1
|
Gonzalez D, Bensing PC, Dixon KN, Leong KC. Cocaine diminishes consolidation of cued fear memory in female rats through interactions with ventral hippocampal D2 receptors. Pharmacol Biochem Behav 2024; 244:173863. [PMID: 39186953 DOI: 10.1016/j.pbb.2024.173863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In addition to cocaine's addictive properties, cocaine use may lead to heightened risk-taking behavior. The disruptive effects of cocaine on aversive memory formation may underlie this behavior. The present study investigated the effects of cocaine on fear memory using a cued fear conditioning paradigm in female Sprague Dawley rats, and further determined the role of D2 receptors in modulating the effect of cocaine on cued fear expression. Animals received six evenly spaced shocks preceded by a tone. The following day, rats were returned to the fear chamber where tones, but no shocks, were delivered. In Experiment 1, separate or concurrent administrations of cocaine (15 mg/kg; i.p.) and the D2 receptor antagonist eticlopride (0.1 mg/kg; i.p.) were given immediately after conditioning trials. It was determined that cocaine administration during the consolidation period diminished the expression of cued fear during the subsequent test day. Concurrent eticlopride administration attenuated this effect, indicating the involvement of D2 receptors in the deleterious effects of cocaine on fear memory consolidation. In Experiment 2, eticlopride (0.05 μg) was infused directly into the ventral hippocampus (VH) after fear conditioning and before cocaine administration. Cocaine continued to disrupt consolidation of cued and contextual fear memory, and concurrent intra-VH eticlopride blocked this effect, thereby demonstrating that VH D2 receptors mediate cocaine-induced impairment of fear memory consolidation. Overall, the present study provides evidence that acute cocaine administration impairs aversive memory formation and establishes a potential circuit through which cocaine induces its detrimental effects on fear memory consolidation.
Collapse
Affiliation(s)
- Daniela Gonzalez
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America
| | - Paige C Bensing
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America
| | - Katherine N Dixon
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America
| | - Kah-Chung Leong
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America.
| |
Collapse
|
2
|
Gardner RS, Ambalavanar MT, Gold PE, Korol DL. Enhancement of response learning in male rats with intrastriatal infusions of a BDNF - TrkB agonist, 7,8-dihydroxyflavone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606692. [PMID: 39211174 PMCID: PMC11360987 DOI: 10.1101/2024.08.08.606692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enhancement of learning and memory by cognitive and physical exercise may be mediated by brain-derived neurotrophic factor (BDNF) acting at tropomyosin receptor kinase B (TrkB). Upregulation of BDNF and systemic administration of a TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), enhance learning of several hippocampus-sensitive tasks in rodents. Although BDNF and 7,8-DHF enhance functions of other brain areas too, these effects have mainly targeted non-cognitive functions. One goal of the present study was to determine whether 7,8-DHF would act beyond the hippocampus to enhance cognitive functions sensitive to manipulations of the striatum. Here, we examined the effects of intrastriatal infusions of 7,8-DHF on learning a striatum-sensitive response maze and on phosphorylation of TrkB receptors in 3-month-old male Sprague Dawley rats. Most prior studies of BDNF and 7,8-DHF effects on learning and memory have administered the drugs for days to months before assessing effects on cognition. A second goal of the present study was to determine whether a single drug treatment near the time of training would effectively enhance learning. Moreover, 7,8-DHF is often tested for its ability to reverse impairments in learning and memory rather than to enhance these functions in the absence of impairments. Thus, a third goal of this experiment was to evaluate the efficacy of 7,8-DHF in enhancing learning in unimpaired rats. In untrained rats, intrastriatal infusions of 7,8-DHF resulted in phosphorylation of TrkB receptors, suggesting that 7,8-DHF acted as a TrkB agonist and BDNF mimic. The findings that a single, intra-striatal infusion of 7,8-DHF 20 min before training enhanced response learning in rats suggest that, in addition to its trophic effects, BDNF modulates learning and memory through receptor mediated cell signaling events.
Collapse
|
3
|
Falck J, Zhang L, Raffington L, Mohn JJ, Triesch J, Heim C, Shing YL. Hippocampus and striatum show distinct contributions to longitudinal changes in value-based learning in middle childhood. eLife 2024; 12:RP89483. [PMID: 38953517 PMCID: PMC11219037 DOI: 10.7554/elife.89483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
The hippocampal-dependent memory system and striatal-dependent memory system modulate reinforcement learning depending on feedback timing in adults, but their contributions during development remain unclear. In a 2-year longitudinal study, 6-to-7-year-old children performed a reinforcement learning task in which they received feedback immediately or with a short delay following their response. Children's learning was found to be sensitive to feedback timing modulations in their reaction time and inverse temperature parameter, which quantifies value-guided decision-making. They showed longitudinal improvements towards more optimal value-based learning, and their hippocampal volume showed protracted maturation. Better delayed model-derived learning covaried with larger hippocampal volume longitudinally, in line with the adult literature. In contrast, a larger striatal volume in children was associated with both better immediate and delayed model-derived learning longitudinally. These findings show, for the first time, an early hippocampal contribution to the dynamic development of reinforcement learning in middle childhood, with neurally less differentiated and more cooperative memory systems than in adults.
Collapse
Affiliation(s)
- Johannes Falck
- Department of Psychology, Goethe University FrankfurtFrankfurtGermany
| | - Lei Zhang
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Institute for Mental Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Centre for Developmental Science, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
| | - Laurel Raffington
- Max Planck Research Group Biosocial, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Johannes Julius Mohn
- Charité – Universitätsmedizin Berlin, Institute of Medical PsychologyBerlinGermany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany
| | - Christine Heim
- Charité – Universitätsmedizin Berlin, Institute of Medical PsychologyBerlinGermany
- Center for Safe & Healthy Children, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Yee Lee Shing
- Department of Psychology, Goethe University FrankfurtFrankfurtGermany
| |
Collapse
|
4
|
Bochud-Fragnière E, Lonchampt G, Bittolo P, Ehrensperger G, Circelli AR, Antonicelli N, Costanzo F, Menghini D, Vicari S, Banta Lavenex P, Lavenex P. Why do individuals with Williams syndrome or Down syndrome fail the Weather Prediction Task? Dev Psychobiol 2024; 66:e22503. [PMID: 38807263 DOI: 10.1002/dev.22503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Williams syndrome (WS) and Down syndrome (DS) are two neurodevelopmental disorders with distinct genetic origins characterized by mild to moderate intellectual disability. Individuals with WS or DS exhibit impaired hippocampus-dependent place learning and enhanced striatum-dependent spatial response learning. Here, we used the Weather Prediction Task (WPT), which can be solved using hippocampus- or striatum-dependent learning strategies, to determine whether individuals with WS or DS exhibit similar profiles outside the spatial domain. Only 10% of individuals with WS or DS solved the WPT. We further assessed whether a concurrent memory task could promote reliance on procedural learning to solve the WPT in individuals with WS but found that the concurrent task did not improve performance. To understand how the probabilistic cue-outcome associations influences WPT performance, and whether individuals with WS or DS can ignore distractors, we assessed performance using a visual learning task with differing reward contingencies, and a modified WPT with unpredictive cues. Both probabilistic feedback and distractors negatively impacted the performance of individuals with WS or DS. These findings are consistent with deficits in hippocampus-dependent learning and executive functions, and reveal the importance of congruent feedback and the minimization of distractors to optimize learning in these two populations.
Collapse
Affiliation(s)
- Emilie Bochud-Fragnière
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Gianni Lonchampt
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Paola Bittolo
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Giada Ehrensperger
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | | | - Nicole Antonicelli
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Floriana Costanzo
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Deny Menghini
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefano Vicari
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
- Faculty of Medicine and Surgery, Catholic University, Rome, Italy
| | - Pamela Banta Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Buckley M, McGregor A, Ihssen N, Austen J, Thurlbeck S, Smith SP, Heinecke A, Lew AR. The well-worn route revisited: Striatal and hippocampal system contributions to familiar route navigation. Hippocampus 2024; 34:310-326. [PMID: 38721743 DOI: 10.1002/hipo.23607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/20/2024] [Accepted: 04/17/2024] [Indexed: 06/21/2024]
Abstract
Classic research has shown a division in the neuroanatomical structures that support flexible (e.g., short-cutting) and habitual (e.g., familiar route following) navigational behavior, with hippocampal-caudate systems associated with the former and putamen systems with the latter. There is, however, disagreement about whether the neural structures involved in navigation process particular forms of spatial information, such as associations between constellations of cues forming a cognitive map, versus single landmark-action associations, or alternatively, perform particular reinforcement learning algorithms that allow the use of different spatial strategies, so-called model-based (flexible) or model-free (habitual) forms of learning. We sought to test these theories by asking participants (N = 24) to navigate within a virtual environment through a previously learned, 9-junction route with distinctive landmarks at each junction while undergoing functional magnetic resonance imaging (fMRI). In a series of probe trials, we distinguished knowledge of individual landmark-action associations along the route versus knowledge of the correct sequence of landmark-action associations, either by having absent landmarks, or "out-of-sequence" landmarks. Under a map-based perspective, sequence knowledge would not require hippocampal systems, because there are no constellations of cues available for cognitive map formation. Within a learning-based model, however, responding based on knowledge of sequence would require hippocampal systems because prior context has to be utilized. We found that hippocampal-caudate systems were more active in probes requiring sequence knowledge, supporting the learning-based model. However, we also found greater putamen activation in probes where navigation based purely on sequence memory could be planned, supporting models of putamen function that emphasize its role in action sequencing.
Collapse
Affiliation(s)
| | | | - Niklas Ihssen
- Department of Psychology, Durham University, Durham, UK
| | - Joseph Austen
- Department of Psychology, Durham University, Durham, UK
| | | | - Shamus P Smith
- School of Information and Physical Sciences, University of Newcastle Australia, Callaghan, New South Wales, Australia
| | | | - Adina R Lew
- Department of Psychology, Lancaster University, Lancaster, UK
| |
Collapse
|
6
|
Abdel-Magid AF. Somatostatin Receptor Subtype 4 Agonists for Potential Treatment of Alzheimer's Disease and Other Central Nervous System Disorders. ACS Med Chem Lett 2024; 15:766-768. [PMID: 38894906 PMCID: PMC11181492 DOI: 10.1021/acsmedchemlett.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 06/21/2024] Open
Abstract
The invention in this patent application relates to N-(pyrrolidine-3-yl or piperidin-4-yl)acetamide derivatives represented generally by formula 1. These compounds possess activities as somatostatin receptor 4 (SSTR4) agonists and may potentially be beneficial in the treatment of diseases or disorders, associated with SSTR4 such as Alzheimer's disease (AD) and other CNS disorders such as epilepsy and depression.
