeta-1a was increased in unseparated PBMC compared to purified lymphocyte cultures, indicating that interaction between monocytes and lymphocytes may influence IL-10 production in response to IFNbeta-1a. Using flow cytometry, we monitored the ex vivo expression of two major co-stimulatory pairs-B7/CD28 and CD40/CD40L-before and after intramuscular IFNbeta-1a treatment of MS patients. IFNbeta-1a lowered the expression of B7.1 on circulating B cells and increased B7.2 expression on monocytes. CD40 expression on B cells was down-regulated, but CD40 on monocytes was up-regulated by IFNbeta-1a treatment. These data suggest that co-stimulatory molecules are modulated by IFNbeta, providing a possible mechanism for its in vivo immune regulatory effects.
Collapse
Affiliation(s)
- Z Liu
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
48
|
Rivas-Arancibia S, Willing AE, Zigova T, Rodriguez AI, Cahill DW, Sanberg PR. The effects of taurine on hNT neurons transplanted in adult rat striatum. Cell Transplant 2000; 9:751-8. [PMID: 11202562 DOI: 10.1177/096368970000900602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Taurine acts as an antioxidant able to protect neurons from free radical-mediated cellular damage. Moreover, it modulates the immune response of astrocytes that participate in neurodegenerative processes. The objective of this study was to examine whether taurine can prevent or attenuate the host inflammatory response induced by the xenotransplantation of neurons derived from the human teratocarcinoma cell line (hNT neurons). Male Sprague-Dawley rats were treated IP with either saline or taurine. Animals from both groups were perfused on the 4th or 11th day and the saline or taurine was administered from the start of the study until the day prior to sacrifice. The brains were processed immunohistochemically using antibodies against glial fibrillary acidic protein (GFAP), microglia (OX42), and human nuclear matrix antigen (NuMA). In the saline group, NuMA labeling revealed small grafts on the 4th day and no surviving cells on the 11th day. However, in the group that received taurine there were surviving grafts at both time points. Strong immunoreactivity for GFAP and OX42 was detected in the saline group surrounding the transplant. These effects were reduced in animals receiving taurine. Taken together, these results demonstrated that taurine was able to facilitate graft survival and attenuate the immune response generated by the xenograft.
Collapse
Affiliation(s)
- S Rivas-Arancibia
- Center for Aging and Brain Repair, Department of Neurosurgery, College of Medicine University of South Florida, Tampa 33612, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Gene therapy traditionally has been associated with "gene replacement." where exogenous recombinant DNA is introduced ex vivo into somatic cells that are then introduced back into the patient as a way to correct an inherited genetic defect. However, several novel gene therapy strategies for treating autoimmune diseases recently have emerged. Strategies involving the use of several types of DNA vaccines, the application of various viral vectors, and the use of diverse cellular vectors have shown promise in inhibiting autoimmune-mediated inflammation and repairing tissue damaged as a result of autoimmune attack. In the current review, we examine and discuss the development and proposed use of emerging gene therapy strategies for the treatment of autoimmune disease with specific emphasis on experimental autoimmune encephalomyelitis (EAE), an animal model widely used in multiple sclerosis (MS) research.
Collapse
Affiliation(s)
- P M Mathisen
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA.
| | | |
Collapse
|
50
|
|