Collapse
|
7
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Melo MBD, Favaro VM, Oliveira MGM. The contextual fear conditioning consolidation depends on the functional interaction of the dorsal subiculum and basolateral amygdala in rats. Neurobiol Learn Mem 2023; 205:107827. [PMID: 37678544 DOI: 10.1016/j.nlm.2023.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Fear conditioning tasks enable us to explore the neural basis of adaptative and maladaptive behaviors related to aversive memories. Recently, we provided the first evidence of the dorsal subiculum (DSub) involvement in contextual fear conditioning (CFC) consolidation by showing that the post-training bilateral NMDA (N-methyl-D-aspartate) receptor blockade in DSub impaired the performance of animals in the test session. As the memory consolidation process depends on the coordinated engagement of different brain regions, and the DSub share reciprocal projections with the basolateral amygdala (BLA), which is also involved in CFC, it is possible that the functional interaction between these sites can be relevant for the consolidation of this task. In this sense, the present study aimed to explore the effects of the functional disconnection of the DSub and BLA in the CFC consolidation after NMDA post-training blockade. In addition, to verify if the observed effects were due to spatial representation processes mediated by the DSub, we employed a hippocampal-independent procedure: tone fear conditioning (TFC). Results showed that the functional disconnection of these regions by post-training NMDA blockade impaired CFC consolidation, whereas there was no impairment in TFC. Altogether, the present data suggest that the DSub and BLA would functionally interact through NMDA-related synaptic plasticity to support CFC consolidation probably due to DSub-related spatial processing showing that the TFC consolidation was not disrupted. This work contributes to filling a gap of studies exploring the DSub involvement in fear conditioning by providing a broad framework of the subicular-amygdaloid connection functionality.
Collapse
Affiliation(s)
- Márcio Braga de Melo
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Vanessa Manchim Favaro
- Setor de Investigação de Doenças Neuromusculares, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | | |
Collapse
|
9
|
Wilkes FA, Jakabek D, Walterfang M, Velakoulis D, Poudel GR, Stout JC, Chua P, Egan GF, Looi JCL, Georgiou-Karistianis N. Hippocampal morphology in Huntington's disease, implications for plasticity and pathogenesis: The IMAGE-HD study. Psychiatry Res Neuroimaging 2023; 335:111694. [PMID: 37598529 DOI: 10.1016/j.pscychresns.2023.111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
While striatal changes in Huntington's Disease (HD) are well established, few studies have investigated changes in the hippocampus, a key neuronal hub. Using MRI scans obtained from the IMAGE-HD study, hippocampi were manually traced and then analysed with the Spherical Harmonic Point Distribution Method (SPHARM-PDM) in 36 individuals with presymptomatic-HD, 37 with early symptomatic-HD, and 36 healthy matched controls. There were no significant differences in overall hippocampal volume between groups. Interestingly we found decreased bilateral hippocampal volume in people with symptomatic-HD who took selective serotonin reuptake inhibitors compared to those who did not, despite no significant differences in anxiety, depressive symptoms, or motor incapacity between the two groups. In symptomatic-HD, there was also significant shape deflation in the right hippocampal head, showing the utility of using manual tracing and SPHARM-PDM to characterise subtle shape changes which may be missed by other methods. This study confirms previous findings of the lack of hippocampal volumetric differentiation in presymptomatic-HD and symptomatic-HD compared to controls. We also find novel shape and volume findings in those with symptomatic-HD, especially in relation to decreased hippocampal volume in those treated with SSRIs.
Collapse
Affiliation(s)
- Fiona A Wilkes
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia.
| | | | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, University of Melbourne and Northwestern Mental Health, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, University of Melbourne and Northwestern Mental Health, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Govinda R Poudel
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Julie C Stout
- School of Psychological Sciences and the Turner Institute of Brain and Mental Health, Monash University, Melbourne, Australia
| | - Phyllis Chua
- Department of Psychiatry, School of Clinical Sciences, Monash University, Monash Medical Centre, Melbourne, Australia
| | - Gary F Egan
- School of Psychological Sciences and the Turner Institute of Brain and Mental Health, Monash University, Melbourne, Australia
| | - Jeffrey C L Looi
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia; Neuroscience Research Australia, Sydney, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and the Turner Institute of Brain and Mental Health, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Yagi S, Lieblich SE, Galea LAM. High estradiol reduces adult neurogenesis but strengthens functional connectivity within the hippocampus during spatial pattern separation in adult female rats. Horm Behav 2023; 155:105409. [PMID: 37567060 DOI: 10.1016/j.yhbeh.2023.105409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Adult neurogenesis in the dentate gyrus plays an important role for pattern separation, the process of separating similar inputs and forming distinct neural representations. Estradiol modulates neurogenesis and hippocampus function, but to date no examination of estradiol's effects on pattern separation have been conducted. Here, we examined estrogenic regulation of adult neurogenesis and functional connectivity in the hippocampus after the spatial pattern separation task in female rats. Ovariectomized Sprague-Dawley rats received daily injections of vehicle, 0.32 μg (Low) or 5 μg (High) of estradiol benzoate until the end of experiment. A single bromodeoxyuridine (BrdU) was injected one day after initiation of hormone or vehicle treatment and rats were tested in the delayed nonmatching to position spatial pattern separation task in the 8-arm radial maze for 12 days beginning two weeks after BrdU injection. Rats were perfused 90 min after the final trial and brain sections were immunohistochemically stained for BrdU/neuronal nuclei (NeuN) (new neurons), Ki67 (cell proliferation), and the immediate early gene, zif268 (activation). Results showed that high, but not low, estradiol reduced the density of BrdU/NeuN-ir cells and had significant inter-regional correlations of zif268-ir cell density in the hippocampus following pattern separation. Estradiol treatment did not influence pattern separation performance or strategy use. These results show that higher doses of estradiol can reduce neurogenesis but at the same time increases correlations of activity of neurons within the hippocampus during spatial pattern separation.
Collapse
Affiliation(s)
- Shunya Yagi
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | | | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada; Djavad Mowifaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
11
|
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 2023; 152:105200. [PMID: 37178943 DOI: 10.1016/j.neubiorev.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Spatial navigation has received much attention from neuroscientists, leading to the identification of key brain areas and the discovery of numerous spatially selective cells. Despite this progress, our understanding of how the pieces fit together to drive behavior is generally lacking. We argue that this is partly caused by insufficient communication between behavioral and neuroscientific researchers. This has led the latter to under-appreciate the relevance and complexity of spatial behavior, and to focus too narrowly on characterizing neural representations of space-disconnected from the computations these representations are meant to enable. We therefore propose a taxonomy of navigation processes in mammals that can serve as a common framework for structuring and facilitating interdisciplinary research in the field. Using the taxonomy as a guide, we review behavioral and neural studies of spatial navigation. In doing so, we validate the taxonomy and showcase its usefulness in identifying potential issues with common experimental approaches, designing experiments that adequately target particular behaviors, correctly interpreting neural activity, and pointing to new avenues of research.
Collapse
Affiliation(s)
- Eloy Parra-Barrero
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sandhiya Vijayabaskaran
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Eddie Seabrook
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
12
|
Kloc ML, Shultes MG, Davi Pressman R, Liebman SA, Schneur CA, Broomer MC, Barry JM, Bouton ME, Holmes GL. Early-life seizures alter habit behavior formation and fronto-striatal circuit dynamics. Epilepsy Behav 2023; 145:109320. [PMID: 37352815 PMCID: PMC10527711 DOI: 10.1016/j.yebeh.2023.109320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Obsessive compulsive disorder (OCD) can occur comorbidly with epilepsy; both are complex, disruptive disorders that lower quality of life. Both OCD and epilepsy are disorders of hyperexcitable circuits, but it is unclear whether common circuit pathology may underlie the co-occurrence of these two neuropsychiatric disorders. Here, we induced early-life seizures (ELS) in rats to examine habit formation as a model for compulsive behaviors. Compulsive, repetitive behaviors in OCD utilize the same circuitry as habit formation. We hypothesized that rats with ELS could be more susceptible to habit formation than littermate controls, and that altered behavior would correspond to altered signaling in fronto-striatal circuits that underlie decision-making and action initiation. Here, we show instead that rats with ELS were significantly less likely to form habit behaviors compared with control rats. This behavioral difference corresponded with significant alterations to temporal coordination within and between brain regions that underpin the action to habit transition: 1) phase coherence between the lateral orbitofrontal cortex and dorsomedial striatum (DMS) and 2) theta-gamma coupling within DMS. Finally, we used cortical electrical stimulation as a model of transcranial magnetic stimulation (TMS) to show that temporal coordination of fronto-striatal circuits in control and ELS rats are differentially susceptible to potentiating and suppressive stimulation, suggesting that altered underlying circuit physiology may lead to altered response to therapeutic interventions such as TMS.
Collapse
Affiliation(s)
- Michelle L Kloc
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| | - Madeline G Shultes
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - R Davi Pressman
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Samuel A Liebman
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Carmel A Schneur
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Matthew C Broomer
- Department of Psychological Science, University of Vermont College of Arts and Sciences, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Mark E Bouton
- Department of Psychological Science, University of Vermont College of Arts and Sciences, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
13
|
McDonald RJ, Hong NS, Germaine C, Kolb B. Peripherally-administered amphetamine induces plasticity in medial prefrontal cortex and nucleus accumbens in rats with amygdala lesions: implications for neural models of memory modulation. Front Behav Neurosci 2023; 17:1187976. [PMID: 37358968 PMCID: PMC10285066 DOI: 10.3389/fnbeh.2023.1187976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
The amygdala has been implicated in a variety of functions linked to emotions. One popular view is that the amygdala modulates consolidation in other brain systems thought to be mainly involved in learning and memory processes. This series of experiments represents a further exploration into the role of the amygdala in memory modulation and consolidation. One interesting line of research has shown that drugs of abuse, like amphetamine, produce dendritic changes in select brain regions and these changes are thought to be equivalent to a usurping of normal plasticity processes. We were interested in the possibility that this modulation of plasticity processes would be dependent on interactions with the amygdala. According to the modulation view of amygdala function, amphetamine would activate modulation mechanisms in the amygdala that would alter plasticity processes in other brain regions. If the amygdala was rendered dysfunctional, these effects should not occur. Accordingly, this series of experiments evaluated the effects of extensive neurotoxic amygdala damage on amphetamine-induced dendritic changes in the nucleus accumbens and prefrontal cortex. The results showed that rats with large lesions of the amygdala showed the normal pattern of dendritic changes in these brain regions. This pattern of results suggests that the action of not all memory modulators, activated during emotional events, require the amygdala to impact memory.
Collapse
|
14
|
Tochon L, Vouimba RM, Corio M, Henkous N, Béracochéa D, Guillou JL, David V. Chronic alcohol consumption shifts learning strategies and synaptic plasticity from hippocampus to striatum-dependent pathways. Front Psychiatry 2023; 14:1129030. [PMID: 37304443 PMCID: PMC10250670 DOI: 10.3389/fpsyt.2023.1129030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The hippocampus and striatum have dissociable roles in memory and are necessary for spatial and procedural/cued learning, respectively. Emotionally charged, stressful events promote the use of striatal- over hippocampus-dependent learning through the activation of the amygdala. An emerging hypothesis suggests that chronic consumption of addictive drugs similarly disrupt spatial/declarative memory while facilitating striatum-dependent associative learning. This cognitive imbalance could contribute to maintain addictive behaviors and increase the risk of relapse. Methods We first examined, in C57BL/6 J male mice, whether chronic alcohol consumption (CAC) and alcohol withdrawal (AW) might modulate the respective use of spatial vs. single cue-based learning strategies, using a competition protocol in the Barnes maze task. We then performed in vivo electrophysiological studies in freely moving mice to assess learning-induced synaptic plasticity in both the basolateral amygdala (BLA) to dorsal hippocampus (dCA1) and BLA to dorsolateral striatum (DLS) pathways. Results We found that both CAC and early AW promote the use of cue-dependent learning strategies, and potentiate plasticity in the BLA → DLS pathway while reducing the use of spatial memory and depressing BLA → dCA1 neurotransmission. Discussion These results support the view that CAC disrupt normal hippocampo-striatal interactions, and suggest that targeting this cognitive imbalance through spatial/declarative task training could be of great help to maintain protracted abstinence in alcoholic patients.
Collapse
Affiliation(s)
- Léa Tochon
- *Correspondence: Léa Tochon, ; Vincent David,
| | | | | | | | | | | | | |
Collapse
|
15
|
Lavi A, Sehgal M, de Sousa AF, Ter-Mkrtchyan D, Sisan F, Luchetti A, Okabe A, Bear C, Silva AJ. Local memory allocation recruits memory ensembles across brain regions. Neuron 2023; 111:470-480.e5. [PMID: 36563678 PMCID: PMC10548338 DOI: 10.1016/j.neuron.2022.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Memories are thought to be stored in ensembles of neurons across multiple brain regions. However, whether and how these ensembles are coordinated at the time of learning remains largely unknown. Here, we combined CREB-mediated memory allocation with transsynaptic retrograde tracing to demonstrate that the allocation of aversive memories to a group of neurons in one brain region directly affects the allocation of interconnected neurons in upstream brain regions in a behavioral- and brain region-specific manner in mice. Our analysis suggests that this cross-regional recruitment of presynaptic neurons is initiated by downstream memory neurons through a retrograde mechanism. Together with statistical modeling, our results indicate that in addition to the anterograde flow of information between brain regions, the establishment of interconnected, brain-wide memory traces relies on a retrograde mechanism that coordinates memory ensembles at the time of learning.
Collapse
Affiliation(s)
- Ayal Lavi
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megha Sehgal
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andre F de Sousa
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donara Ter-Mkrtchyan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fardad Sisan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Okabe
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cameron Bear
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alcino J Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Imagine this: Visualising a recent meal as bigger reduces subsequent snack intake. Appetite 2023; 181:106411. [PMID: 36463986 DOI: 10.1016/j.appet.2022.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Remembering a recent meal reduces subsequent intake of palatable snacks (i.e. the meal-recall effect), however, little is known about the factors which can potentiate this effect. The present experiment investigated whether a stronger meal-recall effect would be observed if recent consumption would be recalled in greater detail, than if it was recalled briefly. Moreover, it was investigated whether imagining a meal as bigger and more satiating than in reality could potentiate the meal-recall effect, and lead to lower intake. It was also explored whether mental visualisation tasks of a recent meal would affect the remembered portion size. Participants (N = 151) ate lunch at the laboratory, and then returned 3 h later to perform the imagination tasks and to participate in a bogus taste test (during which intake was covertly measured). Participants in the two main imagination task groups recalled the lunch meal and then either recalled the consumption episode in great detail or imagined the meal was larger and more filling than in reality. The results showed that imagining a recent meal as larger significantly reduced the quantity of biscuits eaten. However, contrary to the hypotheses, recalling a consumption episode in detail did not decrease snack intake. It was also shown that imagining a recent meal as larger than in reality did not lead participants to overestimate the true size of the meal. In fact, portion size estimations were significantly underestimated in that group. There were no significant estimation differences in any of the other groups. The results of this study suggest that the meal-recall effect can be an effective strategy to reduce food intake and may be amenable to strategic manipulation to enhance efficacy, but seems prone to disruption.
Collapse
|
17
|
Xu H, Xu C, Guo C. Cocaine use disorder is associated with widespread surface-based alterations of the basal ganglia. J Psychiatr Res 2023; 158:95-103. [PMID: 36580868 DOI: 10.1016/j.jpsychires.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/01/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022]
Abstract
Cocaine use is a major public health problem with significant negative consequences at the individual and societal levels. Cocaine use disorder (CUD) is closely associated with brain structure alterations, which are mainly analyzed using voxel-based morphometric and traditional volumetric methods with certain limitations. This study conducted vertex-wise shape analysis to examine the effects of cocaine use on surface-based alterations of the basal ganglia in CUD. A total of 68 CUD individuals and 52 matched healthy controls (HCs) were enrolled in the study and underwent MRI scans and clinical measures. There were no significant differences in the volume of brain tissues and subcortical structures between groups. Related to HCs, CUD individuals showed regional surface atrophy of the left medial anterior thalamus, right medial posterior thalamus, and right dorsal anterior caudate, which were found to exhibit more significant surface atrophy in CUD individuals with onset age of cocaine use below 18. Furthermore, surface-based alteration of the right dorsal anterior caudate was significantly associated with years of cocaine use and the onset age of cocaine use in CUD individuals. Furthermore, both CUD individuals with onset age of cocaine use below 18 and CUD individuals with onset age of cocaine use above 18 showed similar significant relationship patterns between regional surface alteration of right dorsal anterior caudate and the onset age of cocaine use. These findings shed light on the effect of cocaine use on basal ganglia, help us understand the neural basis of cocaine dependence, and further provide effective interventions for CUD.
Collapse
Affiliation(s)
- Hui Xu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, 100 West 5th Street, Hamilton, ON L8P 3R2, Canada.
| | - Cheng Xu
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Chenguang Guo
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
18
|
Gomez-Perales EL, Brake WG. The role of progesterone in memory bias during spatial navigation in females. J Neuroendocrinol 2023; 35:e13197. [PMID: 36165431 DOI: 10.1111/jne.13197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
Abstract
Rats can use several memory systems to navigate a maze toward a reward. Two of these are place memory and response memory and female rats can be biased to predominantly use one over another. Both progesterone and estrogens have been shown to alter memory bias. Although the effects of estrogens have been well documented, the effects of progesterone remain somewhat unexplored. Mechanisms through which progesterone may be acting to exert its effects are reviewed here. Converging evidence suggests that the actions of progesterone differ depending on the presence of estrogens, frequently acting in opposition to estrogens when administered together. The hippocampus, dorsal striatum, and prefrontal cortex are likely involved, as is the progesterone metabolite, allopregnanolone. There is a need for more research on progesterone and memory bias, especially considering current formulations of hormonal contraceptives include progestins.
Collapse
Affiliation(s)
- Eamonn L Gomez-Perales
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Wayne G Brake
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
19
|
Sheynikhovich D, Otani S, Bai J, Arleo A. Long-term memory, synaptic plasticity and dopamine in rodent medial prefrontal cortex: Role in executive functions. Front Behav Neurosci 2023; 16:1068271. [PMID: 36710953 PMCID: PMC9875091 DOI: 10.3389/fnbeh.2022.1068271] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Mnemonic functions, supporting rodent behavior in complex tasks, include both long-term and (short-term) working memory components. While working memory is thought to rely on persistent activity states in an active neural network, long-term memory and synaptic plasticity contribute to the formation of the underlying synaptic structure, determining the range of possible states. Whereas, the implication of working memory in executive functions, mediated by the prefrontal cortex (PFC) in primates and rodents, has been extensively studied, the contribution of long-term memory component to these tasks received little attention. This review summarizes available experimental data and theoretical work concerning cellular mechanisms of synaptic plasticity in the medial region of rodent PFC and the link between plasticity, memory and behavior in PFC-dependent tasks. A special attention is devoted to unique properties of dopaminergic modulation of prefrontal synaptic plasticity and its contribution to executive functions.
Collapse
Affiliation(s)
- Denis Sheynikhovich
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France,*Correspondence: Denis Sheynikhovich ✉
| | - Satoru Otani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jing Bai
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
20
|
Vijayabaskaran S, Cheng S. Navigation task and action space drive the emergence of egocentric and allocentric spatial representations. PLoS Comput Biol 2022; 18:e1010320. [PMID: 36315587 PMCID: PMC9648855 DOI: 10.1371/journal.pcbi.1010320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/10/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
In general, strategies for spatial navigation could employ one of two spatial reference frames: egocentric or allocentric. Notwithstanding intuitive explanations, it remains unclear however under what circumstances one strategy is chosen over another, and how neural representations should be related to the chosen strategy. Here, we first use a deep reinforcement learning model to investigate whether a particular type of navigation strategy arises spontaneously during spatial learning without imposing a bias onto the model. We then examine the spatial representations that emerge in the network to support navigation. To this end, we study two tasks that are ethologically valid for mammals—guidance, where the agent has to navigate to a goal location fixed in allocentric space, and aiming, where the agent navigates to a visible cue. We find that when both navigation strategies are available to the agent, the solutions it develops for guidance and aiming are heavily biased towards the allocentric or the egocentric strategy, respectively, as one might expect. Nevertheless, the agent can learn both tasks using either type of strategy. Furthermore, we find that place-cell-like allocentric representations emerge preferentially in guidance when using an allocentric strategy, whereas egocentric vector representations emerge when using an egocentric strategy in aiming. We thus find that alongside the type of navigational strategy, the nature of the task plays a pivotal role in the type of spatial representations that emerge. Most species rely on navigation in space to find water, food, and mates, as well as to return home. When navigating, humans and animals can use one of two reference frames: one based on stable landmarks in the external environment, such as moving due north and then east, or one centered on oneself, such as moving forward and turning left. However, it remains unclear how these reference frames are chosen and interact in navigation tasks, as well as how they are supported by representations in the brain. We therefore modeled two navigation tasks that would each benefit from using one of these reference frames, and trained an artificial agent to learn to solve them through trial and error. Our results show that when given the choice, the agent leveraged the appropriate reference frame to solve the task, but surprisingly could also use the other reference frame when constrained to do so. We also show that the representations that emerge to enable the agent to solve the tasks exist on a spectrum, and are more complex than commonly thought. These representations reflect both the task and reference frame being used, and provide useful insights for the design of experimental tasks to study the use of navigational strategies.
Collapse
Affiliation(s)
| | - Sen Cheng
- Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Mehla J, Deibel SH, Karem H, Hossain S, Lacoursiere SG, Sutherland RJ, Mohajerani MH, McDonald RJ. Dramatic impacts on brain pathology, anxiety, and cognitive function in the knock-in APPNL-G-F mouse model of Alzheimer disease following long-term voluntary exercise. Alzheimers Res Ther 2022; 14:143. [PMID: 36180883 PMCID: PMC9526288 DOI: 10.1186/s13195-022-01085-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Background An active lifestyle is associated with improved cognitive functions in aged people and may prevent or slow down the progression of various neurodegenerative diseases including Alzheimer’s disease (AD). To investigate these protective effects, male APPNL-G-F mice were exposed to long-term voluntary exercise. Methods Three-month-old AD mice were housed in a cage supplemented with a running wheel for 9 months for long-term exercise. At the age of 12 months, behavioral tests were completed for all groups. After completing behavioral testing, their brains were assessed for amyloid pathology, microgliosis, and cholinergic cells. Results The results showed that APPNL-G-F mice allowed to voluntarily exercise showed an improvement in cognitive functions. Furthermore, long-term exercise also improved anxiety in APPNL-G-F mice as assessed by measuring thigmotaxis in the Morris water task. We also found reductions in amyloid load and microgliosis, and a preservation of cholinergic cells in the brain of APPNL-G-F mice allowed to exercise in their home cages. These profound reductions in brain pathology associated with AD are likely responsible for the observed improvement of learning and memory functions following extensive and regular exercise. Conclusion These findings suggest the potential of physical exercise to mitigate the cognitive deficits in AD.
Collapse
|
22
|
Improved Visual SLAM Using Semantic Segmentation and Layout Estimation. ROBOTICS 2022. [DOI: 10.3390/robotics11050091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The technological advances in computational systems have enabled very complex computer vision and machine learning approaches to perform efficiently and accurately. These new approaches can be considered a new set of tools to reshape the visual SLAM solutions. We present an investigation of the latest neuroscientific research that explains how the human brain can accurately navigate and map unknown environments. The accuracy suggests that human navigation is not affected by traditional visual odometry drifts resulting from tracking visual features. It utilises the geometrical structures of the surrounding objects within the navigated space. The identified objects and space geometrical shapes anchor the estimated space representation and mitigate the overall drift. Inspired by the human brain’s navigation techniques, this paper presents our efforts to incorporate two machine learning techniques into a VSLAM solution: semantic segmentation and layout estimation to imitate human abilities to map new environments. The proposed system benefits from the geometrical relations between the corner points of the cuboid environments to improve the accuracy of trajectory estimation. Moreover, the implemented SLAM solution semantically groups the map points and then tracks each group independently to limit the system drift. The implemented solution yielded higher trajectory accuracy and immunity to large pure rotations.
Collapse
|
23
|
Fernández-Rubio G, Carlomagno F, Vuust P, Kringelbach ML, Bonetti L. Associations between abstract working memory abilities and brain activity underlying long-term recognition of auditory sequences. PNAS NEXUS 2022; 1:pgac216. [PMID: 36714830 PMCID: PMC9802106 DOI: 10.1093/pnasnexus/pgac216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
Memory is a complex cognitive process composed of several subsystems, namely short- and long-term memory and working memory (WM). Previous research has shown that adequate interaction between subsystems is crucial for successful memory processes such as encoding, storage, and manipulation of information. However, few studies have investigated the relationship between different subsystems at the behavioral and neural levels. Thus, here we assessed the relationship between individual WM abilities and brain activity underlying the recognition of previously memorized auditory sequences. First, recognition of previously memorized versus novel auditory sequences was associated with a widespread network of brain areas comprising the cingulate gyrus, hippocampus, insula, inferior temporal cortex, frontal operculum, and orbitofrontal cortex. Second, we observed positive correlations between brain activity underlying auditory sequence recognition and WM. We showed a sustained positive correlation in the medial cingulate gyrus, a brain area that was widely involved in the auditory sequence recognition. Remarkably, we also observed positive correlations in the inferior temporal, temporal-fusiform, and postcentral gyri, brain areas that were not strongly associated with auditory sequence recognition. In conclusion, we discovered positive correlations between WM abilities and brain activity underlying long-term recognition of auditory sequences, providing new evidence on the relationship between memory subsystems. Furthermore, we showed that high WM performers recruited a larger brain network including areas associated with visual processing (i.e., inferior temporal, temporal-fusiform, and postcentral gyri) for successful auditory memory recognition.
Collapse
Affiliation(s)
- Gemma Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark
| | - Francesco Carlomagno
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari BA, Italy
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD, UK
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
24
|
Dragomanova S, Lazarova M, Munkuev A, Suslov E, Volcho K, Salakhutdinov N, Bibi A, Reynisson J, Tzvetanova E, Alexandrova A, Georgieva A, Uzunova D, Stefanova M, Kalfin R, Tancheva L. New Myrtenal–Adamantane Conjugates Alleviate Alzheimer’s-Type Dementia in Rat Model. Molecules 2022; 27:molecules27175456. [PMID: 36080227 PMCID: PMC9457974 DOI: 10.3390/molecules27175456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with memory impairment and other central nervous system (CNS) symptoms. Two myrtenal–adamantane conjugates (MACs) showed excellent CNS potential against Alzheimer’s models. Adamantane is a common pharmacophore for drug design, and myrtenal (M) demonstrated neuroprotective effects in our previous studies. The aim of this study is to evaluate the MACs’ neuroprotective properties in dementia. Methods: Scopolamine (Scop) was applied intraperitoneally in Wistar rats for 11 days, simultaneously with MACs or M as a referent, respectively. Brain acetylcholine esterase (AChE) activity, noradrenaline and serotonin levels, and oxidative brain status determination followed behavioral tests on memory abilities. Molecular descriptors and docking analyses for AChE activity center affinity were performed. Results: M derivatives have favorable physicochemical parameters to enter the CNS. Both MACs restored memory damaged by Scop, showing significant AChE-inhibitory activity in the cortex, in contrast to M, supported by the modeling analysis. Moderate antioxidant properties were manifested by glutathione elevation and catalase activity modulation. MACs also altered noradrenaline and serotonin content in the hippocampus. Conclusion: For the first time, neuroprotective properties of two MACs in a rat dementia model were observed. They were stronger than the natural M effects, which makes the substances promising candidates for AD treatment.
Collapse
Affiliation(s)
- Stela Dragomanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria
- Correspondence: (S.D.); (K.V.)
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Aldar Munkuev
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, Lavrentiev Av. 9, 630090 Novosibirsk, Russia
| | - Evgeniy Suslov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, Lavrentiev Av. 9, 630090 Novosibirsk, Russia
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, Lavrentiev Av. 9, 630090 Novosibirsk, Russia
- Correspondence: (S.D.); (K.V.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, Lavrentiev Av. 9, 630090 Novosibirsk, Russia
| | - Amina Bibi
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK
| | - Elina Tzvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| |
Collapse
|
25
|
Ramanoël S, Durteste M, Bizeul A, Ozier‐Lafontaine A, Bécu M, Sahel J, Habas C, Arleo A. Selective neural coding of object, feature, and geometry spatial cues in humans. Hum Brain Mapp 2022; 43:5281-5295. [PMID: 35776524 PMCID: PMC9812241 DOI: 10.1002/hbm.26002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023] Open
Abstract
Orienting in space requires the processing of visual spatial cues. The dominant hypothesis about the brain structures mediating the coding of spatial cues stipulates the existence of a hippocampal-dependent system for the representation of geometry and a striatal-dependent system for the representation of landmarks. However, this dual-system hypothesis is based on paradigms that presented spatial cues conveying either conflicting or ambiguous spatial information and that used the term landmark to refer to both discrete three-dimensional objects and wall features. Here, we test the hypothesis of complex activation patterns in the hippocampus and the striatum during visual coding. We also postulate that object-based and feature-based navigation are not equivalent instances of landmark-based navigation. We examined how the neural networks associated with geometry-, object-, and feature-based spatial navigation compared with a control condition in a two-choice behavioral paradigm using fMRI. We showed that the hippocampus was involved in all three types of cue-based navigation, whereas the striatum was more strongly recruited in the presence of geometric cues than object or feature cues. We also found that unique, specific neural signatures were associated with each spatial cue. Object-based navigation elicited a widespread pattern of activity in temporal and occipital regions relative to feature-based navigation. These findings extend the current view of a dual, juxtaposed hippocampal-striatal system for visual spatial coding in humans. They also provide novel insights into the neural networks mediating object versus feature spatial coding, suggesting a need to distinguish these two types of landmarks in the context of human navigation.
Collapse
Affiliation(s)
- Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance,Université Côte d'Azur, LAMHESSNiceFrance
| | - Marion Durteste
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
| | - Alice Bizeul
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
| | | | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
| | - José‐Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance,CHNO des Quinze‐Vingts, INSERM‐DGOS CIC 1423ParisFrance,Fondation Ophtalmologique RothschildParisFrance,Department of OphtalmologyThe University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Christophe Habas
- CHNO des Quinze‐Vingts, INSERM‐DGOS CIC 1423ParisFrance,Université Versailles St Quentin en YvelineParisFrance
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
| |
Collapse
|
26
|
Ferreira VHB, Guesdon V, Calandreau L, Jensen P. White Leghorn and Red Junglefowl female chicks use distal and local cues similarly, but differ in persistency behaviors, during a spatial orientation task. Behav Processes 2022; 200:104669. [DOI: 10.1016/j.beproc.2022.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
|
27
|
Hippocampus-sensitive and striatum-sensitive learning one month after morphine or cocaine exposure in male rats. Pharmacol Biochem Behav 2022; 217:173392. [PMID: 35513118 PMCID: PMC9796089 DOI: 10.1016/j.pbb.2022.173392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022]
Abstract
These experiments examined whether morphine and cocaine alter the balance between hippocampal and striatal memory systems measured long after drug exposure. Male rats received injections of morphine (5 mg/kg), cocaine (20 mg/kg), or saline for five consecutive days. One month later, rats were trained to find food on a hippocampus-sensitive place task or a striatum-sensitive response task. Relative to saline controls, morphine-treated rats exhibited impaired place learning but enhanced response learning; prior cocaine exposure did not significantly alter learning on either task. Another set of rats was trained on a dual-solution T-maze that can be solved with either place or response strategies. While a majority (67%) of control rats used place solutions, morphine treatment one month prior resulted in the exclusive use of response solutions (100%). Prior cocaine treatment did not significantly alter strategy selection. Molecular markers related to learning and drug abuse were measured in the hippocampus and striatum one month after drug exposure in behaviorally untested rats. Protein levels of glial-fibrillary acidic protein (GFAP), an intermediate filament specific to astrocytes, increased significantly in the hippocampus after morphine exposure, but not after cocaine exposure. Exposure to morphine or cocaine did not significantly change levels of brain-derived neurotrophic factor (BDNF) or a downstream target of BDNF signaling, glycogen synthase kinase 3β (GSK3β), in the hippocampus or striatum. Thus, exposure to morphine resulted in a long-lasting shift from hippocampal toward striatal dominance during learning, an effect that may be associated with lasting alterations in hippocampal astrocytes. Cocaine produced changes in the same direction, suggesting that use of a higher dose or longer duration of exposure might produce effects comparable to those seen with morphine.
Collapse
|
28
|
Patt VM, Palombo DJ, Esterman M, Verfaellie M. Hippocampal Contribution to Probabilistic Feedback Learning: Modeling Observation- and Reinforcement-based Processes. J Cogn Neurosci 2022; 34:1429-1446. [PMID: 35604353 DOI: 10.1162/jocn_a_01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Simple probabilistic reinforcement learning is recognized as a striatum-based learning system, but in recent years, has also been associated with hippocampal involvement. This study examined whether such involvement may be attributed to observation-based learning (OL) processes, running in parallel to striatum-based reinforcement learning. A computational model of OL, mirroring classic models of reinforcement-based learning (RL), was constructed and applied to the neuroimaging data set of Palombo, Hayes, Reid, and Verfaellie (2019). Hippocampal contributions to value-based learning: Converging evidence from fMRI and amnesia. Cognitive, Affective & Behavioral Neuroscience, 19(3), 523-536. Results suggested that OL processes may indeed take place concomitantly to reinforcement learning and involve activation of the hippocampus and central orbitofrontal cortex. However, rather than independent mechanisms running in parallel, the brain correlates of the OL and RL prediction errors indicated collaboration between systems, with direct implication of the hippocampus in computations of the discrepancy between the expected and actual reinforcing values of actions. These findings are consistent with previous accounts of a role for the hippocampus in encoding the strength of observed stimulus-outcome associations, with updating of such associations through striatal reinforcement-based computations. In addition, enhanced negative RL prediction error signaling was found in the anterior insula with greater use of OL over RL processes. This result may suggest an additional mode of collaboration between the OL and RL systems, implicating the error monitoring network.
Collapse
Affiliation(s)
- Virginie M Patt
- VA Boston Healthcare System, MA.,Boston University School of Medicine, MA
| | | | - Michael Esterman
- VA Boston Healthcare System, MA.,Boston University School of Medicine, MA
| | - Mieke Verfaellie
- VA Boston Healthcare System, MA.,Boston University School of Medicine, MA
| |
Collapse
|
29
|
Zlomuzica A, Dere E. Towards an animal model of consciousness based on the platform theory. Behav Brain Res 2022; 419:113695. [PMID: 34856300 DOI: 10.1016/j.bbr.2021.113695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/02/2022]
Abstract
The evolution of intellectual capacities has brought forth a continuum of consciousness levels subserved by neuronal networks of varying complexity. Brain pathologies, neurodegenerative, and mental diseases affect conscious cognition and behavior. Although impairments in consciousness are among the most devastating consequences of neurological and mental diseases, valid and reliable animal models of consciousness, that could be used for preclinical research are missing. The platform theory holds that the brain enters a conscious operation mode, whenever mental representations of stimuli, associations, concepts, memories, and experiences are effortfully maintained (in working memory) and actively manipulated. We used the platform theory as a framework and evaluation standard to categorize behavioral paradigms with respect to the level of consciousness involved in task performance. According to the platform theory, a behavioral paradigm involves conscious cognitive operations, when the problem posed is unexpected, novel or requires the maintenance and manipulation of a large amount of information to perform cognitive operations on them. Conscious cognitive operations are associated with a relocation of processing resources and the redirection of attentional focus. A consciousness behavioral test battery is proposed that is composed of tests which are assumed to require higher levels of consciousness as compared to other tasks and paradigms. The consciousness test battery for rodents includes the following tests: Working memory in the radial arm maze, episodic-like memory, prospective memory, detour test, and operant conditioning with concurrent variable-interval variable-ratio schedules. Performance in this test battery can be contrasted with the performance in paradigms and tests that require lower levels of consciousness. Additionally, a second more comprehensive behavioral test battery is proposed to control for behavioral phenotypes not related to consciousness. Our theory could serve as a guidance for the decryption of the neurobiological basis of consciousness.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
30
|
Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder. Nutrients 2022; 14:nu14030688. [PMID: 35277047 PMCID: PMC8837993 DOI: 10.3390/nu14030688] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is common and represents a significant public health burden, yet very few interventions have been tested in FASD. Cognitive deficits are core features of FASD, ranging from broad intellectual impairment to selective problems in attention, executive functioning, memory, visual–perceptual/motor skills, social cognition, and academics. One potential intervention for the cognitive impairments associated with FASD is the essential nutrient choline, which is known to have numerous direct effects on brain and cognition in both typical and atypical development. We provide a summary of the literature supporting the use of choline as a neurodevelopmental intervention in those affected by prenatal alcohol. We first discuss how alcohol interferes with normal brain development. We then provide a comprehensive overview of the nutrient choline and discuss its role in typical brain development and its application in the optimization of brain development following early insult. Next, we review the preclinical literature that provides evidence of choline’s potential as an intervention following alcohol exposure. Then, we review a handful of existing human studies of choline supplementation in FASD. Lastly, we conclude with a review of practical considerations in choline supplementation, including dose, formulation, and feasibility in children.
Collapse
|
31
|
Abstract
Degeneracy in biological systems refers to a many-to-one mapping between physical structures and their functional (including psychological) outcomes. Despite the ubiquity of the phenomenon, traditional analytical tools for modeling degeneracy in neuroscience are extremely limited. In this study, we generated synthetic datasets to describe three situations of degeneracy in fMRI data to demonstrate the limitations of the current univariate approach. We describe a novel computational approach for the analysis referred to as neural topographic factor analysis (NTFA). NTFA is designed to capture variations in neural activity across task conditions and participants. The advantage of this discovery-oriented approach is to reveal whether and how experimental trials and participants cluster into task conditions and participant groups. We applied NTFA on simulated data, revealing the appropriate degeneracy assumption in all three situations and demonstrating NTFA's utility in uncovering degeneracy. Lastly, we discussed the importance of testing degeneracy in fMRI data and the implications of applying NTFA to do so.
Collapse
|
32
|
Collet J, Sasaki T, Biro D. Pigeons retain partial memories of homing paths years after learning them individually, collectively or culturally. Proc Biol Sci 2021; 288:20212110. [PMID: 34784759 PMCID: PMC8595992 DOI: 10.1098/rspb.2021.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Memory of past experience is central to many animal decisions, but how long specific memories can influence behaviour is poorly understood. Few studies have reported memories retrieved after several years in non-human animals, especially for spatial tasks, and whether the social context during learning could affect long-term memory retention. We investigated homing pigeons' spatial memory by GPS-recording their homing paths from a site 9 km from their loft. We compared solo flights of naive pigeons with those of pigeons that had last homed from this site 3-4 years earlier, having learnt a homing route either alone (individual learning), together with a naive partner (collective learning) or within cultural transmission chains (cultural learning). We used as a control a second release site unfamiliar to all pigeons. Pigeons from all learning treatments outperformed naive birds at the familiar (but not the unfamiliar) site, but the idiosyncratic routes they formerly used several years before were now partially forgotten. Our results show that non-human animals can use their memory to solve a spatial task years after they last performed it, irrespective of the social context during learning. They also suggest that without reinforcement, landmarks and culturally acquired 'route traditions' are gradually forgotten.
Collapse
Affiliation(s)
- Julien Collet
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
| | - Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Dora Biro
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
33
|
Lehmann H, Stykel MG, Glenn MJ. Overtraining Strengthens the Visual Discrimination Memory Trace Outside the Hippocampus in Male Rats. Front Behav Neurosci 2021; 15:768552. [PMID: 34867230 PMCID: PMC8634582 DOI: 10.3389/fnbeh.2021.768552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The hippocampus (HPC) may compete with other memory systems when establishing a representation, a process termed overshadowing. However, this overshadowing may be mitigated by repeated learning episodes, making a memory resistant to post-training hippocampal damage. In the current study, we examined this overshadowing process for a hippocampal-dependent visual discrimination memory in rats. In Experiment 1, male rats were trained to criterion (80% accuracy on two consecutive days) on a visual discrimination and then given 50 additional trials distributed over 5 days or 10 weeks. Regardless of this additional learning, extensive damage to the HPC caused retrograde amnesia for the visual discrimination, suggesting that the memory remained hippocampal-dependent. In Experiment 2, rats received hippocampal damage before learning and required approximately twice as many trials to acquire the visual discrimination as control rats, suggesting that, when the overshadowing or competition is removed, the non-hippocampal memory systems only slowly acquires the discrimination. In Experiment 3, increasing the additional learning beyond criterion by 230 trials, the amount needed in Experiment 2 to train the non-hippocampal systems in absence of competition, successfully prevented the retrograde amnesic effects of post-training hippocampal damage. Combined, the findings suggest that a visual discrimination memory trace can be strengthened in non-hippocampal systems with overtraining and become independent of the HPC.
Collapse
Affiliation(s)
- Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Morgan G. Stykel
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Melissa J. Glenn
- Department of Psychology, Colby College, Waterville, MA, United States
| |
Collapse
|
34
|
Scavuzzo CJ, Newman LA, Gold PE, Korol DL. Time-dependent changes in hippocampal and striatal glycogen long after maze training in male rats. Neurobiol Learn Mem 2021; 185:107537. [PMID: 34634434 PMCID: PMC8672440 DOI: 10.1016/j.nlm.2021.107537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022]
Abstract
Long-lasting biological changes reflecting past experience have been studied in and typically attributed to neurons in the brain. Astrocytes, which are also present in large number in the brain, have recently been found to contribute critically to learning and memory processing. In the brain, glycogen is primarily found in astrocytes and is metabolized to lactate, which can be released from astrocytes. Here we report that astrocytes themselves have intrinsic neurochemical plasticity that alters the availability and provision of metabolic substrates long after an experience. Rats were trained to find food on one of two versions of a 4-arm maze: a hippocampus-sensitive place task and a striatum-sensitive response task. Remarkably, hippocampal glycogen content increased while striatal levels decreased during the 30 days after rats were trained to find food in the place version, but not the response version, of the maze tasks. A long-term consequence of the durable changes in glycogen stores was seen in task-by-site differences in extracellular lactate responses activated by testing on a working memory task administered 30 days after initial training, the time when differences in glycogen content were most robust. These results suggest that astrocytic plasticity initiated by a single experience may augment future availability of energy reserves, perhaps priming brain areas to process learning of subsequent experiences more effectively.
Collapse
Affiliation(s)
- Claire J Scavuzzo
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Lori A Newman
- Psychological Science Department, Vassar College, 124 Raymond Avenue, Box 713, Poughkeepsie, NY 12604, USA
| | - Paul E Gold
- Biology Department, Syracuse University, Syracuse, NY 13244, USA
| | - Donna L Korol
- Biology Department, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
35
|
Shukla M, Vincent B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci Biobehav Rev 2021; 131:541-559. [PMID: 34606820 DOI: 10.1016/j.neubiorev.2021.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Diverse intellectual functions including memory are some important aspects of cognition. Dopamine is a neurotransmitter of the catecholamine family, which contributes to the experience of pleasure and/or emotional states but also plays crucial roles in learning and memory. Methamphetamine is an illegal drug, the abuse of which leads to long lasting pathological manifestations in the brain. Chronic methamphetamine-induced neurotoxicity results in an alteration of various parts of the memory systems by affecting learning processes, an effect attributed to the structural similarities of this drug with dopamine. An evolving field of research established how cognitive deficits in abusers arise and how they could possibly trigger neurodegenerative disorders. Thus, the drugs-induced tenacious neurophysiological changes of the dopamine system trigger cognitive deficits, thereby affirming the influence of this addictive drug on learning, memory and executive function in human abusers. Here we present an overview of the effects of methamphetamine abuse on cognitive functions, dopaminergic transmission and hippocampal integrity as they have been validated in animals and in humans during the past 20 years.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand; Centre National de la Recherche Scientifique, 2 Rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
36
|
West GL, Konishi K, MacDonald K, Ni A, Joober R, Bohbot VD. The BDNF val66met polymorphism is associated with decreased use of landmarks and decreased fMRI activity in the hippocampus during virtual navigation. Eur J Neurosci 2021; 54:6406-6421. [PMID: 34467592 DOI: 10.1111/ejn.15431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
People can navigate in a new environment using multiple strategies dependent on different memory systems. A series of studies have dissociated between hippocampus-dependent 'spatial' navigation and habit-based 'response' learning mediated by the caudate nucleus. The val66met polymorphism of the brain-derived neurotrophic factor (BDNF) gene leads to decreased secretion of BDNF in the brain, including the hippocampus. Here, we aim to investigate the role of the BDNF val66met polymorphism on virtual navigation behaviour and brain activity in healthy older adults. A total of 139 healthy older adult participants (mean age = 65.8 ± 4.4 years) were tested in this study. Blood samples were collected, and BDNF val66met genotyping was performed. Participants were divided into two genotype groups: val homozygotes and met carriers. Participants were tested on virtual dual-solution navigation tasks in which they could use either a hippocampus-dependent spatial strategy or a caudate nucleus-dependent response strategy to solve the task. A subset of the participants (n = 66) were then scanned in a 3T functional magnetic resonance imaging (fMRI) scanner while engaging in another dual-solution navigation task. BDNF val/val individuals and met carriers did not differ in learning performance. However, the two BDNF groups differed in learning strategy. BDNF val/val individuals relied more on landmarks to remember target locations (i.e., increased use of flexible spatial learning), while met carriers relied more on sequences and patterns to remember target locations (i.e., increased use of inflexible response learning). Additionally, BDNF val/val individuals had more fMRI activity in the hippocampus compared with BDNF met carriers during performance on the navigation task. This is the first study to show in older adults that BDNF met carriers use alternate learning strategies from val/val individuals and to identify differential brain activation of this behavioural difference between the two groups.
Collapse
Affiliation(s)
- Greg L West
- Department of Psychology, University of Montreal, Montréal, Quebec, Canada
| | - Kyoko Konishi
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Kathleen MacDonald
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Anjie Ni
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Ridha Joober
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Veronique D Bohbot
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| |
Collapse
|
37
|
Scavuzzo CJ, Newman LA, Gold PE, Korol DL. Extracellular levels of glucose in the hippocampus and striatum during maze training for food or water reward in male rats. Behav Brain Res 2021; 411:113385. [PMID: 34048874 PMCID: PMC8238909 DOI: 10.1016/j.bbr.2021.113385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 12/19/2022]
Abstract
Glucose potently enhances cognitive functions whether given systemically or directly to the brain. The present experiments examined changes in brain extracellular glucose levels while rats were trained to solve hippocampus-sensitive place or striatum-sensitive response learning tasks for food or water reward. Because there were no task-related differences in glucose responses, the glucose results were pooled across tasks to form combined trained groups. During the first 1-3 min of training for food reward, glucose levels in extracellular fluid (ECF) declined significantly in the hippocampus and striatum; the declines were not seen in untrained, rewarded rats. When trained for water reward, similar decreases were observed in both brain areas, but these findings were less consistent than those seen with food rewards. After the initial declines in ECF glucose levels, glucose increased in most groups, approaching asymptotic levels ∼15-30 min into training. Compared to untrained food controls, training with food reward resulted in significant glucose increases in the hippocampus but not striatum; striatal glucose levels exhibited large increases to food intake in both trained and untrained groups. In rats trained to find water, glucose levels increased significantly above the values seen in untrained rats in both hippocampus and striatum. The decreases in glucose early in training might reflect an increase in brain glucose consumption, perhaps triggering increased brain uptake of glucose from blood, as evident in the increases in glucose later in training. The increased brain uptake of glucose may provide additional neuronal metabolic substrate for metabolism or provide astrocytic substrate for production of glycogen and lactate.
Collapse
Affiliation(s)
- C J Scavuzzo
- Department of Psychology, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - L A Newman
- Department of Psychological Science, Vassar College, 124 Raymond Avenue, Box 713, Poughkeepsie, NY, 12604, United States
| | - P E Gold
- Department of Biology, Syracuse University, Syracuse, NY, 13244, United States
| | - D L Korol
- Department of Biology, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
38
|
Buckley MG, Austen JM, Myles LAM, Smith S, Ihssen N, Lew AR, McGregor A. The effects of spatial stability and cue type on spatial learning: Implications for theories of parallel memory systems. Cognition 2021; 214:104802. [PMID: 34225248 DOI: 10.1016/j.cognition.2021.104802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
Some theories of spatial learning predict that associative rules apply under only limited circumstances. For example, learning based on a boundary has been claimed to be immune to cue competition effects because boundary information is the basis for the formation of a cognitive map, whilst landmark learning does not involve cognitive mapping. This is referred to as the cue type hypothesis. However, it has also been claimed that cue stability is a prerequisite for the formation of a cognitive map, meaning that whichever cue type was perceived as stable would enter a cognitive map and thus be immune to cue competition, while unstable cues will be subject to cue competition, regardless of cue type. In experiments 1 and 2 we manipulated the stability of boundary and landmark cues when learning the location of two hidden goals. One goal location was constant with respect to the boundary, and the other constant with respect to the landmark cues. For both cue types, the presence of distal orientation cues provided directional information. For half the participants the landmark cues were unstable relative to the boundary and orientation cues, whereas for the remainder of the participants the boundary was unstable relative to landmarks and orientation cues. In a second stage of training, all cues remained stable so that both goal locations could be learned with respect to both landmark and boundary information. According to the cue type hypothesis, boundary information should block learning about landmarks regardless of cue stability. According to the cue stability hypothesis, however, landmarks should block learning about the boundary when the landmarks appear stable relative to the boundary. Regardless of cue type or stability the results showed reciprocal blocking, contrary to both formulations of incidental cognitive mapping. Experiment 3 established that the results of Experiments 1 and 2 could not be explained in terms of difficulty in learning certain locations with respect to different cue types. In a final experiment, following training in which both landmarks and boundary cues signalled two goal locations, a new goal location was established with respect to the landmark cues, before testing with the boundary, which had never been used to define the new goal location. The results of this novel test of the interaction between boundary and landmark cues indicated that new learning with respect to the landmark had a profound effect on navigation with respect to the boundary, counter to the predictions of incidental cognitive mapping of boundaries.
Collapse
Affiliation(s)
- Matthew G Buckley
- Department of Psychology, Durham University, UK; School of Psychology, Aston University, UK.
| | | | | | - Shamus Smith
- School of Electrical Engineering and Computing, University of Newcastle, Australia
| | | | - Adina R Lew
- Department of Psychology, Lancaster University, UK
| | | |
Collapse
|
39
|
Corticosterone in the dorsolateral striatum facilitates the extinction of stimulus-response memory. Neurobiol Learn Mem 2021; 183:107481. [PMID: 34166790 DOI: 10.1016/j.nlm.2021.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Glucocorticoid hormones are crucially involved in modulating mnemonic processing of stressful or emotionally arousing experiences. They are known to enhance the consolidation of new memories, including those that extinguish older memories. In this study, we investigated whether glucocorticoids facilitate the extinction of a striatum-dependent, and behaviorally more rigid, stimulus-response memory. For this, male rats were initially trained for six days on a stimulus-response task in a T-maze to obtain a reward after making an egocentric right-turn body response, regardless of the starting position in this maze. This training phase was followed by three extinction sessions in which right-turn body responses were not reinforced. Corticosterone administration into the dorsolateral region of the striatum after the first extinction session dose-dependently enhanced the consolidation of extinction memory: Rats administered the higher dose of corticosterone (30 ng), but not lower doses (5 or 10 ng), exhibited significantly fewer right-turn body responses and had longer latencies compared to vehicle-treated animals on the second and third extinction sessions. Co-administration of the glucocorticoid receptor antagonist RU 486 (10 ng) prevented the corticosterone effect, indicating that glucocorticoids enhance the extinction of stimulus-response memory via activation of the glucocorticoid receptor. Corticosterone administration into the dorsomedial striatum did not affect extinction memory. These findings indicate that stress-response mechanisms involving corticosterone actions in the dorsolateral striatum facilitate the extinction of stimulus-response memory that might allow for the development of an opportune behavioral strategy.
Collapse
|
40
|
Flores-Fuentes N, Hernandez-Cruz C, Bermeo K, Barajas-Martinez A, Hernandez-Serratos VN, Aceves-Rodriguez EM, Martinez-Alonso E, Castro H, Martinez-Huerta MI, Elias-Viñas D, Salazar-Anguiano J, Arenas I, Garcia DE. Motor learning impairment in rats under a high sucrose diet. Physiol Behav 2021; 234:113384. [PMID: 33676960 DOI: 10.1016/j.physbeh.2021.113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 11/18/2022]
Abstract
Motor learning skills are reliable indicators of behavioral acquisition and cognitive disorders. The ease with which learning skills are measured disparities the complexity of the interpretation concerning neural plasticity. Conversely, a wealth of information regarding metabolic derangements has long been reported with direct connection to high sucrose diets. However, the impact of excessive sucrose consumption on undergoing cognitive processes has been only scarcely addressed up to now. Therefore, the goal of this work was to describe the associative relationship between high sucrose consumption and changes in motor learning skills acquisition. Motor learning impairments conditioned by central alterations are hypothesized. Rotarod, elevated plus-maze and open field trials, along with metabolic and pro-inflammatory biomarkers tests in Wistar rats under a high sucrose treatment, were performed. Motor learning impairment in high sucrose diet-treated rats was found while spontaneous locomotor activity remained unchanged. Even though, no anxiety-like behavior under high sucrose diet-treatment was observed. Consistently, the worst outcome in the glucose tolerance test was developed, the worst motor learning performance was observed. Furthermore, insulin resistance correlated positively with a pro-inflammatory state and a decreased latency to fall in the rotarod test. Indeed, C-reactive protein and tumor necrosis factor-α serum levels, along with the homeostasis model assessment of insulin resistance (HOMA-IR), significantly increased in motor learning impairment. Together, these results support behavioral, metabolic and pro-inflammatory changes associated with deleterious changes in central nervous system likely involving crucial motor learning structures. Underlying pro-inflammatory-triggered processes may explain cognitive disorders in advanced states of metabolic derangements.
Collapse
Affiliation(s)
- Nayely Flores-Fuentes
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Carolina Hernandez-Cruz
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Karina Bermeo
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Antonio Barajas-Martinez
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Valeria Nayely Hernandez-Serratos
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Erick Mauricio Aceves-Rodriguez
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Eduardo Martinez-Alonso
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Hector Castro
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Maricela Irel Martinez-Huerta
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - David Elias-Viñas
- Section of Bioelectronics, Department of Electrical Engineering, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, PO Box 14740, C.P. 07000 Mexico City, Mexico
| | - Jeny Salazar-Anguiano
- Section of Bioelectronics, Department of Electrical Engineering, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, PO Box 14740, C.P. 07000 Mexico City, Mexico
| | - Isabel Arenas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - David E Garcia
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico.
| |
Collapse
|
41
|
Kalm K, Norris D. Sequence learning recodes cortical representations instead of strengthening initial ones. PLoS Comput Biol 2021; 17:e1008969. [PMID: 34029315 PMCID: PMC8177667 DOI: 10.1371/journal.pcbi.1008969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/04/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
We contrast two computational models of sequence learning. The associative learner posits that learning proceeds by strengthening existing association weights. Alternatively, recoding posits that learning creates new and more efficient representations of the learned sequences. Importantly, both models propose that humans act as optimal learners but capture different statistics of the stimuli in their internal model. Furthermore, these models make dissociable predictions as to how learning changes the neural representation of sequences. We tested these predictions by using fMRI to extract neural activity patterns from the dorsal visual processing stream during a sequence recall task. We observed that only the recoding account can explain the similarity of neural activity patterns, suggesting that participants recode the learned sequences using chunks. We show that associative learning can theoretically store only very limited number of overlapping sequences, such as common in ecological working memory tasks, and hence an efficient learner should recode initial sequence representations.
Collapse
Affiliation(s)
- Kristjan Kalm
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Dennis Norris
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Bittencourt AML, Bampi VF, Sommer RC, Schaker V, Juruena MFP, Soder RB, Franco AR, Sanvicente-Vieira B, Grassi-Oliveira R, Ferreira PEMS. Cortical thickness and subcortical volume abnormalities in male crack-cocaine users. Psychiatry Res Neuroimaging 2021; 310:111232. [PMID: 33621927 DOI: 10.1016/j.pscychresns.2020.111232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023]
Abstract
Crack-cocaine offers a higher risk of abuse than intranasal and intravenous use of cocaine. Yet, current treatments remain disappointing and our understanding of the mechanism of crack-cocaine neurotoxicity is still incomplete. Magnetic resonance images studies on brain changes of crack-cocaine addicts show divergent data. The present study investigated gray matter (GM) abnormalities in crack-cocaine dependents (n = 18) compared to healthy controls (n = 17). MRI data was analysed using FreeSurfer and voxel-based morphometry (VBM). FreeSurfer analysis showed that CD had decreased cortical thickness (CT) in the left inferior temporal cortex (lTC), left orbitofrontal cortex (lOFC) and left rostro frontal cortex (lRFC), enlargement in left inferior lateral ventricle, and smaller GM volume in right hippocampus and right ventral diencephalon. VBM analysis showed that CD had significantly decreased GM volume in left Putamen and left nucleus accumbens. Furthermore, we found a negative correlation between duration of crack-cocaine use and lTC CT. These results provide compelling evidence for GM abnormalities in CD and also suggest that duration of crack-cocaine use may be associated with CT alterations.
Collapse
Affiliation(s)
- Augusto Martins Lucas Bittencourt
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Medicine and Health Sciences - Neuroscience, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil.
| | - Vinicius Faccin Bampi
- SW - Adult Community Mental Health Service, Hertfordshire Partnership University NHS Foundation Trust, St, AL3 5TQ St Albans, United Kingdom
| | - Rafael Canani Sommer
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, 90619900, Porto Alegre, Brasil
| | - Vanessa Schaker
- Federal University of Rio Grande do Sul, 90040-060, Porto Alegre, Brazil
| | | | - Ricardo Bernardi Soder
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90619900, Porto Alegre, Brasil
| | - Alexandre Rosa Franco
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeberg, NY, 10962, USA; Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Breno Sanvicente-Vieira
- Lab of Individual Differences and Psychopathology (LaDIP), Psychology Department - Pontifical Catholic University of Rio de Janeiro (PUC-Rio), 22453900, Rio de Janeiro, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Medicine and Health Sciences - Neuroscience, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90619900, Porto Alegre, Brasil
| | | |
Collapse
|
43
|
Méndez M, Fidalgo C, Arias JL, Arias N. Methylene blue and photobiomodulation recover cognitive impairment in hepatic encephalopathy through different effects on cytochrome c-oxidase. Behav Brain Res 2021; 403:113164. [PMID: 33549685 DOI: 10.1016/j.bbr.2021.113164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/02/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction plays a central role in hepatic encephalopathy (HE), due to changes in enzyme cytochrome c-oxidase (CCO), causing a decline in brain metabolism. We used an HE animal model and applied intracranial administration of methylene blue (MB) and transcranial photobiomodulation (PBM), both targeting CCO, to determine their differential effects on recovering cognition. Five groups of rats were used: sham-operated group + saline (SHAM + SAL, n = 6), hepatic encephalopathy + SAL (HE + SAL, n = 7), SHAM + methylene blue (SHAM + MB, n = 7), HE + MB (n = 7), HE + PBM (n = 7). PBM animals were exposed transcranially to 670 +/- 10 nm LED light at a dose of 9 J/cm2 once a day for 7 days, and the MB and SAL groups were injected with 2.2 μg/0.5 μL in the accumbens. Cognitive dysfunction was evaluated on a striatal stimulus-response task using the Morris water maze. Our results showed cognitive improvement in the HE group when treated with MB. This improvement was accompanied by a decrease in CCO activity in the prefrontal cortex, dorsal striatum, and dorsal hippocampus. When comparing MB and PBM, we found that, although both treatments effectively improved the HE-memory deficit, there was a differential effect on CCO. A general decrease in CCO activity was found in the prefrontal and entorhinal cortices, dorsal striatum, and hippocampus when PBM, compared to MB, was applied. Our results suggest that mitochondrial dysfunction and brain metabolic decline in HE might involve CCO alteration and can be improved by administering MB and PBM.
Collapse
Affiliation(s)
- Marta Méndez
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Camino Fidalgo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; Departamento de Psicología y Sociología, IIS Aragón, Universidad de Zaragoza, Ciudad Escolar s/n, Teruel, 44003, Spain
| | - Jorge L Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
| |
Collapse
|
44
|
Training level reveals a dynamic dialogue between stress and memory systems in birds. Behav Brain Res 2021; 408:113280. [PMID: 33819534 DOI: 10.1016/j.bbr.2021.113280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 02/05/2023]
Abstract
Chronic stress profoundly affects forms of declarative memory, such as spatial memory, while it may spare non-declarative memory, such as cue-based memory. It is known, however, that the effects of chronic stress on memory systems may vary according to the level of training of an individual was submitted. Here, we investigated, in birds, how chronic stress impact spatial and cue-based memories according to training level. For that, control and chronically stressed Japanese quail were trained in a task that could be solved using spatial and cue-based memory and tested for their memory performance after 5 and 15 training days (initial training and overtraining, respectively) and following an emotional challenge (exposure to an open field). Our results showed that, compared to control quail, chronic stress impacted negatively spatial memory performances in stressed birds after initial training, but these differences were lowered after overtraining. Control birds seemed to shift from spatial to cue-based memory to solve the task across overtraining. However, an emotional challenge before testing reinstated the negative impact of chronic stress on spatial memory performances between the groups, revealing that chronic stress/overtraining did not eliminate the spatial memory and differences caused by stressors can reemerge depending on the individual's immediate psychological state. Contrary to spatial memory, cue-based memory was not affected in chronically stressed birds compared to control birds in any test occasion, confirming its resistance against the negative effects of chronic stress. Altogether these findings reveal a dynamic dialogue between stress, training level, and memory systems in birds.
Collapse
|
45
|
Tian W, Chen S. Neurotransmitters, Cell Types, and Circuit Mechanisms of Motor Skill Learning and Clinical Applications. Front Neurol 2021; 12:616820. [PMID: 33716924 PMCID: PMC7947691 DOI: 10.3389/fneur.2021.616820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 02/02/2023] Open
Abstract
Animals acquire motor skills to better survive and adapt to a changing environment. The ability to learn novel motor actions without disturbing learned ones is essential to maintaining a broad motor repertoire. During motor learning, the brain makes a series of adjustments to build novel sensory–motor relationships that are stored within specific circuits for long-term retention. The neural mechanism of learning novel motor actions and transforming them into long-term memory still remains unclear. Here we review the latest findings with regard to the contributions of various brain subregions, cell types, and neurotransmitters to motor learning. Aiming to seek therapeutic strategies to restore the motor memory in relative neurodegenerative disorders, we also briefly describe the common experimental tests and manipulations for motor memory in rodents.
Collapse
Affiliation(s)
- Wotu Tian
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
McDonald RJ, Hong NS, Atwood A, Tyndall AV, Kolb B. An assessment of the functional effects of amphetamine-induced dendritic changes in the nucleus accumbens, medial prefrontal cortex, and hippocampus on different types of learning and memory function. Neurobiol Learn Mem 2021; 180:107408. [PMID: 33609742 DOI: 10.1016/j.nlm.2021.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The present experiments investigated the effects of repeated amphetamine exposure on neural networks mediating different forms of learning and memory. Different components of these networks were assessed using various functional assays. The hypothesis was that abnormal dendritic changes in nucleus accumbens, medial prefrontal cortex, and hippocampus mediated by repeated amphetamine exposure would produce impairments on forms of learning and memory dependent on neural circuits relying on these brain systems, and have little or no effect on other forms of learning not dependent on these networks. Surprisingly, the results showed that many of the dendritic changes normally found in the nucleus accumbens, prefrontal cortex, and hippocampus following repeated amphetamine exposure were reversed back to control levels following extensive multi-domain cognitive training. Learning and memory functions associated with different neural networks also appeared normal except in one case. A neural network that includes, but is not limited to, the basolateral amygdala and nucleus accumbens was dysfunctional in rats repeatedly exposed to amphetamine despite the reversal of the majority of dendritic changes in the nucleus accumbens following cognitive training. Importantly, an increase in spine density that normally occurs in these brain regions following repeated amphetamine exposure remained following extensive cognitive training, particularly in the nucleus accumbens.
Collapse
Affiliation(s)
- Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Nancy S Hong
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ammon Atwood
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Amanda V Tyndall
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
47
|
Goodman J. Place vs. Response Learning: History, Controversy, and Neurobiology. Front Behav Neurosci 2021; 14:598570. [PMID: 33643005 PMCID: PMC7904695 DOI: 10.3389/fnbeh.2020.598570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 01/26/2023] Open
Abstract
The present article provides a historical review of the place and response learning plus-maze tasks with a focus on the behavioral and neurobiological findings. The article begins by reviewing the conflict between Edward C. Tolman's cognitive view and Clark L. Hull's stimulus-response (S-R) view of learning and how the place and response learning plus-maze tasks were designed to resolve this debate. Cognitive learning theorists predicted that place learning would be acquired faster than response learning, indicating the dominance of cognitive learning, whereas S-R learning theorists predicted that response learning would be acquired faster, indicating the dominance of S-R learning. Here, the evidence is reviewed demonstrating that either place or response learning may be dominant in a given learning situation and that the relative dominance of place and response learning depends on various parametric factors (i.e., amount of training, visual aspects of the learning environment, emotional arousal, et cetera). Next, the neurobiology underlying place and response learning is reviewed, providing strong evidence for the existence of multiple memory systems in the mammalian brain. Research has indicated that place learning is principally mediated by the hippocampus, whereas response learning is mediated by the dorsolateral striatum. Other brain regions implicated in place and response learning are also discussed in this section, including the dorsomedial striatum, amygdala, and medial prefrontal cortex. An exhaustive review of the neurotransmitter systems underlying place and response learning is subsequently provided, indicating important roles for glutamate, dopamine, acetylcholine, cannabinoids, and estrogen. Closing remarks are made emphasizing the historical importance of the place and response learning tasks in resolving problems in learning theory, as well as for examining the behavioral and neurobiological mechanisms of multiple memory systems. How the place and response learning tasks may be employed in the future for examining extinction, neural circuits of memory, and human psychopathology is also briefly considered.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| |
Collapse
|
48
|
Sun W, Wu Y, Tang D, Li X, An L. Melamine disrupts spatial reversal learning and learning strategy via inhibiting hippocampal BDNF-mediated neural activity. PLoS One 2021; 16:e0245326. [PMID: 33428671 PMCID: PMC7799824 DOI: 10.1371/journal.pone.0245326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Although several studies showed adverse neurotoxic effects of melamine on hippocampus (HPC)-dependent learning and reversal learning, the evidence for this mechanism is still unknown. We recently demonstrated that intra-hippocampal melamine injection affected the induction of long-term depression, which is associated with novelty acquisition and memory consolidation. Here, we infused melamine into the HPC of rats, and employed behavioral tests, immunoblotting, immunocytochemistry and electrophysiological methods to sought evidence for its effects on cognitive flexibility. Rats with intra-hippocampal infusion of melamine displayed dose-dependent increase in trials to the criterion in reversal learning, with no locomotion or motivation defect. Compared with controls, melamine-treated rats avoided HPC-dependent place strategy. Meanwhile, the learning-induced BDNF level in the HPC neurons was significantly reduced. Importantly, bilateral intra-hippocampal BDNF infusion could effectively mitigate the suppressive effects of melamine on neural correlate with reversal performance, and rescue the strategy bias and reversal learning deficits. Our findings provide first evidence for the effect of melamine on cognitive flexibility and suggest that the reversal learning deficit is due to the inability to use place strategy. Furthermore, the suppressive effects of melamine on BDNF-mediated neural activity could be the mechanism, thus advancing the understanding of compulsive behavior in melamine-induced and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
49
|
Chataigner M, Mortessagne P, Lucas C, Pallet V, Layé S, Mehaignerie A, Bouvret E, Dinel AL, Joffre C. Dietary fish hydrolysate supplementation containing n-3 LC-PUFAs and peptides prevents short-term memory and stress response deficits in aged mice. Brain Behav Immun 2021; 91:716-730. [PMID: 32976934 DOI: 10.1016/j.bbi.2020.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Brain aging is characterized by a decline in cognitive functions, which can lead to the development of neurodegenerative pathologies. Age-related spatial learning and memory deficits are associated with a chronic low-grade inflammation. Anxiety disorders and stress response alterations, occurring for a part of the elderly, have also been linked to an increased neuroinflammation and thus, an accelerated cognitive decline. Nutrition is an innovative strategy to prevent age-related cognitive impairments. Among the nutrients, n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides from proteins, especially those from marine resources, are good candidates for their immunomodulatory, anxiolytic and neuroprotective properties. The aim of this study is to determine the combined effect of n-3 LC-PUFAs and low molecular weight peptides on cognitive functions, and their mechanism of action. We are the first to show that a dietary supplementation with a fish hydrolysate containing n-3 LC-PUFAs and low molecular weight peptides prevented the age-related spatial short-term memory deficits and modulated navigation strategies adopted during spatial learning. In addition, the fish hydrolysate displayed anxiolytic activities with the reduction of anxiety-like behaviour in aged mice, restored the plasmatic corticosterone levels similar to adult animals following an acute stress and modulated the hypothalamic stress response. These effects on behaviour can be explained by the immunomodulatory and neuroprotective properties of the fish hydrolysate that limited microgliosis in vivo, decreased LPS-induced expression of pro-inflammatory cytokines and increased the expression of growth factors such as BDNF and NGF in vitro. Thus, n-3 LC-PUFAs and low molecular weight peptides contained in the fish hydrolysate can play an important role in the limitation of neuroinflammation and stress response alterations during aging and represent a potential strategy for the prevention of age-related cognitive decline.
Collapse
Affiliation(s)
- M Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; Abyss Ingredients, 56850 Caudan, France
| | - P Mortessagne
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - V Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - S Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | - E Bouvret
- Abyss Ingredients, 56850 Caudan, France
| | - A L Dinel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
50
|
Bostelmann M, Ruggeri P, Rita Circelli A, Costanzo F, Menghini D, Vicari S, Lavenex P, Banta Lavenex P. Path Integration and Cognitive Mapping Capacities in Down and Williams Syndromes. Front Psychol 2020; 11:571394. [PMID: 33362636 PMCID: PMC7759488 DOI: 10.3389/fpsyg.2020.571394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Williams (WS) and Down (DS) syndromes are neurodevelopmental disorders with distinct genetic origins and different spatial memory profiles. In real-world spatial memory tasks, where spatial information derived from all sensory modalities is available, individuals with DS demonstrate low-resolution spatial learning capacities consistent with their mental age, whereas individuals with WS are severely impaired. However, because WS is associated with severe visuo-constructive processing deficits, it is unclear whether their impairment is due to abnormal visual processing or whether it reflects an inability to build a cognitive map. Here, we tested whether blindfolded individuals with WS or DS, and typically developing (TD) children with similar mental ages, could use path integration to perform an egocentric homing task and return to a starting point. We then evaluated whether they could take shortcuts and navigate along never-traveled trajectories between four objects while blindfolded, thus demonstrating the ability to build a cognitive map. In the homing task, 96% of TD children, 84% of participants with DS and 44% of participants with WS were able to use path integration to return to their starting point consistently. In the cognitive mapping task, 64% of TD children and 74% of participants with DS were able to take shortcuts and use never-traveled trajectories, the hallmark of cognitive mapping ability. In contrast, only one of eighteen participants with WS demonstrated the ability to build a cognitive map. These findings are consistent with the view that hippocampus-dependent spatial learning is severely impacted in WS, whereas it is relatively preserved in DS.
Collapse
Affiliation(s)
| | - Paolo Ruggeri
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | | | - Floriana Costanzo
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Deny Menghini
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefano Vicari
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy.,Faculty of Medicine and Surgery, Catholic University, Rome, Italy
| | - Pierre Lavenex
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Pamela Banta Lavenex
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland.,Faculty of Psychology, Swiss Distance University Institute, Brig, Switzerland
| |
Collapse
|